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In the setting of generic β-ensembles, we use the loop equation hierarchy to prove a local law with optimal
error up to a constant, valid on any scale including microscopic. This local law has the following consequences.
(i) The optimal rigidity scale of the ordered particles is of order (log N)/N in the bulk of the spectrum. (ii)
Fluctuations of the particles satisfy a central limit theorem with covariance corresponding to a logarithmically
correlated field; in particular each particle in the bulk fluctuates on scale √

log N/N . (iii) The logarithm of the
electric potential also satisfies a logarithmically correlated central limit theorem.

Contrary to much progress on random matrix universality, these results do not proceed by comparison.
Indeed, they are new for the Gaussian β-ensembles. By comparison techniques, (ii) and (iii) also hold for
Wigner matrices.
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1 Introduction

The β-ensembles are both a generalization of the Gaussian orthogonal, unitary and symplectic ensembles, and a
natural statistical physics model, the 1d log-gas. Their distribution, on N points λ1 ⩽ . . . ⩽ λN , is

dµN (λ1, . . . , λN ) := 1
ZN

∏
1⩽k<l⩽N

|λk − λl|βe− βN
2

∑N

k=1
V (λk) dλ1 . . . dλN . (1.1)

The initial motivation for this article is to provide a characterization of the fluctuations of individual eigenvalues.
Specifically, we ask does the convergence

λk − E(λk)
σ

→ X (1.2)

hold in distribution for some σ depending on N, k, β and some random variable X? What is the decay of correlations
between the particles? In [76, Section 3.4], based on an approximation of the Hamiltonian in (1.1) by a quadratic
form, and wavelet calculations, Tao developed a heuristic picture for (1.2). It suggests the fluctuations of eigenvalues
converge to a limiting log-correlated Gaussian vector.

Via different arguments, this paper makes these predictions rigorous (see Corollary 1.9), first phrasing the problem
in terms of fluctuations of

∑
f(λi), with f an indicator function. Despite considerable attention, fluctuations of such
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linear statistics were previously obtained only for integrable models (β = 1, 2, 4) or smooth enough f . Our method
also applies to the f = log singularity1, i.e. the electric potential, or log-characteristic polynomial (Theorem 1.8).

For the proof, we combine equations from the loop equation hierarchy to obtain an optimal local law (Theorem
1.1) which holds on the microscopic scale. This allows treatment of singular test functions, and non-linear statistics
such as max |λi − E(λi)|, identifying the true rigidity scale of the particles (Corollary 1.5).

1.1 Optimal local law. In this paper, β > 0 is fixed and our assumptions on V are the following.

(A1) V is analytic on R.

(A2) There exist constants M0, C, c > 0 such that

V ′(x) ⩾ c and sup
y∈[M0,x]

V ′(y)
y

⩽ CV (x) for all x ⩾M0,

and similar estimates apply for x ⩽ −M0, i.e. the above holds for Ṽ (x) := V (−x).

(A3) Under the previous assumptions, it is known that E[N−1∑N
i=1 δλi

] converges weakly to a probability measure
µV , with density ϱV . We assume ϱV is positive and supported on a single interval [A,B] (one-cut hypothesis),
with square root singularities at A and B (generic behavior), see (2.2).

(A4) The function x 7→ V (x)/2 −
∫

log|x− t| dµV (t) achieves its minimum value only on the interval [A,B].

To state our first results, we introduce the following notation. For z with Im z ̸= 0, let

sN (z) = 1
N

N∑
k=1

1
λk − z

, mV (z) =
∫
R

dµV (x)
x− z

, and define γk through
∫ γk

−∞
dµV = k

N
.

Theorem 1.1. There exist η̃, C > 0 such that for any q ⩾ 1, N ⩾ 1 and z = E + iη with 0 < η ⩽ η̃ and
A− η ⩽ E ⩽ B + η, we have

E[|sN (z) −mV (z)|q] ⩽ (Cq)q/2

(Nη)q
+ (Cq)q

Nq|z −A|q/2|z −B|q/2 .

Remark 1.2. Proposition 3.5 extends this local law to E /∈ [A− η,B + η], with the slightly worse bound (Cq)2q

(Nη)q .

Remark 1.3. For quadratic V , that is for the Gaussian β-ensembles, the second term in the bound of the local law
can be removed (see Remark 2.2): for 0 < η ⩽ η̃ and A− η ⩽ E ⩽ B + η, we have E[|sN (z) −m(z)|q] ⩽ (Cq)q/2

(Nη)q .

Remark 1.4. The technical assumption (A2), which states that the potential grows at least linearly, can be replaced
to cover the case of V growing slower than x2, see Remark 2.4.

Theorem 1.1 is an important ingredient for the following estimates on the location of the particles, improving the
polynomial error terms of [19, 18, 21]. The logarithmic factor in these rigidity bounds is optimal. Indeed, [25] shows
that when β = 2, eigenvalues in the bulk can fluctuate from their expected locations by as much as c(logN)/N .
Below and in the remainder of this paper, we denote k̂ = min(k,N + 1 − k).

Corollary 1.5. For any D > 0, there exists C > 0 such that, for any aN/ logN → ∞, for N large enough,

P
(

max
k∈JaN ,N−aN K

|λk − γk| > C(logN)N− 2
3 k̂− 1

3

)
⩽ N−D.

Universality of the Tracy-Widom distribution [48, 21, 11] suggests P(λN > B + xN−2/3) ⩽ e−cx3/2 , and [60]
establishes this right tail for the GβE. For general V , we prove an exponential decay with exponent 3/4, as a
consequence of our local law outside of the trapezoidal region where Theorem 1.1 holds.

1For higher order singularities such as f = |x|−α, the fluctuations are supposedly of order Nα, non-Gaussian, and essentially local
functions of the limiting point process.

2



Corollary 1.6. There are constants c, C > 0 such that, for any N ⩾ 1 and x ∈ [0, N2/3],

P
(

∃k ∈ J1, NK, λk /∈
[
A− xN−2/3, B + xN−2/3

])
⩽ C exp

(
− cx3/4).

Finally, we note that Theorem 1.1 easily gives subsequential convergence of the point process at microscopic scale
at any energy level E. For E in the bulk or at the exact edge much more is known, namely fixed energy universality
[74, 57, 48, 21, 11]. The result is new for varying E at intermediate energy levels. More importantly, it shows
tightness directly follows from loop equations.

Corollary 1.7. Let E = EN ∈ [A,B] be a deterministic sequence and let ℓ(E) be as in (1.3) below. Then the point
process

∑
i δ(λi−E)/ℓ(E) is tight for the vague topology.

1.2 Logarithmically correlated field. Before stating our second main result, we introduce some further notation.
We consider the principal branch of the logarithm, extended to the negative real numbers by continuity from above,
that is log(reiθ) = log(r) + iθ for any r > 0 and θ ∈ (−π, π]. As is usual, we define zα by eα log(z). For any E ∈ R,
we set

κ(E) := |A− E| ∧ |B − E| and ℓ(E) :=
{
N−1κ(E)−1/2 if E ∈ [A+N−2/3, B −N−2/3],
N−2/3 otherwise.

(1.3)

The length ℓ(E) is the microscopic scale at E ∈ [A,B], that is the typical spacing between particles close to E. We
also define

LN (E) :=
N∑

j=1
log(E − λj) −N

∫
log(E − x) dµV (x). (1.4)

The following theorem says that fluctuations of the field LN are asymptotically Gaussian with log-correlated structure
independent of V up to the edge. Further, the real and imaginary parts of LN are asymptotically independent. We
refer to Section 1.3 for a review of previous related results.

Theorem 1.8. For fixed m ⩾ 1, let (E1, . . . , Em)N⩾1 be energy levels in [A,B] possibly depending on N . Let
δi = 1

4 ( 2
β − 1) log(κ(Ei) ∨N−2/3) for 1 ⩽ i ⩽ m. Assume that for each 1 ⩽ i, j ⩽ m, the following limits exist,

aij = lim
N→∞

log(|Ei − Ej | ∨ ℓ(Ei))
− logN and bij = lim

N→∞

log
(

|Ei−Ej |∨ℓ(Ei)
κ(Ei) ∧ 1

)
− logN ,

and denote a = (aij)1⩽i,j⩽m and b = (bij)1⩽i,j⩽m. Then, the following convergence holds in distribution:√
β

logN (ReLN (E1) − δ1, . . . ,ReLN (Em) − δm, ImLN (E1), . . . , ImLN (Em)) −−−−→
N→∞

N

(
0,
(

a 0
0 b

))
.

Note that by our definition of log, for x ∈ R∗, Im log(x) = π1x<0 and therefore 1
π

∑N
k=1 Im log(E − λk) counts the

number of eigenvalues greater than E. We can therefore answer (1.2), extending to generic V and any β, Gustavsson’s
famous central limit theorem [41] for the GUE, and its analogue for the GOE [68]. For the statement, consider the
normalized eigenvalue displacements, for 1 ⩽ n ⩽ N ,

YN (n) = πN

√
β

logN ϱV (γn)(λn − γn).

Corollary 1.9. For fixed m ⩾ 1, let n1, . . . , nm ∈ J1, NK possibly depending on N . Assume that for each 1 ⩽ i, j ⩽ m,
the limit

bij = lim
N→∞

log
( |γni

−γnj
|∨ℓ(γni

)
κ(γni

) ∧ 1
)

− logN
exists, and denote b = (bij)1⩽i,j⩽m. Then, the following convergence holds in distribution:

(YN (n1), . . . , YN (nm)) −−−−→
N→∞

N (0,b).
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Remark 1.10. If n1 ∧ (N − n1) = O(1), then b11 = 0: This corollary does not identify fluctuations at the edge of
the spectrum, as expected, e.g. for n1 = 1 from the convergence of N2/3(A− λ1) to the Tracy-Widom distribution.

Finally, [22, Theorem 1.5] states that the real part of the log characteristic polynomial of a (real or complex)
Wigner matrix is log-correlated (in the bulk of the spectrum) in the limit of large dimension, conditional on the
same being true in the GOE and GUE cases. The proof of this theorem applies equally to the imaginary part of the
log-characteristic polynomial, and therefore Theorem 1.8 also holds in the Wigner case.

Corollary 1.11. Let λ1 ⩽ . . . ⩽ λN be the eigenvalues of a real (resp. complex) Wigner matrix as defined in [22].
Let κ > 0 and E1, . . . , Em ∈ [−2 + κ, 2 − κ] satisfy the hypothesis of Theorem 1.8. Then the conclusion of Theorem
1.8 holds with β = 1 (resp. β = 2).

1.3 Related Works. We now describe part of the rich literature on rigidity and central limit theorems in contexts
related to the measure (1.1). For many other facets of the 1d log-gas we refer to Peter Forrester’s book [34].

Local law and rigidity. Typically, (weak) local laws refer to the number of particles in any mesoscopic ball behaving
as predicted by the macroscopic equilibrium measure, while rigidity (sometimes called strong local law) means the
fluctuations are smaller than for independent particles. Rigidity often appears in the context of long-range, repulsive
interactions and is an important step in many proofs of universality in random matrix theory [30]. These notions
and the following results are meant to hold with overwhelming probability, 1 − O(N−D) for any D > 0.

For β-ensembles, [19, 18, 21] provided the first rigidity bounds (see also [75] for the GβE), with optimal polynomial
scale, i.e. Corollary 1.5 with No(1) in place of C logN . For particles in the bulk, [62] extended these results to the
multicut case. For systems out of equilibrium, a dynamic approach provided rigidity bounds which are of order
(logN)C/N in the bulk [43], and hold up to the edge [1]. For discrete β-ensembles, [40] obtained rigidity bounds
similar to [19, 18, 21], also by combining loop equations with a multiscale analysis of local Gibbs measures. For the
circular β-ensembles, [51] proved rigidity on the scale C(logN)/N based on Selberg’s integrals, and [66] identified
the correct order of the variance for the number of particles in intervals for the GβE.

We expect that the optimal rigidity scale (logN)/N from Corollary 1.5 holds for Wigner-type matrices. The first
rigidity bounds for (generalized) Wigner matrices were proved in [31], of order ec(log log N)2

/N . For Wigner matrices,
[79] gave the extreme fluctuations O((logN)C/N), and the current best explicit C = 2 follows from results in [39].

In dimension two, the log-gas corresponds to the Coulomb interaction. Local laws for general temperature
appeared in [58, 9], together with rigidity in [9], in the sense of O(Nε) fluctuations for smooth enough linear
statistics, on any mesoscopic scale. For the Coulomb gas in greater dimension, [7] recently obtained local laws and
[72] proved rigidity bounds. Rigidity of the number of particles in domains with smooth boundary is still open for
the Coulomb gas in dimension d ⩾ 2. One expects the variance to be proportional to the boundary’s surface [64].
For advances on this conjecture in the case of the hierarchical Coulomb gas (resp. determinantal point processes),
see [23, 38] (resp. [32]).

Theorem 1.8 identifies the exact fluctuations for the number of particles in intervals, for general β-ensembles. Its
proof exploits the full strength of Theorem 1.1, in particular its validity up to the microscopic scale, and Gaussian
decay reflected by the factor qq/2 (see Section 1.4).

Fluctuations of singular linear statistics. Johansson’s method [44] has inspired many works on anomalously small
Gaussian fluctuations, for smooth enough linear statistics of particles distributed as in (1.1). Approaches also related
to a renormalized energy [12], resp. Stein’s method [52], have allowed the possibility of a critical external potential
V , resp. quantitative such CLTs. However much less was known for test functions with poor regularity, such as
indicators. Charge and potential fluctuations were predicted in [34, Sections 14.5.1, 14.5.2] to be Gaussian with
logarithmic variance, but all rigorous results were restricted to eigenvalues densities which either are integrable (e.g.
determinantal), or admit a sparse random matrix model.

On the integrable side, Theorem 1.8 unifies and extends previous results about the classical invariant ensembles.
As previously mentioned, Gustavsson proved a joint central limit theorem for ImLN for the GUE [41], based on a
general technique by Costin and Lebowitz [26], and O’Rourke proved analogous results for GOE and GSE [68]. These
results also hold for general external potential V in the bulk [56] and β = 1, 2, 4, thanks to a comparison technique
which reduces the result for general β to the case of quadratic V . Concerning ReLN , joint Gaussian fluctuations
were proved for β = 2, quadratic V and energy levels independent of N [47]. More was known for random unitary
matrices: ReLN and ImLN evaluated at one point are asymptotically Gaussian and independent [45], as in Theorem
1.8, and ReLN , ImLN evaluated at multiple points convergence to a log-correlated field [16].
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On the sparse matrix model side, Augeri, Butez and Zeitouni have recently proved the one dimensional central
limit theorem for ReLN (E) in the bulk, and quadratic V [8]. Their method is completely different from ours
and applies to a wide class of Jacobi matrices: The characteristic polynomial of the GβE satisfies a recurrence, a
consequence of the Dumitriu-Edelman tridiagonal model [28]. Using this approach, Tao and Vu [78] proved a CLT
for ReLN at E = 0, for GOE and GUE (see also [65, 27]); their method applies to any β, and from this point of
comparison they extended the result to some Wigner matrices (see below). The study of the recurrence when E ̸= 0
[8] is considerably harder. This recurrence was also analyzed in [55], resp. [54], for E in the upper half plane, resp.
at the edge of the spectrum. In particular, [54] proves the CLT for ReLN (B + λN−2/3), with convergence to the
same Gaussian random variable for any λ = O(1). Concerning Im logLN , Gaussianity of the number of points in one
large interval was obtained for the limiting sineβ process, again based on the inductive analysis of a related random
Schrödinger operator [49].

Such results are universal in the class of Wigner matrices. Tao and Vu generalized Gustavsson’s theorem on
ImLN to Hermitian Wigner matrices under a four moment matching condition, in the bulk [77]. This CLT and its
real symmetric analogue [68] were then extended to Wigner matrices with finite moments [22, 56]. At the edge, joint
fluctuations of ImLN are known for generalized Wigner matrices [21, 17]. Concerning ReLN , the CLT at E = 0 was
known again under a four moment matching assumption [78], a condition removed in [22].

Related topics. Our work is connected to the following lines of research. First, central limit theorems for smooth
enough linear statistics also hold in higher dimension, for Coulomb systems, as first proved for the Ginibre ensemble
[71], then general V , β = 2 [3], any temperature for d = 2 [59, 10] and d = 3 [72]. This raises the question of
upgrading these results to an analogue of Theorem 1.8, i.e. fluctuations of the electric potential and the charges.

Second, Theorem 1.8 states that LN belongs to the universality class of log-correlated fields, see [5] for a survey
on these fields and their connections with branching random walks, the Gaussian free field, random matrices, and
analytic number theory. This suggests the following asymptotic behavior for the maximum of ReLN (or ImLN ):(

max
E∈[A,B]

ReLN (E)
)

−
√

2
β

(
logN − 3

4 log logN
) (d)−−−−→

N→∞
Z, Z a randomly shifted Gumbel, (1.5)

see [37] for a precise conjecture in the case of the GUE. Fyodorov, Hiary and Keating initiated such predictions,
both on macroscopic and mesoscopic intervals, motivated by the analogous question for ζ [35, 36]. Parts of their
program are proved, including, in the context of log-gases: the first order for the CUE [6], the Ginibre ensemble [50]
and unitarily invariant Hermitian ensembles [53]; the second order for the CUE [69]; tightness of the third order for
the more general CβE ensemble [24].

Another common property of log-correlated fields is the convergence to Gaussian multiplicative chaos of the
measure obtained by exponentiating the field. For the measure (1.1), we expect that

eγ Re LN (x)

E[eγ Re LN (x)]
dx (1.6)

should converge in distribution with respect to the weak topology to a Gaussian multiplicative chaos measure for any
γ ∈ (0, γc), and to zero for γ ⩾ γc, with γc =

√
2β. A similar result should hold for ImLN . Such a convergence has

been shown for the CUE [80, 67], unitarily invariant Hermitian random matrices [14, 25], classical compact groups
[33], and the GOE, GSE [46].

In a different direction, the method presented in this article is based solely on the loop equations. This provides
an example where such a hierarchy alone implies convergence of the point process along subsequences, and precise
fluctuations of the individual particles and the potential, despite non summable decay of correlations. For more on
(generalized) BBGKY hierarchies and their consequences on charge and potential fluctuations, see the review [63].

1.4 Outline of the paper. We briefly describe the next sections and the ideas of the proofs, which are based
on loop equations. This hierarchy was instrumental in obtaining partition function expansions in [15]. Combined
with the rigidity from [21], it also provides a CLT on mesoscopic scales [13]. We show it gives information up to the
microscopic scale.

Section 2 contains the proof of local law in Theorem 1.1. We encourage the reader to first consider the case of
quadratic V , so that the technical Section 2.3 can be skipped. The main novelty is algebraic, with a pertinent com-
bination of loop equations. These are first simply written in terms of moments of Stieltjes transforms in Proposition
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A.3, presenting a crucial combinatorial gain compared to the expression in terms of cumulants [15]. Then Section 2.2
shows combinations of this hierarchy up to order 4q−1 control the 2q-th moments of the centered Stieltjes transform,
see Equation (2.13). The possibility of this combination was inspired by Lee and Schnelli [61], who introduced a new
method for the proof of local laws for matrices with independent entries, based on recursive moment estimates. For
non-quadratic V , Section 2.3 bounds a critical term based on complex analysis, explaining our Assumption (A1)2.
Section 2.4 concludes the proof of Theorem 1.1, appealing to an appropriate stability lemma from Appendix B.

Section 3 proves some consequences of the local law. Proposition 3.1 gives Wegner estimates, a result essential
for the proof of Theorem 1.8 and of independent interest; the key input is the Gaussian tail of sN −mV . Section 3.2
proves Corollary 1.6, based on an extension of the local law outside the trapezoidal region, obtained in Section 2.5.
The derivation of Corollary 1.5 in Section 3.4 is more subtle: A direct application of the Helffer-Sjőstrand formula
with the local law as input would give fluctuations (logN)3/2/N in the bulk. To reach (logN)/N , we combine the
local law and Johansson’s method [44]; this relies on rigidity on scale (logN)C/N for some biased measures, which is
obtained thanks to the Gaussian decay in Theorem 1.1, again. In Section 3.6, the local law and the Wegner estimate
reduce the proof of Theorem 1.8 to Gaussian fluctuations of LN (z) with Im z slightly above the microscopic scale.

This central limit theorem for LN (z) is proved in Section 4. For these smooth linear statistics, Johansson’s
classical strategy applies. We follow an effective implementation of this method on mesoscopic scales, from [20].

Acknowledgement. We thank Gaultier Lambert for his careful reading which improved the paper. We are also
grateful to an anonymous referee for pointing out a mistake in an older version of Lemma 4.8.

Notation. In this paper, the large (resp. small) constant C (resp. c) may vary from line to line, and only depends
on the fixed β > 0 and V satisfying the assumptions (A1), (A2), (A3), (A4).

