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Strictly convex Hamilton-Jacobi equations:

strong trace of the derivatives in codimension ≥ 2

R. Monneau∗

November 12, 2023

Abstract
We consider Lipschitz continuous viscosity solutions to an evolutive Hamilton-Jacobi equation. The equation

arises outside a closed set Γ. Under a condition of strict convexity of the Hamiltonian, we show that there exists a
notion of strong trace of the derivatives of the solution on the Lipschitz boundary Γ of codimension d ≥ 2. The very
special case d = 1 is done in a separated work.

This result is based on a Liouville-type result of classification of global solutions with zero Dirichlet condition on
the boundary Γ, where Γ is an affine subspace. We show in particular that such solutions only depend on the normal
variable to Γ. As a consequence, we show more generally that the existence of a pointwise tangential gradient along
Γ implies the existence of pointwise directional derivatives in all directions.

This result also holds true for Hamiltonians depending on the time-space variables, under an additional Dini

condition involving certain moduli of continuity. We also give a counter-example for d = 2 in the stationary case,

where the Hamiltonian is only continuous in the space variable, and where the solution has no directional derivatives

in any directions normal to Γ. Such phenomenon does not hold for d = 1.

MSC2020: 35F21.

Keywords: Strong trace, Hamilton-Jacobi equations, codimensional boundaries, Liouville-type result, regularity,

viscosity solutions.

1 Introduction

1.1 Main results

Let m ≥ 0 and let us consider globally Lipschitz continuous solutions u = u(t, x′, x) of

(1.1)

{
ut +H(Du) = 0 on R× Rm × Ω
u = 0 on R× Rm × ∂Ω

where the Dirichlet condition is satisfied in the strong sense (i.e. pointwisely). Here we consider the open
set whose boundary has codimension bigger or equal to 2

Ω := Rd\ {0} , ∂Ω = {0Rd} , with d ≥ 2.

The case of dimension d = 1 with a half line Ω = (0,+∞) has been studied in [15]. Here for d ≥ 2, we find
a new method and get different results.
Assume

(1.2) H : Rm+d → R is C1, strictly convex, and superlinear (i.e. lim
|P |→+∞

H(P )

|P |
= +∞)

where we recall that H strictly convex means

H(λP + (1− λ)Q) < λH(P ) + (1− λ)H(Q) for all λ ∈ (0, 1), P,Q ∈ Rm+d, P ̸= Q.

We consider the coordinates X := (t, x̃) with t ∈ R and x̃ = (x′, x) ∈ Rm × Rd.
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Theorem 1.1 (Liouville-type result)
Assume that the strictly convex function H satisfies (1.2). Then every globally Lipschitz continuous viscosity
solution u of (1.1) only depends on the normal variable, i.e.

u(t, x′, x) = u(0, 0, x) for all (t, x′, x) ∈ R× Rm × Ω.

For local problems, we will need to describe directional derivatives with a single object. To this end, we
introduce the following definition.

Definition 1.2 (Bouligand derivative)
We say that a function f : Rn ⊃ B1(0) → R has a Bouligand derivative at the origin if there exists a
(positively) 1-homogeneous function Bf(0) : Rn → R (i.e. Bf(0)(λy) = λBf(0)(y) for all λ ≥ 0) such that

f(y)− f(0) = Bf(0)(y) + o(|y|)

It is easy to see that any Lipschitz function has directional derivatives in any directions if and only if it
has a Bouligand derivative. The formalism of Bouligand derivative has just the practical advantage to deal
with all directional derivatives at the same time.

We now consider the following problem localized on a cylinder Q0 ⊂ R1+m+d. We denote the boundary
Γ := R1+m × {0Rd} and the open ball Br = Br(0) of center the origin and radious r > 0. Then we consider
the problem:

(1.3)

{
ut +H(Du) = 0 on Q0\Γ ⊂ R1+m × Ω,
u = g(t, x′, 0) on Q0 ∩ Γ ⊂ R1+m × ∂Ω.

We have the following result (at least surprising for the author).

Theorem 1.3 (Tangential gradient implies full directional derivatives)
Let Q0 := (−1, 1) × B1 ⊂ R × Rm+d. Assume that H : Rm+d → R satisfies (1.2). Consider a Lipschitz
continuous function u : Q0 → R which is a viscosity solution of (1.3) with u(0) = 0. Assume that u has a
tangential gradient at the origin, i.e. there exists (λ, p′) ∈ R× Rm such that

(1.4) u(t, x′, 0) = λt+ p′ · x′ + o(|(t, x′)|) for all (t, x′, 0) ∈ R× Rm × ∂Ω.

Then u has Bouligand time-space derivative at the origin, i.e. there exists a (positively) 1-homogeneous
function Bu(0) : R1+m+d → R such that for X = (t, x′, x) ∈ Q0

(1.5) u(X) = Bu(0)(X) + o(|X|)

with the splitting Bu(0)(X ′, x) = X ′ ·D′u(0) +Bu(0)(0, x) where X ′ ·D′u(0) := λt+ p′ · x′ for X ′ = (t, x′).

