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Abstract. In this work, we propose an asynchronous Majorization-Minimization

(MM) algorithm for solving large scale differentiable non-convex optimization

problems. The proposed algorithm runs efficient MM memory gradient updates

on blocks of coordinates, in a parallel and possibly asynchronous manner. We

establish the convergence of the resulting sequence of iterates under mild assumptions.

The performance of the algorithm is illustrated on the restoration of 3D images

degraded by depth-variant 3D blur, arising in multiphoton microscopy. Significant

computational time reduction, scalability and robustness are observed on synthetic

data, when compared to state-of-the-art methods. Experiments on the restoration of

real acquisitions of a muscle structure illustrate the qualitative performance of our

approach and its practical applicability.
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1. Introduction

Large-scale optimization algorithms, benefiting from fast convergence, capable of

utilizing modern computing infrastructures, and dealing with distributed datasets are

becoming compulsory for solving inverse problems in modern imaging [24]. The ever-

growing need for fast processing solutions that can operate on high-dimensional problems

(i.e implying a huge number of variables) calls for the development of parallel methods

harnessing the power of distributed computational architectures. In addition, the

expansion of IoT systems and remote highly parallel computing induce new network

issues with specific constraints. For instance, instabilities may occur whenever the

volume of data dwarfs the memory capacity of a single agent or when the processing

power is shared (potentially unevenly) between devices [47]. Several classes of so-called

distributed optimization methods, have been investigated under various assumptions on

the computing scenario and on the optimization problem itself, that we review hereafter

(see also [80, 76]).

Distributed optimization approaches inherit from block alternating methods. In

the latter, at each iteration, only a subset of the variables are updated, by minimizing

the objective function with respect to only those variables, the others being fixed. The

blocks are selected sequentially following a cyclic (or quasi-cyclic) order or a random rule.

Exact minimization with respect to a given block of variables is rarely possible in a closed

form. It is not even desirable as it may lead to convergence issues [71]. More efficient and

stable block alternating schemes rely on a so-called Majorization-Minimization (MM)

strategy [44]. It consists in building, at each iteration, a majorizing approximation for

the objective function within the active block of variables, whose minimizer has a more

tractable form. Many powerful algorithms fall within this framework, such as BSUM

[41], PALM [8], multiplicative methods for NMF [49], to name a few. By exploiting

the structure of the objective function, block alternating MM methods can reach fast

convergence rates [29, 32, 56, 59] while offering theoretical guarantees in non-convex

cases [8, 22, 9].

When the problem size increases, as in 3D microscopy imaging [50] and astronomy

[60, 63], running block alternating methods gets inefficient. Parallel implementations

have been devised, where the block updates are performed simultaneously, allowing to

distribute computations on different nodes (or machines) [10, 68, 66]. Implementation on

parallel architecture requires to pay attention to communication cost. The latter can be

reduced by resorting to an asynchronous parallel implementation, yielding the so-called

distributed optimization approach. Each computation node has now its own iteration

loop, so local variables are updated without the need to wait for distant variables

update. This however raises challenging questions, in terms of convergence analysis, as

the communication delays may introduce instabilities. A plethora of recent works have

focused on proposing distributed optimization algorithms with assessed convergence,

based on stochastic proximal primal [38, 52, 54] or primal-dual [62, 40, 78, 15, 60, 1]

techniques. Recent contributions in the field of federated learning are also highly related
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[42, 53, 73]. However, as the aforementioned works rely on specific fixed-point analysis

tools involving Fenchel-Rockafellar duality [4], the proposed algorithms are limited

to convex (sometimes even strongly convex) optimization and often require specific

probabilistic assumptions on the block update rule difficult to meet in practice. In the

context of MM algorithms, although the need for distributed implementation strategies

is crucial (see the discussion in [41] and the specific examples in [72, 31]), theoretical

results regarding convergence guarantees of MM technique in a distributed context are

rather scarce. Let us first mention the work of [25, 26], that proposes an asynchronous

version of PALM, with proven convergence of the iterates in non-convex case, and good

practical behaviour [70]. The convergence of distributed MM methods was also explored

in the recent works [11, 51]. However, the analysis of [51] is limited to the convex case.

In [11], the analysis covers non-convex terms in the objective function, but it only shows

the convergence of the sequence of objective function values, and not the convergence

of the iterates themselves (thus, the results is weaker than the one of [25]).

In this work, we aim at solving a smooth optimization problem of the form

minimize
xPRN

fpxq, (1)

where f : RN ÞÑ R is (Fréchet) differentiable but non necessarily convex. In the context

of inverse problems in imaging, f typically reads as the sum of a data fidelity term

(e.g., a least-squares term) measuring the discrepancy between an acquired, degraded

(e.g., blurry, noisy) image, and its estimate (usually, through a linear observation

operator), and a regularization term incorporating prior information on the sought

solution [24, 5] (see also our Section 5). We introduce the block delayed MM memory

gradient (BD3MG) algorithm for the resolution of Problem (1). BD3MG is a distributed

MM algorithm designed for an efficient implementation on a multi-CPU computing

architecture, such as a high performance calculation unit. Our contributions are::

‚ Introduction of the BD3MG algorithm, that implements an advanced distributed

asynchronous update rule within the block alternating MM method we recently

proposed in [33].

‚ Proof for the convergence of BD3MG iterates to a stationary point of f under

mild assumptions (in particular, no convexity is assumed), using recent tools of

Lyapunov analysis [74].

‚ Illustration of the performance of BD3MG by means of various experiments on a

real inverse problem of 3D image restoration arising in the context of multiphotonic

miscroscopy.

The paper is organized as follows. Section 2 introduces our notations, recalls the

principle of MM schemes and finally presents our proposed algorithm. Section 3 states

: A preliminary version of this work has been presented in the conference proceedings [13]. The

convergence result was weaker, and stated without proof. The experimental validation was limited to

a single, simpler, numerical scenario.
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our mathematical assumptions for the convergence analysis and presents preliminary

technical propositions and lemmas. Section 4 presents our main theoretical contribution,

dedicated to the convergence analysis of the proposed BD3MG scheme. Section 5

illustrates the qualitative and computational performance of BD3MG in the applicative

context of 3D image deblurring in the presence of a depth-variant 3D blur. Section 6

concludes the paper.

2. Proposed algorithm

2.1. Notations

Throughout the paper, we consider the euclidean space RN endowed with the usual

scalar product x¨|¨y (or, equivalently, ¨J¨) and the norm } ¨ }. 0N is the vector with null

entries of RN . IN is the identity matrix of RN . We use the short notation rr1, N ss,

to denote t1, 2, . . . , Nu, i.e. the set of integers from 1 to N . SN denotes the set of

symmetric matrices of RNˆN , and SN
` (resp. SN

``) the set of positive (resp definite

positive) symmetric matrices. Given some M P SN
``, we denote by } ¨ }M the induced

weighted euclidean norm, such that, for all v P RN , }v}2M “ vJMv. We use the

Loewner orders symbols ă and ĺ, to compare real symmetric matrices pA,Bq P pSNq2

i.e., A ĺ B (resp. A ă Bq is verified when difference B´A belongs to SN
` (resp. SN

``).

Let us introduce extra notations, that will be useful to present block coordinate

optimization strategy. Most notations hereafter are reminiscent from [33]. Let S Ă

rr1, N ss.

Ź We denote by S its complementary set rr1, N sszS, |S| its cardinal and
´

R|S|, x¨, ¨y

¯

the resulting euclidean space (with a slight abuse of notation). Moreover, we also

denote by S|S|, S|S|

` ,S|S|

`` respectively the set of symmetric, symmetric positive, and

symmetric definite positive matrices of R|S|ˆ|S|.

Ź Let x “ pxnqnPrr1,Nss P RN . We denote xpSq “ pxiqiPS P R|S| the vector gathering the

entries of x with indexes within the set S of coordinates.

Ź Let x P RN . ∇fpxq is the gradient of f evaluated at x. Moreover, ∇pSqfpxq “
´

“

∇fpxq
‰

i

¯

iPS
P R|S| denotes the partial gradient of f with respect to the

coordinates with indexes in S, evaluated at x.

Ź Let M P SN . We denote the (symmetric) sub-matrix MpSq “
`

Mi,j

˘

pi,jqPS2 P S|S|.

If MpSq P S|S|

` , we define the induced weighted Euclidean norm as } ¨ }MpSq
.

Ź For any x P RN , we introduce the restriction of f to the block S and vector x as

the function fpSqp. ,xq : v P R|S| ÞÑ fpuq where u is related to pv,xq through the

relations upSq “ v and upSq “ xpSq.
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2.2. Block MM principle

MM approach to the resolution of Problem (1) is a generic iterative procedure

where each iteration amounts to minimizing (exactly or not) a surrogate for f satisfying

a majorizing property [69, 79, 44, 43]. The theoretical and practical properties of an MM

algorithm greatly depend on (i) the family of considered surrogates, (ii) the procedure

to minimize it. In this work, we focus on quadratic MM techniques, where f is such that

it can be upper bounded by quadratic functions (typically, f is Lipschitz differentiable).

In such context, the inner step of an MM algorithm amounts to minimizing a quadratic

function on RN or, otherwise stating, to invert an N ˆ N system. In the large scale

context, this is not desirable and various approaches have been proposed to cope with

the curse of dimensionality in MM quadratic methods [17, 18, 21, 41, 10, 68, 33].

In particular, to limit the dependence of the MM algorithm on the dimension of the

problem, block alternating approaches have been developed. In these schemes, at each

iteration only a subset of the variables are updated [41], giving rise to so-called block

MM algorithms, that we describe hereafter.

Define a partition T of rr1, N ss. The block MM approach requires to build a

majorizing surrogate for the restriction fpSqp¨,xq for any x P RN and block index S P T.

Let us assume the existence of a mapping A : x P RN ÞÑ Apxq P SN
`` such that for all

S P T, v P R|S| and x P RN

QSpv,xq “ fpxq ` x∇pSqfpxq,v ´ xpSqy `
1

2

›

›v ´ xpSq

›

›

2

ApSqpxq
, (2)

fulfills the majorizing condition

QSpv,xq ě fpSqpv,xq. (3)

Note that, by (2),

QSpxpSq,xq “ fpSqpxpSq,xq. (4)

The existence of such mapping A can be ensured under mild assumptions. For instance,

it is satisfied as soon as f is Lipschitz differentiable. Morever, [22, Remark 2.4] shows

that, as soon as the above mapping holds for S “ RN , it stays valid for any block

subset S Ă rr1, N ss. Examples of constructions of majorant mappings have been

extensively discussed in [69, 18, 68] for optimization problems arising in the fields of

inverse problems, image processing and telecommunication.

Once the block majorant approximations (2) satisfying (3) are built, the block MM

(B2M) algorithm reads [44] (also called BSUM in [41]):

p@k P Nq

$

’

’

’

’

&

’

’

’

’

%

Choose Sk P T,
xk`1

pSkq
P arg min

vPR|Sk|

QSkpv,xkq,

xk`1

pSkq
“ xk

pSkq
.