2 Proof of the local law

In this section, our goal is to prove Theorem 1.1, the local law in a trapezoidal region above the segment [A,B]. In
Section 2.5, we apply the same strategy to obtain a partial local law outside of the trapezoid.

2.1 Preliminaries. We present in this section several known results concerning the equilibrium measure, µV , see
for example [2], Proposition 1 and Equation (2.22). The equilibrium measure µV (dt) = ϱV (t) dt is supported on a
single interval [A,B] and satisfies, for any x ∈ (A,B),

1
2V

′(x) = p.v.
∫ B

A

ϱV (t) dt
x− t

. (2.1)

Recall that V is analytic in R and let Ω denote a simply connected open set of the complex plane, containing R such
that we can extend V analytically in Ω. For any t ∈ [A,B], we can write the equilibrium density as

ϱV (t) = 1
π
r(t)

√
(t−A)(B − t), (2.2)

where
r(z) := 1

2π

∫ B

A

V ′(z) − V ′(t)
z − t

dt√
(t−A)(B − t)

(2.3)

is analytic in Ω. Moreover, Assumption (A3) means that the function r has no zero in [A,B].
Recall that for any z ∈ C \ [A,B], we define the Stieljes transform of the equilibrium measure as

mV (z) =
∫ B

A

ϱV (t)
t− z

dt. (2.4)

Then, for any z ∈ Ω \ [A,B], we have
2mV (z) + V ′(z) = 2r(z)b(z), (2.5)

2We believe our results hold for smooth V , by replacing the use of Cauchy’s formula by Green’s theorem for high order quasi-analytic
extensions of V . We do not pursue this direction, for the sake of simplicity.
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where
b(z) :=

√
z −A

√
z −B (2.6)

and we recall that we always use the principal branch of the square root, extended to negative real numbers by√
−x = i

√
x for x > 0. Note that b is an analytic function in C \ [A,B], and satisfies b(z) ∼ z at infinity.

For any z ∈ Ω, introduce

h(z) :=
∫ B

A

V ′(λ) − V ′(z)
λ− z

ϱV (λ) dλ, (2.7)

which defines an analytic function in Ω. Then, for any z ∈ Ω \ [A,B], we have

mV (z)2 + V ′(z)mV (z) + h(z) = 0, (2.8)

which we refer to as the fixed point equation for mV (z). The main strategy for the proof of the local law is to show
that the empirical Stieljes transform sN (z) satisfies approximately the same fixed point equation. Properties of this
quadratic equation are discussed in Appendix B.

Finally, we state two estimates for the distribution of particles that we will use. The first one is a rough rigidity
result. For any ε > 0, there exist constants c, C > 0 such that

P(∃k ∈ J1, NK, |λk − γk| ⩾ ε) ⩽ Ce−cN . (2.9)

This is a consequence of the large deviation principle with speed N2 for the empirical measure, see [4, Theorem
2.6.1], combined with the large deviation principle with speed N for the extreme eigenvalues, [4, Theorem 2.6.6]
which holds up to a condition on the partition function that follows from [73, Theorem 1 (iii)]. The large deviation
principle with speed N for the extreme eigenvalues can also be found in [15, Proposition 2.1]. Note that we need
Assumption (A4) here to guarantee that the rate functions appearing in the large deviation principle for the extreme
eigenvalues do not vanish outside of [A,B].

To state the second estimate we use, let ϱ(N)
1 (s) denote the 1-point function for the eigenvalues under µN , which

satisfies, for any continuous bounded function g,

∫
R
g(s)ϱ(N)

1 (s) ds = E

 1
N

N∑
j=1

g(λj)

.
Then, there are constants M1, c > 0 depending only on V and β, such that for any |s| ⩾M1,

ϱ
(N)
1 (s) ⩽ e−cNV (s). (2.10)

For a proof, see Pastur and Shcherbina [70, Theorem 2.2 (i)].

2.2 Combining loop equations. In order to prove that the empirical Stieljes transform s(z) approximately
satisfies the fixed point equation (2.8), for any z ∈ Ω \ R, we introduce the random function,

P (z) = s(z)2 + V ′(z)s(z) + h(z),

where for brevity we have written and will continue to write s(z) = sN (z). In this section, aiming at a result
analogous to [61, Equation (3.3)], we combine the loop equations (see Appendix B) to express them in terms of P (z).

Recalling the definition of the function h in (2.7), for any z ∈ Ω, we introduce the random variable,

∆(z) :=
(

1
N

N∑
k=1

V ′(λk) − V ′(z)
λk − z

)
− h(z), (2.11)

where the dependence in N is again kept implicit in the notation for brevity. Furthermore, for any z, w ∈ Ω \ R, we
set

f(z, w) :=
{
∂w

(
s(z)−s(w)

z−w

)
if w ̸= z,

1
2s

′′(z) if w = z.
(2.12)
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Then, for any n ⩾ 1 and z, z1, . . . , zn−1 ∈ Ω \ R, we write the loop equations for moments from Proposition A.3 as

E

[
(s(z)2 + V ′(z)s(z) + h(z))

n−1∏
i=1

s(zi)
]

+ 1
N

(
2
β

− 1
)
E

[
s′(z)

n−1∏
i=1

s(zi)
]

+ 2
N2β

n−1∑
j=1

E

[∏n−1
i=1 s(zi)
s(zj) f(z, zj)

]
+ E

[
∆(z)

n−1∏
i=1

s(zi)
]

= 0.

Fix some z, w ∈ Ω \ R. For any integers u, v ⩾ 0, take n = u+ v + 1, z1, . . . , zu = w and zu+1, . . . , zn−1 = w. Then,
noting that s(w) = s(w), the loop equation becomes

E
[
(s(z)2 + V ′(z)s(z) + h(z))s(w)us(w)v

]
+ 1
N

(
2
β

− 1
)
E[s′(z)s(w)us(w)v]

+ 2
N2β

E
[
us(w)u−1s(w)vf(z, w) + vs(w)us(w)v−1f(z, w)

]
+ E[∆(z)s(w)us(w)v] = 0,

and recalling the definition of P (z), we have

E[P (z)s(w)us(w)v] = 1
N

(
1 − 2

β

)
E[s′(z)s(w)us(w)v] − E[∆(z)s(w)us(w)v]

− 2
N2β

E
[
f(z, w)∂s

(
s(w)us(w)v

)
+ f(z, w)∂s

(
s(w)us(w)v

)]
.

For any integer q ⩾ 1, we compute

E
[
P (z)P (w)q−1P (w)q

]
=

∑
a1+b1+c1=q−1

a2+b2+c2=q

(q − 1)!
a1!b1!c1!

q!
a2!b2!c2!V

′(w)b1h(w)c1V ′(w)b2h(w)c2E
[
P (z)s(w)2a1+b1s(w)2a2+b2

]

= 1
N

(
1 − 2

β

)
E
[
s′(z)P (w)q−1P (w)q

]
− E

[
∆(z)P (w)q−1P (w)q

]
− 2
N2β

E
[
f(z, w)∂s

(
P (w)q−1P (w)q

)
+ f(z, w)∂s

(
P (w)q−1P (w)q

)]
.

Hence we have that for any z, w ∈ Ω \ R,

E
[
P (z)P (w)q−1P (w)q

]
= E

[(
1
N

(
1 − 2

β

)
s′(z) − ∆(z)

)
P (w)q−1P (w)q

]
− 2(q − 1)

N2β
E
[
f(z, w)(2s(w) + V ′(w))P (w)q−2P (w)q

]
− 2q
N2β

E
[
f(z, w)(2s(w) + V

′(w))|P (w)|2q−2
]
.

(2.13)

Finally note that under the measure µ[a,b]
N defined in (A.6), for which particles are confined to the interval [a, b], by

combining the loop equations from Proposition A.5, we can prove in a similar way, for any z, w ∈ Ω \ [a, b],

E[a,b][P (z)P (w)q−1P (w)q
]

= E[a,b]
[(

1
N

(
1 − 2

β

)
s′(z) − ∆(z)

)
P (w)q−1P (w)q

]
− 2(q − 1)

N2β
E[a,b][f(z, w)(2s(w) + V ′(w))P (w)q−2P (w)q

]
− 2q
N2β

E[a,b]
[
f(z, w)(2s(w) + V

′(w))|P (w)|2q−2
]

+ 2
N2β

(
∂aE[a,b][P (w)q−1P (w)q]

z − a
+ ∂bE[a,b][P (w)q−1P (w)q]

z − b

)
+ 2
βN2

(
∂a lnZ [a,b]

N

z − a
+ ∂b lnZ [a,b]

N

z − b

)
E[a,b][P (w)q−1P (w)q

]
.

(2.14)
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A B

R22δ2δ

R3
w

R4

Figure 1: Illustration of the contours used in the proof of Lemma 2.3. The point w is fixed on R3. The point z will
be successively taken in R2, then in R4 and finally in R3

2.3 Bound on ∆. In this section, our goal is to prove the following bound on the quantity ∆(z) defined in (2.11).

Lemma 2.1. For any compact set K ⊂ Ω, there exist C > 0 such that for any z ∈ K and any q,N ⩾ 1,

E
[
|∆(z)|2q

]
⩽

(Cq)2q

N2q
.

Remark 2.2. For quadratic V , ∆(z) = 0, so the above bound is trivial and this section can be skipped. Non-vanishing
∆ is responsible for the second error term in Theorem 1.1 (see the chain of inequalities from (2.34) to (2.38) below),
so that the local law is improved for Gaussian β-ensembles as mentioned in Remark 1.3

Recall that the function r (see (2.3)) is analytic in Ω and, by Assumption (A3), r has no zero in [A,B]. We fix
some constant δ ∈ (0, 1] such that the region

{x+ iy : x ∈ [A− 6δ,B + 6δ], y ∈ [−6δ, 6δ]}

is included in Ω and does not contain any zero of r. In order to prove Lemma 2.1, we will work under the confined
distribution of particles

dµ[A−δ,B+δ]
N (λ1, . . . , λN ) := 1

Z
[A−δ,B+δ]
N

·
∏

1⩽k<l⩽N

|λk − λl|β ·
N∏

k=1
e− βN

2 V (λk)
1λk∈[A−δ,B+δ] dλk.

We denote by E[A−δ,B+δ] the integral with respect to µ[A−δ,B+δ]
N .

For any k ⩾ 1, consider the rectangle with vertices A− kδ + ikδ, B + kδ + ikδ, B + kδ − ikδ, A− kδ − ikδ, and
denote by Rk the corresponding closed contour with positive orientation. We will first prove the following preliminary
lemma, establishing a local law on the rectangle R3 under the law P[A−δ,B+δ]. We will then write ∆(z) as a contour
integral on R3 in terms of s−mV in order to prove Lemma 2.1.

Lemma 2.3. There exist constants C, c > 0 such that, for any w ∈ R3 and q,N ⩾ 1,

E[A−δ,B+δ][|s(w) −mV (w)|2q
]
⩽

(Cq)q

N2q
+ Cqe−cN .

The proof of this lemma makes use of ideas of Bourgade, Erdös and Yau, [18, Lemma 2.2] and [19, Lemma 3.3],
for convex and non-convex potentials, respectively. The idea is to integrate the combined loop equation (2.14) with
respect to z on a contour around the spectrum to get rid of the term involving ∆(z), which is analytic inside this
contour. We use this to get bounds on moments of P (w) in terms of moments of P (z) at other points z and we
conclude using the maximum principle. See Figure 1.
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Proof. In this proof we only work under the measure µ[A−δ,B+δ]
N , so we write E instead of E[A−δ,B+δ] for brevity. For

any z, w ∈ Ω \ [A− δ,B + δ], we set

φw(z) := P (z)P (w)q−1P (w)q − 1
N

(
1 − 2

β

)
s′(z)P (w)q−1P (w)q

+ 2(q − 1)
N2β

f(z, w)(2s(w) + V ′(w))P (w)q−2P (w)q + 2q
N2β

f(z, w)(2s(w) + V
′(w))|P (w)|2q−2.

Then, combining (2.14) with Lemma A.6, there exist constants c1 > 0 such that, for any w ∈ R3 and z ∈ R2,

E[φw(z)] + E
[
∆(z)P (w)q−1P (w)q

]
= O

(
Cqe−c1N

)
, (2.15)

where the error term is uniform in z and w. From (2.15) and recalling that r is uniformly bounded away from 0 on
R2 because its zeroes are at distance at least 6δ from [A,B], we have

1
2iπ

∫
R2

E[φw(z)] + E[∆(z)P (w)q−1P (w)q]
r(z)(z − w) dz = O

(
Cqe−c1N

)
,

uniformly in w ∈ R3. The function

z 7→ E[∆(z)P (w)q−1P (w)q]
r(z)(z − w)

is holomorphic inside the rectangle R3 so its contour integral over R2 is zero and we deduce

1
2iπ

∫
R2

E[φw(z)]
r(z)(z − w) dz = O

(
Cqe−c1N

)
, (2.16)

uniformly in w ∈ R3. The function z 7→ E[φw(z)]
r(z) is holomorphic on Ω \ [A− δ,B + δ] so the Cauchy integral formula

yields

1
2iπ

∫
R4

E[φw(z)]
r(z)(z − w) dz = E[φw(w)]

r(w) + 1
2iπ

∫
R2

E[φw(z)]
r(z)(z − w) dz. (2.17)

On the other hand, recalling the definition of φw(z), uniformly in z ∈ R3 ∪ R4 and w ∈ R3, we have

∣∣φw(z) − P (z)P (w)q−1P (w)q
∣∣ ⩽ C|P (w)|2q−1

N
+ Cq|P (w)|2q−2

N2 . (2.18)

Combining this with (2.16) and (2.17) and recalling that r is uniformly bounded away from 0 on R3, we get

E
[
|P (w)|2q

]
⩽ E

[
C|P (w)|2q−1

N
+ Cq|P (w)|2q−2

N2

]
+ C

∣∣∣∣∫
R4

E[P (z)P (w)q−1P (w)q]
r(z)(z − w) dz

∣∣∣∣+ Cqe−c1N .

Recall Young’s inequality says that if x, y ⩾ 0 and a, b > 1 are such that a−1 + b−1 = 1, then xy ⩽ xa

a + yb

b . Choosing
x = 4C/N , y = |P (w)|2q−1/4, a = 2q, b = 2q/(2q − 1) we have

C|P (w)|2q−1

N
⩽

1
2q

(4C)2q

N2q
+ 2q − 1

2q
|P (w)|2q

42q/(2q−1) ⩽
(4C)2q

N2q
+ |P (w)|2q

4 .

Similarly, we have Cq|P (w)|2q−2

N2 ⩽ (4Cq)q

N2q + |P (w)|2q

4 and therefore, up to a modification of the constant C, we have

E
[
|P (w)|2q

]
⩽

(Cq)q

N2q
+ C

∣∣∣∣∫
R4

E[P (z)P (w)q−1P (w)q]
r(z)(z − w) dz

∣∣∣∣+ Cqe−c1N , (2.19)

for any w ∈ R3.
We now bound the integral over R4. Recall P = s2 + V ′s+ h and m2

V + V ′mV + h = 0. It follows that

P = s2 −m2
V + V ′(s−mV ) = (s−mV )2 + (2mV + V ′)(s−mV ) (2.20)
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and therefore ∫
R4

E[P (z)P (w)q−1P (w)q]
r(z)(z − w) dz

= E
[
P (w)q−1P (w)q

∫
R4

(s(z) −mV (z))2 + (2mV (z) + V ′(z))(s(z) −mV (z))
r(z)(z − w) dz

]
.

Moreover, recall from (2.5) that, for any z ∈ Ω \ [A,B], 2mV (z) + V ′(z) = 2r(z)b(z), where b is an analytic function
in C \ [A,B], which is always a square root of (z −A)(z −B) and such that b(z) ∼ z at infinity. Therefore, we have∫

R4

(2mV (z) + V ′(z))(s(z) −mV (z))
r(z)(z − w) dz =

∫
R4

b(z)(s(z) −mV (z))
z − w

dz.

Since s and mV are Stieljes transform of compactly supported probability measures, they both satisfy s(z) =
z−1 + O(z−2) and mV (z) = z−1 + O(z−2) as |z| → ∞. Hence, the function z 7→ b(z)(s(z)−mV (z))

z−w is holomorphic
on and outside R3 and behaves as O(z−2) as |z| → ∞. Therefore, by the Cauchy integral formula with residue at
infinity, we get ∫

R4

b(z)(s(z) −mV (z))
z − w

dz = 0.

Hence, we have ∣∣∣∣∫
R4

E[P (z)P (w)q−1P (w)q]
r(z)(z − w) dz

∣∣∣∣ =
∣∣∣∣∫

R4

E[(s(z) −mV (z))2P (w)q−1P (w)q]
r(z)(z − w) dz

∣∣∣∣
⩽ C max

z∈R4

∣∣E[(s(z) −mV (z))2P (w)q−1P (w)q
]∣∣

⩽ C max
z∈R3

∣∣E[(s(z) −mV (z))2P (w)q−1P (w)q
]∣∣, (2.21)

where we applied the maximum principle to the function z 7→ E[(s(z) − mV (z))2P (w)q−1P (w)q], which is analytic
outside the contour R3 and tends to 0 at infinity. Applying Young’s inequality again, for some λ > 0, with
x = λ|s(z) −mV (z)|2, y = 1

λ |P (w)|2q, a = 2q, b = 2q/(2q − 1), we have

∣∣E[(s(z) −mV (z))2P (w)q−1P (w)q
]∣∣ ⩽ λ2q

2q E
[
|s(z) −mV (z)|4q

]
+ 1
λ
E
[
|P (w)|2q

]
. (2.22)

Coming back to (2.19), applying (2.21) and (2.22) and choosing λ large enough depending on the other constants,
we get that, for some constant C > 1,

E
[
|P (w)|2q

]
⩽

(Cq)q

N2q
+ Cq max

z∈R3
E
[
|s(z) −mV (z)|4q

]
+ Cqe−c1N , (2.23)

for any w ∈ R3.
Using 2mV + V ′ = 2rb and our definition of δ, we see there is a constant c2 > 0 such that |2mV + V ′|(z) ⩾ 2c2

for any z ∈ R3. Therefore, if |s(z) − mV (z)| ⩽ c2, then it follows from (2.20) that |s(z) − mV (z)| ⩽ |P (z)|/c2. We
define the event Ez := {|s(z) −mV (z)| ⩽ ε}. Then, if ε ⩽ c2, we get

E
[
|s(z) −mV (z)|4q

]
⩽ ε2q · 1

c2q
2
E
[
|P (z)|2q

]
+ C4qP(Ec

z) (2.24)

where on event Ec
z we simply used that |s(z) − mV (z)| ⩽ C. We choose ε := c2/(2

√
C) where C is the constant

appearing in (2.23). Then, it follows from (2.9)3, that there exist constants c3, C3 > 0 such that for any z ∈ R3,

3Recall that we are working under P[A−δ,B+δ]. Note that the function λ ∈ [A − δ, B + δ] 7→ 1
λ−z

is bounded, as well as its derivative,
uniformly in z ∈ R3. Therefore, for any ε > 0, there exists ε′ > 0 such that, for any z ∈ R3, P[A−δ,B+δ](Ec

z) ⩽ P[A−δ,B+δ](F ) where
F := {∃k ∈ J1, NK, |λk − γk| ⩾ ε′}. Then, we have P[A−δ,B+δ](F ) ⩽ P(F )/P(∀k, λk ∈ [A − δ, B + δ]), and we can apply (2.9) to both
probabilities to get the desired result.
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P(Ec
z) ⩽ C3e

−c3N . Coming back to (2.23), we get, for any w ∈ R3,

E
[
|P (w)|2q

]
⩽

(Cq)q

N2q
+ 1

2q
max
z∈R3

E
[
|P (z)|2q

]
+ C4qC3e

−c3N + Cqe−c1N .

We take the maximum over w ∈ R3 and bring the term 1
2q maxz∈R3 E[|P (z)|2q] to the left-hand side to get, up to a

modification of the constant C,

max
w∈R3

E
[
|P (w)|2q

]
⩽

(Cq)q

N2q
+ Cqe−(c1∨c3)N . (2.25)

Finally, proceeding as in (2.24), for any w ∈ R3, we have

E
[
|s(w) −mV (w)|2q

]
⩽

1
c2q

2
E
[
|P (w)|2q

]
+ C2q · C3e

−c3N ,

which, combined with (2.25), concludes the proof.

