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Résumé

Cet article propose une formulation d’optimisation multidisciplinaire, en combinant I’approximation
des solveurs disciplinaires par des modéles réduits disciplinaires (DPOD+I) avec l’algorithme Efficient
Global Multidisciplinary Design Optimization (EGMDO). L’ approximation DPOD+I permet de ré-
soudre le probléme des variables de couplage de grande dimension, en utilisant une stratégie d’entraine-
ment basée sur la réduction de l'ordre du modéle et d’interpolation par processus Gaussien. Les méta-
modéles obtenus sont ensuite enrichis tout au long de 'optimisation, pour assurer une précision donnée.
Cette implémentation permet une réduction importante du nombre d’appels aux solveurs, par rapport
a 'approche ou aucune approximation n’est faite. La combinaison des méta-modéles DPOD+I avec
Ualgorithme EGMDO réduit encore le coiit de calcul, en utilisant un critére d’amélioration espérée
pour enrichir préférentiellement les méta-modéles dans les zones de I’espace de conception d’intérét
pour la recherche du minimum global. Sur un cas d’application aéroélastique on observe que, en com-

binant les deux méthodes, trés peu d’enrichissements des solveurs disciplinaires sont nécessaires.

Abstract

This article proposes a framework for multidisciplinary optimization, by combining the approximation
of the disciplinary solvers by Proper Orthogonal Decomposition and Interpolation (DPOD+I) models
with the Efficient Global Multidisciplinary Design Optimization (EGMDO) algorithm. The DPOD+I
approximation allows to address the problem of high-dimensional coupling variables, by using a surro-
gate training strategy based on model order reduction and Gaussian process interpolation. The obtained
surrogates may then be enriched throughout the optimization, to assure a given precision. It is shown
that this implementation allows for an important reduction of the number of expensive solver calls, com-
pared to when no approximation is made. The combination of this method with the EGMDO algorithm
further reduces the computational cost by using an Expected Improvement criterion to preferentially im-
prove the surrogates in the areas of the design space found relevant for the search of the global optimum.
In the context of an aeroelastic test case it is seen that, by combining the two methodologies, very few

disciplinary solver enrichments are needed.

Keywords: Multidisciplinary analysis and optimization, model order reduc-
tion, surrogate models, Gaussian processes, overall aircraft design
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1 Introduction

Multidisciplinary Analysis (MDA) and Optimization (MDO) are useful tools when addressing problems
which involve several disciplines or subsystems. For instance, in aircraft design, the aerodynamic and
structural disciplines must be taken into account in order to fully characterize the aeroelastic behaviour
of a wing [1} 2]. With the aid of disciplinary solvers, it is possible to model the physical phenomena,
as well as the coupling between them. These solvers then interact with one another via the coupling
variables, resulting in a non-linear system of equations. To solve this coupled system, each disciplinary
solver must be evaluated iteratively by a global solver until a given convergence criterion is reached. The
role of MDA is thus to find the equilibrium of the system at a given design space point.

Multidisciplinary Optimization, on the other hand, may be used to iteratively change the design pa-
rameters towards a given goal. Different architectures are available for multidisciplinary optimization.
The Individual Disciplinary Feasible (IDF) and Multidisciplinary Feasible (MDF) approaches attempt
to find the optimal point via a single optimization problem [3} 4]]. In the IDF approach, the optimization
algorithm handles both the design and coupling variables, by uncoupling the disciplinary solvers and
instead imposing consistency constraints. Despite the reduction in the computational cost achieved by
avoiding the resolution of the coupled MDA, this formulation can become difficult to set up if the num-
ber of coupling variables is significant. Contrarily, in the MDF approach, the coupled MDA is solved
via fixed point iteration, usually by means of a non-linear Gauss-Seidel solver. This formulation is easier
to set up and returns a physically feasible design at every optimization iteration. Furthermore, the high
cost of solving the coupled MDA may be improved if gradient information is considered, for instance,
by employing Newton-based solvers.

