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The structural phase transition of the high symmetry cubic phase of antiperovskite Na3OCl is investigated
by computing the phonon band structures of 14 different polymorphs with distinct types of ONa6 octahedral
tilting. The resulting P -T phase diagram shows that, at high temperature and low pressure, the high-
symmetry cubic structure with Pm3̄m symmetry is the most stable phase. At low temperature and high
pressure, on the other hand, the monoclinic structure with P21/m symmetry becomes the most stable phase.
In between those two, there is a region in the phase diagram where the orthorhombic structure with Bmmb
symmetry is the most stable phase. To improve upon the quasi-harmonic results, we did additional calculations
in the framework of the self-consistent phonon (SCP) theory, including lattice anharmonicity by using cubic
and quartic interatomic force constants (IFCs). This is particularly important for the high-symmetric cubic
phase. We find that by decreasing the temperature, the frequency of soft phonon at the M and R symmetry
points shift gradually to lower values. From these results we can infer that a phase transition occurs around
166 - 195 K upon soft-mode condensation. Due to the proximity of the soft mode frequencies at both
symmetry points R and M, we expect a cubic-to-orthorhombic phase transition to be realized via simultaneous
condensation of the two octahedral tilting modes.

I. INTRODUCTION

While Li-ion batteries have been widely used in
portable electronic devices and electric vehicles due to
their high performance, their prospects in large-scale
grid-level storage of renewables are severely restricted by
the limited availability of Li.1–3 Because of the higher
abundance of Na compared to Li,4,5 Na-ion batteries have
been recently gaining attention.6,7 In addition, to mini-
mize the hazards such as leakage of corrosive, toxic, and
flammable organic liquid electrolytes, solid electrolytes
have been suggested as alternatives to conventional liquid
electrolytes,8–10 and the studies of solid electrolytes such
as alkali metal oxyhalides attract much attention.1,7,11–13

In our previous work, we performed first-principles
calculations for 14 different octahedrally tilted Na3OCl
structures, and found that they are energetically more
stable than the high symmetric cubic phase by 11 - 16
meV per stoichiometric unit. Phonon spectra, computed
within the harmonic approximation, have shown that
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the monoclinic phase with P21/m symmetry and the or-
thorhombic phase with symmetry Pnma have no imag-
inary modes, thus providing a fingerprint of the stabil-
ity of these systems. Yet, the absence of imaginary fre-
quencies is not always a criterion sufficient to assess the
stability of a system. Depending on the environmental
conditions, the presence of imaginary modes can still cor-
respond to stable systems. For example, well-known per-
ovskite oxides such as SrTiO3, BaTiO3, and PbTiO3 do
have imaginary frequencies in the harmonic phonon band
structure of its cubic phases that are stabilized above cer-
tain temperatures.14–16 Likewise, to better understand
phase transition characteristics of Na3OCl that have the
same symmetry, we need to consider the Gibbs free en-
ergy of its possible structures with respect to environ-
mental parameters such as pressure and temperature.17

Until recently, information on the enthalpies of forma-
tion for the Na3OCl and its thermodynamics properties
and phase change were not available. Despite the exper-
imental synthesis and identification of the cubic Pm3̄m
phase by Hippler et al.,11 dating back to more than 30
years, only recently thorough characterizations have been
reported.17,18 Moreover, recent theoretical studies on a
similar class of materials such as halide perovskites im-
ply the necessity of including lattice anharmonicity, par-
ticularly, for the reliable prediction of phase transition
temperature that matches well with available experimen-
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tal data. For example, Tadano and Saidi calculated the
cubic-to-tetragonal phase transition temperature of α-
CsPbBr3 (404 - 423 K) by obtaining a very small differ-
ence from the experimental measurement (403 K).19 For
this outcome, they included the loop diagram that con-
sists of quartic interatomic force constants (IFCs), and
the contribution of the bubble self-energy term that con-
sists of cubic IFCs on top of the self-consistent solution
(SC1). Moreover, Tadano and Tsuneyuki found that lat-
tice anharmonicity plays an important role in describ-
ing the lattice thermal conductivity of type-I clathrate
Ba8Ga16Ge30.

