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Abstract. In this work we study the ability of a Compressive Sens-
ing (CS) based imager, the Disperser Coded Aperture Snapshot Spec-
tral Imager (DD CASSI) to perform real-time hyperspectral imaging in
real-time. CS theory allows to capture data below the Nyquist rate but
needs a computationally expensive reconstruction phase to recover the
data. The goal of this work is to study the limiting factors of the re-
construction process. Therefore, we propose to improve the performance
estimations of a previous work that compared the caracteristics to off-
the-self computing devices, i.e. a Graphics Processing Unit (GPU) and
a Field-Programmable Gate Array (FPGA). Thanks to High Level Syn-
thesis (HLS), we are able to get a timing analysis of the reconstruction
process as if it was implemented in a circuit. Moreover, we will discuss
the different bottlenecks of the implementation and suggest some leads
to further improve the performances of the imaging system.

Keywords: Compressive sensing · Real-time · Hyperspectral imaging ·
Embedded systems.

1 Introduction

Hyperspectral imagering consists in measuring the spectral information of a
scene in about a hundred of wavelengths. The representation of hyperspectral
data is then called a "hyperspectral data cube". The rich spectral information
has been used in various fields such as agriculture [1], geology [2] and medicine
[3]. Conventional hyperspectral imagers operate by scanning scenes row-by-row,
using diffraction gratings to separate spectral bands and capture band-specific
information. This approach presents major issues. First, movement is required
in order to capture the whole scene, which is time consuming, and for a given
sensor size, this leads to a reduction of spatial resolution, since each additional
spectral band further divides the sensor matrix. Plus, the whole data cube is
captured which generates a huge amount of data that either need to be stored
or transferred, which is problematic when considering embedded systems.
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Hence, Compressed Sensing (CS) [4] theory has been used to overcome these
issues. CS exploits the sparsity of the signals and allows to capture compressed
data below the Nyquist rate and recover computationally the data in its en-
tirety. For imagery purposes, it enables to use smaller sensor arrays, and thus
requiring a lower memory footprint or data bandwidth, while keeping the same
spatial and spectral resolution. However, CS requires a computationally expen-
sive reconstruction phase to reconstruct the hyperspectral data cube from the
raw compressed data. In literature, most CS related works focus on reconstruc-
tion quality [5,6]. A very few of them treat the reconstruction of the data on
embedded systems, e.g. [7,8,9]. Lim et al. [10] assessed the characteristics of
a CS-based hyperspectral imaging system, e.g. how much computing power is
needed to achieve a certain level of performance. However, the characteristics are
compared to off-the-self computing devices. Hence, the performances presented
in their work are still theoretical.

Our goal is to study the performances of a CS imager for real-time applica-
tions, i.e. 10 Frames Per Second (FPS), or 100 ms for both the acquisition and
reconstruction, on a embedded system, i.e. a Graphics Processing Unit (GPU)
and a Field-Programmable Gate Array (FPGA). Therefore, in this paper we
propose to the accuracy of performance estimates by conducting hardware sim-
ulations for a circuit design dedicated to the reconstruction phase. This approach
provides realistic timing information regarding the reconstruction time. The de-
sign, implemented using High-Level Synthesis (HLS), incorporates hardware op-
timizations to leverage the parallelism inherent in the reconstruction algorithm.
Furthermore, we discuss the limiting factors of the implementation and offer
insights for further performance improvements.

In Section 2, we will first expose the method on which this work is based upon
and more specifically the problem to solve. Then we will present an overview of
the anticipated circuit and discuss essential considerations for selecting recon-
struction parameters, along with their impact on reconstruction time. Section 3
will present the experiments conducted in this work and their results. Section 4
will discuss the aforementioned results, the limiting factors of the implementa-
tion and suggest some improvements in order to overcome the limitations. And
finally Section 5 will conclude this work on real-time reconstructions based on
the considered CS-based imaging system.