Theorem 1.4 (A notion of strong trace of directional derivatives)
Let Q0 := B1 × B1 ⊂ R1+m × Rd. Assume that H : Rm+d → R satisfies (1.2). Consider a Lipschitz
continuous function u : Q0 → R which is a viscosity solution of (1.3), with g : Q0 ∩ Γ → R Lipschitz
continuous.
Then for Y ∈ R1+m+d with X + Y ∈ Q0, we have

(1.6) u(X + Y )− u(X) = Bu(X)(Y ) + o(|Y |) for a.e. X = (t, x′, 0) ∈ Γ

where Bu(X) : R1+m+d → R is (positively) 1-homogeneous and Lipschitz. Moreover for a.e. X ∈ Γ, the
quantity Bu(X) satisfies the splitting Bu(X)(Y ′, y) = Y ′ ·D′u(X)+Bu(X)(0, y) for all Y ′ = (s, y′) ∈ R×Rm

and y ∈ Rd, with Y ′ · D′u(X) := λs + p′ · y′ where λ := ut(X), and the tangential space gradient is
p′ := D(u|Γ)(X).

Moreover, we have the following limit for the time-space derivatives D̂u := (ut, Du) with X = (X ′, x)

(1.7) lim
ε→0+

∫
B1×B1

|D̂u(X ′, εx)− D̂(Bu(X ′, 0))(0, x)| dX = 0.

This convergence is our definition of the strong trace of the time-space derivatives of the solution u on the
boundary Γ of codimension d ≥ 2.
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Remark 1.5 We see here that the strong trace of the gradient has to be a Bouligand derivative in general,
and not a standard gradient. In other words, we see that taking the strong trace of the gradient, we may
loose the linearity along the normal variable for the first order approximation map when the boundary Γ
has codimension d ≥ 2. In particular, for a.e. point X of the boundary Γ, we get that u has directional
derivatives at X.

Remark 1.6 Notice that it is straightforward to adapt the proof of Theorem 1.4 to the case of Lipschitz
continuous boundary Γ.

Again for a cylinder Q0 ⊂ R1+m+d, we consider now the X-dependence in the Hamiltonian H, for
X = (t, x′, x), and the problem

(1.8)

{
ut +H(X,Du) = 0 on Q0\Γ
u = g(X) on Q0 ∩ Γ.

Recall that we say that a function u is semiconcave on an open set Q0 if there exists a modulus of
continuity ω : (0,+∞) → (0,+∞), with ω(0+) = 0 such that

(1.9) λu(X)+ (1−λ)u(Y )−u(λX+(1−λ)Y ) ≤ λ(1−λ)|X−Y |ω(|X−Y |) for all λ ∈ [0, 1], X, Y ∈ Q0.

Recall also that semiconcavity implies the existence of directional derivatives everywhere (see [10]). Here
we show that the lack of regularity in X can break semiconcavity property of the solution, even if the
Hamiltonian is strictly convex in the gradient.

Proposition 1.7 (A counter-example to semiconcavity)
We assume that m = 0, ∂t = 0 and d = 2. Let h : [0,+∞) → (0,+∞) be C2 with h(1) = 1 and h′(0) = 0 and
h′ > 0 on (0,+∞) and h′′ > 0 on [0,+∞). Then there exists some continuous function a : R2 ⊃ B1 → R
and H(x, P ) = a(x)h(|P |) such that there exists a Lipschitz continuous solution u = u(x) of

H(x,Du) = 1 on B1 ⊂ R2.

We can choose the continuous function a(·) such that our solution u has no directional derivatives at x = 0.
In particular u is not semiconcave (i.e. does not satisfy (1.9) with Q0 := B 1

2
). Still, there exists a modulus

of continuity ω0 such that we have

(1.10) u(x+ b) + u(x− b)− 2u(x) ≤ |b|ω0(|b|) for all x+ b, x− b ∈ B 1
2

but ω0 is not Dini integrable, i.e. that
∫ r

0
ds
s ω0(s) = +∞ for all r > 0.

We refer the reader to Theorem 2.1.10 on page 35 in Cannarsa, Sinestrari [10], which says that (1.10)
implies semiconcavity estimate (1.9) with ω(r) := C

∫ r

0
ds
s ω0(s).

For our ptoblem, and under a certain Dini condition on the X-dependence ofH(X,P ) which is continuous
in both variables and C1 strictly convex and superlinear in P , it is possible to recover the results of the
homogeneous case. This is the result below.

Theorem 1.8 (Generalization to variable coefficients X)
Theorems 1.3 and 1.4 hold for equation (1.8), under the condition that H : Q0 × Rm+d → R is continuous
and that P 7→ H(X,P ) satisfies (1.2) for all X ∈ Q0, under the additional Dini condition (1.13) on a certain
modulus given below.

Assume that the solution u to (1.8) has Lipschitz constant L > 0. Let L be the Legendre-Fenchel transform
of H defined by

(1.11) L(X, ξ̃) := sup
P∈Rm+d

ξ̃ · P −H(X,P ).