20

In many perovskite materials, the high symmetry cubic
phase is stable at a high temperature, and with decreas-
ing temperature, structures with lower symmetry such
as tetragonal, orthorhombic, and monoclinic phases be-
come stable. Therefore, in the harmonic phonon band
structures of cubic SrTiO3, PbTiO3, and BaTiO3 imag-
inary frequencies are found.14–16 Both halide and oxide
perovskites are well-known materials and an increasing
amount of research reports their intriguing character-
istics. Antiperovskites are structurally similar to per-
ovskites. However, atomic positions occupied by cations
in perovskites are replaced with anions in antiperovskites
and vice versa. In terms of applications, antiperovskite
alkali metal oxyhalides are good candidates for solid-state
electrolytes.21 Cubic Na3OCl has imaginary frequencies
at theM and R modes, and 14 possible tilted systems are
generated by combining M+

3 ⊕R+
4 distortions that have

lower static energy than the cubic phase.17 In this paper,
the stability of these 14 tilted phases, as well as the cu-
bic phase, are discussed in terms of the Gibbs free energy
using the quasi-harmonic approximation (QHA) method,
which considers the effect of volume expansion to figure
out the most stable phase and phase transition during
the cooling down process.

To end this introduction, it is worth stressing that pre-
vious results for face-centered cubic metals such as silver
and covalent materials such as diamond, graphite, and
even the ionic materials such as lighter alkali hydrides
(LiH, NaH) showed the effectiveness of phonon calcu-
lations for obtaining P -T phase diagrams and thermo-
dynamic properties using QHA.22–25 Notwithstanding,
another study on other metals such as Fe, Ni, Ti, and
W showed that the thermodynamic quantities calculated
with quasi-harmonic phonon calculations are particularly
lacking in describing temperature dependence.26 More-
over, many studies on the perovskite and antiperovskite
materials show that careful consideration of lattice an-
harmonicity is essential for the reliable prediction of ther-
modynamics quantities as well as thermal conductivity
and dielectric properties.14,27–30

This paper is organized in the following sections. Our
methodologies are fully detailed in Sec. II, where we de-
scribe not only the harmonic and anharmonic approxima-
tions (treated within self-consistent phonon theory) but
also the atomic-scale tools based on density functional
theory. The results are presented in Sec. III. Some con-

clusions are collected in Sec. III C.

II. METHODOLOGY OF CALCULATIONS

The harmonic approximation assumes that the sec-
ond derivative of potential energy with respect to the
atomic displacement is constant. This is a reasonably
good approximation, particularly for the materials where
the atoms are tightly bound through a strong covalent
bond. In other words, the shape of the potential en-
ergy surface around the energy minimum is close to a
parabolic shape for these materials. However, for the
materials formed with the relatively weak bond between
constituent atoms, the curvature around the energy min-
imum easily deviates from parabolic shape even with a
displacement caused by the thermal excitation energy
equivalent to room temperature. In this case, the an-
harmonic shape of the potential energy surface can be
interpreted as the change of the effective harmonic fre-
quency depending on the temperature.
For a certain class of materials, the harmonic approxi-

mation could be a cost-efficient and reliable way to model
material properties. Moreover, there are well-established
methods for calculating thermodynamics quantities out
of phonon band structure calculations. However, for
some materials that have strong lattice anharmonicity,
higher-order force constants need to be considered for
the reliable prediction of material properties. Herein, we
first draw the P -T phase diagram of Na3OCl through the
Gibbs free energy calculated with the quasi-harmonic ap-
proximation (QHA). These calculations enable us to in-
vestigate phase change in a wide temperature and pres-
sure range with a relatively small computational cost.
Then, we move on to the anharmonic phonon calcula-
tions to examine the effect of lattice anharmonicity in
the phase transition of the material. Since the number
of interatomic force constants dramatically increases in
case, the materials have low symmetry, so we selected the
high-symmetry cubic phase only for this purpose.31,32

By expanding the harmonic phonon model of lattice
dynamics, the QHA describes the thermal expansion of
the material. In this approximation, phonon frequencies
become volume-dependent while the harmonic approxi-
mation holds for each volume.33,34 The QHA turns out
to be a good approximation at temperatures far below
the melting points35,36 and many studies were performed
with the QHA to predict the phase-dependent thermody-
namic and elastic properties of the materials, which are
consistent with experimental reports.15,22–24,37–43

The Gibbs free energy G(T, P ) is an useful thermo-
dynamic potential in the study of processes at constant
temperature T and pressure P . Through examining the
free energies G(T, P ) of possible crystal phases, phase
changes can be monitored by varying two thermodynamic
parameters. In our calculations, the Gibbs free energy
G is obtained from minimizing the availability or non-
equilibrium Gibbs free energy (G∗) with respect to the
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volume V at a given T and P as follows.44