2 Methodology

2.1 Studied imaging system

As in Lim et al. [10], we consider the Disperser Coded Aperture Snapshot Spec-
tral Imager (DD CASSI) [11] and the Conjugate Gradient for Normal Equa-
tion (CGNE) [12] for the reconstruction process. The DD CASSI integrates CS
through a configurable coded spectral filter and light ray multiplexing. Improved
spectral data can be obtained by conducting additional acquisitions with distinct
codes. The CGNE algorithm, being iterative, relies on the number of iterations,
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which directly impacts reconstruction time. Lim et al. demonstrated that enhanc-
ing both reconstruction quality and reducing the number of iterations is possible
by increasing the number N of acquisitions. Reconstruction is performed row-
by-row, instead of the whole scene at once, and then concatenated, minimizing
CGNE variable memory usage and mitigating memory swapping concerns.
To reconstruct the hyperspectral cube, the problem to solve is:

ô = argmin
o

{∥d−Ho∥2 + µx∥Dxo∥2 + µλ∥Dλo∥2} (1)

where ô is the estimation of the observed scene o, d is the raw data from the DD
CASSI, H is the system matrix reproducing the DD CASSI’s optical system, µs
and D are respectively regularization coefficients and finite differences matrices
used to enforce continuity in the spatial dimension x and the spectral dimension
λ. And the CGNE is used to solve the linear system Aô = b with A = M⊤M
where M = [H,

√
µxDx,

√
µλDλ] and b = H⊤d. d is made of a set of N

acquisitions with different codes. These codes and and the optical system model
are incorporated in H. We recall the CGNE algorithm in Algorithm 1.

Algorithm 1: CGNE algorithm. The convergence condition is satisfied
when a specific precision threshold, denoted as tol, is achieved, and can be
expressed as r⊤

i ri < tol.

Compute r0 = b−Ax0, ρ0 = A⊤r0;
for i = 0, 1, ... until convergence do

αi = r⊤
i ri/ρ

⊤
i ρi;

xi+1 = xi + αiρi;
ri+1 = ri − αiAρi;
βi = r⊤

i+1ri+1/r
⊤
i ri;

ρi+1 = A⊤ri+1 + βiρi

end

Lim et al. emphasized H’s sparsity, suggesting a sparse matrix format to re-
duce computation and memory footprint. They found Compressed Sparse Row
(CSR) format yielded the fastest reconstruction. Fixed-point representation is
used to minimize memory usage, while maintaining accuracy and optimizing em-
bedded system bandwidth. We recall in Algorithm 2 the matrix-vector product
algorithm when using the CSR format. The matrix A is encoded into three ar-
rays: val, col and row. For each row of A, every non-zero entry is concatenated
into val, the column indices of the non-zero entries are stored in col and row
stores the index (in row and col) for the first and last entry.

2.2 Hardware implementation

Circuit outline Utilizing Algorithm 1, we can outline the circuit implementing
the main loop of the CGNE, as depicted in Figure 1. This visualization aids in
understanding the circuit’s magnitude, particularly in terms of physical memory
and mathematical operations. It also highlights the use of intermediary variables
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Algorithm 2: CSR format matrix-vector product. Result is stored in
y and v is the operand vector.

for int i=0; i<n; i++ do
y[i] = 0.0;
for int j=row[i]; j<row[i+1]; j++ do

y[i] += val[j]*v[col[j]];
end

end

(denoted as t) and emphasizes the algorithm’s dependencies and concurrency.
To enhance performance, the CGNE algorithm undergoes modifications. These
include storing the results of both r⊤i+1ri+1 and r⊤i ri in rhoc and rhoc respec-
tively, preventing redundant computations. Additionally, xi+1, ri+1, and ρi+1

are saved in the same registers as xi, ri, ρi since they are not required for the
rest of the iteration. For readibility reasons, this is depicted with a dotted arrow
on Figure 1 and also note that A and A⊤ are stored in the CSR format, as
described in Section 2.1.

Reconstruction parameters Given our constraint of real-time, we have to
pick a number N of acquisitions. Although, increasing N improves both the
reconstruction time and quality, there is a cap on the number of acquisitions
that can be made due to the fact that increasing N also extends the acquisition
time, consequently reducing the time available for the reconstruction process.
Also, as N increases, the values in A and b also increase due to the inclusion of
additional data. Consequently, when using fixed-point representation, increasing
N leads to a larger memory footprint. This raises a concern: processing each
scene row in parallel is feasible, but the level of parallelism is restricted by the
maximum number of simultaneous CGNE instances that can be stored. This
limit is determined by the algorithm’s footprint and the memory capacity of the
computing device, such as the FPGA Xilinx Ultrascale+ VU13P [13], which we
consider here. It’s important to note that while computing power does impose
limitations on parallelism, the primary constraint is set by memory accesses, as
elaborated further in Section 4.