(B2M)
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Hereabove,
`

Sk
˘

kPN is a sequence of subsets (i.e., blocks) chosen in the predefined

partition T. The most current strategy is to adopt a cyclic rule, where each element of T
is selected sequentially until the end of the partition list, and then the loop is repeated

until convergence of the algorithm. A more flexible option is to adopt a so-called quasi-

cyclic (or acyclic) rule where each S P T must be updated at least once per K iterations

period.

The interest of scheme (B2M) and more generally block coordinate methods notably

lies in the large scale context involving a very huge N , for which dealing with all

the coordinates of the current iterate may be too high time consuming and even

infeasible due to memory limitations. However, block MM methods require a sequential

update of the blocks and thus, by construction, might require many iterations to reach

convergence. To limit this issue, (block) diagonal mappings have been considered for

instance in [68, 10]. The underlying idea is to choose the mapping so that the inner

minimization problem in (B2M) is separable, and thus can be performed in parallel over

the entries of the selected block. This yields the so-called block parallel MM schemes

that take advantage of recent technological advances in parallel computing on multicore

architectures. In particular, these methods can tailor the number of available processors

to the computational load. However, such block diagonal structure may be detrimental

to the approximation quality of the surrogates, and thus reduce again the practical

convergence rate. In the present work, we opt for not making any extra structural

assumption on the majorant mapping, thanks to the introduction of two catalizers into

(B2M), namely (i) a subspace acceleration approach, (ii) a distributed asynchronous

update strategy, that we describe hereafter.

2.3. Subspace acceleration

Our first catalyst is to introduce a subspace acceleration [69], in (B2M). This

strategy has been initially introduced for full-batch MM algorithms (i.e., without

any block coordinate strategy) in [17]. Convergence analysis can be found in

[18, 16, 21, 20, 19] under various situations. We recently extended this strategy to

cope with block coordinate updates with the form of (B2M) [33], leading to the B2MS

(Block MM Subspace) scheme that we present hereafter.

Starting with the (B2M) iteration, the subspace acceleration consists in performing

the minimization of the majorant function within the current block Sk in a constrained

vectorial subspace spanned by a small number Mk ě 1 of search directions. This reads:

p@k P Nq

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

Choose Sk P T,
Choose Dk P RMkˆ|Sk|,

vk P arg min
vPRMk

QSkpxk
pSkq

` Dkv,xkq,

xk`1
pSkq

“ xk
pSkq

` Dkvk,

xk`1

pSkq
“ xk

pSkq
,

. (B2MS)
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Hereabove, for every k P N, Dk P RMkˆ|Sk| is the so-called subspace matrix. It stacks,

row-wise, Mk ě 1 vectors of dimension |Sk|, spanning a vectorial subspace within which

we seek for a minimizer of the majorant function QSkp. ,xkq (i.e., our next iterate). The

advantage is to reduce again the dimensionality of the inner MM problems, without

jeopardizing the convergence rate [20]. Several choices for the subspace matrix are

discussed in [17, 21, 19]. Intensive comparisons in the fields of inverse problems, image

processing and machine learning (e.g., [34, 16]), have shown the superiority of the so-

called memory gradient subspace which seems to reach the best compromise between

simplicity and efficiency. In the context of (B2MS), this amounts to defining, for

every k P N, the memory gradient matrix Dk “

”

∇pSkqfpxkq,xk
pSkq

´ xk´1
pSkq

ı

(with the

convention x´1 “ 0N), so that Mk “ 2. When combined with a block diagonal majorant

mapping, (B2MS) becomes equivalent to the BP3MG method considered in [13] for 3D

image deblurring. The convergence properties of (B2MS) have recently been studied

in [33].

2.4. Block Delayed Majorize-Minimize Memory Gradient (BD3MG)

The second catalyst we introduce is the main contribution of this paper, namely the

introduction of a distributed asynchronous update rule within (B2MS). Our motivation

is to make the algorithm well suited to an implementation on a multi-core / multi-

processor architecture, while not being endangered by potential communication delays

within the computing units. Let us consider a computing architecture with C units (or

cores), each of them being able to communicate (i.e., send or receive) information to a

master node. The architecture thus considered is forming a star graph as presented in

Figure (1c). The two other graph topologies are discarded from this present study (see,

for example, [1] for an efficient distributed method running on a generic hypergraph

topology).

(a) Complete graph (b) Connected graph (c) Star graph

Figure 1: Examples of graph topologies. The graph in (c) is encompassed by our

framework.

The proposed method BD3MG is presented in Algorithms 1-2, describing the

iterations of the master (i.e., node 0) and a given worker/node c P rr1, Css, respectively.
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Let us describe these two algorithms. Each computation node c P rr1, Css updates

(independently from the other nodes) a subset of coordinates Sc P T (which can change

over the process) by applying an MM iteration including a memory gradient acceleration

and thus “books” its running block Sc so that no other worker overwrites the associated

coordinates. Conversely, any other S P TztScu remains free to be updated by other

workers. Communication steps are performed in order to maintain convergence to a

minimizer of the globally shared objective function f and to control the propagation of

errors. Basically, even if the other workers are still busy on their tasks, every time a

worker c P rr1, Css ends one MM iteration on its running block Sc, it sends a feedback to

the master. As a response, the latter updates it with most recent available information,

and assigns it a new task.

We denote pxkqkPN the sequence of iterates gathered by the master loop. For any

given node index c P rr1, Css and k P N, Sk
c denotes the block of coordinates processed by

worker c during step k. We impose, by construction, that two nodes do not update the

same block of coordinates at the same time, so that we ensure the no-overlap condition

p@k P Nq p@pc, c1
q P rr1, Css

2, c ‰ c1
q Sk

c X Sk
c1 “ H. (5)

At iteration k P N, worker ck P rr1, Css, updates the block of coordinates Sk
ck

and

sends to the master a vector dk of size
ˇ

ˇSk
ck

ˇ

ˇ. The corresponding indexes of variable xk

within block Sk
ck

are then incremented with dk while the others remain unchanged, thus

defining xk`1. The master then defines a new set of coordinates Sk`1
ck

to be treated by

worker ck, so as to satisfy the non-overlap rule. The master informs worker ck of this

new running set of coordinates, and sends him the most recent information xk`1 and

the difference pxk`1 ´ xkq
pSk`1

ck
q
. Meanwhile, the other workers keep processing their

allocated indexes. The master then waits until a new worker (possibly the same one)

sends a new increment.

Let us now make a focus on the worker loop described in Algorithm 2. Remark

that, even if worker c has access to some properties of function f (i.e., the expression

for its gradient and for its majorizing approximation pQSqSPS), it is not informed about

the work done by the master or those of the other workers . It can only rely on the data

the master sends to it to perform its local task. From the viewpoint of the worker, a

triplet set px,S,dq P RN ˆ T ˆ R|S| is received from the master and must be used to

perform its MM update with memory gradient acceleration. The worker is in charge of

first building the new memory gradient matrix

Dpx,S,dq “ r´∇pSqfpxq | ds P R|S|ˆ2. (6)

and then compute the MM increment d
1

P R|S| defined as

d
1

“ Dpx,S,dqu (7)

with u P arg min
vPR2

QSpx ` Dpx,S,dqv,xq. (8)
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Algorithm 1. BD3MG algorithm - Master loop

Initialization.

(a) Set k “ 0 and x0 P RN .

(b) Set S0
1 , ...,S0

C P T such that @pc, c
1

q P rr1, Css2, S0
c X S0

c1 “ H.

(c) 0-th transmission: For every c P rr1, Css, send
`

x0,S0
c , 0|S0

c |

˘

to worker c

While a stopping criterion is not met:

(Wait for a feedback from a worker)

(a) pk ` 1q-th reception: Receive dk from a worker ck.

(b) Update xk`1
´

Sk
ck

¯ “ xḱ

Sk
ck

¯ ` dk and xk`1
´

Sk
ck

¯ “ xḱ

Sk
ck

¯.

(c) Set Sk`1
1 , . . . ,Sk`1

C P T such that

Sk`1
ck

P TztSk
c uc‰ck and, p@c P rr1, Csszckq, Sk`1

c “ Sk
c .

(d) pk ` 1q-th transmission: Send

ˆ

xk`1,Sk`1
ck

, pxk`1 ´ xkq´Sk`1

ck

¯

˙

to worker ck.

(e) k “ k ` 1

End While

Output. Vector xk.

Note that the uniqueness of the solution for problem (7)-(8) is not guaranteed in general.

To overcome such an obstacle, we follow the strategy in [17], and retain the pseudo-

inverse solution given by

u “ ´

´

Dpx,S,dq
JApSqpxq Dpx,S,dq

¯:

Dpx,S,dq ∇pSqfpxq, (9)

where : referes to the Moore-Penrose pseudo-inverse. Such solution notably verifies the

normal equation

@

∇pSqfpxq,Dpx,S,dqu
D

“ ´}Dpx,S,dqu}
2
ApSqpxq. (10)

2.5. Distributed structure of BD3MG

We first have to make an important remark, regarding the communication load in

terms of memory, in between the master and the workers. Consider a worker associated

to the block index S. According to Algorithm 2, the worker receives three quantities,

namely x of N real values, the set of integer indexes S with cardinality |S| and the vector

d of |S| real values. The sent vector d1 is again made of |S| real values. Clearly, the main

memory load is related to the reception of vector x. One should however notice that the

worker only uses x to compute ∇pSqfpxq and ApSqpxq. In most situations encountered

in inverse problems of imaging, f shows some inherent separable structure, so that
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Algorithm 2. BD3MG algorithm - Worker loop

(Wait for a feedback from the master)

(a) Receive px,S,dq from Master.

(b) Dpx,S,dq “ r´∇pSqfpxq | ds.

(c) Compute ∇pSqfpxq and ApSqpxq.

(d) u “ ´
`

Dpx,S,dqJApSqpxq Dpx,S,dq
˘:
Dpx,S,dq ∇pSqfpxq.

(e) Send d1 “ Dpx,S,dqu to the Master.

both of these quantities only depend on a subset of entries of vector x that can be of

small cardinality compared to N . The practical implementation of Algorithm 2 should

account for this specific situation, in order to avoid memory saturation and important

communication delays. We give a detailed analysis for this aspect, in the case of our

experimental example, in the Section 5.1.4.

The proposed distributed structure of BDM3G follows a star graph. Practically, it

means that one of the computing unit has a higher load, in terms of memory, since it

must process the full vector x of size N , while the memory load of the workers is limited,

as we discussed hereabove. This can be viewed as a limitation for the proposed method.

The extension of our analysis to the case of a hypergraph distributed framework would

require to be more specific about the structure of function f (in the line of the study

of [1]), which might reduce the versatility of the algorithm. Up to our knowledge, this

analysis is not straightforward and is thus left as future work.

2.6. Equivalent form for BD3MG

The way we introduced our scheme BD3MG in the previous subsection was

“implementation-oriented”. In order to study its convergence behaviour, we must

exhibit an equivalent form of it, mimicking the one of its non distributed counterpart,

(B2MS). To do so, it is necessary to formalize the information gap between the master

and the workers during the iterative process.