G(T, P ) = min
V

[Uel(V ) + Fvib(T, V ) + PV ] , (1)

where Uel is the total electronic energy, G∗(T, V, P ) ≡
Uel(V ) + Fvib(T, V ) + PV , and Fvib is the vibrational
free energy. The vibrational free energy can be calcu-
lated from the QHA or anharmonic approaches using the
phonon density of states. Based on QHA the vibrational
free energy Fvib is expressed as31

Fvib(T, V ) =
1

2

∑
qj

ℏωqj(V ) + kBT
∑
qj

ln

[
1− exp

(
−ℏωqj(V )

kBT

)]
. (2)

where the index j labels the phonon modes for each crystal momentum vector q.

In the phonon calculations considering lattice anhar-
monicity, the most important procedure is determining
IFCs. To this end, it is necessary to have structures with
atoms that are displaced from their force-zero positions.
If the small number of atoms are displaced, we need to
have relatively large structures. Sometimes, it is nec-
essary to have several thousands of structures even for
high-symmetry cubic phase. In this case, the error for
the determination of IFCs is very small since the amount
of displacement is constant and the direction of displace-
ments are along each of three orthogonal axes. There-
fore, one important aspect of our methodology is the use
of atomic-scale calculations to evaluate forces acting on
individual atoms that are displaced from their force-zero
structure. These effects do play a crucial role in deter-
mining the impact of anharmonic effects. To this pur-
pose a first strategy consists in resorting to density func-
tional theory45 (DFT) as implemented in the Vienna ab
initio simulation package (VASP).46 The Perdew-Burke-
Ernzerhof (PBE) version of generalized gradient approxi-
mation (GGA)47 is adopted for the exchange-correlation
functional. The electron-ion interactions are described
by the projector augmented wave (PAW) method.48 The
geometries are relaxed using the conjugate gradient (CG)
method until the Hellman-Feynman forces on the individ-
ual atoms become less than 0.001 eV/Å. The convergence
criteria of total energy in the self-consistent field (SCF)
loop is 10−8 eV with the energy cutoff of 500 eV. The
tetrahedron method with Blöchl corrections is chosen for
accurate integration over the Brillouin-zone.

As a second strategy of structural sampling, we re-
sorted to a scheme fully rooted into ab-initio molecular
dynamics (AIMD).49–51 We initially conducted AIMD
simulations, within a Born-Oppenheimer scheme52, in
the canonical NVT ensemble by setting the temper-
ature to 300 K. The thermostat of Nosé-Hoover was
implemented.53 This canonical simulations lasted for 4
ps, with a time step of 2 fs. From the trajectory ob-
tained, we sampled 80 atomic configurations at constant
time intervals. Subsequently, on these configuration, all
the atoms inside the simulation cell were randomly dis-
placed by 0.1 Å. The atomic forces for the configurations
prepared in this manner were obtained using DFT cal-

culations with the energy cutoff of 500 eV and 4×4×4
k -grids. The methods for structure sampling employed
in this study are very much consistent with each other.
However, AIMD proved more efficient and it has been
mostly adopted throughout this study.
When performing SCP calculations (as implemented

in ALAMODE54) one has to keep in mind that consider-
ing lattice anharmonicity is analogous to the quasiparti-
cle GW method in the electronic structure calculations.
As the GW calculations consider many-body interac-
tions starting from Kohn-Sham eigenstates, the SCP the-
ory considers lattice anharmonicity by solving the Dyson
equation that considers phonon many-body interactions.
In doing so, we need to consider three main anharmonic
self-energy terms, the so-called tadpole, loop, and bubble
diagrams. Each of the three terms can be calculated with
cubic or quartic IFCs (Φ3,Φ4). However, finding a fully
self-consistent solution of the Green function G(ω) in the
Dyson equation including those three self-energy terms is
very challenging because of the bubble self-energy term
that contains an ω dependence. Therefore the strategy
of Tadano et al. is initially to obtain a self-consistent
solution without the bubble term (SC1). Then the fully
dressed Green function can be solved with the Dyson
equation that contains frequency dependent bubble self-
energy and the solution of SC1 as an input phonon prop-
agator. Therefore the Dyson equation that needs to be
solved can be written as follows:

