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Lyapunov-based nonlinear boundary control design with predefined
convergence for a class of 1D linear reaction-diffusion equations

Salim Zekraoui,1 Nicolas Espitia1 and Wilfrid Perruquetti2

Abstract— In this paper, we treat the problem of Lyapunov-
based nonlinear boundary stabilization of a class of one-
dimensional reaction-diffusion systems with any predefined
convergence (asymptotic or non-asymptotic). As an application,
we focus on the non-asymptotic notions (finite-time and fixed-
time) for which we give some particular explicit control designs
followed by some numerical simulations. The key idea of
our approach is to use a “spatially weighted L2-norm” as a
Lyapunov functional to design a nonlinear controller and to
ensure stability with any desired convergence.

I. INTRODUCTION

In recent years, increasing attention has been paid to the
problem of stabilization of Partial Differential Equations (in
short PDEs) since they model the evolution in time and
space of complex systems such that the heat transfer, traffic
flow, fluids flow, chemical reactor processes, string vibration,
the behavior of electromagnetic phenomena, and many other
systems. Unlike Ordinary Differential Equations (ODEs),
PDEs are of infinite-dimensional nature. This nature makes
it difficult to adapt the existing methods used to stabilize
ODEs. Therefore, it is of great significance to investigate
the problems of control for PDEs. Among these ones, the
problem of boundary control for PDEs is more challenging
and important.

In the framework of first and second-order PDEs, we
can distinguish three major classes: elliptic equations (e.g.
Poisson equation), hyperbolic equations (e.g. wave propaga-
tion equation, transport equation), and parabolic equations
(e.g. heat conduction equation, reaction-diffusion equation).
For these last two classes, most of the existing stabilization
results ensure asymptotic (exponential) convergences. How-
ever, in many applications where strict time performances are
required, the notion of non-asymptotic stability/stabilization
(i.e. stability/stabilization in a finite time) is strongly needed,
especially in certain applications where the transient process
must occur within a given time (e.g., rendezvousing of multi-
agents, ABS (anti-lock braking system), missile tactical
guidance). The non-asymptotic convergence notion can be
classified as finite-time convergence which refers to a conver-
gence in a finite time that depends on the initial conditions,
fixed-time convergence which refers to a convergence in a
finite time uniformly bounded by a constant independent
of the initial conditions, and prescribed–time convergence
which refers to a convergence in a finite time prescribed
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independently of initial conditions. Despite all the benefits of
non-asymptotic stabilization, its design is still a challenging
topic for PDEs.

For parabolic PDEs, the backstepping approach has con-
tributed significantly to solving the problem of prescribed-
time stabilization in [18], [4] (respectively finite-time sta-
bilization in [15]) for a scalar reaction-diffusion using (re-
spectively switching) time-varying feedback laws equation
with boundary control. Moreover, the approach has helped in
solving the problems of null controllability in [3] and finite-
time stabilization using periodic time-varying feedback laws
for a class of reaction-diffusion equations. The backstepping
approach consists in transforming the studied parabolic sys-
tem, using an invertible Volterra and/or Fredholm type trans-
formation, into another system of the same type, called the
target system, satisfying the desired non-asymptotic stability.
Then, using the inverse transformation the desired stability
property is transferred back to the original system. Finding
a suitable target system for a general class of complex
systems is sometimes not straightforward and studying its
stability may be complicated, especially when dealing with
non-asymptotic stabilization. To avoid this problem, one can
use the notion of generalized homogeneity (introduced in
[13]) as in [16], [14] or Lyapunov Based techniques as in
[19] to achieve finite-time stabilization.

