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Turbulence modeling for remeshed vortex
methods
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b. marthe.de-crouy-chanel@lecnam.net

Abstract : This work uses a semi-Lagrangian approach combining both Lagrangian and
Eulerian methods to solve the incompressible Navier-Stokes equations in their velocity-vorticity
formulation. Different closure models for the filtered equations are explored in the context of
large eddy simulations for turbulent flows. Their performance are evaluated on the Taylor Green
vortex at Re = 5000, showing good performances compared to pure Eulerian approaches.

Mots clefs : incompressible flows, particle methods, semi-Lagrangian vortex methods,
turbulence, Large Eddy Simulation

1 Introduction
Vortex methods are a type of Lagrangian methods used to solve incompressible Navier-Stokes
equations, where the vorticity is discretized on numerical particles following the fluid dynamics.
In this work we use a semi-Lagrangian approach, called the remeshed vortex method, in which
particles are relocated on a fixed mesh after being transported in a Lagrangian way. This “hy-
bridization” through remeshing allows for the use of Eulerian methods in an initially Lagrangian
algorithm. Their Lagrangian aspect gives them many strong advantages: they are closer to the
physics of the fluid, they are low-dispersive and low-diffusive (see [1] for a comparison with a
LBM method) and do not require a CFL condition constraining the advection time step to the
grid size.
This method has proved to be efficient for a number of laminar and highly transitional flows [2],
illustrating the flexibility provided by the optimal coupling between Lagrangian and Eulerian
schemes. However, this method has been mainly used as a DNS technique until now. In this con-
text, the treatment of turbulent flows with such approach is unaffordable and therefore needs the
design of turbulent models, adapted to the vortex-method framework. According to the strengths
cited above (especially the low diffusivity property), the present approach represents a legitimate
candidate to perform large eddy simulations with artificial viscosity models.
Following the pioneer, but very few, works on turbulent models for vortex methods [3, 4] and
semi-Lagrangian vortex methods [5] in the context of large eddy simulations (LES), the present
study explores different LES models for the velocity-vorticity formulation of the filtered Navier-
Stokes equations and numerically compares them through the present semi-Lagrangian solver.
The paper is structured this way: first we will describe the remeshed vortex method, then we will
expose the different subgrid scale models tested, finally we will present the performance of such
models on the Taylor Green Vortex at Re = 5000 and discuss the most suitable modelling of the
subgrid-scale vorticity stress.

2 Remeshed Vortex methods
We present in this section a brief overview of the numerical methods used in this study to dis-
cretize the incompressible Navier-Stokes equations. For a more complete introduction, see [6, 2].
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Vortex methods are Lagrangian methods. They are based on the vorticity(ω)-velocity(u) formu-
lation of the incompressible Navier-Stokes equations:

∂tω + (u · ∇)ω − (ω · ∇)u =
1

Re
∆ω ∆u = −∇× ω (2.1)

where ω := ∇ × u and where (u · ∇)ω and (ω · ∇)u denote respectively the advection and
stretching terms. The vorticity field is discretized on a set of numerical particles with position
xp and volume vp. At a given point x of the domain and a given time t, the vorticity field is
discretized as:

ω(x, t) =
∑
p

αpζε(x− xp(t)). (2.2)

where ζε is a smooth radial basis function, of radius ε, that converges to the Dirac distribution
δ as ε goes to 0. The position xp of the numerical particles and the the local circulation αp =´
vp

ωdx = ωpvp are updated in a Lagrangian way by solving the system of ODE’s:

dxp

dt
= u(xp(t), t)

dαp

dt
= αp · ∇u(xp(t), t) (2.3)

In order to avoid a distortion of the vorticity field and to preserve the convergence of the vortex
method, the distance between two particles needs to be controlled at all times. One way of doing
this is to remesh the particles: the particles are regularly projected on an underlying mesh. The
vorticity at a node i of the mesh is then obtained with:

ωn+1
i (x) =

∑
p

ωn
p (x)Λ

(
xn+1
p − xi

∆x

)
(2.4)

where Λ is a piecewise polynomial with compact support, called the remeshing kernel.
The present work is based on a semi-Lagrangian or remeshed vortex methods (RVM) which is
characterized by the use of both Lagrangian vortex methods and Eulerian methods to solve the
Navier-Stokes equations (2.1), thus allowing to keep the strengths from both approaches. This
resolution relies on a fractional step algorithm, which consists at each time step to successively
solve the different equations described below:

Fractional steps Time discretization Space discretization
1) Solenoidal reprojection ∆ω = ∆ω∗ −∇(∇ · ω∗) - spectral method (grid)
2) Poisson equation ∆u = −∇× ω - spectral method (grid)
3) Stretching ∂tω = (ω · ∇)u RK3 4th order centered FD (grid)

4) Diffusion ∂tω =
1

Re
∆ω implicit Euler spectral method (grid)

5) Advection

{
∂txp = u(xp(t), t)

∂tω = 0
RK2 Lagrangian (particles)

6) Remeshing ω(x) =
∑

pωp(x)Λ(
xp−x
∆x ) - Λ4,2 remeshing kernel

7) Adaptive time step ∆tadapt = LCFL/∥∇u∥∞ - 4th order centered FD (grid)

3 Turbulence modeling
In order to perform large eddy simulations, we write the filtered Navier-Stokes equations in their
velocity-vorticity formulation:

∂ω

∂t
+∇ · (ω ⊗ u− u⊗ ω) = ν∆u−∇ ·R (3.1)
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where the subgrid scale vorticity stress to be modelled is expressed as:

R = ω ⊗ u− ω ⊗ u− u⊗ ω + u⊗ ω (3.2)

Subgrid scale models In a velocity-pressure formulation, artificial viscosity models are usually
of the form

τ ≈ τSGS = νSGS(∇u+∇uT ) (3.3)

where τ is the subgrid scale stress tensor to model and where νSGS is the kinematic eddy vis-
cosity. A first approach to model R in the vorticity-velocity formulation is to take the curl of the
divergence of (3.3):

∇×∇ · τSGS = ∇× (νSGS∇ · (∇u+∇uT )) +∇× (∇νSGS · (∇u+∇uT )) (3.4)

A first model, used in [3], consists in taking only the first term of this expression, the second one
being negligible in practice. We obtain the following expression for g = ∇ ·RSGS ≈ ∇ ·R :

g = ∇× (νSGS∇ · (∇u+∇uT )) = ∇× (νSGS∆u) = −∇× (νSGS∇× ω) (3.5)

it is equivalent to
g = ∇ · (νSGS(∇ω −∇ωT )) (3.6)

thus,
RSGS = νSGS(∇ω −∇ωT ). (3.7)

We note that the tensor RSGS is anti-symmetric, as is the tensor R to be modelled. Another
model used in [5] is

RSGS = νSGS(∇ω +∇ωT ) (3.8)

where RSGS is here symmetric.

Finally, following [7] and [5], we explore a third model. Let f be some resolved field, we define,
in Fourier space, the largest of the resolved scales of f̄ by

f̂(k) = Ĝ(k)f(k) (3.9)

where Ĝ is some test filter, and the small resolved scales fS by

fS = f − f̂ (3.10)

One therefore defines the third model by taking the smallest of the resolved scales of the vorticity
field such that

RSGS = νSGS(∇ωS + (∇ωS)
T ) (3.11)

We will refer to model (3.7) as the "anti-symmetric" model, model (3.8) as the "symmetric"
model and model (3.11) as the "small" model.

Artificial viscosity We chose the classical Smagorinsky model for artificial viscosity νSGS

νSGS = (C∆)2|S| (3.12)

where C is a coefficient to be chosen, ∆ taken to be equal to the grid size, S = 1
2(∇u+(∇u)T )

and |S| =
√
2SijSij is the magnitude of S.
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Scale separation Let ∆ be the grid size on which the field to be filtered is resolved. In the
following we use two different Fourier filters : a Gaussian filter as a test filter in a priori tests to
reproduce the implicit filtering from the grid at a coarser scale ∆ = α∆

Ĝ(k) = exp

(
−∆

2
k2

4γ

)
, with γ = 6 (3.13)

and a compact second order filter to select the smallest scales

Ĝ(k) = (1− sin2(∆kx/2))(1− sin2(∆ky/2))(1− sin2(∆kz/2)) (3.14)

4 Numerical experiments
In this section we present results on the Taylor Green Vortex (TGV) test case at Re = 5000,
which consists of a good benchmark to study the evolution of turbulence and the apparition of
small scales. The simulations are performed in a periodic cubic box of side length L = 2π.