Assume also that there exists a map L0 : Rm+d → R such that L(X, ξ̃) ≥ L0(ξ̃) for all X ∈ Q0, ξ̃ ∈ Rm+d,
and for L > 0, we consider RL ≥ 1 such that

(1.12)
{
ξ̃ ∈ Rm+d, L0(ξ̃) ≤ L|(1, ξ̃)|

}
⊂ BRL

.
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i) (modulus of strict convexity of the map ξ̃ 7→ L(X, ξ̃))
For every R > 0, we assume that there exists a (monotone) modulus of continuity ω̃R : (0,+∞) → (0,+∞)
with ω̃R(0

+) = 0 such that for r > 0, we set

Ω̃R(r) :=

∫ r

0

ω̃R(s) ds with ω̃R(r) := inf
|ξ̃1−ξ̃2|≥r, ξ̃i∈BR, X∈Q0

(
ξ̃1 − ξ̃2

|ξ̃1 − ξ̃2|
, DL(X, ξ̃1)−DL(X, ξ̃2)

)

where Ω̃R is convex increasing.
ii) (modulus of continuity of the map X 7→ L(X, ξ̃))
We assume the existence of the following monotone modulus of continuity

ωR(r) := sup
X,Y ∈Q0, |X−Y |≤r, ξ̃∈BR

∣∣∣L(X, ξ̃)− L(Y, ξ̃)
∣∣∣ .

Then we require the modulus Ω̃−1
R ◦ ωR to satisfy the following Dini condition

(1.13)

∫ 1

0

ds

s
(Ω̃−1

R ◦ ωR)(s) < +∞ for R := 1 +RL.

Remark 1.9 It is easy to check that Dini condition (1.13) is satisfied for instance if P 7→ H(X,P ) is
C2 with δ−1 ≥ D2

PPH ≥ δ > 0 and X 7→ H(X,P ) is β-Hölder continuous for some β ∈ (0, 1]. Such
result can be compared to the precise interior semiconcavity results in Cannarsa, Cardaliaguet [9] for Hölder
continuous Hamiltonians in the space variable, in the case of stationary solutions where the Hamiltonian is
1-homogeneous in the gradient.

Remark 1.10 It is straightforward to adapt Theorem 1.8 to the case of a Lipschitz continuous boundary Γ.
It would be also interesting (and not quite difficult) to develop an interior theory (i.e. with Γ = ∅) along
the same lines as in the present paper. For instance, the analogue of the Liouville-type result claims that
Lipschitz global time-space solutions are concave. Here we refrain us to go further in that direction.

1.2 Brief review of the literature

We refer to the pioneering work of Lions [14] on viscosity solutions of Hamilton-Jacobi equations and their
properties. The reader can also consult the reference books Cannarsa, Sinestrari [10] on semiconcave func-
tions and Bardi, Capuzo-Dolcetta [3] for Hamilton-Jacobi equations related to control problems. In Cannarsa,
Soner [11] (see also Theorem 5.3.8 on page 118 in [10]), it is proven that for Hamiltonians H(X,P ) which
are locally Lipschitz in all variables and strictly convex in P , the locally Lipschitz continuous solutions are
semiconcave. This result has been extended to stationary solutions for 1-homogeneous Hamiltonians which
are Hölder in the space variable in Cannarsa, Cardaliaguet [9].

In Bianchini, De Lellis, Robyr [7], the authors show that for a uniformly C2 Hamiltonian H, the time-
space gradient of the solution is in SBVloc, which can be seen as a refinement of semiconcavity estimates.
This result has been extended to the case of C3 Hamiltonians depending also on (t, x) in Bianchini, Tonon
[8]. We also refer the reader to Rifford [17] for further interesting regularity results of solutions.

In the context of homogeneous scalar conservation laws, a notion of strong trace on a Lipschitz boundary
of a domain (i.e. for d = 1) has been introduced by Vasseur [21] under a condition of genuine nonlinearity of
the C3 flux function. This result has been generalized by Panov [16] to the case of C0 homogeneous fluxes,
and C1 boundary (the case of Lipschitz boundary is also claimed to remain valid with the same proof).

In Monneau [15], the existence of strong traces of the gradient of the solution has been obtained for
strictly convex Hamilton-Jacobi equations with boundary Γ of codimension d = 1. For d = 1, no Dini
condition is required: only the continuity of the map (X,P ) 7→ H(X,P ) is sufficient.

Actual researches try to understand convex Hamilton-Jacobi equations either on stratified domains (see
for instance Barles, Chasseigne [4, 5]), or with a point defect (see Achdou, Le Bris [1]). Here we hope that
our present work will help to understand better these probems where codimensions play a key role.

1.3 Organization of the paper

In Section 2, we recall the representation formula of the solutions to convex Hamilton-Jacobi equations.

4



In Section 3, we construct a fundamental solution û associated to the Hamiltonian H(P ), which is the
analogue of the distance to the origin for the eikonal equation. Then we show that u+ := û and u− = −û(−x)
are both barriers, and that every global solution with zero value on the boundary Γ is sandwiched in between
u+ ≥ u−.

This is a key step towards the Liouville-type result (Theorem 1.1) whose proof is done in Section 4.
This proof is in particular based on a key equality (Lemma 4.2) satisfied by the solution on a characteristic
trajectory.