The computational burden of solving the multidisciplinary analysis might be further reduced by con-
structing surrogate models of the objective and constraint functions [5} |6]], thus limiting the number of
whole MDA resolutions. However, without an adequate enrichment criterion, it might become necessary
to have accurate surrogate models throughout the entire design space, even in areas where the local or
global optima are unlikely to be. Similarly, to improve the computational time of the multidisciplinary
optimization, gradient-based algorithms may be employed. Nonetheless, these are designed to converge
to local minima and may require attempting different starting points in order to find a global optimum.

An alternative strategy for solving the parametrized MDA, denominated Disciplinary Proper Orthogonal
Decomposition and Interpolation (DPOD-+I), is proposed in [[7]], where the issue of using high dimen-
sional coupling variables is addressed by uncoupling the disciplinary solvers and replacing each one by
a reduced order model [8, 9]]. These reduced order models are then trained using Gaussian processes,
which replace the disciplinary solvers in the multidisciplinary analysis. The surrogate disciplines are
enriched iteratively throughout the optimization process by means of sensitivity analysis, and according
to the methodology proposed in [10]. As other surrogate-based approaches, this methodology avoids
the resolution of the MDA via the potentially costly solvers, but requires enrichment of the surrogates
models only when the uncertainty is high, thus resulting in a lower number of expensive solver calls. To
address global optimization, the authors of [10] propose an iterative procedure denominated Efficient
Global Multidisciplinary Design Optimization (EGMDO). This approach enriches the disciplinary mod-
els solely in the areas of the design space where the global optimum is more likely to be. To do so, an
Expected Improvement criterion, such as the one introduced in [3]], is proposed, based on the uncertainty
induced by the disciplinary surrogates on the objective function. By iteratively enriching the disciplinary
models in the relevant design space areas, this uncertainty is reduced and the global optimum is found.
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The present article proposes to combine the replacement of the disciplinary solvers by their respective
surrogates obtained by means of DPOD+I, with the use of EGMDO procedure as optimization algorithm.
The proposed framework is then used to solve an aeroelastic optimization problem associated with an
aircraft wing, by coupling a potential flow model with a linear elastic structural model. An inverse
problem is chosen as a test case, where the goal is to retrieve the set of design parameters which results
in the desired reference solution.

The present work is organized as follows. Section[2]presents the chosen test case as well as its resolution
via the computationally expensive disciplinary solvers. This will serve as a reference solution against
which the remaining implementations will be compared. Section [3] will address the replacement of the
disciplinary solvers by their DPOD+I surrogates, while Section f] will combine the DPOD+I with the
EGMDO optimizer. Finally, some conclusions and perspectives are given.

2 Static aeroelastic optimization of an aircraft wing

We consider the aeroelastic analysis and optimization problem associated with an aircraft wing, whose
coupled behaviour is described by the aerodynamic and structural disciplines. Together, these disciplines
define the following non-linear system of equations:

Us = Ms(x7 fa)
fa = Ma(JC,US)

ey

Here, u, is the structural displacement of the wing, f, is the vector of aerodynamic forces acting upon
the wing, M, and M, are, respectively, the chosen structural and aerodynamics models and x is the
set of the design variables. Together, us and f, define the set of coupling variables considered in our
problem. As will be seen in the following section, they are defined as high-dimensional vectors.

2.1 Disciplinary solvers

To solve the MDA it is necessary to model the participating disciplines. In this work, the disciplinary
solvers are assumed to be black-box solvers, meaning that no intrusive methods can be used. Addition-
ally, we assume that the derivatives of their outputs with respect to the design variables are not available.