A posteriori tests In a first approach, we apply our LES models to the TGV simulation at a
filtered resolution of 963 (the grid filtering is applied implicitly through the grid discretization).
In figure 4.1, the time evolution of kinetic energy dissipation is represented. First of all, we note
that all the proposed models greatly improve the solution compared to a no-model simulation
which corresponds to a 963 resolution DNS, too coarse to represent accurately the energy in the
smallest scales. We further note that the anti-symmetric model (3.7) is less dissipative than the
symmetric one (3.8) although we obtain similar performance with the symmetric "small" model
(3.11) by filtering the smallest scales of the resolved vorticity field. We also compare our results
to the solution obtained in [8] through a Smagorinsky model and based on a high order finite-
differences solver. We obtain similar trend and find our approach to be less dissipative for the
three considered models.

A priori tests So far we have used a single subgrid scale model to model the whole tensor
R. In the perspective of a model specifically derived for the present method, we are interested
to know the relative importance played by the convection and the stretching respectively in the
development of small scales in turbulence; to that end, we decompose R in two parts:

R = RC −RS , RC = ω ⊗ u− ω ⊗ u RS = u⊗ ω + u⊗ ω (4.1)

where RC reflects the vorticity transport by subfilter scale (SFS) velocity fluctuations and RS

represents the SFS vortex stretching due to the unresolved motion. We make use of test filters
such that R is computed as R = (ω̂ ⊗ u− ω̂ ⊗ û)− (û⊗ ω + û⊗ ω̂) where u represents the
resolved velocity and û the test-filtered velocity. Here we compare r = ∇ ·R, rC = ∇ ·Rc =

û · ∇ω− û ·∇ω̂ and rS = ∇·RS = ω̂ · ∇u− ω̂ ·∇û on a 2563 simulation with fields filtered
to a 643 resolution. In figure 4.2 (top) we represent the norm of r, rC and rS on a slice of the
domain at time t = 8.5 of the TGV simulation at Re = 5000. We note that rC and rS have
different structures that both play a significant role in r. Furthermore, according to figure 4.2
(bottom), the relative importance of rS with respect to rC increases with the Reynolds number.
This suggests that decoupling the turbulence modelling to account for the specificity of each
subgrid scale tensor would be more accurate.
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Figure 4.1: TGV at Re = 5000, time history of kinetic energy dissipation. Yellow curve reports
the solution obtained with a Smagorinsky model in [8] from a finite differences solver.
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Figure 4.2: (top) Norm of r compared to the norm of rC and rS (the different parts of the subgrid
scale tensor) at time t = 8.5 of a TGV simulation at Re = 5000. (bottom) Time evolution of the
ratio between averaged norm of rS and rC for TGV simulations at different Reynolds numbers.
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5 Conclusion and perspectives
In this work we presented and tested various subgrid scale models for the vortex method based
on the velocity-vorticity formulation of the Navier-Stokes equations. Tests on the Taylor Green
Vortex benchmark give satisfying results even with a simple Smagorinsky model, confirming the
potential of semi-Lagrangian vortex method in LES. Comparison between different models seems
to indicate that an anti-symmetric model is the less dissipative one that still represents correctly
the physics of a turbulent flow. The study also shows the interest of focusing on the smallest
scales of the resolved vorticity field to reduce the over-dissipation of a classical Smagorinsky
model. Furthermore, an a priori study shows that the vorticity-velocity subgrid scale tensor is
composed of two sub-tensors of comparable importance. Future studies could exploit this feature
to offer a decoupled model more adapted to the present method.

Following [5], we first chose C2 = 0.027 for the symmetric and anti-symmetric model and
C2 = 1.39× 0.027 for the "small" model. However it might not be the most appropriate choice.
A Germano-type dynamical approach [9] or a selective model in which the model is multiplied
by a turbulence-sensor function [10, 11] would allow to select dynamically in time and space the
most adapted coefficient.

While the Taylor-Green test case represents an interesting benchmark due to its representation
of the phenomenon of large vortex breaking into smaller and smaller structures, in further works
other test cases will be considered, such as forced homogeneous isotropic turbulence (HIT) or
test cases including boundary effects.
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