Proof of Lemma 2.1. Fix a compact set K ⊂ Ω. We will first prove there exist C, c > 0 such that for any z ∈ K and
any q ⩾ 1,

E[A−δ,B+δ][|∆(z)|2q
]
⩽

(Cq)q

N2q
+ Cqe−cN . (2.26)

For this we write ∆(z) as a contour integral on R3: P[A−δ,B+δ]-a.s., we have

∆(z) = 1
2iπ

∫
R3

V ′(w) − V ′(z)
w − z

(s(w) −mV (w)) dw,

because the function w 7→ V ′(w)−V ′(z)
w−z is analytic in Ω. Since V ′(w)−V ′(z)

w−z is uniformly bounded for w ∈ R3 and
z ∈ K, we get, using Jensen’s inequality,

|∆(z)|2q ⩽ Cq

∫
R3

|s(w) −mV (w)|2qLeb(dw),

where Leb denotes the Lebesgue measure on R3. Taking the expectation E[A−δ,B+δ] and applying Lemma 2.3, we
get (2.26).

Now we want to replace E[A−δ,B+δ] by E. First note that

E
[
|∆(z)|2q

1∀k,λk∈[A−δ,B+δ]
]
⩽ E[A−δ,B+δ][|∆(z)|2q

]
⩽

(Cq)q

N2q
+ Cqe−cN . (2.27)

by (2.26). Let M0 and M1 be the constants given by Assumption (A2) and (2.10) respectively. We fix some
M ⩾ max(M0,M1) such that [A− δ,B + δ] ⊆ [−M,M ]. On the event {∀k, λk ∈ [−M,M ]}, there exists a constant
C > 0 such that |∆(z)| ⩽ C for any z ∈ K. Therefore, using (2.9), we have

E
[
|∆(z)|2q

1∃k,λk /∈[A−δ,B+δ]1∀k,λk∈[−M,M ]
]
⩽ C2qP(∃k, λk /∈ [A− δ,B + δ]) ⩽ C2qe−cN . (2.28)

It remains to bound

E
[
|∆(z)|2q

1∃k,λk /∈[−M,M ]
]

= E
[
|∆(z)|2q

1λmin⩽−M or λmax⩾M

]
, (2.29)

where λmin := min1⩽k⩽N λk and λmax := max1⩽k⩽N λk. By definition of ∆(z), we have, uniformly in z ∈ K,

|∆(z)| ⩽ C + 1
N

N∑
k=1

C

(
|V ′(λk)|
|λk| + 1 + 1

)
⩽ C + C sup

y∈[λmin,λmax]

|V ′(y)|
|y| + 1 ⩽ C(1 + V (λmin) + V (λmax)),

where, in the last inequality, we used Assumption (A2). Therefore, we get

E
[
|∆(z)|2q

1λmin⩽−M or λmax⩾M

]
⩽ CqE

[(
1 + V (λmin)2q + V (λmax)2q

)
1λmin⩽−M or λmax⩾M

]
.
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The first term in this expectation gives P(λmin ⩽ −M or λmax ⩾M) ⩽ Ce−cN by (2.9), and two other terms can be
treated similarly. We now study

E
[
V (λmax)2q

1λmin⩽−M or λmax⩾M

]
= E

[
V (λmax)2q

1λmin⩽−M and λmax<M

]
+ E

[
V (λmax)2q

1λmax⩾M

]
⩽ E

[(
V (λmin)2q + C

)
1λmin⩽−M

]
+ E

[
V (λmax)2q

1λmax⩾M

]
.

We postpone momentarily the proof of the bounds

E
[
V (λmin)2q

1λmin⩽−M

]
⩽

(Cq)2q

N2q
and E

[
V (λmax)2q

1λmax⩾M

]
⩽

(Cq)2q

N2q
. (2.30)

Assuming them, we have

E
[
|∆(z)|2q

1λmin⩽−M or λmax⩾M

]
⩽

(Cq)2q

N2q
+ Cqe−cN ,

which, combined with (2.26), (2.27) and (2.28) proves that

E
[
|∆(z)|2q

]
⩽

(Cq)2q

N2q
+ Cqe−cN . (2.31)

Using that x log x ⩾ −1/e for any x ⩾ 0, we have that (Cq)2q

N2q ⩾ exp(−2N/(Ce)), so up to a modification of the
constant C, the second term on the right-hand side of (2.31) can be neglected and the result follows.

Finally, we prove (2.30). The proofs of both cases are identical, so we focus on the case λmax. Recall ϱ(N)
1 (s)

denotes the 1-point function for the eigenvalues under µN and note that, for any interval [a, b], we have P(λmax ∈
[a, b]) ⩽

∫ b

a
Nϱ

(N)
1 (s) ds. Hence,

E
[
V (λmax)2q

1λmax⩾M

]
⩽
∫ ∞

M

V (s)2qNϱ
(N)
1 (s) ds ⩽ N

∫ ∞

M

V (s)2qe−c1NV (s) ds,

using (2.10). By Assumption (A2), we have V ′(s) ⩾ c for s ⩾M , so we can use the change of variable x = V (s) and
induction on q to find∫ ∞

M

V (s)2qe−c1NV (s) ds ⩽
∫ ∞

V (M)
x2qe−c1Nx ds

c
⩽ C

∫ ∞

0
x2qe−c1Nx ds = C

(2q)!
(c1N)2q+1 ,

which proves the second part of (2.30).

Remark 2.4. The proof of Lemma 2.1 is the only place where we use Assumption (A2). As mentioned in Remark 1.4,
this assumption can be replaced to include slower divergence. For example,

lim inf
x→±∞

V (x)
2 ln|x|

> 1 and lim sup
x→±∞

|V ′(x)|
|x|

< ∞ (2.32)

works. The first part of this assumption is the usual assumption that ensures that the measure in (1.1) is finite. The
second part of (2.32) implies that |∆(z)| is uniformly bounded for z in a compact set, so we can directly bound the
expectations in (2.28) and (2.29) by Cqe−cN . Therefore, under the assumption (2.32), Lemma 2.1 becomes

E
[
|∆(z)|2q

]
⩽

(Cq)q

N2q
+ Cqe−cN ,

which is slightly better, and the local law in Theorem 1.1 becomes

E[|s(z) −mV (z)|q] ⩽ (Cq)q/2

(Nη)q
+ Cqe−cN

|z −A|q/2|z −B|q/2 ,

by following the same proof as below.
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2.4 Proof of the local law between the edges. In this section we prove the local law in a trapezoid above
[A,B], that is Theorem 1.1. With the loop equations combined as in (2.13), we are able to show P (z) = s(z)2 +
V ′(z)s(z) +h(z) is small. Since mV (z) is solution of the equation mV (z)2 +V ′(z)mV (z) +h(z) = 0, this means that
mV (z) and s(z) are close (see Lemma B.1 for the precise statement).

Proof of Theorem 1.1. We consider the constant η̃ > 0 given by Lemma B.3, and work with z = E + iη such that
η ∈ (0, η̃] and E ∈ [A − η̃, B + η̃]. Recall that by the choice of η̃, we have in particular z ∈ Ω, that is V is analytic
at z. We start from the loop equation (2.13) in which we take w = z and apply the triangle inequality:

E
[
|P (z)|2q

]
⩽ E

[∣∣∣∣ 1
N

(
1 − 2

β

)
s′(z)

∣∣∣∣ · |P (z)|2q−1
]

+ E
[
|∆(z)| · |P (z)|2q−1]

+ E
[∣∣∣∣2(q − 1)

N2β
f(z, z)(2s(z) + V ′(z))

∣∣∣∣ · |P (z)|2q−2
]

+ E
[∣∣∣∣ 2q
N2β

f(z, z)(2s(z) + V ′(z))
∣∣∣∣ · |P (z)|2q−2

]
.

(2.33)

Recall Young’s inequality: if x, y ⩾ 0 and a, b > 1 such that a−1 + b−1 = 1, then xy ⩽ xa

a + xb

b . We apply it to each
term, introducing artificially factors λ and 1

λ for some λ > 0 and taking a = 2q, b = 2q/(2q − 1) for the two first
terms and a = q, b = q/(q − 1) for the two last terms. It follows that the right-hand side of (2.33) is smaller than

λ2q

2q E

[∣∣∣∣ 1
N

(
1 − 2

β

)
s′(z)

∣∣∣∣2q
]

+ λ2q

2q E
[
|∆(z)|2q

]
+ λq

q
E
[∣∣∣∣2(q − 1)

N2β
f(z, z)(2s(z) + V ′(z))

∣∣∣∣q]
+ λq

q
E
[∣∣∣∣ 2q
N2β

f(z, z)(2s(z) + V ′(z))
∣∣∣∣q]+

(
2 · 2q − 1

2qλ2q/(2q−1) + 2 · q − 1
qλq/(q−1)

)
E
[
|P (z)|2q

]
.

Taking λ = 8, the last term is smaller than 1
2E[|P (z)|2q], so we can bring it to the left-hand side and get

E
[
|P (z)|2q

]
⩽

Cq

N2q
E
[
|s′(z)|2q

]
+ CqE

[
|∆(z)|2q

]
+ (Cq)q

N2q
E
[
(|f(z, z)|q + |f(z, z)|q)|2s(z) + V ′(z)|q

]
.

Recall that we write z = E + iη. Then, we have

|s′(z)| =

∣∣∣∣∣ 1
N

N∑
k=1

1
(λk − z)2

∣∣∣∣∣ ⩽ 1
N

N∑
k=1

1
|λk − z|2

= Im s(z)
η

and, recalling the definition of f in (2.12) and proceeding similarly,

|f(z, z)| = 1
2 |s′′(z)| ⩽ Im s(z)

η2 and |f(z, z)| =

∣∣∣∣∣s(z) − s(z)
(z − z)2 − s′(z)

z − z

∣∣∣∣∣ ⩽ 2Im s(z)
η2 .

Hence, applying also Lemma 2.1 to bound E[|∆(z)|2q], we get

E
[
|P (z)|2q

]
⩽

(Cq)q

(Nη)2q
E
[
(Im s(z))2q + (Im s(z))q · |2s(z) + V ′(z)|q

]
+ (Cq)2q

N2q
, (2.34)

uniformly in z such that η ∈ (0, η̃] and E ∈ [A− η̃, B + η̃].
We now assume additionally that E ∈ [A− η,B+ η]. We can therefore apply bound (B.3) of Lemma B.1, noting

that Im s(z) > 0 to get

|s(z) −mV (z)| ⩽ C

(
|P (z)|
|b(z)| ∧ |P (z)|1/2

)
. (2.35)

Let Λ := (Im s(z)) ∨ |2s(z) + V ′(z)|. Note that

Λ ⩽ 2|s(z) −mV (z)| + (ImmV (z) ∨ |2mV (z) + V ′(z)|) ⩽ C(|P (z)|1/2 + |b(z)|),
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where we applied (2.35) for the first term, and, for the second term, we used that 2mV (z) + V ′(z) = 2r(z)b(z) by
(2.5) and ImmV (z) ⩽ 3

2 Im(r(z)b(z)) by (B.8). Hence, we get

E
[
|Λ|2q

]
⩽ Cq

(
E[|P (z)|q] + |b(z)|2q

)
⩽

(Cq)q/2

(Nη)q
E[|Λ|q] + (Cq)q

Nq
+ Cq|b(z)|2q,

by (2.34). Using that x ⩽ a
√
x+ b for some a, b, x > 0 implies x ⩽ a2 + b, we get

E
[
|Λ|2q

]
⩽

(Cq)q

(Nη)2q
+ (Cq)q

Nq
+ Cq|b(z)|2q. (2.36)

Plugging this in (2.34), we get

E
[
|P (z)|2q

]
⩽

(Cq)2q

(Nη)4q
+ (Cq)q|b(z)|2q

(Nη)2q
+ (Cq)2q

N2q
, (2.37)

noting that the crossed term (Cq)2q

(Nη)2qNq can be neglected.
We now distinguish two cases. First assume that |b(z)| ⩾ √

q/(Nη). Then we apply successively the first bound
in (2.35) and (2.37) to get

E
[
|s(z) −mV (z)|2q

]
⩽

Cq

|b(z)|2q
E
[
|P (z)|2q

]
⩽

(Cq)q

(Nη)2q
+ (Cq)2q

N2q|b(z)|2q
,

where we used the assumption |b(z)| ⩾ √
q/(Nη) to get rid of one term. Hence the result is proved in this first case.

We now assume that |b(z)| < √
q/(Nη). In this case, we apply the second bound in (2.35) and get

E
[
|s(z) −mV (z)|2q

]
⩽ CqE[|P (z)|q] ⩽ CqE

[
|P (z)|2q

]1/2
⩽

(Cq)q

(Nη)2q
+ (Cq)q/2|b(z)|q

(Nη)q
+ (Cq)q

Nq
. (2.38)

Using |b(z)| < √
q/(Nη), the second term in the right-hand side of (2.38) is smaller than the first one. So we only

have to prove that

(Cq)q

Nq
⩽

(Cq)q

(Nη)2q
+ (Cq)2q

N2q|b(z)|2q
.

If η ⩽ N−1/2, we simply bound N−q ⩽ (Nη)−2q. If η > N−1/2, we get |b(z)| < √
q/(Nη) <

√
q/N and therefore

N−q ⩽ qqN−2q|b(z)|−2q. So the result is proved in the second case and this concludes the proof.

2.5 A partial local law past the edge. The local law in Theorem 1.1 has only been established in a trapezoid
region above the interval [A,B], that is at a point z = E + iη such that A − η ⩽ E ⩽ B + η. In this section
we show how the method used to prove this local law can be extended past the edges. Recall that the constraint
A − η ⩽ E ⩽ B + η was required in order to use bound (B.3) of Lemma B.1 concerning the stability of the fixed
point equation satisfied by mV . However, if this constraint is not satisfied we can still apply the other bounds of
Lemma B.1 to control the Stieljes transform s(z), with z beyond the edge.

As in Appendix B, we define

m̃V (z) := −V ′(z)
2 − r(z)b(z).

which is the other root of the equation u2 + V ′(z)u+ h(z) = 0 satisfied by mV (z). The following proposition shows
that s(z) has to be close to mV (z) or m̃V (z), and a similar bound on Im(s(z) −mV (z)) follows from (B.2).

Proposition 2.5. Let η̃ > 0 be the constant given by Lemma B.3 and recall the definition of κ (1.3). There exist
constants C,C ′ > 0 such that for any q ⩾ 1, N ⩾ 1 and any z = E + iη with 0 < η ⩽ η̃ and E /∈ [A− η,B + η], we
have, if η ⩾ (C ′q)1/2/(N

√
κ),

E
[
|s(z) −mV (z)|2q ∧ |s(z) − m̃V (z)|2q

]
⩽

(Cq)2q

(Nη)4qκq
+ (Cq)q

N2qηqκq
+ (Cq)2q

N2qκq
(2.39)
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and, if η ⩽ (C ′q)1/2/(N
√
κ),

E
[
|s(z) −mV (z)|2q ∧ |s(z) − m̃V (z)|2q

]
⩽

(Cq)q

(Nη)2q
+ (Cq)q

Nq
. (2.40)

Moreover, the same bounds hold for E[|Im(s(z) −mV (z))|2q].

Proof. Recall we proved in (2.34) that

E
[
|P (z)|2q

]
⩽

(Cq)q

(Nη)2q
E
[
(Im s(z))2q + (Im s(z))q · |2s(z) + V ′(z)|q

]
+ (Cq)2q

N2q
, (2.41)

uniformly in z = E+iη such that η ∈ (0, η̃] and E ∈ [A− η̃, B+ η̃]. Now we assume moreover that E /∈ [A−η,B+η].
For brevity, let Υ := |s(z) −mV (z)| ∧ |s(z) − m̃V (z)|. Then, on the one hand, we have

Im s(z) ⩽ Υ + (|ImmV (z)| ∨ |Im m̃V (z)|) ⩽ Υ + Cη

|b(z)| ,

using |ImmV (z)| ∨ |Im m̃V (z)| ⩽ Cη
|b(z)| by (B.10). On the other hand, we have

|2s(z) + V ′(z)| ⩽ 2Υ + (|2mV (z) + V ′(z)| ∨ |2m̃V (z) + V ′(z)|) = 2Υ + 2|r(z)b(z)| ⩽ 2Υ + C|b(z)|.

Moreover, we have |b(z)| ⩽ C
√
κ because η ⩽ κ. Therefore, (2.41) becomes

E
[
|P (z)|2q

]
⩽

(Cq)q

(Nη)2q

(
E[Υ2q] + κq/2E[Υq] + ηq

)
+ (Cq)2q

N2q
, (2.42)

where we used ηq/|b|2q ⩽ C. It follows from bound (B.1) of Lemma B.1 combined with |b(z)| ⩾ c
√
κ that

Υ = |s(z) −mV (z)| ∧ |s(z) − m̃V (z)| ⩽ C

(
|P (z)|√

κ
∧ |P (z)|1/2

)
. (2.43)

Using the bound Υ ⩽ C|P (z)|/
√
κ and (2.42), we get

E[Υ2q] ⩽ (Cq)q

(Nη)2qκq

(
E[Υ2q] + κq/2E[Υq] + ηq

)
+ (Cq)2q

N2qκq
. (2.44)

We fix C ′ := 2C where C is the constant appearing in the last equation. We distinguish cases. If η ⩾ (C ′q)1/2/(N
√
κ),

the factor (Cq)q

(Nη)2qκq in (2.44) is smaller than 1/2 so with can bring the term involving E[Υ2q] to the left-hand side
and get

E[Υ2q] ⩽ (Cq)q

(Nη)2qκq/2E[Υq] + (Cq)q

N2qηqκq
+ (Cq)2q

N2qκq
. (2.45)

Using that x ⩽ ax1/2 + b for some a, b, x > 0 implies x ⩽ a2 + b, it proves (2.39). We now consider the second case:
if η ⩽ (C ′q)1/2/(N

√
κ), we use Υ ⩽ C|P (z)|1/2 and (2.42) to get

E[Υ2q] ⩽ Cq · E[|P (z)|q] ⩽ (Cq)q/2

(Nη)q

(
E[Υq] + κp/4E[Υq/2] + ηq/2

)
+ (Cq)q

Nq
,

Using that x ⩽ ax1/2 + bx1/4 + c for some a, b, c, x > 0 implies x ⩽ a2 + b4/3 + c, we get

E[Υ2q] ⩽ (Cq)q

(Nη)2q
+ (Cq)2q/3

(Nη)4q/3κ
q/3 + (Cq)q/2

Nqηq/2 + (Cq)q

Nq
. (2.46)

Then, using η ⩽ (C ′q)1/2/(N
√
κ) (note that, since η ⩽ κ, it implies η ⩽ (C ′q)1/3N−2/3), we observe that the second

and third term in the right-hand side of (2.46) can be bounded by the first one. This proves (2.40). Finally, it follows
from (B.2) that the bounds (2.39) and (2.40) hold for E[|Im(s(z) −mV (z))|2q] instead of E[Υ2q].
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3 Consequences of the local law

In this section, we apply the local law to establish various results: negligible expected number of particles in a
submicroscopic interval, rigidity at the edge, extension of the local law beyond the trapezoid region and rigidity in
the bulk.

3.1 Wegner estimate. The following estimate will be used in Section 4 to prove that we can regularize the
logarithm in the proof of the central limit theorem for the logarithm of the characteristic polynomial.

Proposition 3.1. Let η̃ > 0 be the constant given by Lemma B.3 and recall the definition of ℓ(E) in (1.3). Let
I = [E − δNℓ(E), E + δN ℓ(E)] for some E ∈ [A − η̃, B + η̃] and δN → 0. Let N (I) := |{k : λk ∈ I}| be the number
of particles in I. Then E[N (I)] → 0 as N → ∞ uniformly in E.

Note that ℓ(E) is exactly the microscopic scale (that is the typical spacing between particles) at a point E between
the edges, but it is larger than the microscopic scale past the edges.

Remark 3.2. Instead of Proposition 3.1, we could prove the following quantitative Wegner estimate: There exists
C > 0 such that for any N ⩾ 1 and any interval I ⊆ R, E[N (I)] ⩽ CN |I|. The proof of this claim relies on the
observation that, for ε ≪ 1, a translation of all particles by ε/N to the left or to the right, depending on the sign of∑N

k=1 V
′(λk) in the current configuration, results in a negligible change on the density of particles (3.6).

However, this explicit bound only catches the size order of N (I) in the bulk, and we need estimates up to the
edges. That is why we have to adopt a different strategy for the proof of Proposition 3.1: in the proof of Lemma 3.4,
we translate particles only locally. This results in a smaller change in the part exp(− βN

2
∑N

k=1 V (λk)) of the density,
but requires to deal with changes in the Vandermonde determinant part.

To prove Proposition 3.1, we will use bounds on the imaginary part of the Stieljes transform s(z) which follow
from the local law established in the previous section: Note that if I = [E − η,E + η], for some E ∈ R and η > 0,
then, considering z := E + iη, we have

N (I) =
N∑

j=1
1|λj−E|⩽η ⩽

N∑
j=1

2η2

|z − λj |2
= 2ηN · Im s(z). (3.1)

The following lemma proves that the number of particles in an interval of length ℓ(E) centered at E has bounded
moments.