The aerodynamics solver is then chosen as the linear, potential flow model, solved by Vortex Lattice
Method (VLM) [[11]]. The VLM models the surface of the wing as a thin plate, neglecting both the
thickness and the viscosity of the wing. If the wing geometry is discretized into a structured mesh, it
is possible to compute the aerodynamic loads by modelling its surface using horseshoe vortices. Here,
the considered planform geometry of the wing is that of the Common Research Model (configuration
uCRM-9) [12]] and the aerodynamic mesh discrezation is such that the load vector f, is of dimension
d® = 2100. A representation of the aerodynamic mesh is provided in Figure|I(a)

The structural discipline is modelled via linear elastic theory, and solved by the finite element solver
Code Aster [[13]], on which a static linear analysis is conducted to determine the wing’s displacements.
The finite element model is composed of the upper and lower skins, 3 spars and evenly spaced ribs, all
modelled by thin plate elements. In addition, each of the skins is reinforced by 9 stiffners, modelled by
beam elements. In total, the model consists of d° = 43416 degrees of freedom, corresponding to the
dimension of u,. The structural mesh is presented in Figure[I(b)| where the upper skin was removed to
facilitate visualization.
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(a) Wing aerodynamic mesh (b) Wing structural mesh

Figure 1: Wing meshes used in the disciplinary solvers.

In addition to modelling the disciplines, it is necessary to transfer the loads and displacements between
the non-coincident structural and aerodynamic meshes. This is made by radial basis interpolation [14],

Rda xd?®

through which an interpolation matrix H € is built. This matrix allows to obtain the displace-

ments of the aerodynamic nodes as u, = Hu, and the structural loading as fs = H' f,.

2.2 Problem statement

To facilitate comparison between the different implementations, an inverse problem may be defined, for
which 4 parameters are chosen as design variables. Two of these parameters, namely the angle of attack
a and the freestream velocity V., influence only the aerodynamic analysis. Contrarily, the remaining
parameters impact solely the structural model. These are the skin thicknesses ¢4, assumed to be the
same for both lower and upper skins, and the spar thicknesses t,, considered to be the same for all
three spars. The thickness of the wing ribs and stiffners is kept constant throughout the resolution of
the problem. Table [I] presents the range of variation of each of the considered design variables. It is
worth noting, however, that for a more practical implementation, these variables have been scaled to take
values in the range [0, 1].

Variable‘ al’] Vm/s] tsk[m] topm]
| [1,9] [220,250] [0.003,0.01] [0.01,0.1]

Table 1: Unscaled design variable range of variation

As previously stated, an inverse problem was chosen. This means that, throughout the optimization
process, the goal is to find the set of design parameters which corresponds to a given reference solution
obtained at x = x.r. The objective function is then described by the sum of the relative error committed
by each of the coupling variables at any evaluated design point x, and the optimization problem may be
written as,

v min fors ; ) — [[fa(Xret) = fa@)lly | [les (rer) — us(x)ll
r=a gxeﬁ?ffOb](x) with fObj(x) ”fa(xref)HQ * ||us(xref)||2 (2)

where 2~ C R* is the subspace defined by the design variable bounds. For the remainder of this work,
xrf Will be chosen as the corner of the design space for which the maximum wing tip displacement is
achieved, namely, for the scaled design variables, Xt = {c, Vi, sk, tsp}, Which corresponds to the
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set {1,1,0,0} in scaled design variables. The wing vertical displacement field obtained at the chosen

-

reference design point is presented in Figure

Vertical wing displacement
-0.00773 1.02 2.05

Figure 2: Wing vertical displacement field at reference solution.

As is shown, the structural displacement is maximum at the wing tip, where a vertical displacement of
2.05 meters is observed. Contrarily, and due to the imposed boundary conditions, no displacement is
observed at the wing root. Although not shown here, the minimum displacement of the wing is obtained
atx = {0,0,1, 1} for scaled variables, for which a vertical displacement of 0.067 meters at the wing tip

is observed.

Finally, it is worth noting that, in the present work, no constraint was considered and the optimization
problem is fully defined by Eq. (2).

2.3 Optimization framework

The previously defined aeroelastic problem was implemented within NASA OpenMDAO framework
[[15,[16], an open-source code for multidisciplinary analysis and optimization, which facilitates gradient
computation. OpenMDAO allows the resolution of the non-linear MDA through the non-linear block
Gauss-Seidel or Newton solvers, and makes use of SciPy optimizers to solve the MDO. OpenMDAO
presents the benefit of a modular implementation, which allows for an easy reformulation of the prob-
lem. Furthermore, thanks to ONERA WhatsOpt environment [|17], which generates the OpenMDAO
skeleton code, the implementation of the disciplines is facilitated. Figure [3| presents the implemented
optimization framework for the reference case where the real solvers are used to model the disciplines.