In Section 5, we study in details the characteristics of 1-homogeneous concave global solutions. This
section is of independent interest and uses the notion of extreme points and exposed points of a compact
convex set. This section is also a key step towards the proof of Theorem 1.3 on the existence of full directional
derivatives for local solutions.

Section 6 is a technical result which localizes the result of Lemma 4.2, and which is necessary for the
proof of Theorem 1.3.

Section 7 is fully devoted to the proof of Theorem 1.3 (on the existence of directional derivatives) using
ingredients of Sections 5 and 6.

Section 8 is devoted to the proof of Theorem 1.4 on the strong traces of the directional derivatives. It
starts with a building block result, which shows the strong L1

loc convergence of the gradient of the blow-up
of the solution (see Proposition 8.1). The remaining part of the section proves Theorem 1.4, using covering
arguments and identification of the limits through Young measures.

Section 9 gives the proof of the counter-example to semiconcavity, namely Proposition 1.7.
Section 10 gives the proof of Theorem 1.8 which generalizes our results to Hamiltonians with time-space

dependence.
Section 11 is an appendix where we collect results on exposed points of convex sets, which are used in

the main part of the paper.

1.4 Main notations

Ω = Rd\ {0} = reduced space domain
Rm × Ω = space domain
Γ = R1+m × {0Rd} = time-space boundary

Γ̃ = Rm × {0Rd} = space boundary

x ∈ Rd = normal coordinates
X ′ = (t, x′) ∈ R× Rm = tangential coordinates
x̃ = (x′, x) ∈ Rm × Rd = space coordinates
X = (t, x′, x) = (t, x̃) = (X ′, x) = time-space coordinates

Q0 = (−1, 1)×B1 or B1 ×B1 = cylinder in R× Rm+d or R1+m × Rd

Qτ,ρ = (−τ, 0)×Bρ = local cylinder in R× Rm+d

Γτ,ρ = Qτ,ρ ∩ Γ = (closed) tangential boundary of the local cylinder

P,Q ∈ Rm+d = space gradient

D̂u = (ut, Du) = time-space gradient
Bu = Bouligand derivative of u

H = the Hamiltonian
L = H∗ = the Legendre-Fenchel transform of H

ξ̃ = (ξ′, ξ) ∈ Rm × Rd = velocity
ℓ(ξ) = inf

ξ′∈Rm
L(ξ′, ξ) = the Legendre-Fenchel transform of H(0, ·)

û = fundamental convex 1-homogeneous solution
u± = barriers.
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2 Representation formula

In this section, we recall the representation formula of the solutions to convex Hamilton-Jacobi equations.

Given X = (t, x̃) ∈ R × Rm+d and ξ(·) ∈ L1
loc((−∞, t];Rm+d), we consider the following backward

trajectory
d

dσ
γξ
X(σ) = ξ(σ) for σ ≤ t, with terminal data γξ

X(t) = x̃

and call for all t0 < t

Et0
X :=


(s, ξ) ∈ [t0, t)× L1

loc((−∞, t];Rm+d),

γξ
X(σ) ∈ Rm × Ω, for all σ ∈ (s, t),

∣∣∣∣∣∣ with

∣∣∣∣∣∣
γξ
X(s) ∈ Rm × ∂Ω if s ∈ (t0, t)

γξ
X(s) ∈ Rm × Ω if s = t0


which is the set of parameters such that the backward trajectory stays in the set Rm × Ω and in a time
interval contained in [t0, t].

We recall the following standard result for convex Hamiltonians (which can be seen as a generalization
of Lax-Hopf formula).

Lemma 2.1 (Representation formula)
Assume that H : R1+m+d × Rm+d → R be continuous such that P 7→ H(X,P ) satisfies (1.2) for all X, and
let L be the Legendre-Fenchel transform of H given in (1.11). Assume that u : R1+m+d → R is a globally
Lipschitz continuous function satisfying u = g on Γ = R1+m × {0Rd}.

Then u satisfies for all X = (t, x̃) ∈ R1+m+d and all t0 ∈ (−∞, t)

(2.1)


u(X) = inf

(s,ξ)∈Et0
X

G(s, t; γξ
X)

with

G(s, t; γξ
X)−

∫ t

s

L
(
σ, γξ

X(σ),
d

dσ
γξ
X(σ)

)
dσ :=

{
u(s, γξ

X(s)) if γξ
X(s) ∈ Rm × Ω

g(s, γξ
X(s)) if γξ

X(s) ∈ Rm × ∂Ω

if and only if u solves (1.8) with Q0 = R1+m+d.

Representation formula (2.1) means that u(t, x) is the infimum of some cost function over all trajecto-
ries with terminal point (t, x̃) and initial point on the part of the boundary ([t0, t)×Rm×∂Ω)∪({t0}×Rm×Ω).