{Gq(ω)}−1 ≈
{
GS

q (ω)
}−1 −ΣB

q

[
GS ,Φ3

]
(ω) . (3)

Tadano et al. end up with the following self-consistent
equation to practically deal with the above equation.19

Ω2
qj =

(
ωS
qj

)2 − 2ωS
qjReΣB

qj

[
GS ,Φ3

]
(ω = Ωqj) (4)

where ωS
qj is the self-consistent solution (SC1) obtained

without frequency dependent bubble self-energy term.
Instead of solving for fully self-consistent solutions of Eq.
(4), by putting ω = Ωqj , we can obtain the solution sim-
ilar to G0W0 calculations in the electron many-body cal-
culations (QP-NL). Depending on the ways that the fre-
quency in the bubble self-energy is approximated in Eq.
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(4), there are two more levels of approximations.19 Those
are corresponding to the cases when ω = 0 and ω =ωS

qj

which are denoted as QP[0] and QP[S], respectively.

III. RESULTS

A. Quasi-harmonic approximation results

We first performed structural optimization of various
polymorphs. The optimized lattice parameter (a0) of
primitive cubic Na3OCl is 4.538 Å. To prepare the struc-
tures with octahedral tilting, a 2×2×2 supercell is used.
As we confirmed in our previous work, the monoclinic
structure with P21/m symmetry is the most stable in
terms of static energy. If we assume the process of octa-
hedral tilting from the 2×2×2 cubic supercell, this struc-
ture can be represented as a+b−c− with the Glazer nota-
tionas shown in Fig. 1. This indicates that the structure
can be represented as the combinations of octahedral tilt-
ing along each axis. Here, a+b−c− means in-phase ro-
tation of octahedra along [100] direction and the out-of-
phase rotation of octahedra along [010] and [001] direc-
tions as illustrated in Fig. 1. We obtained a = 9.0645 Å,
b = 9.0625 Å, c = 9.0613 Å, and α = 90.01◦, β = 90.00◦,
γ = 90.00◦ for the monoclinic P21/m in a 2×2×2 super-
cell consisting of 40 atoms. Compared to the lattice con-
stant of the cubic phase, there is a 0.13 - 0.16% decrease
in length along each direction. The phonon dispersions of
cubic Pm3̄m and 14 tilted structures are generated using
a finite displacement method (see Fig. S1 in Supple-
mental Material55),56–58 as implemented in the Phonopy
code31. The QHA is used to calculate thermodynamic
quantities and estimate the phase transition. For all of
the 15 phases, 2×2×2 supercells with a 4×4×4 k -mesh
are used to ensure consistency. We also confirmed that

Na

O

Cl

a b or c+ - -

Figure 1. According to the Glazer’s notation, P21/m struc-
ture also can be represented as a+b−c−. Here, a+ means
there is only in-phase rotation of ONa6 octahedra along [100]
direction which is derived from atomic displacements by the
M vibrational soft mode while b−c− means the out-of-phase
rotations pattern repeats along the [010] and [001] directions
induced from displacements by the R vibrational soft mode.
The dotted squares are drawn to guide the ONa6 octahedra
in the cubic phase and the green (front) and red (behind)
squares indicate the tilted octahedra in the P21/m phase.
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Figure 2. Temperature-dependent Gibbs free energies (Gtilts)
at pressure P = 0 for 14 tilted structures of Na3OCl relative
to the Gibbs free energy for cubic (Gcubic) Na3OCl. .

the convergence of the cubic phase Gibbs free energy can
be achieved with 4×4×4 k -mesh as shown in Table S1 of
Supplemental Material55.

The QHA results in Fig. 2 show the sequence of phase
change from cubic Pm3̄m to orthorhombic Bmmb (de-
noted by a0b+c−) and then to monoclinic P21/m (de-
noted by a+b−c−). The cubic phase is the most stable
phase at high temperature and low pressure, and it has
a phase transitions to the orthorhombic phase at around
650 K. The orthorhombic Bmmb phase is a tilted phase
that results from the condensation of imaginary M and
R soft modes. The condensation of the soft mode at M
causes in-phase rotation along the y-axis and the soft
mode condensation at R induces out-of-phase rotation
along the z -axis. With decreasing temperature, the next
phase transition is to the monoclinic P21/m phase that
is derived from a condensed X soft mode of the a0b+c−

phase.59 This phase transition to the P21/m structure is
also known to be induced by the combination of M and
R soft phonon condensation from the cubic phase. Ac-
cording to the quasi-harmonic phonon calculations, this
phase transition is predicted to occur at around 135 K.