As we have already mentioned, all the information available to a worker (except

those on f and pQSqSPT) is sent to it by the master only after it produces a feedback. For

a given k P N, worker ck does not receive any information between the pk ` 1q-reception

and the previous one it made. During this time, its counterparts c P J1, CKztcku may

have performed additional updates to the master without ck being informed. This results

in an information mismatch, that we propose to formalize through a vector xιk where

p@k P Nq ιk “

$

&

%

0 if k “ 0,

max
´

␣

ℓ P rr1, kss | cℓ´1 “ ck
(

Y t0u

¯

, otherwise.
(11)
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This vector corresponds to the iteration index of the working variable of worker ck,

which does not necessarily matches with the vector xk manipulated by the master.

Let us list herebelow some situations of interest given the value of ιk at some iteration

k P N:

‚ If ιk “ 0, and k ą 0, it means that
␣

ℓ P rr1, kss | cℓ´1 “ ck
(

is an empty set. Hence,

the worker ck never returned any feedback to the master before the iteration k.

Note that ι0 “ 0 by construction.

‚ If ιk “ k, we thus have ck´1 “ ck. Hence, worker ck was in charge of the two most

recent updates, namely the pk ` 1q-th and the k-th ones. As a consequence, to

prepare the pk ` 1q-th update, worker ck received vector xk from the master.

‚ More generally, if ιk ą 0, it follows that worker ck at least returned one feedback

to the master before iteration k. And we have the relation cιk´1 “ ck.

Moreover, the non-overlap rule translates into

p@k P Nq xιk
pSk

ck
q

“ xk
pSk

ck
q
. (12)

For instance, if ιk “ k´1 for some k ą 1, this indicates that ck´2 “ ck and ck´1 ‰ ck. The

worker ck thus proceeded to the pk´1q-th and pk`1q-th reception of the master while the

k-th was made by another c̃k who received the vector xk (from the master). However,

since worker ck was still processing block Sk´1
ck

, the master was not able to update the

associated coordinate for computing xk from xk´1 for worker ck, i.e xk´1
pSk

ck
q

“ xk
pSk

ck
q
,

which is typical from an asynchronous scheme.

More generally, when it comes to dealing with asynchronous algorithms, the use of

a specific indexes with similar roles than our ιk (k P N) is often necessary to build a

theoretical delay model and thus to formulate an equivalent scheme being more compact

and easier to analyse [25].

With this aim in mind, let us introduce the shorter notations

p@k P Nq

$

&

%

Bk “ Sk
ck
,

Dk “ D
´

xιk ,Bk,
`

xιk ´ xιk´1
˘

pBkq

¯

,
(13)

and Dk “ D
´

xιk ,Bk,
`

xιk ´ xιk´1
˘

pBkq

¯

with convention x´1 “ 0N . Then, the

master/worker BD3MG loops from Algorithms 1-2 can be rewritten equivalently in

a single compact scheme as:

p@k P Nq

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

Let ck P rr1, Css,

uk “ ´

´

pDkqJApBkq pxιkqDk
¯:

pDkqJ∇pBkqfpxιkq,

xk`1
pBkq

“ xk
pBkq

` Dkuk,

xk`1

pBkq
“ xk

pBkq
,

(14)
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where we noticed that (12) now reads (using (13))

p@k P Nq xιk
pBkq

“ xk
pBkq

. (15)

For every k P N, according to (14), uk still reads (9) and thus verifies (10) with

Dk “ xk`1
pBkq

´ xk
pBkq

. The optimality equation can be rewritten as:

´

∇pBkqfpxιkq

¯J ´

xk`1
pBkq

´ xk
pBkq

¯

“ ´

›

›

›
xk`1

pBkq
´ xk

pBkq

›

›

›

2

A
pBkq

pxιk q
. (16)

The two next Sections are dedicated to establish the convergence of the iterates produced

by (14).

2.7. Link with existing works

Let us discuss the links between our proposed scheme BD3MG and existing methods

from the literature. When ιk “ k for any k P N in BD3MG, the algorithm identifies

with our block alternating scheme B2MS [33] where the blocks of variables were updated

sequentially in a non parallel (thus, not asynchronous) manner. This present paper can

thus be viewed as an extension of the framework and of the convergence analysis of [33]

to the distributed setting. Other related methods are [25, 11, 51], and our convergence

analysis relies on similar tools than the one from [25]. Assuming zero-valued non-

smooth terms in [25, 11, 51] (i.e., the objective function is differentiable), these methods

identify with particular instances of BD3MG that (i) would not implement any subspace

acceleration (i.e., Dk “ IN in (14)), (ii) would rely on the simple Lipschitz-based

majorant metric (i.e., ApBkqpx
ιkq “ LI|Bk| in (14)) in the case of [25]. As a consequence,

assuming differentiability of all terms, our convergence analysis presented in the next

section thus also covers the schemes of [25, 11, 51]. Up to our knowledge, our work is the

first to show convergence of the iterates of a distributed MM algorithm involving generic

quadratic surrogates and subspace acceleration, in the non-convex setting. Finally, we

would like to point out that the 3MG update performed in Alg. 2 identifies with a non-

linear conjugate gradient (NLCG) update, for a specific (and closed form) pair of stepsize

and conjugacy parameters (see discussion in [19, Sec. 1]). Therefore, our work can also

be understood as the first convergence analysis of a distributed NLCG method in the

non-convex setting. A comparative study will be conducted in our experimental section

to illustrate the superiority of BD3MG with respect to the aforementioned existing

methods in terms of convergence speed.

3. Assumptions and preliminary results

3.1. Assumptions

In order to analyse the asymptotic behaviour of the sequence pxkqkPN generated

by scheme (14), we introduce technical assumptions both on function f and on the

parameters of BD3MG method.
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Assumption 1. Function f is coercive, continuously differentiable on RN , and has a

L-Lipschitzian gradient with L ą 0, i.e.

p@px,yq P pRN
q
2
q }∇fpxq ´ ∇fpyq} ď L}x ´ y}. (17)

Assumption 1 ensures the existence of solutions for Problem (1) (by coercivity).

Moreover, (17) in Assumption 1 guarantees the existence of a quadratic function (2)

satisfying (3), setting A : x ÞÑ LIN . Another direct consequence is

p@S P Tqp@px,yq P pRN
q
2
q }∇pSqfpxq ´ ∇pSqfpyq} ď L}x ´ y}, (18)

since }∇pSqfpxq ´ ∇pSqfpyq} ď }∇fpxq ´ ∇fpyq} for all S P T and px,yq P pRNq2.

Assumption 2. (Boundedness of delay) For every k P N, and every worker ck P rr1, N ss,

the set Sk
c is not empty and there exists τ P N˚ such that

p@k ě τq rr1, N ss “

k´1
ď

j“k´τ

Bj, (19)

using the notation in (13).

Assumption 2 gives an upper bound on the delay τ . Each of the block of variables

should be updated within a time frame of at most τ iterations and thus the workers

must follow a certain regularity. Such a condition follows a similar goal than quasi-

cyclic rule frequently assumed in block coordinate methods [33, 41]. From Assumption

2, we deduce the following Proposition, which appears fundamental for the rest of our

convergence study. It guarantees that, for a given k P N, the vector treated by worker

ck before its feedback (i.e the pk ` 1q-th master’s reception) is not “too old” compared

to the iteration index.

Proposition 3.1. Under Assumption 2, for every k ě τ , the index ιk given in (11)

belongs to rrk ´ τ ` 1, kss.

Proof. Let k ě τ , where τ ą 0 is defined in Assumption 2. Inequality ιk ď k directly

comes from Definition (11). We prove the lower bound on ιk by contradiction. Let us

suppose that ιk ď k ´ τ . Two situations may arise.

Case 1: ιk “ 0. By definition, c0, . . . , ck´1 ‰ ck and an easy induction gives

S0
ck

“ . . . “ Sk
ck

. Non-overlap rule (5) with c0, . . . , ck´1 ‰ ck yields

p@j P rr0, k ´ 1ssq Sj
ck

X Sj
cj

“ Sk
ck X Bj (20)

“ H. (21)

Since Sk
ck

is non empty by Assumption 2, condition (20) ensures the existence of

some ik P rr1, N ss verifying ik R
k´1
Ť

j“0

Bj contradicting
k´1
Ť

j“k´τ

Bj “ rr1, N ss, as k ě τ .
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Case 2: ιk ą 0. We have cιk´1 “ ck and a finite induction leads to

p@j P rrιk, kssq Sιk
ck

“ Sιk
cιk´1 “ Sj

cιk´1 “ Sj
ck
. (22)

Majoration ιk ď k ´ τ implies that

p@j P rrk ´ τ, kssq Sιk
ck

“ Sj
ck
. (23)

Non-overlap rule (5) with ck´τ , . . . , ck´1 ‰ ck then gives

p@j P rrk ´ τ, k ´ 1ssq Sj
ck

X Sj
cj

“ Sιk
ck

X Bj (24)

“ H. (25)

Since Sιk
ck

is non empty, Condition (24) thus ensures the existence of ik P rr1, N ss

verifying ik R
k´1
Ť

j“k´τ

Bj which contradicts
k´1
Ť

j“k´τ

Bj “ rr1, N ss.

Assumption 3. (Curvature of majorizing matrix)

(i) The mapping A : x P RN ÞÑ Apxq P SN
`` is such that (3) holds. Moreover, there

exists ν ą 0 such that, for all S P T and v P R|S|,

0 ă ApSqpvq ĺ νI|S|. (26)

(ii) There exists ν ą 0 such that, for all k P N,

Γk
c “ ApBkqpx

ιkq ´
1

2
ApBkqpx

k
q ľ

˜

L
?
τp1 ` τq

2
` ν

¸

I|Bk|. (27)

Assumption 3(i) is standard in optimization literature dealing with MM methods

involving quadratic surrogates [17]. Assumption 3(ii) assumes that the spectrum of

the difference between delayed and exact majorizing matrices of the partial quadratic

majoring functions is strictly greater than a certain constant. This hypothesis controls

the length of the MM increments performed by each worker. It aims at ensuring

consistency between the asynchronous updates, by directly relating the worst-case

curvature of the function f (parameterized by the Lipschitz constant L) and the worst-

case communication delay (parameterized by the constant τ). Condition (27) is key to

ensure a condition descent for the general process generated by BD3MG scheme (see

subsection 4.1). Assumption 3(ii) becomes redundant with Assumption 3(i) in the case

when no delay occurs (i.e., τ “ 0). A detailed constructive example on how to meet

Assumption 3(ii) will be provided in our experimental Section 5.