In this paper, we revisit the problem of boundary con-
trol design for a class of one-dimensional linear reaction-
diffusion equations. The main idea of our approach is to
choose a Lyapunov function that helps directly in designing
a simple nonlinear boundary controller which guarantees
the desired stability for the studied system. Unlike the
Backstepping-based approach, our control design will not
use boundary time-varying feedbacks and will be easily
modifiable to guarantee any desired stability (non-asymptotic
or asymptotic stability). Our approach is similar to the
Control Lyapunov function (CLF) approach, which has been
investigated for parabolic PDEs in [5], [6], in the sense of
using the Lyapunov function directly to design the boundary
control. As an application, we focus on the notions of
finite-time/fixed-time stability, where we give some particular
explicit control designs followed by some numerical simu-
lations.

This paper is organized as follows. In Section II, we
introduce the one-dimensional reaction-diffusion system with
Dirichlet actuation. In Section III, we introduce and give
some properties of the “spatially weighted L2-norm” which
is chosen as a Lyapunov functional (inspired from results
in [1] and [7, Chapter 11, page 178] for hyperbolic sys-



tems). Next, we establish the Lyapunov stability analysis
where we design a nonlinear controller that will ensure
stability with a predefined convergence (asymptotic or non-
asymptotic). In Section IV, we provide some explicit control
designs ensuring non-asymptotic stability (finite-time and
fixed-time). In Section V, to illustrate the results we give
some numerical simulations for both cases: finite-time/fixed-
time stabilization. Finally, conclusions and perspectives are
given in Section VI.

Notations:
R+ denotes the set of non negative real numbers. For all

a ∈ R+ and all x ∈ R we define the signed power a of x
by {x}a = sign(x)|x|a. We denote by 1{x>0} : R → {0, 1}

the function defined by 1{x>0}(x) :=

{
1 if x > 0,

0 if x ≤ 0,
.

L2((0, 1),R) denotes the set {f : [0, 1] → R :∫ 1

0
|f(x)|2dx < ∞} with the scalar product ⟨f, g⟩L2 :=∫ 1

0
f(x)g(x)dx, and the norm ∥f∥L2 :=

(∫ 1

0
f(x)2dx

) 1
2

.
We denote by H1((0, 1),R) the set {f ∈ L2; f

′ ∈ L2} ,
with the scalar product ⟨f, g⟩H1 := ⟨f, g⟩L2 + ⟨f ′, g′⟩L2

and with the norm ∥f∥H1 :=
(
∥f∥2L2 + ∥f ′∥2L2

) 1
2

. For
simplicity, we will use the notation L2 (resp. H1) instead
of L2((0, 1),R) (resp. H1((0, 1),R)).

A function α : R+ → R+ is said to be a class-K function
if it is continuous, zero at zero, and strictly increasing. If in
addition, α is unbounded with its argument then α is said to
be a class-K∞.

II. PROBLEM STATEMENT, CONCEPTS AND
PRELIMINARY RESULTS

A. Preliminaries on non-asymptotic concepts for PDEs

In this section, we recall some definitions of asymptotic
and non-asymptotic concepts (finite-time, and fixed-time
stability) in the framework of infinite dimensional systems.

Let us consider the following evolution system described
by:

zt(t, ·) = Az(t, ·), (1)

with t ≥ t0 ≥ 0, where A : D(A) ⊂ L2 → L2 is a (possibly
unbounded) linear operator, t0 is the initial time, and z0 will
denote the initial condition.

Definition 1: The origin of system (1) is said to be
• stable[2, Definition 1.1.] if for every ε > 0, there exists
δ > 0 such that, for every t0 ≥ 0 and z0 ∈ L2,

(∥z0∥L2 ≤ δ) =⇒ (∥z(t, ·)∥L2 ≤ ε, ∀t ≥ t0) ,

• asymptotically stable (AS) 1 if it is stable and
lim

t→+∞
∥z (t, ·)∥L2 = 0 for any z0 ∈ L2,

• finite-time stable (FTS) if it is stable and for any
z0 ∈ L2 there exists 0 ≤ T z0 < +∞ such that
∥z (t, ·) ∥L2 = 0 for all t ≥ T z0 . The functional

1one can use KL−function (see [8, Definition 2.8.])