Experimental procedure Initially, we replicate the experiments conducted
by Lim et al., measuring the dynamic range of CGNE’s variables to assess the
memory footprint while using the fixed-point representation. It appears that A
is sparse, comprising approximately 1% non-zero entries. This directly influences
the number of operations in matrix-vector products, which is the predominant
operation in the CGNE algorithm. Then, based on the defined reconstruction
parameters, we use CatapultC, the HLS tool from Siemens, to generate a register-
transfer level (RTL) design and perform timing analysis.

Thanks to the timing analysis provided by CatapultC, we measure t1iterN
the time required by 1 CGNE iteration for a given value of N .
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Fig. 1: Schematic of the row-by-row CGNE circuit design

Thus, we can determine the number of CGNE iterations, denoted as ITERSN ,
that can be executed under real-time constraints. Each frame has 1

target_FPS sec-
onds available for both the acquisition and reconstruction phases. The acquisi-
tion step lasts N ×camera_rate seconds, leaving 1

target_FPS −N ×camera_rate
seconds for the reconstruction process. Reconstruction must be performed for
each row in the scene. However, parallelism enables multiple simultaneous re-
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constructions. Hence, denoting R as the number of rows, the time available for
the reconstruction process is divided by ⌈R/parallelism_level⌉. Finally divid-
ing this duration by the time required by 1 CGNE iteration gives us ITERSN .
Thus,

ITERSN =

(
1

target_FPS−N×camera_rate)
⌈R/parallelism_level⌉

t1iter


=

⌊
1− target_FPS ×N × camera_rate

⌈R/parallelism_level⌉ × target_FPS × t1iterN

⌋
(2)

Then to ensure whether N is suitable or not, we measure the Peak Signal-to-
Noise Ratio (PSNR) [14] of the reconstructions and set an arbitrary threshold
of 30 dB.

3 Experiments

(a) Building (200 ×
200× 33)

(b) Fields (100 ×
100× 100)

(c) Flower (150 ×
150× 100)

Fig. 2: Scenes used in the simulations with their dimensions

To encompass a wide range of applications, our simulations incorporate di-
verse subscenes sourced from different datasets and fields. "Building", a 200 ×
200×33 scene from [15], "Fields", a scene 100×100×100 from [16] and "Flower",
a 150 × 150 × 100 scene from [17], where R × C × W denote respectively the
number of rows, columns and wavelengths. The scenes are depicted in Figure 2.

We denote the Ratio of Captured Information (RCI) as N
W . As described in

Section 2.2 and to determine ITERSN , for each scene we study the number
of non-zero entries in A, the "parallelism level", that is the number of CGNE
instances that can be run simultaneously, and the time required for a CGNE
iteration. These elements are presented in Figure 3. By applying Equation (2),
we evaluate ITERSN , see Table 1. Please note that we consider a camera_rate
of 1 000 FPS, that is one acquisition requires 1 ms. Finally, the quality recon-
struction is measured.

It is observed that the number of non-zero entries reaches a plateau due to
the specific pattern followed by these entries in M . With the increase in N ,
more random codes are included in H, causing A to be filled with additional
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(a) Number of non-zeros entries in A
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(b) Parallelism level
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0.015

0.020
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(c) Time for 1 CGNE iteration in sec-
onds