Some additional remarks should be made concerning the presented implementation. Firstly, to take into
account the high-dimensional coupling variables, only the MDF approach could be used, hence the MDA
is solved at each optimization iteration. Secondly, the resolution of the MDA is performed by the non-
linear block Gauss-Seidel solver, for which the use of Aitken acceleration [[18]] showed to significantly
reduce the number of necessary Gauss-Seidel iterations. Lastly, at the MDO level, the solver used
was the gradient-based Sequential Least SQuares Programming (SLSQP) solver, which makes use of
OpenMDAO capability to calculate the derivatives of the objective function with respect to the design
variables via finite difference approximation. Regarding the convergence criteria, a tolerance of 1078
was set for the nonlinear solver, while a tolerance of 1075 was set for the optimizer.

Concerning the initial guess, the center of design space was chosen, i.e., xo = {0.5,0.5,0.5,0.5}. This
point was kept for the DPOD+I implementation to allow for the comparison of the computational cost.
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Figure 3: Reference problem optimization framework.

2.4 Reference problem solution

For the reference problem, the optimizer was able to converge to the reference solution in 17 iterations.
Table 2| presents the obtained x*, the corresponding objective function value, and the number of dis-
ciplinary solver calls performed throughout the optimization. Note that while the chosen disciplinary
solvers are not particularly expensive, if higher-fidelity, such as CFD, or non-linear solvers were used,

their computational cost would be significantly greater.

ot Ve th Ty ‘ f(x*) ‘ n® n®

1.0 1.0 00 00| 00 |28 286

Table 2: Optimization results for the reference problem, where n® is the number of aerodynamic solver
calls and n? is the number of structural solver calls.

As is shown, to converge exactly to the reference solution, a total of 286 solver calls to each disciplinary
solver were needed. Of the 286 calls, 33.6% were made at the gradient computation step. This is an
expected result, as the derivatives were calculated via finite difference approximation, which requires

additional objective function evaluations.

3 DPOD+I implementation

According to the methodology proposed in [7], a surrogate model is built for each disciplinary solver.
However, due to the high dimensionality of the coupling variables, a model order reduction must be
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Figure 4: DPOD+I optimization framework.

performed before the surrogate interpolation. This reduction is carried out by Disciplinary Proper Or-
thogonal Decomposition (DPOD) and the surrogate interpolation is made by Gaussian Processes to
approximate the POD coeflicients. This is considered a pre-processing step which takes place before the
beginning of the optimization (see [7]] for details on the initial training phase).

It remains, nonetheless, possible to enrich the disciplinary surrogate models throughout the optimiza-
tion. The decision of whether or not to enrich is made via sensitivity analysis, where, in the case where
enrichment is deemed necessary, the less accurate discipline is identified and enriched. The adapted
optimization framework is presented in Figure [, where CoV is the coefficient of variation of the objec-
tive function and € is a user defined threshold, used to decide whether or not to enrich the disciplinary
surrogates. For the current implementation, a threshold of 10~2 was set, while the convergence criteria
for the MDA and MDO were the ones defined for the reference problem. The gradient computation is
made using the Gaussian process derivatives.

Lastly, it is worth noting that this implementation introduces randomness in the obtained solution. This
is due to the DPOD+I training stage, where the DPOD coefficients are replaced by Gaussian processes,
resulting in a corresponding random MDA (once more, readers are referred to [7] for details). For this
reason, several runs must be performed so as to estimate the value of each parameter in the solution.
The number of performed runs was set to 10.
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3.1 DPOD-+I optimization results

As previously stated, the construction of the disciplinary surrogates is a pre-processing step and therefore
is not a part of the represented framework. Nonetheless, and to allow for a fair comparison, the associated
computational cost should be taken into account. Concerning the size of the obtained POD basis, the
average of the 10 performed runs resulted in a structural basis composed of 6 coefficients, while the
aerodynamic basis was made of 5 coefficients.