Lemma 3.3. Let η̃ be the constant given by Lemma B.3. There exists a constant C > 0 such that, for any
E ∈ [A− η̃, B + η̃] and any N, q ⩾ 1, letting I := [E − ℓ(E), E + ℓ(E)],

E[N (I)q] ⩽ (Cq)q/2. (3.2)

In particular, for any t ⩾ 0, there exists a constant Ct > 0 such that, for any E ∈ [A− η̃, B + η̃] and any N ⩾ 1,

E
[
etN (I)

]
⩽ Ct.

Proof. We apply (3.1) with η = ℓ(E) to get N (I) ⩽ 2ηN · Im s(z), where z := E + iη. In order to bound moments
of Im s(z), we will distinguish cases depending on if E is in the trapezoid region or not. If E ∈ [A− η,B + η], then
it follows from (2.36) that

E[|Im s(z)|q] ⩽ (Cq)q/2

(Nη)q
+ (Cq)q/2

Nq/2 + Cq|b(z)|q. (3.3)

Therefore, we get

E[N (I)q] ⩽ (2ηN)q · E[|Im s(z)|q] ⩽ (Cq)q/2 + (Cq)q/2ηqNq/2 + Cq(Nη)q|b(z)|q.

Note that η = ℓ(E) ⩽ N−2/3 so ηqNq/2 ⩽ 1. Moreover, distinguishing between the cases κ(E) ⩽ N−2/3 and
κ(E) > N−2/3, we have |b(z)| ⩽ C(Nη)−1 in both cases. Therefore, we get (Nη)q|b(z)|q ⩽ Cq and this proves
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(3.2) in this case. Now assume that E /∈ [A − η,B + η], so in particular η = ℓ(E) = N−2/3. Then, it follows from
Proposition 2.5 that

E[|Im(s(z) −mV (z))|q] ⩽


(Cq)q

(Nη)2qκq/2 + (Cq)q/2

Nqηq/2κq/2 + (Cq)q

Nqκq/2 if η ⩾ (C ′q)1/2/(N
√
κ),

(Cq)q/2

(Nη)q + (Cq)q/2

Nq/2 if η ⩽ (C ′q)1/2/(N
√
κ),

(3.4)

where κ = κ(E). Using that (C ′q)1/2 ⩽ Nη
√
κ in the first case of (3.4) and that η = N−2/3, we get

E[|Im(s(z) −mV (z))|q] ⩽ (Cq)q/2

(Nη)q
.

Since |ImmV (z)| ⩽ Cη/
√
κ ⩽ C/(Nη) by (B.10) and N (I) ⩽ 2ηN ·Im s(z), this proves (3.2) in this case. The second

case of (3.4) is clear. The second bound of the lemma follows by writing the exponential as a series.

We will prove Proposition 3.1 by induction. The previous lemma is our base case and the inductive step is based
on the following lemma, which shows that, if we reduce sufficiently the length of an interval, the expected number
of particles will be reduced at least by a factor 3

4 , say.

Lemma 3.4. Let η̃ be the constant given by Lemma B.3 and E ∈ [A− η̃, B + η̃]. Let I ′ ⊆ I be intervals centered at
E such that |I| ⩽ 2ℓ(E) and let

θ := E
[
eN (I) − 1

]
.

There exists a constant C0 > 0, depending only on V and β, such that, if |I ′| = |I|/M with M ⩾ C0θ
−1/2 and if

N ⩾ C0θ
−3, then

E
[
eN (I′) − 1

]
⩽

3θ
4 .

Proof. For the sake of contradiction, we assume that E[eN (I′) − 1] > 3θ
4 .

First step: restrict ourselves to the case where N (I \ I ′) = 0. We have

1+θ = E
[
eN (I′)+N (I\I′)

]
⩾ E

[
eN (I′)

1N (I\I′)=0

]
+E
[
eN (I′)+1

1N (I\I′)>0

]
= (1−e)·E

[
eN (I′)

1N (I\I′)=0

]
+e·E

[
eN (I′)

]
.

Using our assumption E[eN (I′)] > 1 + 3
4θ, we get

E
[
eN (I′)

1N (I\I′)=0

]
>
e(1 + 3

4θ) − 1 − θ

e− 1 = 1 +
3e
4 − 1
e− 1 · θ > 1 + θ

2 .

This implies that

E
[
(eN (I′) − 1)1N (I\I′)=0

]
>
θ

2 . (3.5)

Second step: translate eigenvalues in I ′. Let δ := |I ′|/2, so that I ′ = [E − δ, E + δ]. Our goal is to translate
eigenvalues in I ′ by rδ for some r ∈ {−6,−4,−2, 2, 4, 6}. Recall I = [E −Mδ,E +Mδ] and we can assume M ⩾ 20,
therefore the translated interval I ′ + rδ is still included in I and far from the endpoints of I. Let h : R → R denote
a C1-diffeomorphism such that h(x) = x for x /∈ I and h(x) = x+ rδ if x ∈ I ′. Let

f(λ1, . . . , λN ) := 1
ZN

e− βN
2

∑N

k=1
V (λk)

 ∏
1⩽j<k⩽N

|λk − λj |β
 (3.6)

denote the density of the particles. Note that if λj /∈ I and λk ∈ I ′, then∣∣∣∣h(λk) − h(λj)
λk − λj

∣∣∣∣ = λk + rδ − λj

λk − λj
= 1 + rδ

λk − λj
= 1 + rδ

E − λj
+ O

(
δ2

|E − λj |2

)
,
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where we used that |λk − E| ⩽ δ ⩽ |λj − E|/M with M ⩾ 20, so that the O(. . . ) terms do not depend on any
parameter (recall |r| ⩽ 6). We have, on {N (I \ I ′) = 0},

f(h(λ1), . . . , h(λN ))
f(λ1, . . . , λN )

= e− βN
2

∑N

k=1
(V (h(λk))−V (λk)) ∏

λj /∈I,λk∈I′

(
1 + rδ

E − λj
+ O

(
δ2

|E − λj |2

))β

= exp
(

−βN

2

N∑
k=1

(
rδV ′(E) + O(δ2)

)
1λk∈I′

) ∏
λj /∈I

(
1 + rδ

E − λj
+ O

(
δ2

|E − λj |2

))βN (I′)

= exp

βN (I ′)rδ

−NV ′(E)
2 + O(δ) +

∑
λj /∈I

1
E − λj

+ O
(

δ

|E − λj |2

),
where the O(. . . ) terms depend only on V (we used in particular that V ′′ was bounded on I ′ ⊆ [A− 1, B + 1]). We
consider the event

A :=

∑
λj /∈I

1
E − λj

⩾
NV ′(E)

2

.
On the event A, we choose r > 0 and, on the event Ac, we choose r < 0. Therefore, in both cases, we have, on the
event A ∩ {N (I \ I ′) = 0} or Ac ∩ {N (I \ I ′) = 0},

f(h(λ1), . . . , h(λN ))
f(λ1, . . . , λN ) ⩾ exp

−CN (I ′)δ2N

1 + 1
N

∑
λj /∈I

1
|E − λj |2

, (3.7)

where C depends only on V and β. Letting z := E + iMδ, note that

1
N

∑
λj /∈I

1
|E − λj |2

⩽
1
N

N∑
j=1

2
|z − λj |2

= 2
Mδ

Im s(z).

Hence, setting Y := CN (I ′)δ2N(1 + 1
Mδ Im s(z)), the right-hand side of (3.7) is larger than e−Y . Therefore, in the

case r > 0, we have

E
[
(eN (I′) − 1)e−Y

1A∩{N (I\I′)=0}

]
⩽
∫
RN

(eN (I′) − 1)1N (I\I′)=0f(h(λ1), . . . , h(λN )) dλ1 . . . dλN

=
∫
RN

(eN (h(I′)) − 1)1N (I\h(I′))=0f(λ1, . . . , λN ) dλ1 . . . dλN ,

where we applied a change of variable, replacing h(λj) by λj , using that h fixes I. Therefore, we proved, for
r ∈ {2, 4, 6},

E
[
(eN (I′+rδ) − 1)1N (I\(I′+rδ))=0

]
⩾ E

[
(eN (I′) − 1)e−Y

1A∩{N (I\I′)=0}

]
and the same inequality holds for r ∈ {−6,−4,−2} by replacing A by Ac. Therefore, we get for any r ∈ {2, 4, 6},

E
[
(eN (I′+rδ) − 1)1N (I\(I′+rδ))=0

]
+ E

[
(eN (I′−rδ) − 1)1N (I\(I′−rδ))=0

]
⩾ E

[
(eN (I′) − 1)e−Y

1N (I\I′)=0

]
. (3.8)

Third step: getting a lower bound for E[(eN (I′) − 1)e−Y
1N (I\I′)=0]. Recall from (3.5) that we proved E[(eN (I′) −

1)1N (I\I′)=0] > θ
2 . Using that 1 − e−y ⩽ y for y ⩾ 0, we have

E
[
(eN (I′) − 1)1N (I\I′)=0

]
− E

[
(eN (I′) − 1)e−Y

1N (I\I′)=0

]
⩽ E

[
Y eN (I′)

]
.
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Recall z := E + iMδ. By (3.3) and Lemma 3.3 (we use here the assumption Mδ = |I| ⩽ 2ε), we have

E
[
(Im s(z))4] ⩽ C

(NMδ)4 , E
[
N (I ′)4] ⩽ C and E

[
e2N (I′)

]
⩽ C.

Recalling Y = CN (I ′)(δ2N + 1
M2NMδ Im s(z)), it follows that (we use δ ⩽ 2N−2/3)

E
[
Y 2] ⩽ C

(
(δ2N)2 + 1

M4

)
⩽ C

(
N−2/3 + 1

M4

)
.

Therefore, applying Cauchy–Schwarz inequality, we get

E
[
Y eN (I′)

]
⩽ C

(
N−1/3 + 1

M2

)
⩽
θ

6 ,

for M ⩾ C0 · θ−1/2 and for N ⩾ C0 · θ−3 where C0 is a well-chosen constant depending only on β and V . We assume
from now on that M and N satisfy these inequalities. Therefore, we have shown

E
[
(eN (I′) − 1)e−Y

1N (I\I′)=0

]
⩾
θ

3 . (3.9)

Fourth step: conclusion. Note that, since the events {N (I \ (I ′ + rδ)) = 0} ∩ {N (I ′ + rδ) > 0} are pairwise
disjoint,

θ = E
[
eN (I) − 1

]
⩾

∑
r∈{−6,−4,−2,0,2,4,6}

E
[
(eN (I′+rδ) − 1)1N (I\(I′+rδ))=0

]
⩾ E

[
(eN (I′) − 1)1N (I\I′)=0

]
+ 3E

[
(eN (I′) − 1)e−Y

1N (I\I′)=0

]
,

applying (3.8). Using (3.5) and (3.9), this shows θ > 3θ
2 , which is our contradiction.

We finally conclude the section by proving Proposition 3.1.

Proof of Proposition 3.1. The result is proved by induction, using the second bound of Lemma 3.3 as base case and
Lemma 3.4 for the inductive step.

3.2 Rigidity past the edge. The goal of this section is to use the bounds obtained in Proposition 2.5 to prove
the rigidity estimate for the leftmost and the rightmost particles stated in Corollary 1.6.

Proof of Corollary 1.6. By symmetry between the leftmost and the rightmost particles, we can focus on bounding
P(λN > B +KN−2/3). Let η̃ > 0 be the constant given by Lemma B.3. It follows from (2.9) that

P(λN > B + η̃) ⩽ Ce−cN ,

so it is enough to prove that there are constants c, C > 0 such that, for any N ⩾ 1 and K ∈ [1, η̃N2/3],

P(λN ∈ (B +KN−2/3, B + η̃]) ⩽ C exp
(

−cK3/4
)
. (3.10)

First, we consider an interval I = [E,E + η] for some E = B + κ and η, κ > 0 such that η ⩽ κ ⩽ η̃. Set
z = E + iη, and recall from (3.1) that N (I) ⩽ 2ηN Im s(z). Moreover by (B.10), there is a constant C0 > 1 such
that ImmV (z) ⩽ (C2

0η)/(2
√
κ) for any z with η ⩽ κ ⩽ η̃. Hence, if we assume that η ⩽ κ1/4/(C0

√
N), we have

ImmV (z) ⩽ 1/(4Nη). Using that N (I) is a nonnegative integer, it follows that

N (I) ⩽ (4ηN)|Im(s(z) −mV (z))|.

Assume that η ⩾ (C ′q)1/3N−2/3 for some integer q ⩾ 0 and C ′ the constant given by Proposition 2.5. In particular,
we have η ⩾ (C ′q)1/2/(N

√
κ) and therefore the first bound of Proposition 2.5 and η ⩾ (C ′q)1/3N−2/3 give

E[|Im(s(z) −mV (z))|q] ⩽ (Cq)q

(Nη)2qκq/2 + (Cq)q/2

Nqηq/2κq/2 + (Cq)q

Nqκq/2 ⩽
(Cq)q/2

Nqηq/2κq/2 + (Cq)q

Nqκq/2 .
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Hence, we proved that, if (C ′q)1/3N−2/3 ⩽ η ⩽ κ1/4/(C0
√
N), then with C depending on η̃, since κ ⩽ η̃, we have

E[N (I)q] ⩽
(
Cqη

κ

)q/2
+ (Cqη)q

κq/2 ⩽

(
Cqη

κ

)q/2
+
(
Cqη

κ

)q

. (3.11)

We will apply this inequality to a well-chosen sequence of intervals. Let L ⩾ C0 be a parameter that we fix
subsequently, and define recursively the sequence a0 := K and aj+1 := aj + a

1/4
j /L. Then, for any j ⩾ 0, let

κj := ajN
−2/3, Ej := B + κj , ηj :=

a
1/4
j

L
N−2/3 and qj :=

⌊
a

3/4
j

L3C ′

⌋
. (3.12)

Since (C ′qj)1/3N−2/3 ⩽ ηj ⩽ κ
1/4
j /(C0

√
N), choosing L large enough depending on C and C ′, (3.11) applied to the

interval Ij := (Ej , Ej + ηj ] with exponent qj gives

E[N (Ij)qj ] ⩽
(
Cqjηj

κj

)qj/2
+
(
Cqjηj

κj

)qj

⩽

(
C

L4C ′

)qj/2
+
(

C

L4C ′

)qj

⩽ e−qj . (3.13)

Noting that (B +KN−2/3, B + η̃] ⊆
⋃jmax

j=1 Ij with jmax := max{j ⩾ 1 : κj < η̃}, we find

P(λN ∈ (B +KN−2/3, B + η̃]) ⩽
jmax∑
j=1

P(N (Ij) ⩾ 1) ⩽
jmax∑
j=1

E[N (Ij)qj ] ⩽
jmax∑
j=1

e−qj .

Since (3.10) follows directly when K < L, we now assume K ⩾ L. Using the definition of qj and that aj ⩾
K + jK1/4/L, using the change of variables y = (K + xK1/4/L)3/4/(L3C ′), we get

P(λN ∈ (B +KN−2/3, B + η̃]) ⩽
∞∑

j=1
exp
(

− (K + jK1/4/L)3/4

L3C ′ + 1
)

⩽
∫ ∞

0
exp
(

− (K + xK1/4/L)3/4

L3C ′ + 1
)

dx

= 4eL5(C ′)4/3

3K1/4

∫ ∞

K3/4/(L3C′)
y1/3e−y dy. (3.14)

Finally,
∫∞

b
y1/3e−y dy ⩽ C(b1/3 + 1)e−b for b ⩾ 0 proves (3.10) and concludes the proof.

3.3 Extending the local law past the edge. In this section, we prove Proposition 3.5 which extends the local
law outside the trapezoid where Theorem 1.1 holds. Note that the dependence of the constant in q is worse in this
result than in Theorem 1.1.

Proposition 3.5. Let β > 0. There exist η̃ > 0 and C > 0 such that for any q ⩾ 1, N ⩾ 1 and any z = E + iη with
0 < η ⩽ η̃ and A− η̃ ⩽ E ⩽ B + η̃, we have

E[|sN (z) −mV (z)|q] ⩽ (Cq)2q

(Nη)q
.

In order to prove Proposition 3.5, we first prove Lemma 3.6 which bounds the number of particles past the edge.
We do not seek an optimal bound. Indeed, with a better treatment of the first part of the interval in the proof, we
could improve the bound below to (Cq)5q/4, which would improve Proposition 3.5 as well.

Lemma 3.6. Let β > 0. There is a constant C > 0 such that, for any q ⩾ 1,

E[N ((B,∞))q] ⩽ (Cq)2q.

Proof. We consider the constant C ′ ⩾ 1 from Proposition 2.5 and the constant L ⩾ 1 appearing in the proof of
Corollary 1.6. We set K := (L3C ′q)4/3 and divide the interval (B,∞) into three parts,

(B,∞) = (B,B +KN−2/3] ∪ I ∪ (B + η̃,∞),
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where I := (B +KN−2/3, B + η̃].
First part: interval (B,B +KN−2/3]. We set η := KN−2/3 and z := B + η + iη. By (3.1), we have

E
[
N ((B,B +KN−2/3])q

]
⩽ (2ηN)q · E[|Im s(z)|q].

With our choice of K and since we are in the case κ = η, we have η ⩾ (C ′q)1/2/(N
√
κ). Hence, applying the first

bound of (3.4), combined with the fact that |ImmV (z)| ⩽ Cη/
√
κ = C

√
η, we have

E
[
N ((B,B +KN−2/3])q

]
⩽ (2ηN)q ·

(
(Cq)q

N2qη5q/2 + (Cq)q/2

(Nη)q
+ (Cq)q

Nqηq/2 + Cqηq/2
)

⩽ (Cq)2q.

Second part: interval I. We follow the proof of Corollary 1.6, taking K = (L3C ′q)4/3, and using the same notation
and intervals Ij to divide the interval I (see (3.12)). Note in particular that qj ⩾ q0 = q by our choice of K. Applying
Minkowski’s inequality and then that N (Ij)q ⩽ N (Ij)qj since N (Ij) takes only nonnegative integer values, applying
(3.13), we get

E[N (I)q]1/q ⩽
jmax∑
j=1

E[N (Ij)q]1/q ⩽
jmax∑
j=1

E[N (Ij)qj ]1/q ⩽
jmax∑
j=1

e−qj/q.

Then, proceeding as in (3.14), using that qj ⩾ a
3/4
j /(L3C ′) − 1 and aj ⩾ K + jK1/4/L, we get

E[N (I)q]1/q ⩽
∞∑

j=1
exp
(

− (K + jK1/4/L)3/4

L3C ′q
+ 1
q

)
⩽
Cq4/3

K1/4 .

Recalling the definition of K, we proved that E[N (I)q] ⩽ (Cq)q.
Third part: interval (B + η̃,∞). Using the large deviation estimate (2.9), we have

E[N ((B + η̃,∞))q] ⩽ Nq · P(λN ⩾ B + η̃) ⩽ Nqe−cN ⩽ (Cq)q,

where the last inequality follows from the same argument as the one following (2.31). This concludes the proof.

Proof of Proposition 3.5. Note that in the trapezoid, A− η ⩽ E ⩽ B + η, the result follows directly from Theorem
1.1. Therefore, we focus on the case B + η < E ⩽ B + η̃, the case A− η̃ ⩽ E ⩽ A− η being treated similarly.

For any r ⩾ 0, set zr := B + η + r + iη and let t := E −B − η so that zt = z. Note that Re(z0) = B + Im(z0) so
we can apply Theorem 1.1 at the point z0. Note further that

|s(z) − m̃V (z)| ⩾ Re(s(z) − s(z0)) + Re(s(z0) −mV (z0)) + Re(mV (z0) − m̃V (z))

and, by (B.11),

Re(mV (z0) − m̃V (z)) ⩾ c|r(z)b(z)| = c|mV (z) − m̃V (z)|.

Hence, we have

|mV (z) − m̃V (z)| ⩽ C(|s(z) − m̃V (z)| + Re(s(z0) − s(z)) + |s(z0) −mV (z0)|).

Distinguishing between the cases |s − mV | ⩽ |s − m̃V | and |s − m̃V | ⩽ |s − mV | and, in the second case, using
|s−mV | ⩽ |s− m̃V | + |m̃V −mV | and the previous bound, we conclude that

|s(z) −mV (z)| ⩽ C(|s(z) −mV (z)| ∧ |s(z) − m̃V (z)| + Re(s(z0) − s(z)) + |s(z0) −mV (z0)|).