Fig. 3: Criteria to determine ITERSN

entries and eventually plateauing the amount of its non-zero entries. The paral-
lelism level also follows a hyperbola. This can be explained as N increases, the
memory footprint expands. However, the use of two’s complement in fixed-point
representation implies that each additional bit corresponds to a wider range of
values. Regarding the time for 1 CGNE iteration, we can notice that it follows
the same curve as the number of non-zero entries in A. This is also expected
since the matrix-vector products perform the multiplication with only the non-
zero entries, thanks to the sparse matrix format. Additionally, it’s essential to
recognize that the presented times result from timing analysis conducted on a
45 nm circuit running at 115 MHz, as they are the technology node provided
by CatapultC and the maximum achieviable frequency while meeting timing
constraints.
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Regarding ITERSN , it is worth noting that when RCI is greater than 0.01,
executing a single iteration lasts at least 16.6 and 23.4 ms for Fields and Flower,
respectively, rending the reconstruction unfeasible at 10 FPS. Compared to
Building, this can be attributed to their resolutions. Because of this, the number
of non-zero entries in A is also higher which expands the computation time.
Moreover, since W is higher for Fields and Flower, for a fixed RCI, they require
more acquisitions which also reduce the time available for the reconstruction pro-
cess. In the end, for a target_FPS of 10, ITERSN for Building are presented
in Table 1. At N = 1, we can execute 2 iterations for Fields and 1 for Flower.

Finally, for Building, the reconstruction quality ranges starts from 19.94 dB
and reaches its peak at 25.67 dB for RCI = 0.9 or N = 29. The reconstruction
quality for Fields and Flower reaches respectively 15.35 dB and 7.50 dB at RCI
= 0.01 or N = 1.

As the obtained quality is below the desired threshold, we investigate the
number of iterations required to reach a minimum quality of 30 dB, as depicted
in Figure 4. We then examine the reconstruction rates at which this quality level
can be reached. Our findings indicate that only the Building scene can attain a
PSNR of 30 dB with a reconstruction rate of 1 FPS for N = [23, 33].

Regarding the observations on Figure 4, it is noted that the number of itera-
tions needed to reach a PSNR of 30 dB follows a hyperbolic trend. This pattern
is expected, given that the relative information contributed by additional acqui-
sitions decreases as N increases.

Table 1: Number of maximum iterations at 10 FPS
RCI 0.01 0.05 0.10 – 0.15 0.20 – 0.90 0.95–1.00
Building 8 5 3 3 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Ratio of captured information: N/W

102

103

104 Building
Fields
Flower

Fig. 4: Number of iterations to reach 30 dB
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4 Discussion

When considering the analysis described by Lim et al., we estimate a recon-
struction rate of 381, 164 and 107 FPS respectively for Building, Fields, and
Flower, respectively. However, when we consider the reconstruction time given
by the timing analysis made by CatapultC, the resulting reconstruction rate
is significantly lower than anticipated, i.e 1 FPS for Building. The reason for
this disparity is that Lim et al. do not consider the memory accesses during
the computation, especially during the matrix-vector product, see Algorithm 2.
They only consider the total amount of computations which assumes that every
computation can be done at once.

It is important to highlight that the number of CGNE iterations is influenced
by several parameters, including the dimensions of the scene, the number N
of acquisitions, the targeted reconstruction quality, among others. Achieving
a balance among these parameters is crucial. For instance, according to our
method, a 20 × 20 × 33 scene is capable of achieving real-time performance at
30 FPS for N = [11, 33].

4.1 Perspectives

Computation time In order to speed up the the matrix-vector product, it
would require to split the values of A and A⊤ into several memory banks and
perform parallel computations, see Figure 5 as example. As a result, it becomes
possible to execute the matrix-vector product in a piecewise fashion, enabling
parallel computations. Given that we have already implemented the CSR matrix-
vector product, the required adjustment lies in adapting the memory organiza-
tion of the circuit, as depicted in Figure 1. This requires partitioning the variables
and applying the CSR matrix-vector product to the partitions of A, A⊤, r, and
ρ, followed by concatenating the outcomes of the piecewise products. However,
the introduction of intermediary variables becomes necessary as a consequence
of storing the results from the split computations. Consequently, this leads to a
minor increase in the memory footprint. Nevertheless, the positive trade-off is
that the time required for the matrix-vector product is significantly reduced, as
it gets divided by the number of partitions, namely 3 in Figure 5. This substan-
tial improvement in computation time is particularly valuable, considering that
it is the primary limiting factor in this context.

In this study, we have emphasized the impact of the number of non-zero
entries in A and A⊤ on the reconstruction time. As illustrated in Lim et al.’s
work, the number of non-zero entries depends on C and W . Given that W has
a quadratic influence on the number of non-zero entries, it may be worthwhile
to explore methods to perform reconstructions with a lower W . For instance, it
can be done either by splitting the spectral dimension or by performing a first
reconstruction with a lower spectral resolution to serve as a starting point for a
second reconstruction with the original spectral resolution, thereby potentially
accelerating the overall process.
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Moreover, to mitigate the impact of acquisition and increase the time avail-
able for reconstruction, we could consider scheduling acquisitions for the next
frame to occur during the reconstruction process.