T (z0) = inf {T z0 ≥ 0 : ∥z (t, ·) ∥L2 = 0,∀t ≥ T z0}
defines the settling time of the system (1),

• fixed-time stable (FxTS) if it is FTS and
sup

z0∈L2

T (z0) < +∞,

In the above-given definitions uniformly with respect to
initial time t0 has been omitted for sake of brevity.

Based on Definition 1, let us give some sufficient condi-
tions for the previous stability notions.

Proposition 1: Let V : Ω ⊂ D(A) → R+ be a functional
continuous on Ω, continuously differentiable on Ω \ {0},
and satisfying the coercivity condition (i.e. there exist two
class-K∞ functions φ1 and φ2 such that φ1(∥z(t, ·)∥L2) ≤
V (z(t, ·)) ≤ φ2(∥z(t, ·)∥L2) for all t ≥ t0). Then,

• if the time derivative of V along the solutions of (1)
(denoted in all the rest of the paper by d

dtV (z(t, ·)))
satisfies d

dtV (z(t, ·)) ≤ 0 in Ω for all t ≥ t0, then the
origin of system (1) is stable.

• Furthermore, if there exists a class-K∞ function such
that d

dtV (z(t, ·)) ≤ −φ3(∥z(t, ·)∥L2) in Ω for any
t ≥ t0, then the origin of system (1) is AS (see [8,
Proposition 3.2]).

• or if there exists 0 ≤ TV (z0) < +∞ such that
V (z(t, ·)) = 0 for all t ≥ TV (z0), then the origin of
system (1) is FTS with the settling time T (V (z0))
defined similarly as in Definition 1. In particular, if
sup
z0∈Ω

T (V (z0)) < +∞, then the origin of system (1)

is FxTS.
Remark 1: Note that if V is continuously differentiable

on Ω \ {0}, then d
dtV (z(t, ·))=

〈
∂V (z(t,·))

∂z , Az(t, ·)
〉
L2
.

Note that if one can find a suitable coercive Lyapunov
function then, using the comparison Lemma, one may reduce
the complexity of the stability analysis to the study of the
following simple scalar ordinary differential equation:

ẋ = −K(x), x ∈ R. (2)

as detailed in what follows.
The set of L1

loc(R) functions K such that the origin is
(globally uniformly) asymptotically stable can be specified
as follows: S is the set of L1

loc(R) functions K : R → R
such that K(x) = 0 ⇔ x = 0 (the origin is the unique
equilibrium point) and xK(x) > 0,∀x ∈ R \ {0}. Next,
using Landau notations2, let us introduce Ek0,a0

= {K ∈ S :

K(x) ∼
x→0

k0{x}a0 , lim
|x|→∞

K(x) ̸= 0} (FTS) and Ek∞,a∞
k0,a0

=

{K ∈ Ek0,a0 : K(x) ∼
|x|→∞

k∞{x}a∞} (FxTS).

Examples 1: Let a0 ∈ [0, 1), a∞ > 1, k0 > 0, k∞ > 0
and ψ be any continuous positive function which is zero at
0 and at ∞. Let

K1(x) = k0{x}a0(1 + ψ(x)), (3)
K2(x) = (k0{x}a0 + k∞{x}a∞)(1 + ψ(x)), (4)

then K1 ∈ Ek0,a0
, K2 ∈ Ek∞,a∞

k0,a0
.

2f(x) ∼
x→a

g(x) if and only if f(x)−g(x)
g(x)

−→
x→a

0.



Corollary 1: Let V : Ω ⊂ D(A) → R+ be a continuous
function on Ω, continuously differentiable on Ω \ {0}, and
satisfying the coercivity condition. If there exists a continu-
ous function K : R+ 7→ R+ such that

d

dt
V (z(t, ·)) ≤ −K(V (z(t, ·))), (5)

and K ∈ Ek0,a0
(resp. K ∈ Ek∞,a∞

k0,a0
) with a0 ∈ [0, 1) (resp.

a0 ∈ [0, 1), a∞ > 1), then the origin of (1) is FTS (resp.
FxTS).