3.2. Technical lemmas

We conclude this section by presenting some preliminary results that will be useful

for our convergence analysis.
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Lemma 3.1. Under Assumption 2, for every k ě τ ,

›

›

›
xk

´ xιk

›

›

›

2

ď τ
k
ÿ

j“k´τ`1

›

›

›
xj

´ xj´1
›

›

›

2

. (28)

Proof. Let k P N. If ιk “ k, inequality (28) is trivial. For the rest of the proof we thus

suppose ιk ď k ´ 1. According to the definition of the euclidean norm we have

›

›

›
xk

´ xιk

›

›

›

2

“

N
ÿ

n“1

´

xk
n ´ xιk

n

¯2

. (29)

Then, for all n P J1, NK, the Jensen’s inequality leads to

´

xk
n ´ xιk

n

¯2

“

¨

˝

k
ÿ

j“ιk`1

´

xj
n ´ xj´1

n

¯

˛

‚

2

ď pk ´ ιkq

k
ÿ

j“ιk`1

´

xj
n ´ xj´1

n

¯2

. (30)

Moreover, Proposition 3.1 ensures that ιk belongs to Jk ´ τ ` 1, kK. As a consequence

`

@n P J1, NK
˘

´

xk
n ´ xιk

n

¯2

ď τ
k
ÿ

j“k´τ`1

´

xj
n ´ xj´1

n

¯2

. (31)

We then replace (31) in (29), which yields

›

›

›
xk

´ xιk

›

›

›

2

ď τ
k
ÿ

j“k´τ`1

N
ÿ

n“1

´

xj
n ´ xj´1

n

¯2

. (32)

Relation (28) directly comes from the identification of the inner sum of (32) as
›

›xj ´ xj´1
›

›

2
for all j P Jk ´ τ ` 1, kK.

Lemma 3.1 provides a bound on the residual between xk and the delayed vector

xιk updated by worker ck at iteration k P N. The right term in (28) can be understood

as the extra information available to the master, when compared to the one available

to worker ck. This Lemma will allow to establish a descent condition on the BD3MG

process in the next Section.

Lemma 3.2. Under Assumptions 1 and 3(i), for every k P N,

}∇pBkqfpxιkq}
2

ď ν2
}xk`1

´ xk
}
2. (33)

Proof. Let k P N. Let us analyse the quantity fpxιkq ´ QBkpxk`1
pBkq

,xιkq.

On the one hand, function Ψk : α P R ÞÑ QBkpxk
pBkq

´ Dkαe,xιkq with e “ p1, 0qJ is a

second degree convex polynomial with a unique minimizer that reads

pαk “
}∇pBkqfpxιkq}2

}∇pBkqf pxιkq }2A
pBkq

pxιk q

. (34)
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Since uk is a minimizer of QBkpxιk
pBkq

` Dk.,xιkq “ QBkpxk
pBkq

` Dk.,xιkq, with

xιk
pBkq

“ xk
pBkq

by Equation (11), we deduce that

QBkpxk`1
pBkq

,xιkq ď Ψkppαkq “ fpxιkq ´
1

2
pαk}∇pBkqfpxιkq}

2. (35)

From Assumption 3(i), pαk verifies pαk ě ν´1. Equation (35) can thus be rewritten as

fpxιkq ´ QBkpxk`1
pBkq

,xιkq ě
1

2ν
}∇pBkqfpxιkq}

2. (36)

On the other hand, using (15) from Definition (2), and Equation (16) yield

fpxιkq ´ QBkpxk`1
pBkq

,xιkq

“

A

∇pBkqfpxιkq , xk`1
pBkq

´ xιk
pBkq

E

`
1

2

›

›

›
xk`1

pBkq
´ xιk

pBkq

›

›

›

2

A
pBkq

pxιk q

“

A

∇pBkqfpxιkq , xk`1
pBkq

´ xk
pBkq

E

`
1

2

›

›

›
xk`1

pBkq
´ xk

pBkq

›

›

›

2

A
pBkq

pxkq

“
1

2

›

›

›
xk`1

pBkq
´ xk

pBkq

›

›

›

2

A
pBkq

pxιk q
. (37)

The combination of (36) and (37) leads to

}∇pBkqfpxιkq}
2

ď ν
›

›

›
xk`1

pBkq
´ xk

pBkq

›

›

›

2

A
pBkq

pxιk q
. (38)

Finally, Equation (33) comes using Assumption 3(i), and in particular,

›

›

›
xk`1

pBkq
´ xk

pBkq

›

›

›

2

A
pBkq

pxιk q
ď ν

›

›

›
xk`1

pBkq
´ xk

pBkq

›

›

›

2

(39)

“ ν}xk`1
´ xk

}
2. (40)

Lemma 3.2 generalizes the decreasing behavior of standard MM schemes [18, 33] to

the asynchronous context. It is not directly invoked in our main convergence proof but

serves as an intermediary to show the following technical result.

Lemma 3.3. Under Assumptions 1 and 3(i), for all k ě 2τ ,

}∇fpxk
q} ď Lτ

k
ÿ

j“k´2τ`1

}xj
´ xj´1

} ` ν
k
ÿ

j“k´τ

}xj`1
´ xj

}. (41)

Proof. Let k ě 2τ . Assumption 2 allows us to bound the gradient of f at xk, as

}∇fpxk
q}

2
ď

k´1
ÿ

ℓ“k´τ

}∇pBℓqfpxk
q}

2
ď

¨

˝

k´1
ÿ

ℓ“k´τ

}∇pBℓqfpxk
q}

˛

‚

2

. (42)
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Let us extract the root of the above terms, and use triangular and gradient-Lipschitz

inequalities, leading to

}∇fpxk
q} ď

k´1
ÿ

ℓ“k´τ

}∇pBℓqfpxk
q ´ ∇pBℓqfpxιℓq} `

k´1
ÿ

ℓ“k´τ

}∇pBℓqfpxιjq}

ď L
k´1
ÿ

ℓ“k´τ

}xk
´ xιℓ} `

k´1
ÿ

j“k´τ

}∇pBjqfpxιjq}. (43)

For all ℓ P Jk ´ τ, k ´ 1K, by Proposition 3.1, ιℓ ě ℓ ´ τ ` 1 ě k ´ 2τ . Thus,

}xk
´ xιℓ} ď

k
ÿ

j“k´2τ`1

}xj
´ xj´1

}. (44)

The right term of (44) does not depend on index ℓ. Using (44) and inequality (33)

finally proves the result.

Lemma 3.3 is useful as it provides a bound on the gradient at step xk only depending

on the 2τ ` 1 past iterates xk, . . . ,xk´2τ .

Lemma 3.4. Let pukqkPN and pvkqkPN be two sequences of positive real numbers. If there

exists P P N and k˚ ě P such that

p@k ě k˚
q uk

ď r
k´1
ÿ

j“k´P

uj
` vk´1, (45)

with r ă 1{P and
`8
ř

k“0

vk ă `8 , then
`8
ř

k“0

uk ă `8.

Proof. Summing (45) from k˚ to n ě k˚ leads to

n
ÿ

k“k˚

uk
ď r

n
ÿ

k“k˚

k´1
ÿ

j“k´P

uj
`

n
ÿ

k“k˚

vk´1, (46)

with
n
ÿ

k“k˚

k´1
ÿ

j“k´P

uj
“

n
ÿ

k“k˚

P
ÿ

j“1

uk´j
“

P
ÿ

j“1

n´j
ÿ

k“k˚´j

uk
ď

P
ÿ

j“1

n
ÿ

k“0

uk. (47)

Plugging (47) into (46), yields

n
ÿ

k“k˚

uk
ď rP

n
ÿ

k“k˚

uk
`

¨

˝rP
k˚´1
ÿ

k“0

uk
`

n
ÿ

k“k˚

vk´1

˛

‚ď rP
n
ÿ

k“k˚

uk
`

¨

˝rP
k˚´1
ÿ

k“0

uk
`

`8
ÿ

k“0

vk

˛

‚,

(48)

that is p1 ´ rP q
řn

k“k˚ uk ď rP
řk˚´1

k“0 uk `
ř`8

k“0 v
k. With 0 ă 1 ´ rP ă 1, we deduce

the summability of
`

uk
˘

kPN.

Lemma 3.4 is a technical result to ensure the convergence of some real series. Several

variants of inequality (45) have been used to prove the finite length of iterative processes

and then their convergence [25, 8].
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4. Convergence results

Let us now state our main theoretical results, that relate to the convergence

properties of BD3MG iterates. Our proof line is reminiscent of [25, 8] and follows similar

steps that we summarize hereafter. First, starting from the majoration property (3) and

using Lemma 3.1, we will establish a descent inequality. The latter is the key point of

the rest of the proof. In particular, it will allow to show convergence of
`

fpxkq
˘

kPN.

Then, Lemma 3.3 will ensure that
`

∇fpxkq
˘

kPN converges to 0N , and usual topological

properties will serve to show that the set of cluster points CpxkqkPNq of pxkqkPN lies in

the set of stationary point of f . Finally, we will exhibit a Lyapunov function from

our descent inequality and will resort to the Kurdyka- Lojasewicz (KL) inequality [8] to

prove our main theorem, showing the convergence of the BDM3G iterates and providing

a rate of convergence.

4.1. Descent inequality

Proposition 4.1. Under Assumptions 1-2-3, there exists a positive sequence pνkqkěτ

such that

p@k ě τq fpxk`1
q ` νk`1 ď fpxk

q ` νk ´ ν}xk`1
´ xk

}
2. (49)

Proof. By definition of the majorant function (3), for every k P N,

fpxk`1
q ď fpxk

q `

A

∇pBkqfpxk
q, xk`1

pBkq
´ xk

pBkq

E

`
1

2
}xk`1

pBkq
´ xk

pBkq
}
2
A

pBkq
pxkq

. (50)

Decomposing the scalar product term then yields, for every k P N,

fpxk`1
q ď fpxk

q ` Rk `

A

∇pBkqfpxιkq, xk`1
pBkq

´ xk
pBkq

E

`
1

2
}xk`1

pBkq
´ xk

pBkq
}
2
A

pBkq
pxkq

,

(51)

with Rk “

A

∇pBkqfpxk
q ´ ∇pBkqfpxιkq, xk`1

pBkq
´ xk

pBkq

E

.

Let τ defined as in Assumption 2. A majoration of Rk for every k ě τ comes by

using successively Cauchy-Schwartz inequality, L gradient-Lipschitz inequality from

Assumption 1, and Lemma 3.1:

p@k ě τq Rk ď L}xk
´ xιk} }xk`1

pBkq
´ xk

pBkq
}

ď
L

2
?
τ

}xk
´ xιk}

2
`

L
?
τ

2
}xk`1

pBkq
´ xk

pBkq
}
2,

ď
L

?
τ

2

k
ÿ

j“k´τ`1

}xj
´ xj´1

}
2

`
L

?
τ

2
}xk`1

pBkq
´ xk

pBkq
}
2. (52)

We then set, for all k ě τ , νk “
L

?
τ

2

k
ř

j“k´τ`1

pj ´ k ` τq}xj ´ xj´1}2. Since
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xk`1
pBkq

´ xk
pBkq

“ xk`1 ´ xk, (52) also reads

p@k ě τq Rk ď νk ´ νk`1 `
Lτ

?
τ

2
}xk`1

pBkq
´ xk

pBkq
}
2

`
L

?
τ

2
}xk`1

pBkq
´ xk

pBkq
}
2,

“ νk ´ νk`1 `
L

?
τp1 ` τq

2
}xk`1

pBkq
´ xk

pBkq
}
2. (53)

Moreover, Equation (16) ensures that

p@k ě τq

A

∇pBkqfpxιkq, xk`1
pBkq

´ xk
pBkq

E

“ ´}xk`1
pBkq

´ xk
pBkq

}
2
A

pBkq
pxιk q. (54)

Replacing both (53) and (54) in (51) gives, for all k ě τ ,

fpxk`1
q ` νk`1 ď fpxk

q ` νk `
L

?
τp1 ` τq

2
}xk`1

pBkq
´ xk

pBkq
}
2

´ }xk`1
pBkq

´ xk
pBkq

}
2
Γk
c

“ fpxk
q ` νk ´ }xk`1

pBkq
´ xk

pBkq
}
2

Γk
c´

L
?
τp1`τq

2
I

|Bk|

, (55)

with Γk
c defined in Assumption 3(ii). (49) is a direct consequence of Assumption 3(ii)

remarking that }xk`1
pBkq

´ xk
pBkq

} “ }xk`1 ´ xk}.