The obtained results for the DPOD+I optimization framework are presented in Table [3] for the 10 per-
formed runs. As is shown, the replacement of the disciplinary solvers by their DPOD+I surrogates
induces a significant reduction in the overall computational cost of the optimization. Namely, for the
aerodynamic discipline, an average of 60.7 solver calls were needed, of which around 52 were made in
the training stage. Similarly, for the structural discipline, an average of 51.5 solvers calls were made,
of which 42 corresponded to the training stage. In comparison to the reference problem this represents
a reduction by a factor of 5 on the number of disciplinary solver calls. We further remark that, since
the training phase is independent of the optimization, for a problem with multiple local minima where
multi-start strategies are required for gradient-based solvers, the same basis may be kept regardless of
the starting point. Although not explored in the present work, this is a clear advantage of the proposed
DPOD+I implementation.

Finally we note that, due to the performed approximations, a small error is committed at the optimum
point, both at the level of the design variables, at an order of magnitude of 10~, and of the objective
function, at an order of magnitude of 1072, as is shown in table

‘ a* V% 3 top ‘ f(x) ‘ n® n®
E | 1.0 1.0 34x107* 31x107*[0.0585 | 60.7 515
CoV | <1072 <1072 3.0 2.6346 | 0.1523 | 0.1904 0.1784

Table 3: Optimization results for the DPOD+I implementation. Average and coefficient of variation
values obtained from a total of 10 runs.

300 300
—=— Reference Problem —a— Reference Problem
—a— DPOD+I Run —=— DPOD+I Run
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(a) Aerodynamic solver calls (b) Structural solver calls

Figure 5: History of disciplinary solver calls for the reference and DPOD+I implementations.
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Figure [5| compares the number of disciplinary solver calls, as a function of the optimizer iteration, for
one of the 10 performed runs of DPOD+I implementation against that of the reference problem. As is
shown, the DPOD+I approach starts at a higher number of disciplinary solver calls, due to the training
stage. Nonetheless, throughout the optimization not only fewer calls are made, but also a lower number
of optimizer iterations is necessary, resulting in the overall lower computational cost.

4 EGMDO implementation

In addition to replacing the disciplinary solvers by their DPOD+I surrogates, we now consider the Ef-
ficient Global Multidisciplinary Design Optimization (EGMDO) algorithm proposed in [[10]. Here, we
depart from an initial Design of Experiments (DoE) which is used to obtain an approximation of the
objective function, itself a random function. Contrarily to what is proposed in the classical Efficient
Global Optimization (EGO) algorithm [3]], however, in EGMDO the objective function cannot be mod-
elled as a Gaussian Process due to the non-linearity of the MDA. Instead, its value at the DoE points
is obtained by means of a Karhunen Lo¢ve expansion, and then extended to the rest of the domain via
Gaussian process interpolation.

As in the previous implementation, the disciplinary surrogate models may be enriched at a given x°
point, if the coefficient of variation of the objective function is greater than a given threshold. However,
in the EGMDO approach, an additional condition for enrichment is imposed — the point must have some
likelihood of being the minimum, namely, Py, (x%) > ﬁ This avoids spending computational effort
in areas of the design space where the global optimum is unlikely to be.

New points may also be added to the DoE. These points are determined by a modified Expected Improve-
ment (EI) criterion, which, due to the non-Gaussian nature of the objective function, has no analytical
expression and must be estimated via Monte Carlo simulation (see [[10] for details on EI calculation).
Regarding the stopping criterion, while in EGMDO the optimization is stopped when the change of max-
imum value of EI between two consecutive iterations is less than a given threshold, here we impose a
maximum of 200 iterations. The computational framework of the EGMDO implementation is presented
in Figure @ where an initial DoE xpog of 20 points was considered.

Lastly, and before proceeding to the results, it is recalled that, since the combined DPOD+1 and EGMDO
implementation also introduces randomness in the solution, 10 runs were also performed for the present
optimization.