To check the convergence of harmonic force constants
with respect to the supercell size, we calculated the root-
mean-square (RMS) of the difference of force constants.
When the RMS is calculated with the force constants
of 4×4×4 supercell as the reference, we found that the
RMS values of 1×1×1, 2×2×2, and 3×3×3 supercells are
0.4393, 0.0242, and, 0.0056, respectively. Moreover, we
also checked the convergence of free energy in different
cell sizes. The results show that the free energy differ-
ences of the cubic phase between 2×2×2 supercell and
3×3×3, 4×4×4, and 6×6×6 supercells are greater than
10−2 eV per unit cell (UC). These energy differences are
larger than the free energy differences between cubic and
titled phases and, in turn, this results in a large error
in the phase transition temperature. However, we con-
firmed that in the case of 4×4×4 supercell, the free en-
ergy converges within 10−3 eV/UC. Therefore, 3 phases
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Figure 3. Non-equilibrium Gibbs free energies G∗(T, V, P) for the (a) cubic Pm3̄m, (b) orthorhombic Bmmb, and (c) monoclinic
P21/m, and (d) orthorhombic Pnma phases with respect to volume at 0 pressure and different temperatures between 0 K to
650 K are presented by blue circles with black curves fitted to the Birch-Murnaghan equation of states. From the minima of
the respective black curves, the Gibbs free energies at zero pressure are obtained, and they are shown with red circles and
connected with red lines. (e) The Gibbs free energy difference of the orthorhombic Bmmb, orthorhombic Pnma and monoclinic
P21/m phases were comparable to the cubic phase. (f) P-T phase diagram of Na3OCl.

involved in the phase transition, the 4×4×4 supercell
(320 atoms) with the 2×2×2 k -mesh is used to ensure
the consistency. Figs. 3(a-d) show the non-equilibrium
Gibbs free energies of four phases of Na3OCl. From the
minimum at each temperature curve, the Gibbs free en-
ergy G is determined. The difference in the Gibbs free
energies between the tilted phase and the cubic phase is
shown in Fig. 3(e), and it shows that the cubic phase
is stabilized at temperatures higher than 220 K. The or-
thorhombic Bmmb phase is stabilized in the range be-
tween 135 K and 220 K. The convergence of the cubic-to-
orthorhombic phase transition temperature with respect
to the supercell size is shown in Fig. S2 of Supplemental
Material55.

This phase transition result is consistent with the ex-
perimental observation stating that the cubic structure
is the most stable phase at room temperature and ambi-

ent pressure.11 The phase diagram can be generated by
calculating Gibbs free energies as a function of the tem-
perature for the given six different pressures which are
obtained by Eq. (1). Fig. 3(f) shows that the room tem-
perature stable phase is the lower symmetry phase when
the pressure is higher than 0.7 GPa. We propose that
Na3OCl is in the monoclinic P21/m phase at a pressure
over 2.1 GPa and room-temperature conditions. The or-
thorhombic phase is observed in the range of pressure
between 0.7 and 2.1 GPa, and cubic phase is considered
to be the most stable at the pressure below 0.7 GPa.

B. Self-consistent phonon calculations

Due to the relatively small computational cost of
phonon calculations with QHA, we were able to ex-
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amine 3 different polymorphs and plot the phase dia-
gram with respect to temperature and pressure. De-
spite this advantage, it is also well known that QHA
has a limitation in the description of lattice anharmonic-
ity. Therefore we additionally performed self-consistent
phonon (SCP) calculations using ALAMODE.54 It con-
siders not only the second but also fourth-order IFCs at
the same time, which enables the description of phonon
frequency change with respect to temperature.14,60We
also note that previous calculations on oxide or halide
perovskites already demonstrated that SCP calculations
of the high-symmetry cubic phase are useful for predic-
tion of the phase transition temperature. The literature
reports that particular soft phonons lead to phase transi-
tion by phonon condensation. Given the structural simi-
larity of Na3OCl with the perovskite materials, we need
to pay attention to the possibility of observing similar
behavior.14