Proof: To prove that the origin of (1) is FTS, it
is sufficient to notice that from the corollary conditions,
there exists O a neighborhood of 0, where equation (5)
is equivalent to V̇ (z(t, ·)) ≤ −k0V (z(t, ·))α0 which guar-
antees the stability of (1) and also the finite-time con-
vergence to the origin by integrating with respect to t,

i.e. V (z(t, ·)) ≤
[
V (z0)

1−α0 − k0(1− α0)(t− t0)
] 1
1−α0 . A

similar proof can be provided for the FxTS case.
Remark 2: Note that inequality (5), for particular cases of K,

has been proved in the framework of non-asymptotic stabilization
for a class of parabolic PDEs with distributed control (see e.g.
[12], [11], [16], [10]). In particular, in [16], the problem of finite-
time stabilization of the following reaction-diffusion PDE with
distributed control:

zt(t, x) = zxx(t, x)−
cz(t, x)

∥z(t, ·)∥2−2α
L2

,

z(t, 0) = z(t, 1) = 0,

has been solved. Furthermore, in [16], inequality (5) with K(V ) =
cV α has been obtained using the following Lyapunov function:
V (z(t, ·)) = ∥z(t, ·)∥2L2 for any t ≥ 0, c > 0 and α ∈ (0, 1). Note
that K is in the set Ec,α and satisfies the conditions of Proposition
1.

The goal now is to obtain inequality (5) in the case of
boundary actuation. This motivates the following statement.

B. Problem statement:

We consider the following reaction-diffusion equation with
constant reaction term and Dirichlet actuation:

zt(t, x) = zxx(t, x) + λz(t, x),

z(t, 0) = 0,

z(t, 1) = U(t),

z(t0, x) = z0(x),

(6)

where t ≥ t0 ≥ 0, x ∈ [0, 1], the reaction term λ ∈ R, the
state z(t, ·) ∈ D(A) := {z ∈ H1 : ∂2z

∂x2 ∈ L2, z(0) =

0, z(1) = U(t)} with the operator A = ∂2

∂x2 is the second-
order partial derivative with respect to space, the control
U(t) ∈ R, and the initial condition z0 ∈ D(A).

Our goal is to design a nonlinear control U(t) and a
Lyapunov functional V (z(t, ·)) such that the time derivative
of V along the solutions of (6) satisfies (5) for any continuous
function K : R+ 7→ R+ such that K(0) = 0. As an
application, we choose the function K such that the closed-
loop system (6) with the control U(t) is finite-time stable
or fixed-time stable in light of the notions presented in the
previous section.

III. STABILITY ANALYSIS

In this Section, we first introduce the Lyapunov functional
candidate and we give some of its properties. Then, by
computing its time derivative along the solutions of (6), we
design a nonlinear control U(t) that will ensure inequality
(5) for all t ≥ t0 and all continuous function K : R+ 7→ R+

such that K(0) = 0.
Let us consider the following spatially weighted L2-norm

3 as a Lyapunov function candidate:

V (z) =

∫ 1

0

eσx|z(x)|2dx, σ > 0. (7)

We can clearly see that V satisfies for any σ > 0 the
following property:

∥z(t, ·)∥2L2 ≤ V (z(t, ·)) ≤ eσ∥z(t, ·)∥2L2 . (8)

Moreover, by computing the time derivative of V along
the solutions (6), we can establish the following proposition

Proposition 2: Let K : R+ 7→ R+ be a continuous
function such that K(0) = 0. Then, the functional V given
in (7) satisfies the following inequality for every t ≥ t0 ≥ 0
and every σ > 0:

d

dt
V (z(t, ·)) ≤ −2eσ

[σ
2
U(t)2 − zx(t, 1)U(t)