4.2. General behaviour

We now state our first convergence Theorem for BD3MG algorithm.

Theorem 4.1. Under Assumptions 1-2-3, sequence
`

fpxkq
˘

kPN generated by BD3MG

converges to a finite limit f8. Moreover,
`

∇fpxkq
˘

kPN converges to 0N .

Proof. Coercivity of f (Assumption 1) and (49) guarantee that
`

fpxkq ` νk
˘

kPN is a

decreasing and lower-bounded sequence. It is thus converging to a real value f8.

Equation (49) then directly leads to
ř`8

k“0 }xk`1 ´ xk}2 ă `8. On the first hand,

using the same notation pνkqkPN introduced in our proof of Proposition 4.1, we have

p@k ě τq νk ď
Lτ

?
τ

2

`8
ÿ

j“k´τ`1

}xj
´ xj´1

}
2. (56)

Thus, the sequence pνkqkPN converges to 0 and so, by Proposition 4.1,
`

fpxkq
˘

kPN goes

to f8. On the other hand, Lemma 3.3 gives

p@k ě 2τq }∇fpxk
q} ď Lτ

`8
ÿ

j“k´2τ`1

}xj
´ xj´1

} `

`8
ÿ

j“k´τ

}xj`1
´ xj

}, (57)

which enables to conclude that
`

∇fpxkq
˘

kPN converges to 0N .

Proposition 4.2. Under Assumptions 1-2-3, C
`

pxkqkPN
˘

, defined as the set of

accumulation points of
`

xk
˘

kPN, is non empty , compact and is a subset of the set of

stationary points of f . Moreover, f takes value f8 on C
`

pxkqkPN
˘

.
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Proof. Coercivity of f (by Assumption 1) and convergence of
`

fpxkq
˘

kPN to f8 (by

Theorem 4.1) show that
`

xk
˘

kPN is a bounded sequence and C
`

pxkqkPN
˘

is non empty and

compact. Convergence of
`

∇fpxkq
˘

kPN to 0N (by Theorem 4.1) guarantees that every

point x˚ P C
`

pxkqkPN
˘

is a stationary point of f . Moreover, using again
`

fpxkq
˘

kPN
converging to f8 yields f8 “ fpx˚q for every x˚ P C

`

pxkqkPN
˘

which concludes the

proof.

4.3. Lyapunov-based asymptotical analysis

In order to establish the convergence of the iterates of BD3MG, we will follow an

analysis relying on the use of a Lyapunov function. Such proof technique has also been

used in [25, 77, 74]. The idea is to exhibit a function, related to the loss function f but

non necessarily equals to it, that decreases monotonically along the iterative process.

Given (49), a natural choice is

L : Z “

¨

˚

˚

˝

Z0

...

Zτ

˛

‹

‹

‚

P Rpτ`1qN
ÞÑ fpZ0q `

L
?
τ

2

τ
ÿ

ℓ“1

pτ ´ ℓ ` 1q}Zℓ ´ Zℓ´1}
2. (58)

Let us denote, for every k ě τ , Zk “

¨

˚

˚

˝

xk

...

xk´τ

˛

‹

‹

‚

P Rpτ`1qN , with xk the k-th BD3MG

iterate. Then, the descent condition from Proposition 4.1 can be rewritten as

p@k ě τq LpZk`1
q ď LpZk

q ´ ν}xk`1
´ xk

}
2. (59)

The structure of L allows to build an upper bound of its gradient norm along the

iterates, where the bound depends only on the differences of the past iterates:

Lemma 4.1. There exists ρ ą 0 such that

p@k ě τq }∇LpZk
q} ď ρ

k
ÿ

j“k´2τ`1

}xj
´ xj´1

}. (60)

Proof. Function L is differentiable. The expression of its gradient is

´

@Z P Rpτ`1qN
¯

∇LpZq “ g0 ` L
?
τ

τ
ÿ

ℓ“1

pτ ´ ℓ ` 1qgℓ, (61)

where g0 “

˜

∇fpZ0q

0τN

¸

and
`

@ℓ P J1, τK
˘

gℓ “

¨

˚

˚

˚

˝

0pℓ´1qN

Zℓ´1 ´ Zℓ

Zℓ ´ Zℓ´1

0pτ´ℓqN

˛

‹

‹

‹

‚

. (62)
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Let us apply twice the Jensen inequality for the square of the norm and then the

majoration τ ´ ℓ ` 1 ď τ for 1 ď ℓ ď τ . This yields

´

@Z P Rpτ`1qN
¯

}∇LpZq}
2

ď 2}g0}
2

` 2pLτq
2

τ
ÿ

ℓ“1

pτ ´ ℓ ` 1q
2
}gℓ}

2

“ 2}∇fpZ0q}
2

` 4pLτq
2

τ
ÿ

ℓ“1

pτ ´ ℓ ` 1q
2
}Zℓ ´ Zℓ´1}

2

ď 2}∇fpZ0q}
2

` 4L2τ 4
τ
ÿ

ℓ“1

}Zℓ ´ Zℓ´1}
2. (63)

Using
?
a2 ` b2 ď a ` b for the two quantities at the right of (63) and then standard

norm majoration inequalities, we get:

´

@Z P Rpτ`1qN
¯

}∇LpZq} ď
?

2}∇fpZ0q} ` 2Lτ 2
τ
ÿ

ℓ“1

}Zℓ ´ Zℓ´1}. (64)

The application of (64) to sequence pZkqkPN leads to

p@k ě τq }∇LpZk
q} ď

?
2}∇fpxkq} ` 2Lτ 2

k
ÿ

j“k´τ`1

}xj
´ xj´1

}. (65)

By Lemma 3.3 and (65), we finally deduce that

p@k ě 2τq }∇LpZk
q} ď

?
2Lτ

k
ÿ

j“k´2τ`1

}xj
´ xj´1

} `
?

2ν
k
ÿ

j“k´τ

}xj`1
´ xj

}

` 2Lτ 2
k
ÿ

j“k´τ`1

}xj
´ xj´1

}

ď

´?
2Lτ `

?
2ν ` 2Lτ 2

¯

k
ÿ

j“k´2τ`1

}xj
´ xj´1

}, (66)

which concludes the proof taking ρ “
?

2Lτ `
?

2ν ` 2Lτ 2.

The following analysis makes use of recent theoretical results around the KL

inequality [3, 8] that we recall hereafter. For every ζ ą 0, we denote by Φζ the set

of concave functions φ : r0, ζq ÞÑ R` verifying :

‚ φp0q “ 0.

‚ φ P C1pp0, ζqq and is continuous in 0.

‚ @s P p0, ζq, φ1psq ą 0.

We are then ready to introduce the so-called KL property. [3, 8]
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Definition 4.1. [KL property] A differentiable function g : Rd Ñ R, with d ě 1,

satisfies the Kurdyka- Lojasiewicz (KL) property on E Ă Rd if, for every z P E and

every bounded neighborhood V of z, there exist ζ ą 0 and φ P Φζ such that every

x P E X tx s.t. |gpxq ´ gpzq| ă ζu,

}∇gpxq}φ1
p|gpxq ´ gpzq|q ě 1. (67)

We also recall the following Lemma:

Lemma 4.2. [Uniform KL property [8, Lemma 6]] Let C a compact set of Rd and

g : Rd Ñ R a differentiable function satisfying KL property on C and constant on the

latter. Then, there exist ϵ, ζ ą 0 and φ P Φζ such that every x P C and all x P Rd

satisfying both dpx, Cq ă ϵ, 0 ă gpxq ´ gpxq ă ζ, we have

}∇gpxq}φ1
p|gpxq ´ gpxq|q ě 1. (68)

Proposition 4.3. Under Assumptions 1-2-3, if L defined in (58) fulfills the KL property

on Rpτ`1qN then, considering g “ L, C “ C
`

pZkqkPN
˘

with LpCq “ tf8u, there exists

ϵL, ζL and ϕL P ΦζL such that L satisfies (68).

Proof. This is a direct consequence of Lemma 4.2. Continuity of L is clear. We still

have to verify the compactness of C
`

pZkqkPN
˘

and that L is constant valued on that set.

C
`

pZkqkPN
˘

is closed. Moreover, it is straightforward to show that this set is included

in the Cartesian product
”

C
`

pxkqkPN
˘

ıτ`1

, where C
`

pxkqkPN
˘

is compact. C
`

pZkqkPN
˘

is thus bounded and, finally, it is compact.

Let Z P C
`

pZkqkPN
˘

. We have LpZkq “ fpxkq ` νk for all k P N. From our proof

of Theorem 4.1, it follows that sequence
`

LpZkq
˘

kPN converges to f8. Continuity of L

finally ensures that f8 “ LpZq. This proves that f is constant valued on C
`

pZkqkPN
˘

(and equals to f8).

4.4. Convergence of the iterates

We are now ready to state our second convergence Theorem for BD3MG algorithm,

characterizing the convergence of pxkqkPN.

Theorem 4.2. Let assume that Assumptions 1-2-3 hold. Assume furthermore that the

Lyapunov function L in (58) satisfies the KL property on Rpτ`1qN . Then, sequence

pxkqkPN is of finite length, i.e :

`8
ÿ

k“0

}xk`1
´ xk

} ă `8, (69)

and converges to a stationary point of f .
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Proof. Let us start considering the case when there exists some k0 P N where LpZk0q “

f8. Since
`

LpZkq
˘

kPN is decreasing sequence converging to f8 (see proof of Proposition

4.3), it follows that LpZkq “ f8 for all k ě k0. (59) then gives

p@k ě k0q }xk`1
´ xk}

2
ď ν´1

´

LpZk
q ´ LpZk`1

q

¯

“ 0, (70)

ensuring that pxkqkPN has a finite length and xk, k ě 0, is a stationary point of f .

We now suppose that, for all k P N, LpZk0q ‰ f8. We aim at exhibiting a uniform

KL inequality on sequence
`

LpZkq
˘

kPN. To do so, let us peruse the quantities ϵL, ηL, φL

arising from Proposition 4.3.

On the one hand, the decrease of
`

LpZkq
˘

kPN implies that, for all k P N, LpZkq ą f8.

The set C
`

pxkqkPN
˘

is non empty (see proof of Proposition 4.2), so is the set C
`

pZkqkPN
˘

.

Let Z P C
`

pZkqkPN
˘

an element of such set i.e., a cluster point of pZkqkPN. From

Proposition 4.3, LpZq “ f8. Hence, LpZkq ´ LpZq ą 0 for all k P N.

On the other hand,
`

LpZkq
˘

kPN converges to f8 “ LpZq. The boundedness of pxkqkPN

also ensures this of pZkqkPN.