After finishing force calculations for all sampled struc-
tures, we need to determine IFCs out of raw data. This
can be understood as the fitting of IFCs using DFT force
data. Therefore there could be many detailed choices, in-
cluding regularization methods that are frequently used
in the machine learning to prevent overfitting. However,
we found that simple ordinary least square (OLS) fitting
works well here. Sometimes, harmonic force constants
are determined first with finite displacement sampling
and then the other higher orders of IFCs are determined
with predetermined harmonic FC fixed. This is the pre-
ferred way of fitting since it reduces the possible errors
of harmonic FC in the case when all orders of IFCs are
determined simultaneously. Here, we found that result-
ing phonon band structures do not change much even
when all orders of IFCs are determined simultaneously.
Although IFCs up to quartic terms are used in the SCP
calculations, higher orders up to the sixth IFCs are also
determined for the accuracy of IFCs that we are going to
use.14,60 All possible combinations of interactions were
considered for harmonic and cubic terms, and the com-
binations with the distance between atoms less than 12
bohr, 8 bohr, and 8 bohr were considered for the fourth,
fifth, and sixth-order IFCs, respectively.

There are imaginary frequencies in the phonon band
structures of 12 octahedral tilted structures. However,
those imaginary frequencies are neglected in the calcula-
tion of vibrational free energy. Moreover, the strong lat-
tice anharmonicity found in perovskite materials raises
the need of applying this method, including the con-
sideration of lattice anharmonicity in the antiperovskite
Na3OCl. For the consideration of lattice anharmonic-
ity, we need to prepare a quartic order of interatomic
force constants. However, lower symmetry structures re-
quire a formidable amount of interatomic force constants.
Therefore, here we considered only the high symmetry
cubic phase. The phonon band structure of the cubic
Na3OCl phase shows imaginary frequencies at M and R
symmetry points. If we consider lattice anharmonicity,
these imaginary frequencies modes turn into soft phonon

modes with positive frequency. In addition, they tend
to have strong temperature dependence and disappear
below a certain temperature. Therefore, through those
calculations, we will be able to predict the phase tran-
sition temperature. Moreover, the lower energy struc-
ture can be viewed as a small modification of the higher-
symmetry structure. Because the modification is caused
by the distortion corresponding to the eigenvector of the
modes with the imaginary frequency, we can predict the
symmetry of the low-temperature phase. With this in
mind, we performed SCP calculations as implemented
in ALAMODE54. In Fig. 4(a), the anharmonic phonon
band structures of cubic Pm3̄m Na3OCl calculated with
the SC1 method is shown in the range of temperatures
from 200 K to 500 K. We can recognize that by including
the fourth-order IFC in the SCP equation, the imaginary
phonon frequencies disappear. In doing that, we also
found that the q-mesh of 8×8×8 is a reasonable choice
in terms of the convergence of soft mode frequencies at
M and R symmetry points (see Table S2 in Supplemen-
tal Material55). As shown in Fig. 4(b), the soft mode
frequencies at M and R can be nicely fitted with the
equation, Ω2

q (T ) = a(T − Tc). From Fig. 4(b), the re-
sult shows that the orthorhombic-to-cubic phase transi-
tion occurs at around 86 K, which is an underestimate
compared to the QHA result with the 3 × 3 × 3 super-
cell. It is consistent with the theory that QHA method
neglects the imaginary frequencies while the anharmonic
approach takes into account the effect of these phonon
modes. Accordingly, the vibrational energy decreases in
consequence lowering the free energy of the cubic phase.

The calculated anharmonic phonon dispersion curves
using SC1 approximation are compared to the one us-
ing the QP method by including bubble self-energy in
Figs. 4(c,d). The SC1 phonon frequencies are overesti-
mated compared to the QP frequencies, and the overesti-
mation is significant in the soft mode while the QP[0] and
QP[S] results are close to the QP-NL one. The QP[0] fre-
quencies are slightly underestimated in the optical modes
while the QP[S] results are consistent with the QP-NL
ones. Similar to SC1 characteristic, through linear fit-
ting of the temperature dependence of squared phonon
frequencies, we can estimate the phase transition temper-
ature as given in Table. I. The QP theory with different
treatments gives similar results of about 195 K, which is
more than two times higher than the transition temper-
ature from the SC1 method and a similar report is given
by Tadano et al.. By including the bubble self-energy
term on top of the SC1 solution they found that the
phase transition temperatures of halide perovskite be-
come close to the experimental ones.19 Their estimation
of the transition temperature without the bubble term
was almost half of the value compared to the experimen-
tal one. However, by including the bubble term, they
were able to improve the results significantly. Unfortu-
nately, the experimental phase transition temperatures
of Na3OCl have not been reported yet. Therefore, direct
comparison with the experimental data is not available
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Figure 4. (a) Phonon band structure at various temperatures from 200 K to 500 K by considering the fourth-order anharmonic
contribution. (b) Temperature dependence of the squared phonon frequencies at the M and R modes. (c, d) Anharmonic
phonon dispersion curves of cubic Na3OCl calculated at 150 K and 300 K (below and above Tc) using different treatments of
QP theory. The red dotted lines, green dashed lines, black dash-double-dotted lines, and blue solid lines represent the phonon
bands obtained from SC1, QP[0], QP[S], and QP-NL, respectively.