−B(V (z(t, ·))) + e−σ

2
K(V (z(t, ·)))

]
,

(9)

where B(·) is given by

B(V (z(t, ·))) =e−σ

(
λ+

σ2

2

)
1{x>0}

(
λ+

σ2

2

)
V (z(t, ·))

+
e−σ

2
K(V (z(t, ·))) ≥ 0.

(10)
Proof: Let us start by computing the time derivative of

V in (7) along the solutions of (6),

d

dt
V (z(t, ·)) = 2

∫ 1

0

eσxz(t, x)zt(t, x)dx,

= 2λ

∫ 1

0

eσx|z(t, x)|2dx

+ 2

∫ 1

0

eσxz(t, x)zxx(t, x)dx.

Next, by integration by parts on the last term, we get,

d

dt
V (z(t, ·)) = 2λV (z(t, ·))− 2

∫ 1

0

eσx|zx(t, x)|2dx

− 2σ

∫ 1

0

eσxz(t, x)zx(t, x)dx

+ 2 [eσxz(t, x)zx(t, x)]
1
0 ,

3similar functionals have been used in the framework of exponential
stabilization (e.g. for linear conservation laws in [1] or for a transport PDE
with a zero input at the boundary in [7, Chapter 11, page 178]).



Then, we get

d

dt
V (z(t, ·)) ≤ 2λV (z(t, ·))− σ

∫ 1

0

eσx
∂|z(t, x)|2

∂x
dx

+ 2eσz(t, 1)zx(t, 1)− 2z(t, 0)zx(t, 0),

= 2λV (z(t, ·)) + 2eσzx(t, 1)U(t)

− σ

∫ 1

0

eσx
∂|z(t, x)|2

∂x
dx.

Now, by a second integration by parts on the last term, we
obtain,

d

dt
V (z(t, ·)) ≤ 2λV (z(t, ·)) + 2eσzx(t, 1)U(t)

− σ
[
eσx|z(t, x)|2

]1
0

+ σ2

∫ 1

0

eσx|z(t, x)|2dx,

= 2

(
λ+

σ2

2

)
V (z(t, ·)) + 2eσzx(t, 1)U(t)

− σeσU(t)2,

= −2eσ
[σ
2
U(t)2 − zx(t, 1)U(t)

−e−σ

(
λ+

σ2

2

)
V (z(t, ·))

]
.

Then, using the fact that a ≤ a1{x>0}(a) for any a ∈ R, we
get,

d

dt
V (z(t, ·)) ≤ −2eσ

[σ
2
U(t)2 − zx(t, 1)U(t)

−e−σ

(
λ+

σ2

2

)
1{x>0}

(
λ+

σ2

2

)
V (z(t, ·))

]
,

= −2eσ
[σ
2
U(t)2 − zx(t, 1)U(t)

−B(V (z(t, ·))) + e−σ

2
K(V (z(t, ·)))

]
,

with B(·) being given in (10).
Let us now give the first main result of our paper,

Theorem 1: Let t0 ≥ 0, σ > 0. Let K : R+ 7→ R+ be a
continuous function such that K(0) = 0. Let B(·) be given
as in (10). Then, under the following control:

U(t) =
zx(t, 1)−

√
zx(t, 1)2 + 2σB(V (z(t, ·)))

σ
, (11)

or

U(t) =
zx(t, 1) +

√
zx(t, 1)2 + 2σB(V (z(t, ·)))

σ
, (12)

the inequality (5) is satisfied for all t ≥ t0.
Proof: The proof of Theorem 1 is a direct application

of the quadratic formula on the inequality (9), where we
chose U(t) to be the solution of the following second-degree
equation:

σ

2
U(t)2 − zx(t, 1)U(t)− B(V (z(t, ·))) = 0.

IV. APPLICATION TO FINITE-TIME, FIXED-TIME
STABILIZATION

In this section, we use Theorem 1 to establish the second
main result of our paper which proves the finite-time stability
(resp. fixed-time stability) of the closed-loop system (6) with
the nonlinear control (11) (or (12)).