Applying Proposition 2.5 for the first term on the right-hand side, and Theorem 1.1 for the third term, we get

E[|s(z) −mV (z)|q] ⩽ (Cq)2q

(Nη)q
+ CE[([Re(s(z0) − s(z))]+)q], (3.15)
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where we set x+ := max(x, 0). We now bound [Re(s(z0) − s(z))]+. Since |λj − zr| ⩾ η, we have

− d
dr Re s(zr) = 1

N

N∑
j=1

η2 − (B + η + r − λj)2

|λj − zr|4
⩽

1
N

N∑
j=1

1
η21|B+η+r−λj |<η,

and since
∫ t

0 1|B+η+r−λj |<η dr ⩽ 2η1B<λj<E+η, we get

Re(s(z0) − s(z)) = −
∫ t

0

d
dr Re s(zr) dr ⩽ 2

Nη

N∑
j=1

1λj>B = 2
Nη

N ((B,∞)).

Inserting this in (3.15) and applying Lemma 3.6 proves the result.

3.4 Rigidity in the bulk. We now prove Corollary 1.5. The following lemma is classical and relies on the
Helffer-Sjőstrand formula, first used in random matrix theory in [29].

Lemma 3.7. There exists C > 0 such that, for any 0 < η < γ and M > 0, for any real function f compactly
supported in [A,B], on the event {∀x ∈ [A,B],∀y ∈ (0, γ], |(s−mV )(x+ iy)| < M/(Ny)}, we have∣∣∣∣∣

N∑
k=1

f(λk) −N

∫
f dµV

∣∣∣∣∣ ⩽ CM

(
∥f∥1

γ
+ η∥f ′′∥1 + log(γ/η)∥f ′∥1

)
.

Proof. Let χ(x) = 1 on [0, γ], χ(x) = 0 on [2γ,∞) and ∥χ′∥∞ < 100/γ. From [29, (B.13)] and an integration by
parts as in [29, (B.17)], for some universal constant C, we have∣∣∣∣∣

N∑
k=1

f(λk) −N

∫
f dµV

∣∣∣∣∣ ⩽ C((I) + (II) + (III) + (IV)),

(I) = N

∫∫
y>0

(|f(x)| + y|f ′(x)|)|χ′(y)||(s−mV )(x+ iy)| dx dy,

(II) = N

∫∫
0<y<η

y|f ′′(x)||(s−mV )(x+ iy)| dxdy,

(III) = N

∫∫
η<y

|∂y(yχ(y))||f ′(x)||(s−mV )(x+ iy)| dxdy,

(IV) = N

∫
η|f ′(x)||(s−mV )(x+ iη)| dx. (3.16)

The result follows easily.

We now prove the following direct consequence of Theorem 1.1, which gives an a priori rigidity estimate with
suboptimal logarithmic power.

Lemma 3.8. Recall that k̂ = min(k,N + 1 − k). For any r ⩾ 2 there exists N0 such that for any N > N0, we have

P
(

∩1⩽k⩽N {|λk − γk| < (logN)3r+2N− 2
3 (k̂)− 1

3 }
)
⩾ 1 − e−(log N)3r/4

.

Proof. Consider D = {A < Re z < B, 0 < Im z < (logN)−2r}, and define the event

A = ∩z∈D

{
|s(z) −mV (z)| ⩽ (logN)r

Nη

}
. (3.17)

We will first prove a lower bound for P(A ). First note that for z = E + iη we have both∣∣∣∣ d
dη Re s(z)

∣∣∣∣ ⩽ ∣∣∣∣ d
dη s(z)

∣∣∣∣ ⩽ 1
η

Im s(z), and Im s(E + iη) ⩽ η0

η
Im s(E + iη0), 0 < η < η0,
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so | d
dη Re s(z)| ⩽ η0

η2 Im s(E + iη0) for any 0 < η < η0. This implies | Re s(z)| < | Re s(E + iη0)| + η0
η | Im s(E + iη0)|.

For η0 = 1/N we therefore obtain, assuming |(s−mV )(E+ i
N )| < B and noting |mV | < C ′ = C ′(V ) uniformly in C,

|(s−mV )(E + iη)| ⩽ 5(C ′ +B)
Nη

, 0 < η <
1
N
.

As a consequence, for N large enough depending on C ′, we have Ã ⊂ A , where we set

Ã := ∩z∈D̃

{
|s(z) −mV (z)| ⩽ (logN)r

10Nη

}
, with D̃ := D ∩ {Im z > 1/N}.

So we are now aiming for a lower bound for P(Ã ). For any z ∈ D̃ and q ⩾ 1, Theorem 1.1 and Markov’s inequality
imply

P
(

|s(z) −mV (z)| > u

Nη

)
⩽ u−q

(
(Cq)q/2 + (Cq)qηq

|z −A|q/2|z −B|q/2

)
.

Choosing q = ⌊u2/(Ce)⌋, for some θ = θ(C) we obtain, for any u > 1,

P
(

|s(z) −mV (z)| > u

Nη

)
⩽ θ−1e−θu2

(1 + (Cqη)q/2).

If we assume further that u2η < 1, we obtain

P
(

|s(z) −mV (z)| > u

Nη

)
⩽ 2θ−1e−θu2

. (3.18)

In particular, u = (logN)r/20 and 0 < η < (logN)−2r give

P
(

|s(z) −mV (z)| > (logN)r

20Nη

)
⩽ 2θ−1e−θ(log N)2r/400.

Note that s and mV are N2-Lipschitz on D̃ , so that |s−mV | ⩽ (log N)r

20Nη on D̃ ∩N−3Z2 implies |s−mV | ⩽ (log N)r

10Nη

on D̃ . This observation and a union bound yield

P
(
Ã
)

= 1 − P
(

∪z∈D̃∩N−3Z2 |s(z) −mV (z)| ⩽ (logN)r

10Nη

)
⩾ 1 − θ−1N6e−θ(log N)2r/4,

which implies that
P(A ) ⩾ 1 − θ−1N6e−θ(log N)2r/400 ⩾ 1 − e−(log N)2r−1

, (3.19)
for any N ⩾ N0(C,C ′), using that 2r − 1 > 1 in the second inequality.

Let fE1,E2 denote an approximation of 1[E1,E2] on scale N−1, i.e. f(x) = 0 on (−∞, E1] ∪ [E2,∞), 1 on
[E1 +N−1, E2 −N−1], and ∥f (k)∥∞ < 100Nk, k = 1, 2. We consider

B = ∩A<E1<E2<B

{∣∣∣∣∣∑
i

fE1,E2(λi) −N

∫
fE1,E2 dµV

∣∣∣∣∣ < (logN)3r+1

}
.

From Lemma 3.7 with M = (logN)r, γ = (logN)−2r, η = 1/N , we have A ⊂ B for N large enough, so that

P(B) > 1 − e−(log N)2r−1
. (3.20)

Moreover, by Corollary 1.6, for large enough N we have

P(C ) ⩾ 1 − 1
2e

−(log N)3r/4
, (3.21)

C := {λ1 > A− (logN)r+1N−2/3} ∩ {λN < B + (logN)r+1N−2/3}.

Moreover, observe that B ∩ C ⊂ ∩1⩽k⩽N {|λk − γk| < (logN)3r+2N− 2
3 (k̂)− 1

3 } for N large enough, so the result
follows from (3.20) and (3.21).
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We now start improving on the (logN)C/N rigidity from the previous lemma. For any E ∈ [A+N−2/3, B−N−2/3],
we denote η0 = e(log N)1/4

/(N
√
κ) and η1 = 1/(N

√
κ) with κ = κ(E) = |E − A| ∧ |E − B|. We define the function

f = fE as follows, with the notation η̃ from Theorem 1.1:

f = 0 on (−∞, E] ∪ [B + η̃/2,+∞), f = 1 on [E + η1, B + η̃/4],
∥f (k)∥L∞(−∞,B] ⩽ 100 · η−k

1 , ∥f (k)∥L∞[B,∞) ⩽ 100 · η̃−k, k = 1, 2

Then, we introduce a similar function f0 = (f0)E , but which is smoothed at scale η0 (instead of scale η1 for f) close
to E: Letting E0 := E − η0 if E ⩾ A+B

2 and E0 := E if E < A+B
2 , we choose

f0 = 0 on (−∞, E0] ∪ [B + η̃/2,+∞), f0 = 1 on [E0 + η0, B + η̃/4],

∥f (k)
0 ∥L∞(−∞,B] ⩽ 100 · η−k

0 , ∥f (k)
0 ∥L∞[B,∞) ⩽ 100 · η̃−k, k = 1, 2

Moreover, we assume that f0 = f on [B + η̃/4, B + η̃/2]. Therefore, the function g := f − f0 is non zero only on an
interval of length at most η0 + η1 and included in [A,B], for any E ∈ [A+N−2/3, B −N−2/3] (as a consequence of
our choice of E0). We first bound fluctuations of the linear statistics of g := f − f0.

Lemma 3.9. For any D > 0, there is a N0 such that, for any N ⩾ N0 and E ∈ [A+N−2/3, B −N−2/3]

P

(∣∣∣∣∣
N∑

i=1
g(λi) −N

∫
g dµV

∣∣∣∣∣ > (logN)9/10

)
⩽ N−D.

Proof. We define the event A as in (3.17) with r = 3/5. Then it follows from (3.19) that, for some constant θ > 0
and for N large enough,

P(A ) ⩾ 1 − θ−1N6e−θ(log N)6/5/400 ⩾ 1 −N−D.

On the other hand, from Lemma 3.7 with γ = η0, η = η1, we have A ⊂ {|
∑
g(λi) −

∫
g dµV | < (logN)9/10} for N

large enough, so the result follows.

Proof of Corollary 1.5. Recall that f , f0, g, whose definitions precede Lemma 3.9, depend on E. Fix some K > 0.
As aN/ logN → ∞, for any k ∈ JaN , N − aN K, we have E := γk + K log N

N2/3k̂1/3 ∈ [A + N−2/3, B − N−2/3] for N large
enough. Moreover, there are constants C, c > 0 (independent of K) such that

P
(
λk − γk >

K logN
N2/3k̂1/3

)
⩽ P

(∑
f0(λi) −N

∫
f0 dµV >

K logN
C

)
+P
(∑

g(λi) −N

∫
g dµV >

K logN
C

)
+e−cN ,

where the exponentially small term accounts for f ̸= 1 beyond B + η̃/4, and relies on (2.9). The second probability
on the right-hand side is bounded thanks to Lemma 3.9. Applying a Chernoff bound, by Lemma 4.10, there exists
t1 such that

P
(∣∣∣∣∑ f0(λi) −N

∫
f0 dµV

∣∣∣∣ > K logN
C

)
⩽ e−t1K(log N)/CE

[
e

t1

∣∣∑ f0(λi)−N
∫

f0 dµV

∣∣]
⩽ e(A−K/C)t log N

for some absolute constant A. Choosing K large enough for a fixed D therefore concludes the proof that P(λk −γk >
C log N

N2/3k̂1/3 ) ⩽ N−D. The probability of the event λk − γk < − C log N

N2/3k̂1/3 is similarly bounded.

3.5 Tightness. We now give the brief proof of Corollary 1.7. For any interval J = [EN − aℓ(EN ), EN + aℓ(EN )],
a > 1, the desired inequality limt→∞ lim supN→∞ P(N (J) > t) = 0 follows directly from Lemma 3.2 applied to
intervals of type I = [E′ − ℓ(E′), E′ + ℓ(E′)] covering J .

3.6 Smoothed log-correlated field. The goal of this section is a key step for the proof of Theorem 1.8: regular-
ization of the log by replacing the point E in the linear statistics LN (E) by the point E + iη(E), with

κ(E) = |E −A| ∧ |E −B| and η(E) :=
exp
(
(logN)1/4)

N(
√
κ(E) ∨N−1/3)

= exp
(

(logN)1/4
)

· ℓ(E), (3.22)

for E ∈ [A,B], (see (1.3) and (1.4) for the definitions of ℓ(E) and L(E)). This means we can regularize the logarithm
at the scale slightly larger than the microscopic scale. Note that we approach E by a point above the real axis which
is consistent with our choice to extend the logarithm to the negative real axis by continuity from above.
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Proposition 3.10. Let z = E+iη(E) with E ∈ [A,B]. Then (LN (z)−LN (E))/
√

logN converges to 0 in probability,
uniformly in E ∈ [A,B].

Proof. Let E ∈ [A,B]. For brevity, we write η = η(E), so that z = E+iη. Writing log(z−λ)−log(E−λ) =
∫ η

0
i du

E+iu−λ ,
we have

LN (z) − LN (E) = iN
∫ η

0
(mV (E + iu) − sN (E + iu)) du.

Recall we want to prove this quantity is o(
√

logN) in probability. Let

η′ := (logN)−1/4

N(
√
κ(E) ∨N−1/3)

= (logN)−1/4 · ℓ(E).

Then by Theorem 1.1, we have

E
[∣∣∣∣N ∫ η

η′
(mV (E + iu) − sN (E + iu)) du

∣∣∣∣] ⩽ ∫ η

η′

C

u
du ⩽ C(logN)1/4. (3.23)

Now let z′ = E + iη′. By the triangle inequality,∣∣∣∣∣N
∫ η′

0
(mV (E + iu) − sN (E + iu)) du

∣∣∣∣∣
⩽ Nη′|mV (z′) − sN (z′)| +N

∫ η′

0
|mV (E + iu) −mV (z′)| du+N

∫ η′

0
|sN (E + iu) − sN (z′)| du. (3.24)

The first term on the right-hand side of (3.24) is bounded in L1 by Theorem 1.1. Using that |m′
V (w)| ⩽ C/|b(w)| for

w in a compact subset of C, the second term is bounded by CN(η′)3/2 ⩽ C. For the third term, we introduce the
event A := {N ([E−η′, E+η′]) = 0}, on which there are no particles at distance less than η′ from E. By Proposition
3.1, we have P(A) → 1 uniformly in E, and on the event A, we have

|sN (E + iu) − sN (z′)| =

∣∣∣∣∣ 1
N

N∑
k=1

E + iu− z′

(λk − E − iu)(λk − z′)

∣∣∣∣∣ ⩽ 1
N

N∑
k=1

η′√2
|λk − z′|2

=
√

2 Im sN (z′).

Moreover, with our specific value of η′, it follows from (2.36) that E[Im sN (z′)] ⩽ C((Nη′)−1 + N−1/2 + |b(z′)|) ⩽
C(Nη′)−1. Therefore, we have

E

[
1A ·N

∫ η′

0
|sN (E + iu) − sN (z′)| du

]
⩽

√
2Nη′ · E[Im sN (z′)] ⩽ C.

Thus, the right-hand side of (3.24) is O(1) in probability. Combined with (3.23), this concludes the proof.

Proof of Theorem 1.8. The proof of Lemma 4.3 in the next section requires a function supported on the domain
where our strong local law holds. Therefore, let ϕ be a fixed, smooth cutoff function on scale 1,

ϕ(x) = 1 on [A− η̃/4, B + η̃/4], 0 on [A− η̃/2, B + η̃/2]c, (3.25)

and define

L̃N (z) :=
N∑

j=1
log(z − λj)ϕ(λi) −N

∫
log(z − x) dµV (x). (3.26)

Recall the definition of a, b and δℓ in Theorem 1.8. Then Proposition 4.1, which will be proved in the next section,
shows that (distinguishing cases to simplify Γ)√

β

logN

(
Re L̃N (z1) − δ1, . . . ,Re L̃N (zk) − δk, Im L̃N (z1), . . . , Im L̃N (zk)

) (d)−−−−→
N→∞

N
(

0,
(

a 0
0 b

))
. (3.27)

Moreover, it follows from (2.9) that L̃N (z) − LN (z) converges to 0 in probability and Proposition 3.10 states that
(LN (z) − LN (E))/

√
logN converges to 0 in probability. Hence, by Slutsky’s theorem, we can replace L̃N (zℓ) by

LN (Eℓ) in (3.27) which concludes the proof.
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Proof of Corollary 1.9. Using that λk ⩽ E if and only if |{λj ⩽ E}| ⩾ k, we have, for any ξ ∈ R,

YN (n) ⩽ ξ ⇐⇒ ImLN

(
γn + ξ

πNϱV (γn)

√
logN
β

)
⩽ Nπ

∫ γn+ ξ
πNϱV (γn)

√
log N

β

γn

ϱV (x) dx.

Therefore, the result follows from Theorem 1.8. See [22, Lemma B.2] for more details.

4 Central limit theorem above the axis

In this section, we prove the following central limit theorem at level η(E), see (3.22). Recall the definition of L̃N (z)
in (3.26).

Proposition 4.1. For any m ⩾ 1, uniformly in ξ1, . . . , ξm, ζ1, . . . , ζm ∈ [−(logN)1/4, (logN)1/4] and E1, . . . , Em ∈
[A,B], the following holds. Setting zℓ = Eℓ + iη(Eℓ), we have

E

[
exp
(√

β

logN

m∑
ℓ=1

(
ξℓ Re L̃N (zℓ) + ζℓ Im L̃N (zℓ)

))]
= exp

(
Γ + O

(
(logN)−1/4

))
,

where the error terms depend only on β, V , m and

Γ = − 1
2 logN

m∑
ℓ,j=1

(
ξℓξj log(|Eℓ − Ej | ∨ (ηℓ + ηj)) + ζℓζj log

(
|Ej − Eℓ| ∨ (ηℓ + ηj)

(|Eℓ −A| ∨ ηℓ)(|B − Ej | ∨ ηj) ∧ 1
))

+

√
β

logN
1
4

(
2
β

− 1
) m∑

ℓ=1
ξℓ log(κℓ ∨ ηℓ),

with ηℓ = η(Eℓ) and κℓ = κ(Eℓ).

4.1 Strategy of the proof. We first explain the classical strategy, which relies on a loop equation argument
that dates back to Johansson [44] to obtain the Laplace transform of linear statistics. The essential ingredient to
adapt Johansson’s method to the scale η(E) is the rigidity estimate under biased measures. This rigidity is proved
in Subsection 4.2 and relies on Theorem 1.1.

Remark 4.2. Johansson’s method can be adapted to asymptotics of the Fourier transform of linear statistics instead
of the Laplace transform, as in Section 5 in [20] and Section 6 in [57]. Natural benefits are a quantitative convergence,
and no need of rigidity estimates under biased measures. However in this paper we choose to prove asymptotics of
the Laplace transform, as this is needed for the tail estimate, Lemma 4.10.

Let m ⩾ 1 and E1, . . . , Em ∈ [A,B], and let a1, . . . , am, b1, . . . , bm ∈ [−1, 1]. These ai’s and bi’s will play the
role of rescaled versions of ξ1, . . . , ξm, ζ1, . . . , ζm in the statement of Proposition 4.1. Let us emphasize here that,
throughout Section 4, constants C and O(. . . ) only depend on β, V and m.

For any 1 ⩽ ℓ ⩽ m, we set ηℓ = η(Eℓ), zℓ := Eℓ + iηℓ and κℓ := κ(Eℓ) (see (3.22) for the definition of η(E) and
κ(E)). Moreover, for any s ∈ R, let fℓ(s) := ϕ(s) Re((aℓ − ibℓ) log(zℓ − s)) and

f(s) := ϕ(s)
m∑

ℓ=1
(aℓ Re log(zℓ − s) + bℓ Im log(zℓ − s)) =

m∑
ℓ=1

fℓ(s), (4.1)

where ϕ is defined in (3.25). We are interested in the following centered linear statistics

SN (f) :=
N∑

j=1
f(λj) −N

∫
f dµV .

Recall µN is the probability distribution of the particles defined in (1.1). We define a measure µt
N , for any t ∈ R, by

dµt
N (λ1, . . . , λN ) := etSN (f)

Z(t) dµN (λ1, . . . , λN ), with Z(t) := E
[
etSN (f)

]
, (4.2)
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where E still denotes the expectation under µN . The expectation under µt
N is denoted by Eµt

N
. Let ϱ(N,t)

1 (s) be the
1-point function for the eigenvalues under µt

N , which satisfies∫
R
h(s)ϱ(N,t)

1 (s) ds = Eµt
N

[
1
N

N∑
k=1

h(λk)
]
,

for any continuous bounded function h. Let mN,t(z) := Eµt
N

[sN (z)] be the Stieljes transform of ϱ(N,t)
1 (s). Recall our

goal is to estimate the Laplace transform of SN (f), i.e. Z(t). For this, we will estimate

Z ′(t) = E
[
SN (f)etSN (f)

]
= Z(t) · Eµt

N
[SN (f)].

Using the Helffer–Sjöstrand formula [42], we can express Eµt
N

[SN (f)] in terms of mN,t(z)−mV (z), see (4.20). Hence,
we first prove precise estimates for mN,t(z) −mV (z) using the first loop equation, in Lemma 4.5. Then, we use these
estimates combined with Helffer–Sjöstrand formula to compute asymptotics of Z(t) in Lemma 4.7. This gives the
proof of Proposition 4.1, up to a rewriting of the limiting variances and shifts which we deal with in Section 4.4.

The key input for the above proof sketch is the rigidity of the particles under biased measures (Lemma 4.4, based
on Theorem 1.1), which we now prove.

4.2 Rigidity under biased measures. The main result of this section is Lemma 4.4. We start with the following
key estimate about f , defined in (4.1).