We deduce the existence of some k1 ě 2τ such that

p@k ě k1q 0 ă LpZk
q ´ LpZq ă ηL, d

ˆ

Zk, C
´

pZk
qkPN

¯

˙

ă ϵL. (71)

From Proposition 4.3, the uniform KL property on L holds i.e.,

p@k ě k1q }∇LpZk
q}

´

φL
¯1 ´

LpZk
q ´ LpZq

¯

ě 1. (72)

Moreover, setting ∆k “ φL
`

LpZkq ´ LpZq
˘

´ φL
`

LpZk`1q ´ LpZq
˘

for all k P N,

concavity of φL and (59) ensure that

p@k ě k1q ∆k
ě

´

φL
¯1 ´

LpZk
q ´ LpZq

¯´

LpZk
q ´ LpZk`1

q

¯

ě ν}xk`1
´ xk

}
2
´

φL
¯1 ´

LpZk
q ´ LpZq

¯

. (73)

The combination of the latter with (72) leads to

p@k ě k1q }xk`1
´ xk

}
2

ď ν´1∆k
}∇LpZk

q}. (74)

By Lemma 4.1, we can upper bound the gradient term in (74). This gives

p@k ě k1q }xk`1
´ xk

}
2

ď ρν´1∆k
k
ÿ

j“k´2τ`1

}xj
´ xj´1

}. (75)

Passing to the root and using the classical identity
?
ab ď a{c ` bc{4, with a “

k
ř

j“k´2τ`1

}xj ´ xj´1} for all k ě k1, b “ ∆k, both positive for all k ě k1 and some

c ą 0 is generic, leads to

p@k ě k1q }xk`1
´ xk

} ď

?
ρν´1{2

c

k
ÿ

j“k´2τ`1

}xj
´ xj´1

} `
c
?
ρν´1{2

4
∆k. (76)



5 APPLICATION TO 3D IMAGE RESTORATION 24

Since p∆kqkPN is summable (as a telescopic sequence), we can apply Lemma 3.4 with

some c ą 2τ
?
ρν´1{2 so that 2τ

?
ρν´1{2

c
ă 1. This shows that sequence pxkqkPN has a

finite length.

This finite length property entails that pxkqkPN is a Cauchy sequence and thus a

converging one. The final conclusion directly comes from Proposition 3.1, ensuring that

every accumulation point of pxkqkPN is a stationary point of f .

4.5. Discussion

Under the KL condition for the Lyapunov function L defined in (58), we were able

to demonstrate the convergence of sequence pxkqkPN to a stationary point of f . Let

us notice that f satisfying KL property does not necessary imply that L does. Still,

our assumption on L can be verified in practice for a wide class of functions f . For

instance, following the discussion in [25, section 6], if f is semi-algebraic [7, 8], then the

required condition on L in Theorem 4.2 is satisfied, with function φL “ κp.q1´θ for a

some pκ, θq P R˚
` ˆ p0, 1q. Such situation will be met in our experimental settings in

Section 5. Extending Theorem 4.2 to any KL function f would be an interesting avenue

for future work but up to our knowledge, it does not seem straightforward.

5. Application to 3D image restoration

5.1. Problem statement

5.1.1. Observation model. We focus on the inverse problem of restoring a vectorized

3D volume x of size N “ NX ˆ NY ˆ NZ given blurry and noisy observation y P RN .

We consider a depth-variant 3D blur operator H P RNˆN associated to kernels with

support size M “ MX ˆ MY ˆ MZ, and additive i.i.d. Gaussian noise with standard

deviation σ ą 0, so that the observed volume is related to x through,

y “ Hx ` b, (77)

with vector b P RN accounting for the noise. The goal is to solve the inverse problem

of estimating x given y and H . Depth-variant blurs are commonly encountered in 3D

microscopy [64, 39, 46, 45], due to optical aberrations. They are particular cases of

spatially-variant blurs [12, 55]. The degradation operator H raises specific challenges

due to its high computational cost. Several strategies have been investigated in the

case of 2D spatially variant blur maps encountered for instance in astronomical imaging

[27, 28, 30]. The extension to 3D maps of these methods is however not covered up

to our knowledge. This motivates the use of a distributed optimization approach for

solving the inverse problem (77).

5.1.2. Objective function We adopt a variational strategy, which consists in seeking

for an estimate of x that minimizes a penalized least squares criterion f . A hybrid
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regularization term is employed incorporating prior knowledge on the smoothness and

the range of the sought solution. The objective function reads:

p@x P RN
q fpxq “

S
ÿ

s“1

fspLsxq, (78)

where, for every s P t1, . . . , Su, Ls P RPsˆN , Ps P N˚, and fs is a function from RPs

to R. f1 ˝ L1 represents the data fidelity term while the other terms are regularization

terms. Here, we set S “ 4 and

‚ P1 “ N , L1 “ H , f1 “ 1
2
} ¨ ´y}2,

‚ P2 “ N , L2 “ IN , f2 “ η d2
rxmin,xmaxsN

,

‚ P3 “ 2N , L3 “ rpV XqJ pV YqJsJ, f3 “ λ
N
ř

n“1

b

r.s2n ` r.s2N`n ` δ2,

‚ P4 “ N , L4 “ V Z, f4 “ κ} ¨ }2.

Hereabove, pη, λ, δ, κq P p0,`8q4 are hyper-parameters. The linear operators

V X,V Y,V Z P RNˆN are discrete gradient operators along X (horizontal), Y (vertical),

and Z (longitudinal) directions of the 3D volume. Function d2
rxmin,xmaxsN

states for the

squared distance to set rxmin, xmaxsN Ă RN , with pxmin, xmaxq P R2 minimal and maximal

bounds on the sought intensity values. The later term can be viewed as an exterior

penalty function [19]. ;.

5.1.3. Majorant mapping. In order to implement BD3MG, we must build a majorant

mapping ensuring the majorization condition (3). First, let us notice that, according to

(78), the gradient of f reads

p@x P RN
q ∇fpxq “

S
ÿ

s“1

LJ
s φspLsxq, (79)

with, for every s P t1, . . . , Su, φs : RPs Ñ RPs the gradient operator of fs. Then,

function f fits within the class of half-quadratic majorizing constructions initially

introduced in [35, 36] and later analysed in [57, 2, 17]. A general structure for the

majorant mapping of (78) is thus

p@x P RN
q Apxq “

S
ÿ

s“1

LJ
s Diag

1ďpďPs

␣

rωspLsxqsp
(

Ls, (80)

where, for every s P t1, . . . , Su, ωs : RPs Ñs0,`8rPs is a majorizing potential that

depends on the properties of pfsq1ďsďS [21, Tab. I]. In our case, for every s P t1, . . . , 4u,

; Function x P RN ÞÑ d2Epxq is 2-Lipschitz differentiable a soon as E is non-empty closed and

convex set [4]. Denoting by pE the orthogonal projection operator, its gradient then corresponds

to x P RN ÞÑ 2px ´ PEpxqq.
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each of these terms is fs is βs-Lipschitz differentiable with

$

’

’

’

’

’

&

’

’

’

’

’

%

β1 “ 1,

β2 “ 4η,

β3 “ λδ´1,

β4 “ 2κ.

(81)

Then, from descent lemma [6], a valid choice is ωsp¨q “ αβs1Ps with some α ě 1 [17].

We adopt this simple strategy for functions f1, f2 and f4, which yields

$

’

’

&

’

’

%

ω1p¨q “ α1N

ω2p¨q “ 4αη1N

ω4p¨q “ 2ακ1N .

(82)

Regarding function f3, a more sophisticated majorization is adopted, inherited from

half-quadratic strategies [2, 57]:

p@v P R2N
q ω3pvq “ λ

»

—

—

—

–

ˆ

1{

b

v2n ` v2N`n ` δ2
˙

1ďnďN
ˆ

1{

b

v2n ` v2N`n ` δ2
˙

1ďnďN

fi

ffi

ffi

ffi

fl

. (83)

A quadratic majorant function satisfying (3) for a given block S P T can then be

obtained using (2) with (79) and (80).

5.1.4. Distributed implementation We implement BD3MG algorithm as presented in

Section 2.4. Our code is available at [14]. We split the 3D volume into 2D slices along

the depth axis z P t1, . . . , NZu, and consider each 2D slice as an individual block upon

which workers can compute an update. Assuming a lexicographic ordering of the voxels,

this means that the following partition is adopted:

T “
␣

Jpi ´ 1qNXNY ` 1, iNXNYK | 1 ď i ď NZ

(

. (84)

BD3MG is implemented on a star graph of workers with a specific master aggregating the

current solution. For a given number of active cores Ctot “ C ` 1 of the computer (or of

the cluster), one is used as the master process to manage the computation split between

the workers while all the Cp“ Ctot ´ 1q others, are computing updates asynchronously

on planar blocks (i.e., Algorithm 2). We initially set, for every c P t1, . . . , Cu, S0
c

corresponding to the index set of the ppc´ 1qt
NZ

C
u ` 1q-th 2D slice in the volume. Then,

at each iteration k, the master requires worker ck to process the 2D slice with index set

Sk`1
ck

, by applying a first-in, first-out basis. The worker ck hence computes the update

for the 2D slice that has been modified the longest time ago, assuming it is available

(i.e., not processed in the same time by another worker). A cyclic block update is
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used as default choice, if several blocks are available (this typically arises in the first

iterations). Furthermore, the master controls that each slice has been updated at least

once every τ iterations. Regarding data exchange, as emphasized in Section 2.5, in

practice, it is not necessary to share the full vector x with all the workers. Consider

a worker update associated to the block S P T. The worker has to compute ∇pSqfpxq

and ApSqpxq. Because of the structure of (78), these quantities actually only depend

on a subpart of vector x, defined by pxnqnPVS , with VS Ă rr1, N ss a set which has low

cardinality compared to the full volume size N . Let us explicit this set for our practical

example. The key ingredients to account for are (i) the presence of null entries in the

linear operators pLsq1ďsďS, (ii) the (almost) separability of operators pφs, ωsq1ďsďS. We

introduce the following sets, for every s P t1, . . . , Su,

p@n P t1, . . . , Nuq coln,s “
␣

p P t1, . . . , Psu s.t. pLsqp,n ‰ 0
(

, (85)

p@p P t1, . . . , Psuq rowp,s “
␣

n P t1, . . . , Nu s.t. pLsqp,n ‰ 0
(

, (86)

Moreover the separable structures of pφs, ωsq1ďsďS ensure that for every s P t1, . . . , Su

and p P t1, . . . , Psu, there exists a subset Vs,p Ă rr1, Psss as well as two functions

rφs,p : R|Vs,p| Ñ R and rωs,p : R|Vs,p| Ñ p0,`8q such that

p@v P RPsq

$

&

%

“

φspvq
‰

p
“ rφs,ppvpVs,pqq,

“

ωspvq
‰

p
“ rωs,ppvpVs,pqq.