Sketch of the proof
The standard proof first shows the dynamic programming principle which implies (by variations/comparison)
the viscosity inequalities on the time interval (t0,+∞) (see for instance [13], or [10] for results of the same
flavour). Conversely, the comparison principle implies that every solution of (1.8) on the time interval
[t0,+∞) coincides with the unique solution given by the representation formula (2.1). Notice that the com-
parison principle is valid here because u is globally Lipschitz continuous. This ends the sketch of the proof.

3 Existence of barriers

In this section, we show that infRd H(0, ·) ≤ 0, and that when the inequality is strict, then we can describe
the maximal solution u+ and the minimal solution u− to equation (1.1). We show that u+ = û and
u− = −û(−x), where û is a convex 1-homogeneous solution, whose we study the rich properties. The
existence of the two barriers u± is a key step towards the Liouville-type result which will be developed in
the next section.

Lemma 3.1 (Dichotomy)
Assume that H : Rm+d → R satisfies (1.2) and that u is a globally Lipschitz continuous solution of (1.1).
Then either infRd H(0, ·) = 0 and there exists a unique p0 ∈ Rd such that H(0, p0) = 0 with u(t, x′, x) = p0 ·x,
or

(3.1) inf
Rd

H(0, ·) < 0.
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Proof of Lemma 3.1
We define

u(x) := sup
(t,x′)∈R×Rm

u(t, x′, x), u(x) := inf
(t,x′)∈R×Rm

u(t, x′, x).

Because u is globally Lipschitz continuous this is also the case of u and u. Moreover u is a subsolution, and
by classical Barron-Jensen argument (see [6]) for convex Hamiltonians and Lipschitz solutions, the minimum
(here infimum) of solutions is still a solution. Hence H(0, Du) ≤ 0 and H(0, Du) = 0 on Ω. Using a test
function from above, we see that µ := infRd H(0, ·) ≤ 0. In case µ = 0, the strict convexity of H implies the
uniqueness of some p0 such that H(0, p0) = 0. Then any test function φ touching from above either u or
u at some point x0 ∈ Ω, satisfies Dφ(x0) = p0. It is then easy to see that Du = p0 = Du which gives the
result. This ends the proof of the lemma.

In the remaining part of the paper, we assume the negativity of the infimum of H as in (3.1) and define
the convex function

(3.2) û(x) := sup
p∈K

p · x for all x ∈ Rd, with the convex set K :=
{
p ∈ Rd, H(0, p) ≤ 0

}
.

Notice that K is a strictly convex set under assumption (1.2) on H. The function û plays a key role in the
definition of barriers, and we start to study its nice (probably classical) properties.

Lemma 3.2 (Properties of û)
Under assumptions (1.2) and (3.1) on H, the function û defined in (3.2) is convex Lipschitz continuous on
Rd, (positively) 1-homogeneous (i.e. u(λx) = λu(x) for all λ ≥ 0) and belongs to C1(Rd\ {0}).
Moreover, we have

(3.3) û(x) = x ·Dû(x) with Dû(x) ∈ ∂K for all x ∈ Ω

where the convex K is defined in (3.2). In particular û is a (viscosity) solution of

(3.4)

{
H(0, Dû) = 0 on Ω
û = 0 on ∂Ω = {0Rd} .

We have also for all x ∈ Rd

(3.5) û(x) = inf
τ>0

τℓ(
x

τ
) where ℓ(ξ) := sup

p∈Rd

{ξ · p− h(p)} for all ξ ∈ Rd, with h(p) := H(0, p)

and for x ̸= 0
(3.6)

inf
τ>0

τℓ(
x

τ
) = τ∗ℓ(

x

τ∗
) for some unique τ∗ = τ∗(x) > 0 and


ξ∗ :=

x

τ∗(x)
, p∗ := Dû(x) ∈ ∂K,

ξ∗ = DxH(0, p∗),
p∗ = Dℓ (ξ∗) .

Moreover the two Legendre-Fenchel transforms ℓ and L satisfy

(3.7) ℓ(ξ) = inf
ξ′∈Rm

L(ξ′, ξ) with L(ξ′, ξ) = sup
P∈Rm+d

{(ξ′, ξ) · P −H(P )} , (ξ′, ξ) ∈ Rm × Rd.

Finally, û enjoys the following strict convexity property (not along the radials):

(3.8) û(λx+ (1− λ)y) < λû(x) + (1− λ)û(y) for all λ ∈ (0, 1), if

{
[0,+∞) · x ̸= [0,+∞) · y,
x, y ̸= 0.

Proof of Lemma 3.2
Step 1: proof that u ∈ C1(Rd\ {0})
We first notice that by construction, û is convex, (positively) homogeneous of degree one and Lipschitz
continuous. We now check that the strict convexity of K implies û ∈ C1(Rd\ {0}).
To this end, we introduce the lower semi-continuous convex function v = (+∞) · 1Rd\K which satisfies v = 0
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on K and v = +∞ outside K. Then the Legendre-Fenchel transform v∗ of v satisfies v∗ = û, and by convex
duality, we have û∗ = v. Now assume by contradiction that for some x0 ̸= 0

p1 ̸= p2 with p1, p2 ∈ ∂û(x0) :=
{
p ∈ Rd, û(x0 + y)− û(x0) ≥ p · y, for all y ∈ Rd