AI,I AI,II AI,III

AII,I AII,II AII,III

AIII,I AIII,II AIII,III

vIIIvIIvI

Fig. 5: Split matrix-vector product

Memory footprint Additionally, we came up with three ways to reduce the
memory footprint.

Sparse matrix formats add an information overhead in order to store the
column index for their entries, e.g. the array col for the CSR format. Here, A
exhibits a pattern of diagonals along which the entries are located. It would be
valuable to explore methods to exploit this pattern to avoid storing the column
index for every entry, thereby reducing the overall memory footprint. One ap-
proach might involve devising a formula to encode the column index instead of
storing it, or alternatively, transitioning to the Diagonal matrix format. How-
ever, it’s worth noting that Lim et al. demonstrated that such a transition leads
to slower reconstruction times.

Since most of the memory footprint is allocated to store A and A⊤, adopting
a sparse matrix format capable of efficiently conducting matrix-vector products
with its transpose would significantly enhance memory efficiency. The Coordi-
nate format could be used, but again Lim et al. showed that it offers slower
reconstruction time.

Throughout this work we observed minimal variation in the values of A’s
entries. For instance, in the case of Building with N = 1, A encompassed only
11 distinct values among approximately 127,000 non-zero entries. Consequently,
employing a data structure akin to a dictionary could considerably reduce the
memory footprint of A. However, it is reasonable to anticipate a slight slowdown
in the matrix-vector product due to the addition of a decoding stage.

4.2 Limitations

The presented performances in this study could potentially be underestimated
for two reasons. Firstly, to guarantee stable circuit signals, CatapultC incor-
porates a margin for hold times, reducing the maximum achieviable frequency.
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Secondly, the HLS tool performs the synthesis step in the circuit design work-
flow. The subsequent place and route step is crucial for optimizing the placement
of circuit components and minimizing the path between them, potentially en-
hancing overall performance.

Conclusion:

CS is an emerging technique that allows to capture a signal under the Nyquist
rate but requires huge computations to recover the original signal. In this con-
text, we studied the performances of employing CS to perform real-time hy-
perspectral imagery on embedded systems. For this purpose, we relied on the
work of Lim et al. [10]. We propose to provide more realistic estimations using
HLS for conducting timing analysis of a circuit performing the reconstruction
for the same imaging system. Additionally, we outline crucial considerations for
hardware implementation and identify the bottlenecks in the imaging system,
primarily related to matrix-product operations. These bottlenecks might find
resolution through the adaptation or substitution of the CSR sparse matrix for-
mat, even though it currently provides the most efficient reconstruction time
among conventional sparse matrix formats.

In terms of performance, it can be concluded that the proposed naive imple-
mentation struggles to achieve satisfactory reconstructions with a satisfactory
rate, e.g. 1 FPS for a 200 × 200 × 33 scene. However, it’s worth noting that
this reconstruction rate is reported for a 45 nm circuit, a technology node that
is relatively large by today’s standards and could operate at 115 MHz with-
out violating timing constraints. In comparison to state-of-the-art solutions, the
imaging system could potentially outperform them. For example, [7] achieve 10
FPS for a 230× 198× 28 scene but use a Nvidia Titan-X which operates at ap-
proximately 1 500 MHz. With the the same frequency, our naive implementation
can reach 12 FPS for a 200× 200× 33 scene.

To conclude, future works should focus on implementing the improvements
proposed in this work. This includes the exploration of a partitioned matrix-
vector product and the adoption of a more suitable sparse matrix format that
maximizes the utilization of entry patterns in A without compromising existing
performance. Additionally, investigating alternative algorithms to the CGNE or
considering other imagers could be beneficial. Furthermore, now that the primary
bottlenecks are identified, it becomes pertinent to explore new theoretical mod-
els for estimating reconstruction time. The critical challenge lies in accurately
identifying the hardware and algorithm optimizations such as loop merging.
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