Theorem 2: Let t0 ≥ 0, σ > 0. Let K : R+ 7→ R+ be a
continuous function such that K(0) = 0. Let B(·) be given
as in (10). Then, if K is in the set Ek0,a0

(resp. in the set
Ek∞,a∞
k0,a0

), then the closed-loop system (6) with the nonlinear
control (11) (or (12)) is finite-time stable (resp. fixed-time
stable).

Moreover, there exists a settling time Tmax(V (z0)) (upper
bounded by a constant when FxTS) such that V (z(t, ·)) = 0
when t ≥ t0 + Tmax(V (z0)). By the coercivity condition
∥z(t, ·)∥2L2 = 0 when t ≥ t0 + Tmax(V (z0)).

In particular, if the control (11) is replaced by

U(t)=
zx(t, 1)−sign(zx(t, 1))

√
zx(t, 1)2+2σB(V (z(t, ·)))
σ

,

(13)
we have in addition, |U(t)| → 0 when t→ t0+Tmax(V (z0))
and |U(t)| = 0 for any t ≥ t0 + Tmax(V (z0)).

Proof: The proof of Theorem 2 is a straightforward
application of Corollary 1 and Theorem 1. In fact, from
Theorem 2, we have that (5) is satisfied for all t ≥ t0 and
any continuous function K : R+ 7→ R+ such that K(0) = 0.
In particular, for K ∈ Ek0,a0

(resp. K ∈ Ek∞,a∞
k0,a0

). Then
from Corollary 1, we conclude that the closed-loop system
(6) with (11) (or (12)) is FTS (resp. FxTS).

Furthermore, if (11) is replaced by (13), we can prove
that:

|U(t)|2 =
1

σ2

[√
zx(t, 1)2−

√
zx(t, 1)2 + 2σB(V (z(t, ·)))

]2
,

≤ 1

σ2

[√
zx(t, 1)2 + 2σB(V (z(t, ·)))− zx(t, 1)2

]2
,

=
2

σ
B(V (z(t, ·))),

where we have used the fact that |√a1−
√
a2| ≤

√
|a1 − a2|,

for any a1, a2 ≥ 0. Using in addition the fact that
V (z(t, ·)) = 0 =⇒ K(V (z(t, ·))) = 0 =⇒
B(V (z(t, ·))) = 0, we conclude that |U(t)| → 0 for any
t → t0 + Tmax(V (z0)) and |U(t)| = 0 for any t ≥
t0 + Tmax(V (z0)).

V. SIMULATIONS

In this section, we give numerical simulations for the
closed-loop system (6) for three different initial conditions
z0 = x−x2, 100z0, and 1000z0 with the following reaction
coefficient λ = 20, the initial time t0 = 0, and with the
nonlinear control U(t) defined as in (11).

A. The case of finite-time stabilization

Let us take the parameters c = 0.5, α = 0.5, σ =
2. Figure 1 shows the evolution of the state z(t, x) of
the closed-loop system (6) with the control U(t) in (11)
(whose time evolution for K(V (z(t, ·))) = c

2V (z(t, ·))α is



described in Figure 2 for the initial condition z0 = x− x2)
with K(V (z(t, ·))) = cV (z(t, ·))α, for the initial condition
z0 = x − x2. Finally, Figure 3 shows in a logarithmic
scale the evolution of the norm ∥z(t, ·)∥2L2 of the closed-
loop system (6) with the nonlinear control U(t) in (11)
with K(V (z(t, ·))) = cV (z(t, ·))α in solid lines and with
K(V (z(t, ·))) = cV (z(t, ·)) in dashed lines, and for three
different initial conditions: z0 = x−x2 in blue lines, 100z0 in
red lines, and 1000z0 in black lines. Hence, we can observe
from the solid lines that the larger the initial condition, the
larger the settling time (i.e. the time of convergence depends
on the initial condition).