Lemma 4.3. For any m ⩾ 1, there exists a (small) c0 > 0 and (large) N0 such that for any E1, . . . , Em ∈ [A,B],
a1, . . . , am, b1, . . . , bm ∈ [−1, 1], N ⩾ N0 and |ζ| < c0 we have∣∣∣∣logE

[
e

ζ
(∑N

k=1
f(λk)−N

∫
f dµV

)]∣∣∣∣ ⩽ (logN)5.

Proof. First note that, for any real random variable X, we have |logE[eX ]| ⩽ logE[e|X|]. Therefore, expanding the
exponential, we get∣∣∣∣logE

[
e

ζ
(∑N

k=1
f(λk)−N

∫
f dµV

)]∣∣∣∣ ⩽ log
∑
k⩾1

|ζ|k

k! E

∣∣∣∣∣
N∑

k=1
f(λk) −N

∫
f dµV

∣∣∣∣∣
k
. (4.3)

Note that, up to changing the above constant |ζ|k into |mζ|k, it is enough to bound the above right-hand side in the
case m = 1. We therefore consider f = f1, with E = E1 ∈ [A,B]. We now apply Helffer-Sjőstrand formula in a way
similar to (3.16), but with an η which depends on x, η(x) = ℓ(E) ∨ (x−B) ∨ (A− x). We choose γ = (logN)−2 and
consider a cutoff function χ such that χ(x) = 1 on [0, γ], χ(x) = 0 on [2γ,∞) and ∥χ′∥∞ < 100/γ. Since η depends
on x, another boundary term appears in the integration by parts in [29, (B.17)] and we get∣∣∣∣∣

N∑
k=1

f(λk) −N

∫
f dµV

∣∣∣∣∣
k

⩽ Ck((I)k + (II)k + (III)k + (IV)k + (V)k),

(I) = N

∣∣∣∣Im ∫∫
y>0

(f(x) + iyf ′(x))χ′(y)(s−mV )(x+ iy) dxdy
∣∣∣∣,

(II) = N

∫∫
0<y<η(x)

y|f ′′(x)|| Im(s−mV )(x+ iy)| dxdy,

(III) = N

∫∫
η(x)<y

|∂y(yχ(y))||f ′(x)||(s−mV )(x+ iy)| dxdy,

(IV) = N

∫
η(x)|f ′(x)||(s−mV )(x+ iη(x))| dx

(V) = N

∫
y>ℓ(E)

|yχ(y)||f ′(B + y)(s−mV )(B + y + iy) − f ′(A− y)(s−mV )(A− y + iy)| dy.
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We now bound the k-th moment of each of these quantities successively. For (I), we first rewrite the part involving
f ′(x) using integration by parts w.r.t. x and then y, similar to [29, (B.17)],∫∫

y>0
iyf ′(x)χ′(y)(s−mV )(x+ iy) dx dy = −

∫∫
y>0

iyf(x)χ′(y)(s−mV )′(x+ iy) dxdy

=
∫∫

y>0
∂y(yχ′(y))f(x)(s−mV )(x+ iy) dxdy.

Therefore, since χ′(y) is non-zero only if y ∈ [γ, 2γ], we get

(I) ⩽ C

∫∫
R×[γ,2γ]

|f(x) ·N Im(s−mV )(x+ iy)| dxdy

By Hölder’s inequality, we have

E
[
(I)k

]
⩽ Ck

∫
(R×[γ,2γ])k

E
[
|f ·N Im(s−mV ) · · · f ·N Im(s−mV )|

]
⩽ Ck

(∫
R×[γ,2γ]

E
[
|f ·N Im(s−mV )|k

]1/k

)k

.

Applying Theorem 1.1 in the trapezoid region and Proposition 2.5 outside, note that we have E[|Im(s−mV )|k] ⩽
(Ck)k/(Ny)k in both cases. It follows that E[(I)k] ⩽ (Ck)k. We now deal with (II). Again by Hölder’s inequality,
we have

E
[
(II)k

]1/k
⩽
∫
R×R+

1y<η(x)y|f ′′(x)|E
[
|N Im(s−mV )(x+ iy)|k

]1/k dx dy.

We cut this integral into two parts, depending on if (x, y) is on the trapezoid region (that is A−y ⩽ x ⩽ B+y) or not.
For the part corresponding to the trapezoid (in which case η(x) = ℓ(E)), Theorem 1.1 and |f ′′(x)| ⩽ C/|x−E+iη1|2
give the bound ∫

R

∫ ℓ(E)

0
y|f ′′(x)|

(
(Ck)1/2

y
+ Ck√

κ(x+ iy)

)
dy dx ⩽ Ckℓ(E)

∫
R
|f ′′(x)| dx ⩽ Ck

ℓ(E)
η1

.

For the other part, we focus on the case x > B, the case x < A being similar. Combining the bounds of Proposi-
tion 2.5, in this region, we have

E
[
|N Im(s−mV )(x+ iy)|k

]1/k
⩽

(Ck)1/2

y
+ Ck√

x−B
+

√
N(Ck)1/2

1y⩽(C′k)1/2/N
√

x−B .

Therefore, we bound the remaining part using∫ ∞

B

∫ x−B

0
y|f ′′(x)|E

[
|N Im(s−mV )(x+ iy)|k

]1/k dy dx

⩽
∫ ∞

B

|f ′′(x)|
(

(Ck)1/2(x−B) + Ck(x−B)3/2
)

dx+
∫ ∞

B

(x−B) (C ′k)1/2

N
√
x−B

|f ′′(x)|
√
N(Ck)1/2 dx

⩽ (Ck)1/2 logN + Ck + Ck√
Nη1

.

Recalling η1 = exp((logN)1/4)ℓ(E) ⩾ ℓ(E) ⩾ cN−1, it follows that

E
[
(II)k

]
⩽ (Ck)k/2(logN)k + (Ck)k.

The main contribution comes from the third term. Note that thanks to our choice of η(x), the domain of integration
of (III) is included in the trapezoid region, so we can apply Theorem 1.1 to get

E
[
(III)k

]1/k
⩽
∫
R×R+

1η(x)<y|∂y(yχ(y))||f ′(x)|E
[
|N(s−mV )(x+ iy)|k

]1/k dxdy

⩽
∫
R

∫ 2γ

ℓ(E)
|f ′(x)|

(
(Ck)1/2

y
+ Ck√

κ(x+ iy)

)
dy dx ⩽ logN ·

(
(Ck)1/2 logN + Ckγ1/2

)
,

29



integrating first w.r.t. y and then w.r.t. x. Hence, since γ = (logN)−2,

E
[
(III)k

]
⩽ (Ck)k/2(logN)2k + (Ck)k.

Similarly, with Hölder’s inequality and Theorem 1.1,

E
[
(IV)k

]1/k
⩽
∫
R
η(x)|f ′(x)|

(
(Ck)1/2

η(x) + Ck√
κ(x)

)
dx ⩽ (Ck)1/2 logN + Ck,

where for the second term we simply note that η(x)|f ′(x)| ⩽ η(x)C/|x − E + iη1| ⩽ C. The term (V) is smaller
than (IV). Coming back to (4.3), for some constant C0 > 0 depending only on m, V and β, we proved that

logE
[
e

ζ
(∑N

k=1
f(λk)−N

∫
f dµV

)]
⩽ log

∑
k⩾1

|ζ|k

k! C
k
0

(
kk/2(logN)2k + kk

)
.

Choosing |ζ| ⩽ (100C0)−1, this last series is smaller than
∑

k⩽(log N)4(logN)2k +
∑

k⩾1
2kk

100k! ⩽ e(log N)5 , for N large
enough, which concludes the proof.

Lemma 4.4. For any m ⩾ 1, letting t0 = c0/2 with c0 from Lemma 4.3, there exists N0 such that for any
E1, . . . , Em ∈ [A,B], a1, . . . , am, b1, . . . , bm ∈ [−1, 1], N ⩾ N0 and |t| < t0, we have

Pµt
N

 ⋂
1⩽k⩽N

{|λk − γk| < (logN)100N− 2
3 (k̂)− 1

3 }

 ⩾ 1 − e−(log N)2
.

Proof. This is an easy consequence of Lemma 3.8 with r = 30 and Lemma 4.3. Indeed, with A =
⋂

1⩽k⩽N {|λk −γk| <
(logN)100N− 2

3 (k̂)− 1
3 }, by the Cauchy-Schwarz inequality and then Lemma 4.3, we have

Pµt
N

(Ac) ⩽
E
[
e2t(
∑

f(λi)−N
∫

f dµV )
]1/2

P(Ac)1/2

E
[
et(
∑

f(λi)−N
∫

f dµV )
] ⩽ e

3
2 (log N)5− 1

2 (log N)3·30/4
,

which concludes the proof.

4.3 Analysis of the first loop equation. Recall mN,t(z) is the Stieljes transform of ϱ(N,t)
1 (s). We introduce

φ(z) = φN,t(z) := mN,t(z) −mV (z)

and for z ∈ Ω \ R, recalling Ω is an open set in C containing R and such that V is analytic on Ω,

ψ(z) := 2t
βN

∫ B

A

f ′(s)
s− z

ϱV (s) ds− 1
N

(
2
β

− 1
)
m′

V (z) −
∫
R

V ′(s) − V ′(z)
s− z

(
ϱ

(N,t)
1 (s) − ϱV (s)

)
ds (4.4)

Err(z) := φ(z)2 − 2t
βN

∫
R

f ′(s)
s− z

(
ϱ

(N,t)
1 (s) − ϱV (s)

)
ds+ 1

N

(
2
β

− 1
)
φ′(z) + Varµt

N
(sN (z)). (4.5)

Then, following for example [73, (2.8)] or replacing V by Vt = V − 2t
βN f in (A.4), we have the loop equation, for any

z ∈ Ω \ R,
(2mV (z) + V ′(z))φ(z) − ψ(z) + Err(z) = 0, (4.6)

where Err(z) gathers the negligible terms. We use the loop equation to show φ(z) is close to φ̃(z)/N , where we set

φ̃(z) := 1
2πb(z)

(
2t
β

∫ B

A

f ′(s)
s− z

τ(s) ds−
(

2
β

− 1
)(

π(b′(z) − 1) +
∫ B

A

r′(s)τ(s)
r(s)(s− z) ds

))
, (4.7)

with τ(s) :=
√

(s−A)(B − s) and recalling b(z) =
√
z −A

√
z −B.
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Lemma 4.5. Consider |t| < t0, with t0 from Lemma 4.4. Let η̃ > 0 be as in Lemma B.3. Then, for any z = E + iη
with N−1 < |η| ⩽ η̃/2 and A− η̃ ⩽ E ⩽ B + η̃, we have

φ(z) = φ̃(z)
N

+ O
(

(logN)201

(Nη)2|b(z)|

)
+ O

(
(logN)201

N2|b(z)|

m∑
ℓ=1

1
ηℓ(ηℓ ∨ |z − zℓ|)

)
,

where the error terms depend only on β and V .

The proof of this lemma relies on two steps. First we use the rigidity established in Lemma 4.4 to show Err(z)
is indeed an error term. Then, the loop equation implies that (2mV (z) + V ′(z))φ(z) ≃ ψ(z), but the third term in
ψ(z) is still an unknown second order term. In order to get rid of it, we use a contour integral argument similar to
the one used in Section 2.3 or more precisely, to the one used by Shcherbina [73, (2.12) to (2.17)]. For this reason,
we need to work with confined particles and, for convenience, we actually restrict ourselves to the rigidity event
R :=

⋂
1⩽k⩽N {|λk − γk| < (logN)100N− 2

3 (k̂)− 1
3 }, by introducing the new measure

dµt,R
N (λ1, . . . , λN ) = 1R

Pµt
N

(R) dµt
N (λ1, . . . , λN ).

Note that Pµt
N

(R) ⩾ 1 − e−(log N)2 by Lemma 4.4. Moreover, let ϱ(N,t,R)
1 (s) be the 1-point function under µt,R

N ,

φR(z) := Eµt,R
N

[sN (z)] −mV (z)

and ErrR(z) be defined as Err(z) but with µt,R
N , ϱ(N,t,R)

1 (s) and φR(z) instead of µt
N , ϱ(N,t)

1 (s) and φ(z). We tackle
the first step of the argument in the following lemma, which bounds the terms appearing in ErrR(z).

Lemma 4.6. Consider |t| < t0, with t0 from Lemma 4.4. Let η̃ > 0 be as in Lemma B.3. Then, for any z = E + iη
with 0 < |η| ⩽ η̃ and A− η̃ ⩽ E ⩽ B + η̃, we have

φR(z) = O
(

(logN)100

Nη

)
, ErrR(z) = O

(
(logN)200

(Nη)2

)
+ O

(
(logN)200

N2

m∑
ℓ=1

1
ηℓ(ηℓ ∨ |z − zℓ|)

)
, (4.8)

φ(z) = φR(z) + O
(
η−1e−(log N)2

)
, Err(z) = ErrR(z) + O

(
η−2e−(log N)2

)
, (4.9)

where the error terms depend only on β and V . If, moreover, E ⩽ A− η̃/2 or E ⩾ B + η̃/2,

ErrR(z) = O
(

(logN)200

N2

)
+ O

(
(logN)200

N2

m∑
ℓ=1

1
ηℓ

)
. (4.10)

Proof. First note that∫
R

f ′(s)
s− z

(
ϱ

(N,t,R)
1 (s) − ϱV (s)

)
ds = O

(
(logN)100

N

∫
R

(
|f ′′(s)|
|z − s|

+ |f ′(s)|
|z − s|2

)
ds
)
,

φR(z) = O
(

(logN)100

Nη

)
, (φR)′(z) = O

(
(logN)100

Nη2

)
, Varµt,R

N
(sN (z)) = O

(
(logN)200

(Nη)2

)
. (4.11)

The proof of these estimates is almost the same as that of Lemma 5.3 in [20]. The only differences are that (1)
the rigidity estimate is now known with multiplicative error (logN)100 instead of Nξ, (2) we work directly on the
event R so we do not need to control what happens on Rc, (3) we work with Laplace transform instead of Fourier
transform. In particular, this proves the first part of (4.8). The second part of (4.8) follows from the bound (recall
f is supported on [A− η̃/2, B + η̃/2])∫

R

(
|f ′′(s)|
|z − s|

+ |f ′(s)|
|z − s|2

)
ds ⩽ C

m∑
ℓ=1

∫ B+η̃/2

A−η̃/2

(
1

|z − s|
+ 1

|zℓ − s|

)
1

|z − s| · |zℓ − s|
ds

⩽ C

m∑
ℓ=1

(
1

ηℓ(ηℓ ∨ |z − zℓ|)
+ 1
η(η ∨ |z − zℓ|)

)
.
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Since by Lemma 4.4, Pµt
N

(Rc) ⩽ e−(log N)2 , we have (4.9). Finally, we obtain (4.10) similarly, noting that |zℓ − z| ⩾
η̃/2, and on the event R the particles λk are confined in [A− η̃/4, B + η̃/4] for N large enough, so we can replace η
by 1 in the bounds of (4.11).

Proof of Lemma 4.5. Fix some z = E+ iη with N−1 < |η| ⩽ η̃/2 and A− η̃ ⩽ E ⩽ B+ η̃. We consider the rectangle
with vertices A−η̃±iN−10, B+η̃±iN−10, and denote by C the corresponding closed contour with positive orientation.
We decompose this contour into Chor, which consists only in the horizontal pieces, and Cver, which consists only in
the vertical pieces. By the loop equation (4.6) and recalling 2mV (z) + V ′(z) = 2r(z)b(z), we have∫

Chor

2r(w)b(w)φ(w) − ψ(w) + Err(w)
r(w)(z − w) dw = 0.

Therefore, by (4.9), we have∫
Chor

2r(w)b(w)φR(w) − ψ(w) + ErrR(w)
r(w)(z − w) dw = O

(
η−2e−(log N)2

)
. (4.12)

On the other hand, for w on Cver, we have 2r(w)b(w)φR(w)−ψ(w)+ErrR(w) = O(1) (using that under µt,R
N particles

are at a distance larger than η̃/2 from Cver), so∫
Cver

2r(w)b(w)φR(w) − ψ(w) + ErrR(w)
r(w)(z − w) dw = O

(
η−1N−10). (4.13)

Combining (4.12) and (4.13), we get∫
C

2r(w)b(w)φR(w) − ψ(w) + ErrR(w)
r(w)(z − w) dw = O

(
1

(Nη)2

)
. (4.14)

We now estimate each term in the last integral successively.
We start with the part involving φR(w). The function w 7→ 2b(w)φR(w)/(z − w) is analytic on and outside C,

except for the pole at z, and it behaves as O(w−2) as |w| → ∞. Therefore, by the Cauchy integral formula with
residue at infinity, we get∫

C

2b(w)φR(w)
(z − w) dw = 4iπb(z)φR(z) = 4iπb(z)φ(z) + O

(
1

(Nη)2

)
, (4.15)

using again (4.9).
Now we evaluate the part involving ψ(w). Recall the definition of ψ(w) in (4.4) and note that the third term

is analytic in w ∈ Ω. Moreover,by (2.5), we have m′
V (w) = − 1

2V
′′(w) + (rb)′(w), where V ′′(w) is also analytic in

w ∈ Ω. Since the contour C is included in Ω, z is exterior to C and r has no zero inside C (see the choice of η̃ in
Lemma B.3), these analytic terms disappear and we get∫

C

ψ(w)
r(w)(z − w) dw =

∫
C

(
2t
βN

∫ B

A

f ′(s)
s− w

ϱV (s) ds− 1
N

(
2
β

− 1
)

(rb)′(w)
)

dw
r(w)(z − w)

= −4iπt
βN

∫ B

A

f ′(s)
r(s)(z − s)ϱV (s) ds− 1

N

(
2
β

− 1
)∫ B

A

−2i(rτ)′(s)
r(s)(z − s) ds

where, for the first term, we applied Cauchy’s integral formula and, for the second term, we let the contour approach
the segment [A,B] and used limy→0+(rb)′(x ± iy) = ±i(rτ)′(x) for x ∈ (A,B), recalling τ(x) =

√
(x−A)(B − x).

Recalling the definition of φ̃(z) in (4.7) and that ϱV = 1
π rτ , we get∫

C

ψ(w) dw
r(w)(z − w) = 2i

(
2t
βN

∫ B

A

f ′(s)
s− z

τ(s) ds− 1
N

(
2
β

− 1
)∫ B

A

(
τ ′(s)
s− z

+ r′(s)τ(s)
r(s)(s− z)

)
ds
)

= 4iπb(z)
N

φ̃(z), (4.16)

where we used that
∫ B

A
τ ′(s)
s−z ds =

∫ B

A
τ(s)

(s−z)2 ds = π(b′(z) − 1) because
∫ B

A
τ(s)
s−z ds = π( A+B

2 − z + b(z)).

32



Finally, we deal with the part involving ErrR(w). We deform the contour C into C′, the positively oriented
rectangle with vertices A − η̃ ± iη/2, B + η̃ ± iη/2. The function w 7→ ErrR(w)/(r(w)(z − w)) is analytic on and
outside these contours, so∫

C

ErrR(w)
r(w)(z − w) dw =

∫
C′

ErrR(w)
r(w)(z − w) dw = O

(
(logN)201

(Nη)2

)
+ O

(
(logN)201

N2

m∑
ℓ=1

1
ηℓ(ηℓ ∨ |z − zℓ|)

)
, (4.17)

where we used that |r(w)| is uniformly lower bounded and we applied (4.8) on the horizontal pieces of C′ and (4.10)
on the vertical pieces. Coming back to (4.14) and combining (4.15), (4.16) and (4.17), the result is proved.

We now prove the following Lemma 4.7 in which we estimate Z(t) (defined in (4.2)) via the Hellfer–Sjöstrand
formula applied to Eµt

N
[SN (f)], and the estimates of Lemma 4.5. Here our method essentially follows Section 5

of [20]. In order to state the lemma, first introduce

σ2(f) := 1
π2β

∫ B

A

∫ B

A

f ′(s)
(
f(s) − f(t)

s− t

)
τ(s)
τ(t) dsdt, (4.18)

δ(f) :=
(

2
β

− 1
)(

f(A) + f(B)
4 − 1

2π2

∫ B

A

f(x)
τ(x)

(
π + p.v.

∫ B

A

r′(s)τ(s)
r(s)(x− s) ds

)
dx
)
, (4.19)

recalling τ(s) :=
√

(s−A)(B − s) We will study the asymptotic behavior of these quantities in Section 4.4.

Lemma 4.7. For any m ⩾ 1, E1, . . . , Em ∈ [A,B], a1, . . . , am, b1, . . . , bm ∈ [−1, 1] and any |t| < t0, with t0 from
Lemma 4.4, we have

Z(t) = exp
(
t2

2 σ
2(f) + tδ(f) + O

(
e−(log N)1/4/3

))
,

where the implied constant in the error term depends only on β, V and m.