}
where ∂û(x0) is the subdifferential of û at x0. Then the full segment satisfies [p1, p2] ⊂ ∂û(x0), which (by
convex duality) implies x0 ∈ ∂û∗(p) = ∂v(p) for all p ∈ [p1, p2]. In particular, we get v(p) < +∞, and then
v(p) = 0, i.e. [p1, p2] ⊂ K. If there exists p ∈ [p1, p2] ∩ Int(K), then we have x0 ∈ ∂v(p) = {0} which is
impossible. Hence [p1, p2] ⊂ ∂K which is also impossible because K is strictly convex. Hence we deduce
that

∂û(x) = singleton = {Dû(x)} for all x ̸= 0

which implies û ∈ C1(Rd\ {0}).
Step 2: proof of (3.3)
We notice that û satisfies

û(x) = sup
p∈∂K

p · x.

In particular for every x ̸= 0, there exists some p ∈ ∂K such that û(x) = p · x and then p ∈ ∂û(x). Because
û ∈ C1(Rd\ {0}), we deduce that p = Dû(x) is unique. This shows (3.3) and consequently (3.4).
Step 3: proof of (3.5)

We now define û+(x) := inf
τ>0

τℓ(
x

τ
). By definition of ℓ, we have

(3.9)

û+(x) = inf
τ>0

τ sup
p∈Rd

{x
τ
· p−H(0, p)

}
≥ inf

τ>0
τ sup

p∈K

{x
τ
· p−H(0, p)

}
≥ inf

τ>0
τ sup

p∈K

{x
τ
· p
}

= sup
p∈K

x · p

= û(x).

From assumption (3.1), we have

(3.10) ℓ(0) = − inf
p∈Rd

H(0, p) < 0.

Hence

(3.11) û+(0) = 0.

Now for x ̸= 0, (3.10) shows on the one hand that the infimum defining û+(x) is not reached as τ → +∞.
On the other hand, we know that H satisfies (1.2), and then this is also the case of h, and by duality of ℓ.
Therefore ℓ is superlinear and the infimum defining û+(x) is not reached as τ → 0. Hence it is reached for
some τ∗ ∈ (0,+∞). The first variation in τ of the map τ 7→ τℓ(xτ ) shows that

(3.12) ℓ(ξ∗) = ξ∗ · p∗ with ξ∗ :=
x

τ∗
and p∗ := Dℓ(ξ∗).

Hence

(3.13) h(p∗) = sup
ξ∈Rd

{p∗ · ξ − ℓ(ξ)} = p∗ · ξ∗ − ℓ(ξ∗) = 0 and p∗ ∈ ∂K.

We get for x ̸= 0
û+(x) = τ∗ℓ(ξ∗)

= τ∗ξ∗ ·Dℓ(ξ∗)
= x · p∗
≤ û(x).

Together with (3.9) for x ̸= 0 and (3.11) for x = 0, we deduce that û+ = û, which shows (3.5).
Step 4: proof of (3.6)
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Let us consider the function f(τ, x) := τℓ(
x

τ
), for all (τ, x) ∈ (0,+∞)×Rd. For τ1, τ2 > 0 and

x1

τ1
̸= x2

τ2
and

λ ∈ (0, 1) and τ := λτ1 + (1− λ)τ2, we get

τ−1 {λf(τ1, x1) + (1− λ)f(τ2, x2)} = τ−1

{
λτ1ℓ(

x1

τ1
) + (1− λ)τ2ℓ(

x2

τ2
)

}
> ℓ

(
τ−1 {λx1 + (1− λ)x2}

)
= τ−1f(τ, λx1 + (1− λ)x2).

In particular for x1 = x2 = x ̸= 0 and τ1 ̸= τ2, we see that the map τ 7→ f(τ, x) is strictly convex on (0,+∞).
This shows the uniqueness of the minimizer τ∗ = τ∗(x) which is the first part of (3.6).
On the other hand, we have û(x) = τ∗ℓ(ξ∗) with ξ∗ = x

τ∗
, and (3.12), (3.13) show that

û(x) = x · p∗ with Dℓ(ξ∗) = p∗ ∈ ∂K

and Step 2 shows that p∗ = Dû(x). Therefore

x

τ∗
= ξ∗ = Dh(p∗) = DxH(0, p∗) = DxH(0, Dxû(x)) and also Dû(x) = Dℓ (ξ∗) with ξ :=

x

τ∗(x)

which shows the last part of (3.6).
Step 5: proof of (3.7)
From convex duality, we have

sup
q

{p · q − ℓ(q)} = H(0, p) = sup
(q′,q)

{(0, p) · (q′, q)− L(q′, q)} = sup
q

{
p · q − inf

q′
L(q′, q)

}
which shows by reverse convex duality that ℓ(q) = infq′ L(q′, q) which is (3.7).
Step 6: proof of (3.8)
Assume by contradiction that û is affine on the segment [x1, x2] with [0,+∞)·x1 ̸= [0,+∞)·x2 and x1, x2 ̸= 0.
From the positive 1-homogeneity of û, we deduce that û is linear on the cone Λ := [0,+∞)x1 + [0,+∞)x2.
Moreover, by property (3.6) of û, we have