Fig. 1. The evolution of the state z(t, x) of the closed-loop system (6)
with the control U(t) in (11) with K(V (z(t, ·))) = cV (z(t, ·))α, for the
initial condition z(t0, x) = x− x2,
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Fig. 2. The evolution of the nonlinear control U(t) given in (11) with
K(V (z(t, ·))) = cV (z(t, ·))α for the initial condition z(t0, x) = x− x2.

B. The case of fixed-time stabilization

Let us take the parameters c1 = 0.5, c2 = 1, α =
0.5, β = 2, σ = 3. Figure 4 shows the evolution of the state
z(t, x) of the closed-loop system (6) with the control U(t)
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Fig. 3. The evolution of the norm ∥z(t, ·)∥2
L2 of the closed-loop system

(6) in a logarithmic scale in a blue line for the initial condition z(t0, x) =
x− x2, in a red line for z(t0, x) = 100(x− x2), and in a black line for
z(t0, x) = 1000(x−x2), where we used the nonlinear control U(t) given
in (11) with K(V (z(t, ·))) = cV (z(t, ·))α to get FTS as shown in solid
lines, and with K(V (z(t, ·))) = cV (z(t, ·)) to get exponentially stability
shown in dashed lines.

in (11) with K(V (z(t, ·))) = c1V (z(t, ·))α + c2V (z(t, ·))β ,
for the initial condition z0 = x− x2. Next, in Figure 5, we
present the time evolution of the control U(t) in (11) with
K(V (z(t, ·))) = c1V (z(t, ·))α + c2V (z(t, ·))β and for the
initial condition z0 = x − x2. Finally, Figure 6 shows in a
logarithmic scale the evolution of the norm ∥z(t, ·)∥2L2 of
the closed-loop system (6) with the nonlinear control U(t)
in (11) with K(V (z(t, ·))) = c1V (z(t, ·))α + c2V (z(t, ·))β
in solid lines and with K(V (z(t, ·))) = cV (z(t, ·)) in dashed
lines, and for three different initial conditions: z0 = x−x2 in
blue solid lines, 100z0 in red solid lines, and 1000z0 in black
solid lines. Hence, we can observe that the settling time is
upper bounded by a constant that does not depend on the
initial conditions (i.e. the time of the convergence does not
depend on the initial conditions).

VI. CONCLUSION

This paper deals with the problem of nonlinear boundary
stabilization with a predefined type of convergence for a
class of reaction-diffusion systems with a constant reaction
term using a Lyapunov-based approach. The key idea is
to use the “spatially weighted L2-norm” as a Lyapunov
functional V to design a nonlinear control U(t) and to obtain
a generalized Lyapunov inequality of the type d

dtV (z(t, ·)) ≤
−K(V (z(t, ·))) for any continuous function K such that
K(0) = 0. As an application, we deal with the problem of
finite-time, and fixed-time stabilization of a class of reaction-
diffusion systems with a constant reaction term and we give
some numerical simulations to illustrate the results.

The present paper did not study the existence/uniqueness
issue for the solutions of the closed-loop system. This is a
completely different topic for future research. To this pur-
pose, ideas contained in [17], [9] can be used. However, the
obtained stability estimates will certainly help the analysis.



Fig. 4. The evolution of the state z(t, x) of the closed-loop system (6)
with the control U(t) in (11) with K(V (z(t, ·))) = c1V (z(t, ·))α +
c2V (z(t, ·))β , for the initial condition z(t0, x) = x− x2,

0 0.5 1 1.5 2

10
-15

10
-10

10
-5

10
0

Fig. 5. The evolution of the nonlinear control U(t) given in (11) with
K(V (z(t, ·))) = c1V (z(t, ·))α + c2V (z(t, ·))β for the initial condition
z(t0, x) = x− x2.

Future work will extend this result to a class of non-
linear reaction-diffusion-advection systems with a non-
delayed/delayed boundary control.
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