Proof. Recall Z ′(t) = Z(t)Eµt
N

[SN (f)], so we estimate Eµt
N

[SN (f)]. By linearity, we can assume m = 1, i.e. f = f1 in
SN (f) (the measure µt

N still depends on f). Recall also η̃ > 0 is the constant given by Lemma B.3. Let χ : R → [0, 1]
be a smooth symmetric function such that χ(y) = 1 for y ∈ (−η̃/4, η̃/4) and χ(y) = 0 for |y| > η̃/2. By the
Hellfer-Sjöstrand formula,

Eµt
N

[SN (f1)] = 1
2π

∫∫
R2

(iyf ′′
1 (x)χ(y) + i(f1(x) + iyf ′

1(x))χ′(y))Nφ(z) dx dy, (4.20)

where we set z = x+ iy for brevity. We denote

Σ(f1) := 1
2π

∫∫
R2

(iyf ′′
1 (x)χ(y) + i(f1(x) + iyf ′

1(x))χ′(y))φ̃(z) dxdy.

Then, abbreviating r1 = (ℓ(E1)η1)1/2 = ℓ(E1)e(log N)1/4/2, integrating by parts (first in x, then in y) using analyticity
of Nφ− φ̃ on {y > 0}, we have,

Eµt
N

[SN (f1)] − Σ(f1) = 1
π

Im
∫∫

y>0
yf ′′(x)χ(y)(Nφ(z) − φ̃(z)) + 1

π
Im
∫∫

y>0
(f1(x) + iyf ′

1(x))χ′(y)(Nφ(z) − φ̃(z))

= (I) + (II) + (III) + (IV)

(I) := 1
π

Im
∫∫

0<y<r1

yf ′′
1 (x)(Nφ(z) − φ̃(z)) dy dx

(II) := −r1

π
Re
∫
f ′

1(x)(Nφ(x+ ir1) − φ̃(x+ ir1)) dx

(III) := − 1
π

Re
∫∫

y>r1

f ′
1(x)∂y(yχ(y))(Nφ(z) − φ̃(z)) dy dx

(IV) := 1
π

Im
∫∫

y>0
(f1(x) + iyf ′

1(x))χ′(y)(Nφ(z) − φ̃(z)) dy dx.
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We now bound each of the above four terms. Note that thanks to our choice of the cutoff functions χ and ϕ (involved
in the definition of f), these integrals have support in the region where we can apply Lemma 4.5.

The contribution of (IV) is trivial, as χ′ ̸= 0 together with Lemma 4.5 imply |Nφ−φ̃| ⩽ C(logN)200N−1∑m
ℓ=1 η

−1
ℓ ,

so that |(IV)| ⩽ C(logN)200e−(log N)1/4 ∫ (|f1| + |f ′
1|) ⩽ (logN)201e−(log N)1/4 .

We now bound (I). A simple analysis of s 7→ s/|s− w|2 shows the maximum is obtained for s = |w|, so that

τ(s)
|z − s|

⩽ C

√
κ(z)

|z −A− κ(z)| ∧ |B − z − κ(z)| ⩽ C

√
κ(z)
y

,

recalling κ(z) = |z − A| ∧ |z − B|. Together with
∫

|f ′| ⩽ Cm logN and |
∫ B

A
r′(s)τ(s)
r(s)(s−z) ds| ⩽ C log(1/y) and recalling

the definition of φ̃ in (4.7), this gives

|φ̃(z)| ⩽ C√
κ(z)

(
Cm(logN)

√
κ(z)
y

+ C√
κ(z)

+ C log(1/y)
)

⩽
C logN

y
.

Using (4.8) and (4.9) to control φ, we conclude that

|(I)| ⩽ C(logN)
∫∫

0<y<r1

|f ′′
1 (x)| dy dx ⩽ C(logN) r1

η1
= C logN
e(log N)1/4/2 .

For (II), we bound Nφ− φ̃ with Lemma 4.5 and obtain (in the equation below z = x+ ir1)

|(II)| ⩽ r1
(logN)201

N

∫
|f ′

1(x)|
|b(z)|

(
1
r2

1
+

m∑
ℓ=1

1
ηℓ(ηℓ ∨ |z − zℓ|)

)
dx,

and we now distinguish the cases ηℓ > r1/10 and ηℓ ⩽ r1/10. If ηℓ > r1/10 the above sum is absorbed in the r−2
1

term and these terms are bounded through∫ dx
|x− z1|

√
κ(x+ ir1)

⩽
∫

κ(x)>κ(z1)/10

dx
|x− z1|

√
κ(x)

+
∫

κ(x)<κ(z1)/10

dx
|x− z1|

√
κ(x)

⩽
C√
κ(z1)

∫ dx
|x− z1|

+ C

κ(z1)

∫
κ(x)<κ(z1)/10

dx√
κ(x)

⩽
C logN√
κ(z1)

. (4.21)

If ηℓ < r1/10, denoting z = x+ ir1 we have ηℓ < |zℓ − z| and κ(Eℓ) > κ(E1) + η1, so the relevant bound is

1
ηℓ

(∫ κ(z1)/10

κ(x)=0
+
∫ Eℓ/2

κ(z1)/10
+
∫ ∞

Eℓ/2

)
dx

|z1 − x|
√
κ(z)|z − zℓ|

⩽
C

ηℓκ(z1)|z1 − zℓ|

∫ κ(z1)

0

du√
u

+ 1
ηℓ|z1 − zℓ|

√
κ(z1)

∫ dx
|z1 − x|

+ 1
ηℓ|z1 − zℓ|

√
κ(zℓ)

∫ dx
|z − zℓ|

⩽
logN√
κ(z1)

sup
κ(Eℓ)>κ(E1)+η1

1
|E1 − Eℓ|ηℓ

= N logN
e(log N)1/4

√
κ(z1)

sup
κ(Eℓ)>κ(E1)+η1

√
κ(Eℓ)

|E1 − Eℓ|
⩽

CN logN
e(log N)1/4η1

.

From the previous equations we deduce that

|(II)| ⩽ C(logN)202

Nr1
√
κ(z1)

+ C(logN)202r1

e(log N)1/4η1
⩽
C(logN)202

e(log N)1/4/2 .

The main error comes from (III). The contribution from
∫∫

y>r1
f ′

1(x)yχ′(y)(Nφ(z) − φ̃(z)) already appeared
in (IV). The remaining term is (z = x+ iy below)

(logN)201

N

∫∫
y>r1

|f ′
1(x)|

|b(x+ iy)|

(
1
y2 +

m∑
ℓ=1

1
ηℓ(ηℓ ∨ |z − zℓ|)

)
dy dx.
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For a given ℓ, we bound the contribution from the domain ηℓ > y/10 using∫∫
y>r1

dx dy
|z1 − x|

√
κ(x+ iy)y2

⩽
∫ dx

|z1 − x|
√
κ(x+ ir1)r1

⩽
C logN
r1
√
κ(z1)

⩽
C(logN)
e(log N)1/4/2 ,

where the second inequality follows from (4.21). On the complementary domain, note that ηℓ < |zℓ − z| and∫∫
y>r1∨10ηℓ

dx dy
ηℓ|z1 − x|

√
κ(z)|z − zℓ|

⩽ C(logN)
∫ dx
ηℓ|z1 − x|

√
κ(Eℓ)

⩽
C(logN)2

ηℓ

√
κ(Eℓ)

= CN(logN)2

e(log N)1/4 .

We have therefore proved that

Eµt
N

[SN (f)] = Σ(f) + O
(

(logN)203

e(log N)1/4/2

)
.

From Lemma 4.8 below, we can also write this as

Eµt
N

[SN (f)] = tσ2(f) + δ(f) + O
(
e−(log N)1/4/3

)
.

Since Z ′(t)/Z(t) = Eµt
N

[SN (f)], the result follows by integrating with respect to t.

Lemma 4.8. For any real function g of class C2 with compact support, we have

Σ(g) = t

βπ2

∫ B

A

∫ B

A

f ′(s)g(s) − g(t)
s− t

τ(s)
τ(t) dtds+ δ(g).

Proof. We write ∂z̄ = 1
2 (∂x + i∂y). Let g̃(z) := (g(x) + ig′(x)y)χ(y) so that

Σ(g) = 1
π

∫∫
R2

(∂z̄ g̃(z))φ̃(z) dxdy = lim
ε→0

1
π

∫∫
{|y|>ε}

∂z̄(g̃(z)φ̃(z)) dx dy,

using that ∂z̄φ̃(z) = 0 because φ̃(z) is analytic. Then, applying Green’s formula, we get

Σ(g) = lim
ε→0+

1
2iπ

∫
R
(g̃(x+ iε)φ̃(x+ iε) − g̃(x− iε)φ̃(x− iε)) dx = lim

ε→0+

1
π

∫
R

Im(g̃(x+ iε)φ̃(x+ iε)) dx, (4.22)

noting that g̃(z) = g̃(z) and φ̃(z) = φ̃(z).
We start with the first term appearing in φ̃(z), that is φ̃1(z) := t

βπb(z)
∫ B

A
f ′(s)
s−z τ(s) ds. Note that, as ε → 0+,

b(x+ iε) tends to iτ(x) if x ∈ (A,B) and to
√

|x−A||x−B| if x /∈ [A,B]. On the other hand, we have∫ B

A

f ′(s)
s− (x+ iε)τ(s) ds −−−−→

ε→0+

{
p.v.

∫ B

A
f ′(s)
s−x τ(s) ds+ iπf ′(x)τ(x), if x ∈ (A,B),∫ B

A
f ′(s)
s−x τ(s) ds, if x /∈ [A,B],

and finally g̃(x+ iε) → g(x). In order to apply the dominated convergence theorem, we use∣∣∣∣∣
∫ B

A

f ′(s)
s− z

τ(s) ds

∣∣∣∣∣ =

∣∣∣∣∣
∫ B

A

log(s− z)(f ′τ)′(s) ds

∣∣∣∣∣ ⩽ C(∥f ′∥∞ + ∥f ′′∥∞)
∫ B

A

1 + log|s− x|
τ(s) ds ⩽ C(∥f ′∥∞ + ∥f ′′∥∞),

so that |g̃(z)φ̃1(z)| ⩽ Ct∥g̃∥∞(∥f ′∥∞ + ∥f ′′∥∞)(|x−A||x−B|)−1/2
1x∈supp g. Therefore, we get

lim
ε→0+

1
π

∫
R

Im(g̃(x+ iε)φ̃1(x+ iε)) dx = −t
βπ2

∫ B

A

g(x)
τ(x)

(
p.v.

∫ B

A

f ′(s)
s− x

τ(s) ds
)

dx

= −t
βπ2

∫ B

A

f ′(s)τ(s)
(

p.v.
∫ B

A

g(x)
s− x

1
τ(x) dx

)
ds

= t

βπ2

∫ B

A

f ′(s)τ(s)
∫ B

A

g(s) − g(x)
s− x

1
τ(x) dx ds, (4.23)
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where we used that p.v.
∫ B

A
1

s−x
1

τ(x) dx = 0.
We now deal with the second term appearing in φ̃(z), that is φ̃2(z) := −( 2

β − 1) b′(z)
2b(z) . Note that, as ε → 0+,

φ̃2(x + iε) has a real limit for any x /∈ {A,B}, but it cannot be dominated for any x. Therefore, we fix some
δ ∈ (0, B−A

3 ] and distinguish between the cases κ(x) ⩽ δ and κ(x) > δ. In the case κ(x) > δ, we can bound φ̃2(x+iε)
uniformly by some constant depending on δ and we get

lim
ε→0+

1
π

∫
{κ(x)>δ}

Im(g̃(x+ iε)φ̃2(x+ iε)) dx = 0. (4.24)

We now deal with the case κ(x) ⩽ δ, that is x ∈ [A− δ, A+ δ] or x ∈ [B− δ,B+ δ]. Both parts are treated similarly,
so we focus on the integral on [B − δ,B + δ]. Integrating by parts b′/b and then letting ε → 0+, we get

lim
ε→0

∫ B+δ

B−δ

g̃(x+ iε)b
′(x+ iε)
b(x+ iε) dx = g(B + δ) log

(√
(B + δ −A)δ

)
− g(B − δ) log

(
i
√

(B − δ −A)δ
)

−
∫ B

B−δ

g′(x) log(iτ(x)) dx−
∫ B+δ

B

g′(x) log
(√

(x−A)(x−B)
)

dx,

which converges to − iπ
2 g(B) as δ → 0. Proceeding similarly for the integral on [A− δ, A+ δ], we finally get

lim
ε→0+

1
π

∫
R

Im(g̃(x+ iε)φ̃2(x+ iε)) dx =
(

2
β

− 1
)
g(A) + g(B)

4 . (4.25)

The remaining terms in φ̃(z) is φ̃3(z) := 1
2πb(z) ( 2

β − 1)(π −
∫ B

A
r′(s)τ(s)
r(s)(s−z) ds) and proceeding as for φ̃1(z), we get

lim
ε→0+

1
π

∫
R

Im(g̃(x+ iε)φ̃3(x+ iε)) dx = −1
2π2

(
2
β

− 1
)∫ B

A

g(x)
τ(x)

(
π − p.v.

∫ B

A

r′(s)τ(s)
r(s)(s− x) ds

)
dx. (4.26)

Coming back to (4.22) and combining (4.23), (4.25) and (4.26), we get the result.

4.4 Rewriting the limiting characteristic function. In the previous section, we have seen that the limiting
behavior of Z(t) can be expressed in terms of σ2(f) and δ(f), defined in (4.18) and (4.19). Before proving Proposition
4.1, we prove the following lemma.

Lemma 4.9. For any m ⩾ 1, E1, . . . , Em ∈ (A,B) and a1, . . . , am, b1, . . . , bm ∈ [−1, 1], we have

δ(f) = 1
4

(
2
β

− 1
) m∑

ℓ=1
aℓ log(κℓ ∨ ηℓ) + O(1),

σ2(f) = − 1
β

m∑
ℓ,j=1

(
aℓaj log|z̄ℓ − zj | + bℓbj log

(
|z̄ℓ − zj |
κℓ ∨ ηℓ

∧ 1
))

+ O(log logN).

Proof. The estimate for δ(f) is direct from its definition in (4.19), noting that the integral part is bounded. Hence
we focus on σ2(f) in this proof. Recall τ(t) =

√
(B − t)(t−A). By bilinearity, it is sufficient to estimate

σ2(z, z′) := 1
π2β

∫ B

A

∫ B

A

1
s− z

(
log(z′ − s) − log(z′ − t)

s− t

)
τ(s)
τ(t) dsdt,

where z = E ± iη(E) for some E ∈ [ A+B
2 , B) and z′ = E′ + iη(E′) for some E′ ∈ (A,B). Note that we assumed

here w.l.o.g. that Re(z) ⩾ A+B
2 and Im(z′) > 0. In the sequel, error terms are uniform in z and z′. Writing

log(z′ − s) =
∫ E′+i log N

z′
1

s−ω dω + log(E′ + i logN − s), we get

σ2(z, z′) = 1
π2β

∫ B

A

∫ B

A

1
s− z

∫ E′+i log N

z′

1
(ω − s)(t− ω) dωτ(s)

τ(t) dsdt+ O(1)

= − 1
β

∫ E′+i log N

z′

z − ω +
√
ω −A

√
ω −B −

√
z −A

√
z −B

(z − ω)
√
ω −A

√
ω −B

dω + O(1),
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where the second equality results of the identities
∫ B

A
1

t−ω
dt

τ(t) = −π√
ω−A

√
ω−B

, then 1
(s−z)(ω−s) = 1

z−ω ( 1
s−ω − 1

s−z ) and
finally

∫ B

A
τ(s)
s−ω ds = π( A+B

2 − ω +
√
ω −A

√
ω −B). Furthermore, we have the following explicit antiderivative∫ 1

z − ω

√
z −A

√
z −B√

ω −A
√
ω −B

dω = 2 tanh−1
(√

ω −A
√
z −B√

ω −B
√
z −A

)
, (4.27)

where tanh−1(w) = 1
2 log( 1+w

1−w ) for w ∈ C \ ((−∞,−1] ∪ [1,∞)). Using that Re(z) ⩾ A+B
2 and Im(z′) > 0, one can

check that for any ω ∈ [z′, E + i logN ] the argument of tanh−1 in (4.27) is in C \ ((−∞,−1] ∪ [1,∞)), except if
ω = z′ = z. Hence, assuming for now that z ̸= z′, we get

σ2(z, z′) = 1
β

(
− log|z − z′| − 2 tanh−1

(√
z′ −A

√
z −B√

z′ −B
√
z −A

))
+ O(log logN). (4.28)

We now assume that |z − z′| ⩽ |z −A||z −B|/ logN . Then, letting θ = ±1 denote the sign of Im(z) and using that
Im(z′) > 0 and E,E′ ∈ (A,B), we have the following expansion

√
z′ −A

√
z −B√

z′ −B
√
z −A

= θ

(
1 + z′ − z

2(z −A) (1 + o(1))
)(

1 − z′ − z

2(z −B) (1 + o(1))
)

= θ + θ
(z′ − z)(A−B)
2(z −A)(z −B) (1 + o(1)).

Since tanh−1(θ + h) = − θ
2 log|h| +O(1) as h → 0, it follows that

σ2(z, z′) = 1
β

(
− log|z − z′| + θ log

(
|z − z′|

|z −A||z −B|

))
+ O(log logN). (4.29)

On the other hand, in the case |z − z′| ⩾ |z − A||z − B|/ logN , the argument of tanh−1 in (4.28) is at distance at
least c/ logN from ±1 for some c > 0 and therefore σ2(z, z′) = − 1

β log|z − z′| + O(log logN). Combining this with
(4.29), we get, in any case such that z ̸= z′,

σ2(z, z′) = 1
β

(
− log|z − z′| + θ log

(
|z − z′|

κ(E) ∨ η(E) ∧ 1
))

+ O(log logN). (4.30)

Taking the limit z′ → z in the previous equation, we find σ2(z, z) = − 1
β log(κ(E) ∨ η(E)). Recall now that

f(s) =
∑k

ℓ=1
aℓ

2 (log(zℓ − s) + log(z̄ℓ − s)) + bℓ

2i (log(zℓ − s) + log(z̄ℓ − s)). Since the main term on the right-hand side
of (4.30) is real, we get

σ2(f) =
m∑

ℓ,j=1

(
aℓaj

2
(
σ2(zℓ, zj) + σ2(z̄ℓ, zj)

)
− bℓbj

2
(
σ2(zℓ, zj) − σ2(z̄ℓ, zj)

))
+ O(log logN).

For each ℓ and j, we apply (4.30) and check that we get the desired result by distinguishing the cases |zℓ−zj |
κℓ∨ηℓ

⩽ 1
and 1 ⩽ |zℓ−zj |

κℓ∨ηℓ
. In the first case, note that |z̄ℓ−zj |

κℓ∨ηℓ
⩽ 2ηℓ+|zℓ−zj |

κℓ∨ηℓ
⩽ 3, so we can omit the “∧1” part in σ2(z̄ℓ, zj) as

well. In the second case, we have |zℓ − zj | ⩽ |z̄ℓ − zj | ⩽ |zℓ − zj | + 2ηℓ ⩽ 3|zℓ − zj |, so |zℓ − zj | and |z̄ℓ − zj | are of
the same order and this is sufficient to conclude.

Proof of Proposition 4.1. The result follows from Lemmas 4.9 and 4.7, with the choice aℓ = ξℓ

√
β/ logN , bℓ =

ζℓ

√
β/ logN .

4.5 Proof of Lemma 4.10. In the following Lemma, for any E ∈ [A+N−2/3, B −N−2/3], the function f0 is a
smoothed version of 1[E,B] defined before Lemma 3.9.

Lemma 4.10. There exists t1 > 0 such that for any |t| < t1, uniformly in E ∈ [A+N−2/3, B −N−2/3],

logE
[
e

t
(∑

f0−N
∫

f0 dµV

)]
= O(logN).

37



Proof. The proof is identical to the proof of Proposition 4.1 and in fact gives the following stronger estimate, analogous
to Lemma 4.7: Denoting Z̃(t) := EµN

[
etSN (f0)], there exists t1 > 0 such that for any |t| < t1

Z̃(t) = exp
(
t2

2 σ
2(f0) + tδ(f0)

)
·
(

1 + o
(

(logN)220e−(log N)1/4
))
. (4.31)

Indeed, denoting z = E + iη(E) and g(s) = ϕ(s) Im log(z − s), for any 0 ⩽ n ⩽ 2 there exists Cn such that
|f (n)

0 | ⩽ Cn|g(n)| pointwise, so that the proof of the above equation is exactly the same as Lemma 4.7, through first
the analogue of Lemma 4.4, i.e. rigidity of the measures biased by etf0 .

With (4.31) in hand, the end of the proof is elementary, as δ(f0) = O(1) and σ2(f0) = O(logN) follow from their
definitions.