(87)

Considering this, we can now rewrite the expressions ∇pSqfpxq and ApSqpxq as

p@x P RN
q ∇pSqfpxq “

´

“

∇fpxq
‰

i

¯

iPS
, (88)

with, for every i P S,

“

∇fpxq
‰

i
“

S
ÿ

s“1

”

LJ
s φspLsxq

ı

i
, (89)

“

S
ÿ

s“1

Ps
ÿ

p“1

pLsqp,i
“

φspLsxq
‰

p
, (90)

“

S
ÿ

s“1

ÿ

pPcoli,s

pLsqp,i
“

φspLsxq
‰

p
, (91)

“

S
ÿ

s“1

ÿ

pPcoli,s

pLsqp,irφs,pprLsxs
pBs,pq

q, (92)

“

S
ÿ

s“1

ÿ

pPcoli,s

pLsqp,irφs,p

¨

˚

˝

»

–

N
ÿ

n“1

pLsqℓ,nxn

fi

fl

ℓPVs,p

˛

‹

‚

, (93)

“

S
ÿ

s“1

ÿ

pPcoli,s

pLsqp,irφs,p

¨

˚

˝

»

–

ÿ

nProwℓ,s

pLsqℓ,nxn

fi

fl

ℓPVs,p

˛

‹

‚

, (94)
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Similar computation shows that, for every pi, jq P S2,

“

Apxq
‰

i,j
“

S
ÿ

s“1

ÿ

pPcoli,sXcolj,s

pLsqp,ipLsqp,jrωs,p

¨

˚

˝

»

–

ÿ

nProwℓ,s

pLsqℓ,nxn

fi

fl

ℓPVs,p

˛

‹

‚

. (95)

Hence, (94)-(95) reflect the fact that the only coordinates of the vector x that are

manipulated to compute the gradient and majorant mapping related to block S, belong

to VS where

VS “
ď

iPS

ď

sPt1,...,Su

ď

pPcoli,s

ď

ℓPVs,p

rowℓ,s. (96)

Since matrices pLsq1ďsďS are very sparse and functions pφs, ωsq1ďsďS close to separable

ones, the cardinality of the involved sets in (96) is small so that the memory load for

each communication in between master and worker is limited §.

5.1.5. Validity of Assumptions. Let us discuss the validity of Assumptions 1, 2 and 3

for the considered problem and implementation.

Assumption 1. Function f in (78) is differentiable. Moreover, it has a L-Lipschitzian

gradient with L “
řS

s“1 βs|||Ls|||
2, where ||| ¨ ||| denotes the spectral norm over matrices

and pβsq1ďsďS were given in the previous subsection. According to [67, Prop. 2.5], a

sufficient condition for f to be coercive is KerpHq “ t0Nu. This latter is verified in our

experiments, since H is a full-rank operator. Thus, Assumption 1 holds.

Assumption 2. This assumption relates to the practical implementation of BD3MG and

requires every subset of variables to be updated within a finite number of iterations. In

practice, we introduced a safety check in the master loop, that introduces an idle time

if a slice has not been updated within the last τ iterations with τ a predefined value. In

our implementation, each worker is in average in charge of NZ

C
2D slices, of the volume.

We thus set τ “ 2
Q

NZ

C

U

, that is each worker is allowed to spend, in average twice more

time to update one slice than another. Given our block selection rule, with balanced

computational load per slide, and relying on first-in, first-out, this situation could only

arise if a worker experienced a major delay, which never occurred in our experiments.

Assumption 3. This assumption relates to the majorant mapping. To check this

assumption, we proceed in three steps. On the one hand, we have,

p@x P RN
q Apxq ľ LJ

2 Diag
1ďpďP2

␣

ω2pL2xq
(

L2 ľ αηIN . (97)

§ Let us point out that it is not necessary for the worker to have access to the full operators pLsq1ďsďS

but only to the entries involved in expressions (94)-(95). In particular, in our implementation, only

the kernel blurs related to the depths in a neighborhood of the 2D slice are shared, reducing again the

memory load (see for instance apply PSFvar3Dz block.py in [14]).
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On the other hand, according to definition (80) and those of ω1, . . . , ω4

p@x P RN
q Apxq ĺ

¨

˝

S
ÿ

s“1

|||Ls|||
2 max
1ďpďPs

rωspLsxqsp

˛

‚IN ĺ νIN , (98)

with

ν “ α

¨

˝

S
ÿ

s“1

βs|||Ls|||
2

˛

‚. (99)

Considering (97), (98)-(99) and the fact that any sub-matrix MpSq pS Ă J1, NK) of a

(symmetric) positive matrix M remains positive, the chosen mapping A thus respects

conditions imposed by Assumption 3(i). Moreover, for all px,yq P pRNq2,

Apxq ´
1

2
Apyq

“

S
ÿ

s“1

pLsq
J Diag

1ďpďPs

#

ˆ

rωspLsxqsp ´
1

2
rωspLsyqsp

˙

+

Ls (100)

“
α

2

ÿ

sPt1,2,4u

pLsq
JLs ` pL3q

J Diag
1ďpďP3

#

ˆ

rω3pL3xqsp ´
1

2
rω3pL3yqsp

˙

+

L3

ľ
α

2
LJ

2L2 ` pL3q
J Diag

1ďpďP3

#

ˆ

rω3pL3xqsp ´
1

2
rω3pL3yqsp

˙

+

L3

ľ ηpαqIN with ηpαq “
α

2
´

8λ

2δ
, (101)

as |||L3|||
2 “ 8. Under the same previous remark on the block positivity preservation,

Assumption 3(ii) is verified considering α large enough (i.e so as for ηpαq to strictly

exceed bound L
?
τp1`τq

2
). In practice, we opt for α “ 1.1 ˆ

´

L
?
τp1 ` τq ` 8λ

δ

¯

. The

associated ν in (27) is ν “ ηpαq ´
L

?
τp1`τq

2
).

Convergence result In a nutshell, Assumptions 1-2-3 are fulfilled in our experiments,

so that Theorem 4.1 holds. Moreover, function f is semi-algebraic, hence so is the

Lyapunov function L (see discussion in Sec. 4.5). Thus, Theorem 4.2 holds.

5.2. Comparative analysis on a controlled scenario

We first set x as the 3D microscopic image FlyBrain [65] with size N “ NX ˆ

NY ˆ NZ “ 256 ˆ 256 ˆ 57. The linear operator H models a 3D depth-varying

Gaussian blur. For each depth z P t1, . . . , NZu, the blur kernel is characterized by

different variance and rotation parameters pσXpzq, σYpzq, σZpzq, φYpzq, φZpzqq, following

the model from [75]. In practice, the values of these five parameters are chosen randomly

through a uniform distribution over r0, 3s ˆ r0, 3s ˆ r0, 4s ˆ r0, 2πs ˆ r0, 2πs, sampled

independently for every z. The support of the blur is then truncated to reach a kernel
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size of M “ MX ˆ MY ˆ MZ “ 5 ˆ 5 ˆ 11, which appears large enough to avoid

spurious ringing effects. A zero-mean white Gaussian noise with standard deviation

σ “ 4 ˆ 10´2 is then added to the blurred volume. The regularization parameters

pλ, δ, κ, ηq “ p1, 1, 10´1, 10´3q are chosen empirically so as to maximize the Signal-to-

Noise Ratio (SNR) of the restored volume. Moreover, we set pxmin, xmaxq “ p0, 1q, equal

to the range of the ground truth image. In order to illustrate the acceleration induced

by the proposed BD3MG, we run a comparative analysis between different versions of

the optimization scheme, in the spirit of an ablation study. Namely, we propose to

compare BD3MG with three methods listed hereafter.

‚ The 3MG algorithm [17, 18] is considered as the baseline. At each iteration, this

algorithm builds the majorant mapping as in Sec. 5.1.3 and computes memory

gradient updates on the full volume, without any parallelization.

‚ The Asynchronous Block Gradient Descent (ABGD) algorithm implements the

method from [58]. It performs parallel asynchronous gradient descent updates over

the slices of the volume. We adopt here the same parallelization settings as for

our BD3MG. Updates correspond to the standard gradient descent on the selected

planar blocks, using a fixed step-size µ ensuring convergence of the iterative scheme,

namely µ “ 0.99{p1 ` κ ` 2λ{δ ` 2κq.

‚ The BP3MG algorithm from [10, 33] runs a synchronous version of BD3MG

algorithm. The master process carries out the main loop of [10, Alg 4.3]. At each

iteration k P N, it selects C block indices (following a cyclic rule) and sends to each

worker c P J1, CK the required data allowing it to update Sk
c , the associated block.

Workers process their block in parallel, wait for each other to finish their tasks,

combine their respective updates into a unique vector pxjqjPSk
1 Y...YSk

C
and finally

send the latter to the master. The majorant mapping is set as a block diagonal

matrix, allowing synchronous parallel updates, as described in [10]. This approach

could be interpreted as a special case of BD3MG with a single worker (potentially

composed of several subworkers) sending its update (potentially composed of several

sub-updates) to the central process Sk “ tSk
c ucPC . Thanks to the specific structure

of the majorant mapping in BP3MG, there is no mismatch in information between

central process and workers in this synchronous version, the delay vector ik always

equals k. Nonetheless, the block diagonal form of the majorant mapping of BP3MG

is at the price of a lower quality of approximation of the cost function, which might

result in slower convergence.

All methods are implemented in Python using the built-in Multiprocessing library

as well as Numpy and Scipy for both data manipulation and scientific computing. The

experiments of this section are conducted on an Intel® Xeon(R) W-2135 CPU with

Ctot “ 12 cores clocked at 3.70GHz. All the versions were initialized with x0 “ 0N

leading to an initial value fpx0q “ 91292.92. For every iteration k P N˚, we monitor

the cost function fpxkq, the normalized increment }xk`1 ´xk}{}xk}, the signal to noise
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ratio (SNR, in dB) defined as

SNR “ 20 log10

ˆ

}x}

}x ´ xk}

˙

, (102)

and the reconstruction error }x ´ xk}. The evolution of these metrics along time

for the tested algorithms is displayed on Figure 2. We then set a stopping criterion

}xk`1 ´xk} ď rε}xk}. The obtained solution is denoted as xf . We display in Table 1 the

metrics for the stopping criterion threshold rε “ 10´3. Table 1 and Figure 2 show that

BD3MG exhibits a faster practical convergence than its competitors. Both BD3MG and

ABGD are asynchronous distributed schemes, and the former implements an accelerated

version of the gradient descent involved in the latter. The MM metric and the subspace

scheme in BD3MG act as catalizers, improving the convergence rate compared to ABGD

which relies on a simple steepest descent with fixed stepsize. BP3MG and BD3MG

are based on the same inherent optimization scheme 3MG. However, BP3MG uses a

simplified block diagonal majorant mapping, and imposes synchronous updates, which

might yield idle times. These differences can explain why BD3MG converges faster

than BP3MG. Finally, 3MG does not exploit the multicore structure of the computing

architecture, and thus shows higher computational time.

Slices of the reconstructed volume are displayed in Figure 3, revealing fine details

of the image recovered by the restoration procedure.

Figure 2: Evolution of quantitative metrics along time (in seconds), for algorithms 3MG

(blue), ABGD (orange), BP3MG (green) and BD3MG (red), for FlyBrain restoration.

Evolution of reconstruction error }xk ´ x} (left), relative increment }xk`1 ´ xk}{}xk}

(middle), and SNR in dB (right).