at this point. Nonetheless, its room-temperature stabil-
ity of the cubic phase reported in the literature suggests
that the current computational predictions are at least
in a reasonable range.

The materials with strong lattice anharmonicity also
tend to be sensitive to external strain. Therefore we need
to carefully consider the effect of thermal expansion on
the phase transition temperature. For reliable prediction
of thermal expansion, we adopted the PBEsol exchange-
correlation functional. It is demonstrated that the lattice
constant calculated with PBEsol functional61 is close to
the experimental one compared to that estimated with
other functionals such as PBE or LDA. Please note that,
without temperature effect, the lattice constant of cu-
bic phase is 4.483 Å which is smaller than PBE lattice
constant (4.538 Å) by 1.2%. To consider temperature
effect on the lattice constant, thermal expansion of cu-
bic Na3OCl is calculated with the Helmholtz free energy
curves at various temperatures as presented in Fig. 5(a).
The minimum points of energy-lattice constant curves
at each temperature are marked with blue squares. As
shown in Fig. 5(b), the lattice constant increases almost
linearly with increasing temperature. However, we need

to keep in mind that thermal expansion curve is plotted
from the calculations with fixed lattice constant. There-
fore, it is necessary to have different information which
shows the relationship between lattice constant versus
TC . For the estimation of TC , as shown in Fig. 5(c), a lin-
ear relation of square frequencies at M and R soft modes
is used. Note that for the thermal expansion we used self-
consistent phonon calculations (SC1), however for the
estimation of TC , we used phonon band structures calcu-
lated with additional self-energy term that has frequency
dependence (QP-NL). The data in Fig. 5(c) are the par-
ticular case when the lattice constant is obtained at an
energy minimum with the PBEsol functional. We can
easily recognize that the frequencies at two soft modes
are so close, which results in the phase transition tem-
perature at similar temperatures (152 - 183 K) by the
condensation of each soft mode. As shown in Fig. 5(b),
when the lattice constant increases, the estimated TC

decreases. The crossing point of thermal expansion line
and lattice constant versus TC curve indicates the phase
transition point after considering thermal expansion. In
comparison with TC in Fig. 5(c) which assumes a fixed
lattice constant, the consideration of thermal expansion
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Method Range of transition temperatures (K)

SC1 54 - 86

QP[0] 168 - 195

QP[S] 167 - 195

QP-NL 166 - 195

Table I. Cubic-to-orthorhombic phase transition temperatures
are calculated by the QP theory at different levels. Two values
in each cell show the transition temperatures estimated from
the soft mode frequency at M and R points, respectively
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Figure 5. (a) Helmholtz free energy curves at various tem-
peratures from 100 to 600 K. The minimum points at each
temperature curves are marked with blue squares. (b) Ther-
mal expansion curve and lattice constant versus phase tran-
sition temperature TC curve. (c) Temperature dependence
of the squared phonon frequencies at the M and R modes
when the lattice constant is obtained at energy minimum with
the PBEsol functional. The data points marked with empty
squares are used for line fitting.

makes TC lower by 16 - 21 K (136 vs 152 K and 162
vs 183 K). The effect of thermal expansion seems to be
not so significant in this particular material. However,
as shown in Fig. 5(b), this can be dependent on how the
soft mode frequency changes when the lattice constant
increases.
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Figure 6. Band gaps for 15 phases of Na3OCl