Appendix A: Loop Equations

In this appendix we recall the loop equation hierarchy as stated in [15]. We then give equivalent forms of these
equations which are combinatorially simpler and more convenient for the purpose of this paper, in terms of moments
and centered moments.

Cumulants. To simplify notation, we remove the dependence on N and write s(z) := sN (z). Let

cn(z1, . . . , zn) = κn(s(z1), . . . , s(zn)) = ∂ε1...εn

(
logE

[
e
∑n

i=1
εis(zi)

])∣∣∣
εi=0

denote the joint cumulant of s(z1), . . . , s(zn). Recall the well known formulas relating moments and cumulants, for
complex random variables X1, . . . , Xn with sufficiently high finite moments,

E[X1 · · ·Xn] =
∑

π∈Pn

∏
B∈π

κ(Xi : i ∈ B) (A.1)

κn(X1, . . . , Xn) =
∑

π∈Pn

(|π| − 1)!(−1)|π|−1 ∏
B∈π

E

[∏
i∈B

Xi

]
, (A.2)

where Pn denotes the set of partitions of {1, . . . , n}. Moreover, for n ⩾ 2, joint cumulants are multilinear functions
invariant by deterministic shifts:

κn(X1 − w1, . . . , Xn − wn) = κn(X1, . . . , Xn), (A.3)

for any constants w1, . . . , wn ∈ C, see for example the proof of [4, Proposition 5.3.16].
We now quote from [15] where the authors write loop equations for the measure (1.1) multiplied by

∏N
i=1 1[a−,a+](λi)

for some −∞ < a− < a+ < ∞ (see also (A.6) below). Under our assumptions on V , we can take the limit a± → ±∞,
and this gives us the following. If I is a set of indices, we write zI = (zi)i∈I .

Theorem A.1 (Theorems 3.3 and 3.4 in [15]). For any z ∈ C \ R, we have

E
[
s(z)2]− 1

N

(
1 − 2

β

)
E[s′(z)] + E

[
1
N

N∑
k=1

V ′(λk)
λk − z

]
= 0, (A.4)

Moreover, for any n ⩾ 2, z, z1, . . . , zn−1 ∈ C \ R, we have, with I = {1, . . . , n− 1},

cn+1(z, z, zI) +
∑
J⊆I

c|J|+1(z, zJ)cn−|J|(z, zI\J) − 1
N

(
1 − 2

β

)
d
dz cn(z, zI)

+ κn

(
1
N

N∑
k=1

V ′(λk)
λk − z

, s(z1), . . . , s(zn−1)
)

+ 2
N2β

∑
i∈I

d
dzi

(
cn−1(z, zI\{i}) − cn−1(zI)

z − zi

)
= 0.
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The following result rewrites the two first terms in the above loop equations for n ⩾ 2.
Lemma A.2. For any n ⩾ 2, z, z1, . . . , zn−1 ∈ C \ R, we have, with I = {1, . . . , n− 1},

cn+1(z, z, zI) +
∑
J⊆I

c|J|+1(z, zJ)cn−|J|(z, zI\J) = κn

(
s2(z), s(x1), . . . , s(xn−1)

)
.

Proof. Recall that by definition,

cn+1(z, z, z1, . . . , zn−1) = κn(s(z), s(z), s(z1), . . . , s(zn−1))

= ∂αβε1...εn−1

(
logE

[
eαs(z)+βs(z)+

∑n−1
i=1

εis(zi)
])∣∣∣

α,β,εi=0

= ∂ε1...εn−1

E
[
s(z)2e

∑n−1
i=1

εis(zi)
]

E
[
e
∑n−1

i=1
εis(zi)

] −

E
[
s(z)e

∑n−1
i=1

εis(zi)
]

E
[
e
∑n−1

i=1
εis(zi)

]


2
∣∣∣∣∣∣∣
εi=0

.

Note first that

∂ε1...εn−1

E
[
s(z)2e

∑n−1
i=1

εis(zi)
]

E
[
e
∑n−1

i=1
εis(zi)

]

∣∣∣∣∣∣∣
εi=0

= ∂αε1...εn−1

(
logE

[
eαs(z)2+

∑n−1
i=1

εis(zi)
])∣∣∣∣

α,εi=0

= κn

(
s2(z), s(z1), . . . , s(zn−1)

)
.

On the other hand, denoting by ∂J the partial differentiation with respect to the εj ’s for j ∈ J , the general Leibniz
rule implies

∂I


E

[
s(z)e

∑n−1
i=1

εis(zi)
]

E
[
e
∑n−1

i=1
εis(zi)

]


2 =
∑
J⊆I

∂J

E
[
s(z)e

∑n−1
i=1

εis(zi)
]

E
[
e
∑n−1

i=1
εis(zi)

]
∂I\J

E
[
s(z)e

∑n−1
i=1

εis(zi)
]

E
[
e
∑n−1

i=1
εis(zi)

]
.

Therefore, we get

∂ε1...εn−1


E

[
s(z)e

∑n−1
i=1

εis(zi)
]

E
[
e
∑n−1

i=1
εis(zi)

]


2
∣∣∣∣∣∣∣
εi=0

=
∑
J⊆I

c|J|+1(z, zJ)cn−|J|(z, zI\J)

and this proves the result.

Moments. In this section, we use Theorem A.1 to prove loop equations in terms of moments and centered moments.
One can also prove the following proposition directly using integrations by parts. We omit the loop equation of rank
1 for which the formulas in terms of moments and cumulants are already identical.
Proposition A.3. For any n ⩾ 2, z, z1, . . . , zn−1 ∈ C \ R, we have

E

(s(z)2 − 1
N

(
1 − 2

β

)
s′(z) + 1

N

N∑
k=1

V ′(λk)
λk − z

)
n−1∏
i=1

s(zi) + 2
N2β

n−1∑
j=1

∂zj

s(z) − s(zj)
z − zj

∏
i ̸=j

s(zi)

 = 0.

Proof. We will show that the loop equation in moments of rank n is a sum over loop equations in cumulants of rank
up to n. As before, κ(·) and c(·) denote joint cumulants, however we omit their indices which are implied by the
number of its arguments. By (A.1), we can re-write the claimed loop equation for moments as

∑
π

κ

(
s(z)2 − 1

N

(
1 − 2

β

)
s′(z) + 1

N

N∑
k=1

V ′(λk)
λk − z

, {s(zi)}i∈I

) ∏
z /∈B∈π

c(zB)

+ 2
N2β

n−1∑
j=1

∂zj

1
z − zj

∑
πj

∏
B∈πj

c(zB) −
∑

π̂

∏
B∈π̂

c(zB)

 = 0, (A.5)
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where π denotes a partition of (z, z1 . . . zn−1), I = I(π) denotes those variables that appear in the same block as z
in π, πj denotes a partition of (z, z1, . . . , zj−1, zj+1, . . . , zn−1) for j ∈ {1, . . . , n − 1}, and π̂ denotes a partition of
(z1 . . . zn−1). We re-write the derivative terms as sums over partitions π. First,

n−1∑
j=1

∂zj

 1
z − zj

∑
πj

∏
B∈πj

c(zB)

 =
n−1∑
j=1

∂zj

 1
z − zj

∑
πj

κ
(
z, zI(πj)

) ∏
z /∈B∈πj

c(zB)


=
∑

π

∑
j∈I(π)

∂zj

(
1

z − zj
c
(
z, zI(π)\{j}

) ∏
z /∈B∈π

c(zB)
)
.

Similarly,
n−1∑
j=1

∂zj

1
z − zj

(∑
π̂

∏
B∈π̂

c(zB)
)

=
∑

π

∑
j∈I(π)

∂zj

1
z − zj

(
c
(
zI(π)

) ∏
z /∈B∈π

c(zB)
)
.

Therefore the claimed rank n loop equation for moments is equivalent to

∑
π

( ∏
z /∈B∈π

c(zB)
)(

κ

(
s(z)2 − 1

N

(
1 − 2

β

)
s′(z) + 1

N

N∑
k=1

V ′(λk)
λk − z

, {s(zi)}i∈I(π)

)

+ 2
N2β

∑
j∈I(π)

∂zj

c(z, zI(π)\{j}) − c(zI(π))
z − zj

)
= 0.

This indeed vanishes by Theorem A.1 and Lemma A.2.

As a consequence of the previous proposition, it follows from a direct calculation that the product of s(zi)’s can
be replaced by a product of the centered versions of these random variables. We do not use these loop equations for
centered moments in this paper, but they may be useful in another context.

Corollary A.4. For any n ⩾ 2, z, z1, . . . , zn−1 ∈ C \ R, letting s̊(z) := s(z) − E[s(z)], we have

E

(s(z)2 − 1
N

(
1 − 2

β

)
s′(z) + 1

N

N∑
k=1

V ′(λk)
λk − z

)
n−1∏
i=1

s̊(zi) + 2
N2β

n−1∑
j=1

∂zj

s(z) − s(zj)
z − zj

∏
i ̸=j

s̊(zi)

 = 0.

Confined loop equations. In this section we state the loop equations for particles chosen according to the following
modified probability measure

dµ[a,b]
N (λ1, . . . , λN ) := 1

Z
[a,b]
N

·
∏

1⩽k<l⩽N

|λk − λl|β ·
N∏

k=1
e− βN

2 V (λk)
1λk∈[a,b] dλk, (A.6)

where we restrict ourselves to particles in an interval [a, b] for some −∞ < a < b < ∞. We denote by E[a,b] the
integral with respect to µ[a,b]

N . Then the loop equations for moments can be deduced as before from the loop equations
for cumulants stated in [15, Theorems 3.3 and 3.4].

Proposition A.5. Let a < b be real numbers. For any z ∈ C \ [a, b], we have

E[a,b]

[
s(z)2 − 1

N

(
1 − 2

β

)
s′(z) + 1

N

N∑
k=1

V ′(λk)
λk − z

]
= 2
βN2

(
∂a lnZ [a,b]

N

z − a
+ ∂b lnZ [a,b]

N

z − b

)
,

40



Moreover, for any n ⩾ 2, z, z1, . . . , zn−1 ∈ C \ [a, b], we have

E[a,b]

[(
s(z)2 − 1

N

(
1 − 2

β

)
s′(z) + 1

N

N∑
k=1

V ′(λk)
λk − z

)
n−1∏
i=1

s(zi)
]

+ 2
N2β

n−1∑
j=1

E[a,b]

∂zj

s(z) − s(zj)
z − zj

∏
i̸=j

s(zi)

− 2
N2β

(
∂aE[a,b][

∏n−1
i=1 s(zi)]

z − a
+
∂bE[a,b][

∏n−1
i=1 s(zi)]

z − b

)

= 2
βN2

(
∂a lnZ [a,b]

N

z − a
+ ∂b lnZ [a,b]

N

z − b

)
E[a,b]

[
n−1∏
i=1

s(zi)
]
.

Moreover, the additional terms appearing in this new loop equation can be controlled using the following lemma.

Lemma A.6. For any a < A and b > B, there exists c = c(a, b) > 0 such that, for any N ⩾ 1,∣∣∣∂a lnZ [a,b]
N

∣∣∣ ⩽ e−cN

and, for any n ⩾ 2, z1, . . . , zn−1 ∈ C \ [a, b],∣∣∣∣∣∂aE[a,b]

[
n−1∏
i=1

s(zi)
]∣∣∣∣∣ ⩽ 2e−cN∏n−1

i=1 d(zi, [a, b])
.

Moreover, the same inequalities hold with ∂b instead of ∂a.

Proof. The first inequality is stated in [15, Proposition 2.3]. The second inequality follows from the bound∣∣∣∣∣∂aE[a,b]

[
n−1∏
i=1

s(zi)
]∣∣∣∣∣ ⩽ 2∏n−1

i=1 d(zi, [a, b])

∣∣∣∂a lnZ [a,b]
N

∣∣∣,
which can be found in the proof of the aforementioned result.

Appendix B: Stability of the fixed point equation

Recall from (2.5) and (2.8) that the Stieljes transform mV (z) of the equilibrium measure satisfies mV (z) = − V ′(z)
2 +

r(z)b(z) for z ∈ C \ [A,B] and is a solution of the equation u2 + V ′(z)u+ h(z) = 0. It is then easy to check that the
other root of this equation can be written as

m̃V (z) := −V ′(z)
2 − r(z)b(z).

For z ∈ C \ [A,B], these roots are identical if and only if r(z) = 0. Our goal in this section is to study the stability
of the equation u2 + V ′(z)u+ h(z) = 0 with respect to a shift ζ in the constant term.

Lemma B.1. There exists C > 0 depending only on V such that the following results hold, with η̃ from Lemma B.3.
Let ζ ∈ C and z = E + iη with E ∈ [A − η̃, B + η̃] and η ∈ (0, η̃). Let u be a solution of u2 + V ′(z)u + h(z) = ζ.
Then,

|u−mV (z)| ∧ |u− m̃V (z)| ⩽ C

(
|ζ|

|b(z)| ∧ |ζ|1/2
)
. (B.1)

If Im(u) > 0, then
|Im(u−mV (z))| ⩽ 5(|u−mV (z)| ∧ |u− m̃V (z)|). (B.2)

If Im(u) > 0 and A− η ⩽ E ⩽ B + η, then

|u−mV (z)| ⩽ C

(
|ζ|

|b(z)| ∧ |ζ|1/2
)
. (B.3)
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To prove this we will first establish two preliminary technical results.

Lemma B.2. Let z = E + iη with E ∈ R and η > 0. If A− η ⩽ E ⩽ B + η, then

Im b(z) ⩾ |b(z)|
3 . (B.4)

If E /∈ (A− η,B + η), then

(B −A)η
2|b(z)| ⩽ Im b(z) ⩽ |2E −A−B| η

|b(z)| , (B.5)

Re b(z) ⩾ |b(z)|
2 . (B.6)

Proof. Let θA = Arg(z−A) ∈ (0, π) and θB = Arg(z−B) ∈ (0, π). Then b(z) =
√
z −A

√
z −B = |b(z)|ei(θA+θB)/2.

Thus, Im b(z) = |b(z)| sin( θA+θB

2 ). Now, we deal with the case Re(z) ⩾ A+B
2 , the other case being treated similarly.

In this case, we have θA + θB < π, and therefore Im b(z) is increasing as a function of θA + θB .
In the case E ⩽ B+η, we have θB ⩾ π

4 and therefore sin( θA+θB

2 ) ⩾ 1
3 , which proves (B.4). In the case E ⩾ B+η,

we use that sin( θA+θB

2 ) ⩾ 1
2 sin(θA + θB) to get

Im b(z) ⩾ Im((z −A)(z −B))
2|b(z)| = (2E −A−B)η

2|b(z)| ⩾
(B −A)η

2|b(z)| ,

using E ⩾ B. For the upper bound, we use that sin( θA+θB

2 ) ⩽ sin(θA + θB) because θA + θB ∈ [0, π
2 ] and proceed

similarly to prove (B.5). Finally, note that Re b(z) ⩾ |b(z)| · cos π
4 and (B.6) follows.

Lemma B.3. There exist constants η̃, c, C > 0 depending only on V such that for any z = E + iη with E ∈
[A− η̃, B + η̃] and η ∈ (0, η̃], the function V is analytic at point z and we have

|r(z)| ⩾ c, (B.7)
Im(r(z)b(z)) ⩾ |ImV ′(z)|. (B.8)

Moreover, if A− η ⩽ E ⩽ B + η,
Im(r(z)b(z)) ⩾ c|r(z)b(z)|, (B.9)

and, if E /∈ [A− η,B + η],

|ImmV (z)| ∨ |Im m̃V (z)| ⩽ Cη

|b(z)| , (B.10)

Re(mV (z0) − m̃V (z)) ⩾ c|r(z)b(z)|, (B.11)

where z0 := B + η if E > B + η and z0 := A− η if E < A− η.

Proof. Recall r and V ′ are analytic functions in an open set containing [A,B], so we can choose η̃ small enough so
that the point z considered is included in this open set. Moreover, r is positive in [A,B] and V ′ is real in [A,B], so
we can choose η̃, c, C > 0 such that, for any z = E + iη with E ∈ [A− η̃, B + η̃] and η ∈ (0, η̃),

|Im r(z)| ⩽ Cη, c ⩽ |r(z)| ⩽ C, Re r(z) ⩾ c, |ImV ′(z)| ⩽ Cη, c
√
η ⩽ |b(z)| ⩽ C.

In particular, (B.7) holds. Moreover, we get

Im(r(z)b(z)) = Im(r(z)) Re(b(z)) + Re(r(z)) Im(b(z)) ⩾ −C2η + c Im b(z). (B.12)

In the case A−η ⩽ E ⩽ B+η, applying (B.4), we get Im(r(z)b(z)) ⩾ −C2η+ c
3 |b(z)|. Since |b(z)| ⩾ c

√
η, the second

term will dominate for η small enough, so up to a modification of the choice of η̃ (depending on c, C), we have

Im(r(z)b(z)) ⩾ c

6 |b(z)| ⩾ |ImV ′(z)| ∨ c

6C |r(z)b(z)|.
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So up to a modification of the choice of c, both (B.8) and (B.9) hold in this region. Now we consider the case
E /∈ [A− η,B + η]. If E > B + η, we have

|b(z)| ⩽
√
B −A · |z −B|1/2 ⩽

√
B −A ·

√
2η̃,

using that E ⩽ B+ η̃. The same inequality holds in the case E < A− η. Hence, coming back to (B.12) and applying
(B.4), we get

Im(r(z)b(z)) ⩾ −C2η + cη(B −A)
2|b(z)| ⩾ −C2η + cη

√
B −A

2
√

2η̃
.

Recalling |ImV ′(z)| ⩽ Cη, we can see that, choosing η̃ small enough, (B.9) holds. Then, (B.10) is an easy consequence
of (B.5). Finally, we have to prove (B.11). Proceed in the same way as for (B.9), we have, using in particular (B.6),

Re(r(z)b(z)) ⩾ c|r(z)b(z)|, (B.13)

for E /∈ [A− η,B + η]. Using this, we get

Re(mV (z0) − m̃V (z)) = Re
(
V ′(z) − V ′(z0)

2 + r(z)b(z) + r(z0)b(z0)
)

⩾ c|r(z)b(z)| − 1
2 |V ′(z) − V ′(z0)|.

Since |V ′(z) − V ′(z0)| is of order η and |r(z)b(z)| of order √
η, (B.11) holds if we choose c and η̃ small enough. This

concludes the proof.

Proof of Lemma B.1. For brevity, in this proof, we write V ′, h, r, b, mV , m̃V instead of V ′(z), h(z), r(z), b(z),
mV (z), m̃V (z). Moreover, we define c and η̃ as the constants given by Lemma B.3.

We first prove (B.1). Since mV and m̃V are the two roots of the polynomial X2 + V ′X + h, we have

ζ = u2 + V ′u+ h = (u−mV )(u− m̃V ). (B.14)

It follows immediately that
|u−mV | ∧ |u− m̃V | ⩽ |ζ|1/2.

On the other hand, if |u−mV | ⩽ |u− m̃V |, then |u− m̃V | ⩾ 1
2 |mV − m̃V | = |rb|, so it follows from (B.14) that

|u−mV | ⩽ |ζ|/|rb|. Proceeding similarly in the case |u−mV | ⩾ |u− m̃V |, we get

|u−mV | ∧ |u− m̃V | ⩽ |ζ|
|rb|

.

By Lemma B.3, |r| ⩾ c, so the two previous displayed equation prove (B.1).
Now we assume Im(u) > 0 and prove (B.2). It follows that

|Im(u− m̃V )| ⩾ Im(u− m̃V ) ⩾ − Im(m̃V ) = 1
2 Im(V ′) + Im(rb) ⩾ 1

2 Im(rb)

where we used that Im(rb) ⩾ |ImV ′| by Lemma B.3 in the last inequality. Note that it follows from the same
inequality that Im(rb) ⩾ 0, so |Im(mV − m̃V )| = 2 Im(rb) ⩽ 4|Im(u− m̃V )|. We deduce that

|Im(u−mV )| ⩽ |Im(u− m̃V )| + |Im(mV − m̃V )| ⩽ 5|Im(u− m̃V )|,

and (B.2) follows.
Finally we assume both Im(u) > 0 and A− η ⩽ E ⩽ B+ η, and prove (B.3). As before, we have |Im(u− m̃V )| ⩾

1
2 Im(rb). But now we can apply bound (B.9) of Lemma B.3 which states that Im(rb) ⩾ c|rb|. We get

|u− m̃V | ⩾ |Im(u− m̃V )| ⩾ c

2 |rb| = c

4 |mV − m̃V |.

It follows that |u−mV | ⩽ (1 + 4
c )|u− m̃V | and so |u−mV | ⩽ (1 + 4

c )(|u−mV | ∧ |u− m̃V |). Thus (B.3) follows from
(B.1).
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