5.3. Effect of an imbalanced computing power

In order to further demonstrate the advantages of BD3MG over its synchronous

counterpart BP3MG, we tested the methods under different computing environments

by synthetically modeling stochastic delays in the computing loop of workers. More

specifically, the same restoration task and computer characteristics than in the previous

section is considered, again with Ctot “ 12 active cores. We introduce artificial



5 APPLICATION TO 3D IMAGE RESTORATION 32

Figure 3: Restoration results of Flybrain: ground truth volume (top), degraded version

(middle), and results of BD3MG restoration (bottom). Visual comparisons along the

X ´ Z axis (left) the X ´ Y axis (middle) and zoomed details (right). The optimization

process recovers fine details of the original volume that were lost in its degraded version.

perturbation in the computing environment by randomly “freezing” some worker

processes for a certain amount of time (i.e., delay) following the three scenarios below:

‚ Type I: One of the workers is consistently affected by a delay that follows a uniform

distribution Upr0, 1sq (in sec.). The other cores are not affected by any delay.

‚ Type II: Two worker cores are not affected by any delay while the others 9 agents

are delayed in the following fashion:

3 cores hold a delay following a uniform distribution Upr0, 1sq.
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Version // Asy. MM SNR (dB) fpxfq Error Time (ˆ Acc.)

3MG ✗ ✗ ✓ 14.72 1266.04 79.28 1683.79 (1)

ABGD ✓ ✓ ✗ 15.11 1268.80 76.73 305.76 (5.51)

BP3MG ✓ ✗ ✓ 15.21 1264.08 75.33 489.99 (3.44)

BD3MG ✓ ✓ ✓ 15.26 1261.59 74.72 147.16 (11.44)

Table 1: Characteristics and performances of compared algorithms on the Flybrain

restoration task, for reaching the stopping criterion with rε “ 10´3. “//” = Parallel,

“Asy.” = Asynchronous, “MM” = Majorize-Minimize scheme. Time is in seconds and

“ˆ Acc.” is the acceleration ratio with respect to 3MG running time.

3 cores hold a delay following a uniform distribution Upr0, 0.5sq.

3 cores hold a delay following a uniform distribution Upr0, .25sq.

‚ Type III: All worker cores are affected by a delay that follows a uniform

distribution Upr0, 1sq.

Method (Scenario) SNR (dB) fpxf q Time (s.)

3MG (no delay) 18.1 1 247.0 1 683.8

BP3MG (Type I) 17.9 1 247.1 623.1

BD3MG (Type I) 18.7 1 246.0 211.3

BP3MG (Type II) 17.9 1 247.1 707.9

BD3MG (Type II) 18.7 1 246.0 220.7

BP3MG (Type III) 17.9 1 247.1 752.8

BD3MG (Type III) 18.7 1 246.0 219.9

Table 2: Performances of BP3MG and BD3MG under imbalanced computed power,

for reaching the stopping criterion with rε “ 5 ˆ 10´4 for Flybrain restoration. We

additionally provide results for the vanilla 3MG algorithm for sake of comparison.

The results are summarized in Table 2 and Figure 4. We also report the results of a plain,

not delayed, 3MG implementation, for the sake of comparison. In all three scenarios,

BD3MG outperforms its synchronous version BP3MG, in terms of computation time

while reaching similar final criterion value and SNR. The criteria decrease is faster

for BD3MG which can be explained by two main differences with BP3MG. First, the

majorant mapping of BD3MG performs a tighter approximation of the cost function

than BP3MG, thus leading intrinsically to improved convergence rate. Second, BD3MG

is asynchronous by essence and thus it is resilient to communication delays as soon

as they are bounded, as shown by our convergence analysis. In contrast, BP3MG

simply waits for all workers to finalize their update, to force the synchronicity, which

yields slowdown in case of delayed workers. A more efficient and dynamic handling of

the workload is performed in BD3MG, as shown in Figure 4 where CPU idle time is
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Figure 4: Numerical comparisons between BD3MG and BP3MG for FlyBrain

restoration under imbalanced computing power: evolution of the relative increment

}xk`1 ´xk}{}xk} along time (in sec.) for each of the three experimental settings in log-

log scale (left), and averaged ratio of workers CPU idle time over the entire optimization

process for each scenario (right).

consistently lower for BD3MG than for BP3MG. We note that in asymmetric settings

such as (Type II) and (Type III), BD3MG proved to be particularly efficient in reducing

the synchronicity constraint of BP3MG for “fast” workers. The comparable results for

BD3MG on all three scenarios further suggest that the proposed algorithm is robust

to an imbalance in the computing power of workers. Moreover, despite the delayed

feedbacks of the workers, both BP3MG and BD3MG remain competitive with respect

to the vanilla 3MG, which shows the great interest of a parallel friendly algorithmic

structure in this context.

5.4. Scalability assessment.

In order to assess the scalability properties of BD3MG, we further analyse the

speed-up generated by the number of cores available. We consider the restoration

problem of the 3D image Aneurysm [48] of size N “ NX ˆ NY ˆ NZ “ 256 ˆ 256 ˆ 154,

under the same degradation operator and noise level than in the previous example.

Figure 5 presents the acceleration ratio between the required computation time for a

single active worker versus the computation time of up to 30 active workers in reaching

the stopping criterion with rε “ 10´3. The regularization parameters are set empirically

to pλ, δ, κ, ηq “ p1, 1, 10´1, 10´3q to maximize the final SNR and the same blur kernel

than in the previous subsection is used. The computations were performed using HPC

resources from the Oscar - Ocean State Center for Advanced Resources of the Center

for Computation and Visualization, black University. The hardware is an Intel Corei9

CPU with up to 48 physical cores at 3.3 GHz GHz and 300G of RAM. Results found

in Figure 5 illustrate the great potential of scalability of the proposed algorithm. As

the number of core increases, a mild saturation effect is observed (in agreement with

Amdahl’s law [61]).

https://docs.ccv.black.edu/oscar/
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Figure 5: Speed-up ratio of the computation time for 1 to 30 cores for BD3MG for the

restoration of Aneurysm.

5.5. Application to real data from multiphoton microscopy

We finally illustrate the performance of BD3MG on a restoration task of real

multiphoton microscopy data specifically acquired for this experiment. Multiphoton

microscopy is an interesting solution for the 3D and submicrometric characterization

of biomedical structures, it is label-free and contactless [37]. Such a solution takes

advantage of optical sectioning, an optical property resulting from the nonlinear optical

processes involved. 3D images are produced with sub-micrometer resolution without

slicing the sample. We use an instrumental acquisition pipeline relying on a commercial

system from Olympus (BX61WI) coupled with a multiphoton water immersion objective

(Olympus XLPLN25XWMP, 25×, NA 1.05). A laser system, emitting femtosecond

pulses centred at 810 nm with 10 nm of spectral bandwidth, is used for production

of the nonlinear phenomena of second harmonic generation (SHG) and two-photon

fluorescence (TPF). The biomedical sample is made of a whole mouse muscle, the

Extensor digitorum longus (EDL), isolated from tendon to tendon. Sub-micrometric

fluorescent microspheres emitting in the green range are included into the EDL and

spread homogeneously all along the whole muscle structure. Under such an experimental

protocol, the production of two 3D images is obtained. The first channel contains

the SHG from the myosin of the muscle and the second channel displayed the TPF

of microspheres used for calibrating the instrumental PSF. A hundred of 2D image
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Figure 6: Slices (12, 5µmˆ12, 5µm) for depths z “ 5, 25 and 70 (from top to bottom) of

the original acquisition (left) and after restoration (right). The comparisons show that

the definition of the muscular structure has been enhanced by the reconstruction.

slices of SHG and TPF are produced, with 0.1 µm resolution along depth axis Z

and 0.049µmˆ0.049µm resolution over X ´ Y horizontal-vertical axis. The acquisition

recording starts 140 µm under the sample surface for a total sample thickness of 180

µm. For this range of depth, the imaging of biological samples is degraded by scattering

effects. Both raw volumes (i.e., SHG and TPF) dimension have 2048ˆ2048ˆ100 voxels,

from which we extract a subpart with size N “ NX ˆNY ˆNZ “ 256 ˆ 256 ˆ 100 voxels

for the purpose of our study.

We follow the computational pipeline FAMOUS previously introduced in [50].

We estimate a depth-variant Gaussian PSF field within the 3D microscopic volume

by applying the 3D Gaussian fitting algorithm FIGARO from [23] to volume of
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interests extracted from the second image channel, displaying fluorescence of calibrated

microbeads. Each volume of interest is selected through an automatic search of

connected components within a filtered and binarized version of the observed volume.

Then, FIGARO method is ran, yielding parameters (i.e., mean, covariance, scaling,

shift) of a 3D Gaussian shape. This allows to build, through a simple interpolation

strategy, a model for a depth-variant PSF with truncated support of size M “

MX ˆMY ˆMZ “ 21 ˆ 21 ˆ 21 (see more details in [50, Sec.2.4]). Since no ground truth

is available, the regularization parameters pλ, δ, κ, ηq “ p102, 2, 10, 10´3q, are selected

by retrospective visual inspection. The reconstruction shown in Figure 6 exhibits clear

contrasts and sharpness properties. Comparative videos of the original and restored

volume are available at [14]. The native signal from the raw image was presenting a

high level of noise and blur due to the presence of scattering elements all along the 140

µm of sample depth. Thanks to the proposed restoration strategy, the localisation of

the myosin in the muscle sample is made possible, and the spatial organization of this

protein into the down side of the EDL is revealed. The volume restoration took 305

seconds and „ 2000 iterations on a Ctot “ 12 cores setting, when setting rε “ 10´3.

6. Conclusion

In this paper, we have presented a new block distributed Majorize-Minimize

algorithm, BD3MG, devised to tackle large-size differentiable optimization problems met

in a wide range of applications. Our main contribution lies in a distributed asynchronous

formulation that allows for delays in the current solution computed between workers,

while securing convergence guarantees under mild assumptions. Our new algorithm

BD3MG has been tested in the context of 3D image restoration with depth-variant blur.

Experimental results underlined the speedup potential of this method and its concrete

applicability in the field of fluorescence microscopy. Future work will be dedicated to

extension to more general distributed graph topologies.
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[37] W. Göbel, B. M. Kampa, and F. Helmchen. Imaging cellular network dynamics in three dimensions

using fast 3d laser scanning. Nature Methods, 4(1):73–79, 2007.

[38] D. Grishchenko, F. Iutzeler, J. Malick, and M.-R. Amini. Asynchronous distributed

learning with sparse communications and identification. Technical report, 2018.

https://arxiv.org/abs/1812.03871.
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[53] N. Loizou and P. Richtárik. Revisiting randomized gossip algorithms: General framework,

convergence rates and novel block and accelerated protocols. IEEE Transactions on Information

Theory, 67(12):8300–8324, 2021.

[54] K. Mishchenko, F. Iutzeler, and J. Malick. A distributed flexible delay-tolerant proximal gradient

algorithm. SIAM Journal on Optimization, 30(1):933–959, 2020.

[55] J. Nagy and D. O’Leary. Restoring images degraded by spatially variant blur. SIAM Journal on

Scientific Computing, 19(4):1063–1082, 1998.

[56] Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems.
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