û(xk) = τkℓ(ξk), ξk :=
xk

τk
, τk = τ∗(xk), k = 1, 2

i.e. û(ξk) = ℓ(ξk). Hence for λ ∈ (0, 1) and ξλ := λξ1 + (1− λ)ξ2, we get

ℓ(ξλ) ≥ inf
τ>0

τℓ(
ξλ
τ
) = û(ξλ) = λû(ξ1) + (1− λ)û(ξ2) = λℓ(ξ1) + (1− λ)ℓ(ξ2) > ℓ(ξλ)

where the last inequality follows from the strict convexity of ℓ. Contradiction. Hence we deduce that û is
convex not affine on [x1, x2] as desired, which proves (3.8).
This ends the proof of the lemma.

Lemma 3.3 (Barrier u+)
Under assumptions (1.2) and (3.1) on H, for û defined in (3.2), we set

u+(t, x
′, x) := û(x) for all (t, x′, x) ∈ R× Rm × Rd.

Then u+ is a globally Lipschitz continuous viscosity solution of (1.1). Moreover any globally Lipschitz
continuous viscosity solution u of (1.1) satisfies u+ ≥ u.

Proof of Lemma 3.3
Recall that infH(0, ·) = H(0, p0) < 0 with p0 ∈ Int(K). Up to redefine H, we can assume that p0 = 0. Then
we have u+(0R1+m , ·) > 0 on Ω. The graph of the solution u+ is a cone that we will shrink like an umbrella
λu+ for λ > 1 to get a strict supersolution above u. Precisely, for any ε > 0, we have for large λ > 1

uε,λ
+ := ε+ λu+ > u on R1+m × Ω.
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This is always possible, because u is globally Lipschitz. Then we now continuously unfold the umbrella (i.e.
decrease λ). Either we reach the value λ = 1, or we have to stop at a heigher level λ∗ > 1 and get

uε,λ∗
+ ≥ u on R1+m × Ω

and for any δ > 0, there exists Xδ = (X ′
δ, xδ) ∈ R1+m × Rd such that (uε,λ∗−δ

+ − u)(Xδ) < 0.
Case 1: xδ stays bounded
Then we set uδ := u(·+ (X ′

δ, 0)) and up to extract a subsequence, we have xδ → x0, uδ → u0, and we get

uε,λ∗
+ ≥ u0 with equality at (0, x0) ∈ R1+m × Ω.

Because uε,λ∗
+ − u0 = ε on R1+m × ∂Ω, and because u0 is globally Lipschitz continuous, we deduce that

(0, x0) ∈ R1+m × Ω. Then uε,λ∗
+ is a test function for u at (0, x0), and this gives a contradiction because

λ∗ > 1.
Case 2: |xδ| → +∞
Then we set uδ := u(· +Xδ) − u(Xδ) and uε,λ∗

+,δ = uε,λ∗
+ (· +Xδ) − u(Xδ), and up to extract a subsequence,

we have uδ → u0 and uε,λ∗
+,δ → uε,λ∗

+,0 , which gives

uε,λ∗
+,0 ≥ u0 with equality at 0.

Here uε,λ∗
+,0 is a strict supersolution of ut +H(Du) = 0 on R1+m+d, because λ∗ > 1. Again this leads to a

contradiction because uε,λ∗
+,0 is affine.

Conclusion
We conclude that λ∗ > 1 is impossible, and then we always reach the value λ = 1. We get ε+u+ ≥ u. Because
this is true for every ε > 0, we can pass to the limit ε → 0 and get u+ ≥ u. This ends the proof of the lemma.

Lemma 3.4 (Barrier u−)
Under assumptions (1.2) and (3.1) on H, for û defined in (3.2), we set

u−(t, x
′, x) := −û(−x) for all (t, x′, x) ∈ R× Rm × Rd.

Then u− is a globally Lipschitz continuous viscosity solution of (1.1). Moreover any globally Lipschitz
continuous viscosity solution u of (1.1) satisfies u ≥ u−.

Proof of Lemma 3.4
The fact that û ∈ C1(Ω) and that H(0, Dû) = 0 implies that u− is also a viscosity solution of (1.1). We now
want to show that

(3.14) u ≥ u− on R1+m × Ω.

We start with short preliminaries and then proceed to a proof by contradiction.
Step 1: preliminaries
Step 1.1: representation formula for any solution of (1.1)
From Lemma 2.1, we have for all t > s
(3.15)

u(t, x̃) = min

[
inf

s̄∈[s,t), ỹ∈Rm×∂Ω

{
0 +

∫ t

s̄

L
(
x̃− ỹ

t− s̄

)
dσ

}
, inf

ỹ∈Rm×Ω

{
u(s, ỹ) +

∫ t

0

L
(
x̃− ỹ

t− s

)
dσ

}]
.