4.1 EGMDO optimization results

As for the previous case, the training of the DPOD+I surrogates is considered as a pre-processing step
and is not featured in the optimization framework. However, its computational cost is taken into account.
The obtained results for the EGMDO implementation are presented in Table 4]

‘ o VL th top ‘f(x*) ‘ n® ns
E [0.999 0987 0.006 3x1077]0.044 | 6l 51
CoV | 0.003 0.02 0.9 316 | 0.44 | 0.1117 0.1225

Table 4: Optimization results for the EGMDO implementation. Average and coefficient of variation
values obtained from a total of 10 runs.
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Figure 6: EGMDO optimization framework.

As is shown, an average of 61 solver calls were performed for the aerodynamics discipline, of which 59
were made during the DPOD+I surrogate training. Similarly, an average of 51 solver calls were made
for the structural discipline, of which 49 corresponded to the pre-processing stage. This signifies that
an average of only 2 calls were made to each disciplinary solver during the actual MDO resolution,
implying that very few disciplinary solver enrichments were necessary to find the optimal point. In fact,
comparing to the DPOD+I implementation, a reduction by a factor of 5 is observed in the number of
disciplinary solver enrichments. A possible explanation for why very few enrichments are made is that, at
the level of the DPOD+I surrogate training, a too strict convergence criterion was chosen, thus reducing
the need for enrichment. For the present problem, it might be possible to further reduce the number
of disciplinary solver calls if a less strict criterion was chosen. However, more complex problems will
likely benefit from the well trained DPOD+I surrogates.

Finally, and as was the case for the DPOD+I implementation, due to the performed approximations, a
small error, of the order of 10~2, is committed both for the design variables and the objective function,
as is evidenced in Table 4l
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S Conclusion and perspectives

In this work, different frameworks for multidisciplinary optimization were implemented and compared
for an aeroelastic problem with two participating disciplines. The objective function was chosen as an
inverse problem, where the goal was to find a known reference solution. In addition, no constraint was
considered.

The initial implementation, and the most costly, consisted on modelling the disciplines by possibly ex-
pensive black-box solvers and solving the optimization by using the gradient-based SLSQP algorithm,
in an MDF approach. This implementation, in addition to making several disciplinary solver calls to
solve the MDA, requires gradient computation via finite difference approximation, which is itself an
expensive computation.

A second implementation replaced the disciplinary solvers by their DPOD+I surrogates, according to
the methodology proposed in [7]]. This implementation resulted in significantly less disciplinary solver
calls, as, throughout the optimization, the computationally expensive solvers were only called when the
disciplinary Gaussian processes needed to be enriched. In addition, this approach eliminated the need to
perform gradient computation via finite difference approximation, as the Gaussian process derivatives
were used. Nonetheless, the training of the DPOD+I surrogates had an associated computational cost
which could not be disregarded. As was remarked, however, in a multi-start context, the training phase
would be run a single time, as it is independent of the optimization problem.

A last implementation replaced the optimizer by the EGMDO algorithm proposed in [[10], in an effort to
address global optimization, while keeping the DPOD+I surrogates to approximate the disciplines. This
approach modelled the objective function as a non-Gaussian random field, approximated by a combina-
tion of Karhunen Loe¢ve expansion and Gaussian process interpolation, and used an adapted Expected
Improvement criterion to enrich the disciplinary solvers solely where the global minimum was more
likely to be. It was shown that, through this approach, very few enrichments were needed in order to
find the optimum point, possibly due to the easy to find global optimum.

Having demonstrated the capabilities of the proposed framework, some perspectives are envisioned.
Namely, the application of this strategy to more complex problems, such as the ones involving one or
multiple non-linear disciplinary solvers, as these could prove to be a challenge for the POD approxima-
tion. Similarly, the inclusion of a greater number of design variables could raise a problem at the level
of the disciplinary GP interpolation, currently done by the universal kriging model. Fortunately, some
work has already been done in this field, from which we may benefit. For instance, in [[19] Partial Least
Squares is used for dimension reduction. Finally, it would be interesting to apply the proposed strategy
to a problem with multiple local minima, which usually accompanies the aforementioned increase of
complexity and dimensionality.
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