Na3OCl are important as the safety and efficiency indi-
cators for electrolyte applications. Since electrolyte is
not supposed to conduct electricity for safety, we cal-
culated the eletronic band gaps of the 14 tilted phases
including the cubic phase and found that the band gaps
of all the phases fall in the range between 2.01 eV and
2.03 eV when we used the GGA functional as shown
in Fig. 6. In the previous report by Pham et al.17,
the band gaps of cubic and monoclinic phases increased
to around 3.40 eV when the hybrid functional Hyed-
Scuseria-Erznerhof (HSE) method is used while the band
gaps are around 2 eV when the GGA functional is used62.
From these results, we may consider Na3OCl as an insu-
lator in all the tilted phases. Secondly, the ionic trans-
port property is obtained by calculating the migration en-
ergy barriers of Na via the vacancy-mediated mechanism2

with the nudged elastic band (NEB) method63 for cu-
bic Pm3̄m, orthorhombic Bmmb, and monoclinic P21/m
phases. NEB calculation is performed in a supercell of 40
atoms. The energy convergence criterion is set to 10−3

eV and five intermediate NEB images are used. Fig. 7(a-
c) show the possible reaction paths of vacancy migration
in a schematic way; the Pm3̄m phase has only one path,
but the Bmmb and P21/m phases have 6 and 12 paths,
respectively. Figs. 7(d-f) show the calculated minimum
energy paths for sodium vacancy migration from one Na
site to another in cubic Pm3̄m, orthorhombic Bmmb, and
monoclinic P21/m phases. There are six available migra-
tion paths in orthorhombic Bmmb made of three sym-
metrically distinct Na sites,64 and twelve paths in P21/m
composed of four symmetrically distinct Na sites (see Ta-
ble S3 and S4 in Supplemental Material for Wyckoff posi-
tions in orthorhombic Bmmb and monoclinic P21/m

55).
The single vacancy migration energies are 0.32 - 0.35 eV
(average 0.34 eV) for monoclinic P21/m , 0.31 - 0.35 eV
(average 0.34 eV) for orthorhombic Bmmb, and 0.30 eV
for cubic, respectively. The distorted structures (P21/m
and Bmmb phases) are shown to have not much varia-
tion in migration energy barriers compared to the cubic
one. For cubic phase, the energy barrier (0.30 eV) that
we obtained falls between the range of previous reports;
the activation energy is 0.29 eV by Ahiavi et al.65 and
the migration energy barrier is 0.43 eV by Wang et al.66

C. Conclusions

In summary, two types of phonon calculations are per-
formed to investigate the phase transition of antiper-
ovskite Na3OCl. The first one is quasi-harmonic phonon
calculations. When the Gibbs free energies of 14 different
polymorphs are calculated with the QHA, the P -T phase
diagram shows that three stable phases would appear in
the limited scopes of temperature and pressure. At ambi-
ent pressure, the high-symmetry cubic phase with Pm3̄m
symmetry is expected to be stable at the temperature
above 205 K and monoclinic phase with P21/m sym-
metry becomes stable below 135 K. In the temperature
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Figure 7. Reaction paths for Na migration are shown with the small colored spheres in (a) cubic Pm3̄m, (b) orthorhombic
Bmmb, and (c) monoclinic P21/m phases and Na, O, and Cl atoms with the larger yellow, red (inside the red octahedra), and
green spheres, respectively. The relative energy changes of vacancy migration through the minimum energy path in (d) cubic
Pm3̄m, (e) orthorhombic Bmmb, and (f) monoclinic P21/m phases are illustrated with colors for the corresponding reaction
paths.

range between 135 K and 205 K, Bmmb is expected to
be most stable structure. The second one is the inclusion
of anharmonic terms in the phonon calculations by using
quartic and cubic IFCs. The phase transition temper-
atures (TC) are calculated with the basic self-consistent
phonon calculations (SC1) as well as the temperature-
dependent phonon band structures calculated with addi-
tional consideration of the bubble self-energy term (QP-
NL). Since the latter method corrects the overestimation
of soft mode frequency, more than twice of phase transi-
tion temperature is expected using the former one (54 -
86 K vs 166 - 195 K). The effect of thermal expansion on
TC is not significant in cubic Na3OCl. Nonetheless, our
method shows that the behavior of the soft mode upon
lattice constant change could play a critical role in the
theoretical determination of thermal expansion effects on
TC . The overall results are consistent with the previous
computational report on halide perovskite α-CsPbBr3
and experimentally confirmed room temperature stabil-
ity of cubic Na3OCl. For the three vibrationally stable
phases, we calculated migration energy barriers of Na va-
cancy, and found that the energy barriers falling in the
range from 0.30 to 0.34 eV are not much different in
phases.
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