Step 1.2: reformulation of û
From Lemma 3.2, we have for x ̸= 0

û(x) = τ∗ℓ(ξ∗) with ξ∗ :=
x

τ∗
= τ∗L(ξ′∗, ξ∗) with L(ξ′∗, ξ∗) = inf

ξ′∈Rm
L(ξ′, ξ∗)

where ξ′∗ is uniquely defined from the strict convexity of L, inherited from (1.2) satisfied by H.
Step 2: comparison with u−
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We proceed by contradiction.
Step 2.1: first consequences (of the contrapositive)
If (3.14) is false, then there exists some ε > 0 and some X̄0 ∈ R1+m × Ω such that

(3.16) ε+ u(X̄0) < u−(X̄0).

From the global Lipschitz continuity of u and u− and their common zero value on R1+m × ∂Ω, we deduce
that there exists r > 0 and some ball B̄r = B̄r(0) ⊂ Rd such that

(3.17) ε+ u ≥ u− on R1+m × B̄r.

Because of (3.16), we can increase the size of the ball up to some finite r∗ > 0 such that (3.17) holds true for
r = r∗, but not for any r > r∗. This implies that for any δ > 0, there exists Xδ ∈ R1+m × (B̄r∗+δ\B̄r∗) such
that ε+ u(Xδ) < u−(Xδ). For Xδ = (tδ, x

′
δ, xδ) with xδ ∈ B̄r∗+δ\B̄r∗ , we define the points X̄δ := (tδ, x

′
δ, 0)

and Yδ := (0, 0, xδ) and get

(3.18) ε+ uδ(Yδ) < u−(Yδ) with uδ(X) := u(X + X̄δ).

Up to extract a subsequence, we have

uδ → u0, Yδ = (0, 0, xδ) → (0, 0, y0) = Y0 ∈ {0R1+m} × ∂Br∗ .

Passing to the limit in (3.18), we get ε+u0(Y0) ≤ u−(Y0), and then passing to the limit in (3.17) for r = r∗,
we get

(3.19)

{
ε+ u0 ≥ u− on R1+m × B̄r∗

ε+ u0 = u− at Y0 = (0, y0) ∈ R1+m × ∂Br∗ .

Step 2.2: getting a contradiction
From Step 2.1, we have
(3.20)

u−(Y0) = −û(−y0) = −τ∗L(ξ̃∗) with ξ̃∗ = (ξ′∗, ξ∗), ξ∗ =
−y0
τ∗

, τ∗ = τ∗(−y0), ℓ(ξ∗) = L(ξ′∗, ξ∗).

We also have
0 = u0(τ∗, τ∗ξ

′
∗, 0)

= u0(Y0 + τ∗(1, ξ̃∗))

≤ u0(Y0) +

∫ 0

−τ∗

L(ξ̃∗) dσ

=
(3.20)

u0(Y0)− u−(Y0)

=
(3.19)

−ε

where we have used the representation formula (3.15) in the third line. This gives a contradiction and ends
the proof of the lemma.

4 Proof of Theorem 1.1: a Liouville-type result

The proof of the Liouville-type result is based on the barriers identified in the previous section. We make
full use of the representation formula along characteristics trajectories, for which we show a key equality
(Lemma 4.2), that is probably standard in other contexts. From this equality we deduce that the global
solutions u are concave on {u < u+}, which will very soon imply the Liouville-type result.

Lemma 4.1 (Solution along an optimal trajectory)
Assume that H satisfies (1.2) and (3.1). Let u be a globally Lipschitz continuous solution of (1.1). Let
X0 := (t0, x̃0) ∈ R1+m × Ω be such that

u(X0) < u+(X0).

Then for any τ > 0, there exists X1 := (t0 − τ, ỹτ ) ∈ R1+m × Ω such that

u(X0) = u(X1) + τL(ξ̃τ ) with ξ̃ :=
x̃0 − ỹτ

τ
and u(X1) < u+(X1).
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Proof of Lemma 4.1
Step 1: splitting the representation formula in two parts
Recall that from the representation formula, we have for X0 = (t0, x̃0) and t < t0

(4.1) u(X0) = min(ut
b(X0), u

t
d(X0))

with the boundary term

ut
b(X0) := inf

s0∈[t,t0)
ūs0
b (X0) with ūs0

b (X0) := inf
ỹ∈Rm×∂Ω

{
0 +

∫ t

s̄

L
(
x̃0 − ỹ

t0 − s0

)
dσ

}
and the domain term

(4.2) ut
d(X0) := inf

ỹ∈Rm×Ω

{
u(t, ỹ) +

∫ t

0

L
(
x̃0 − ỹ

t0 − t

)
dσ

}
.

Step 2: The boundary contribution
We write x̃0 = (x′

0, x0) and define (τ0, ξ̃+) ∈ (0,+∞)× Rm+d such that

u+(X0) = û(x0) = inf
τ>0

τℓ(
x0

τ
) = τ0ℓ(

x0

τ0
) = τ0L(ξ̃+), ξ̃+ = (ξ′+, ξ+), ξ+ :=

x0

τ0

where we have used Lemma 3.2.
Now for τ > 0 and s0 := t0 − τ , we get

ūs0
b (X0) = inf

ỹ∈Rm×∂Ω
τL
(
x̃0 − ỹ

τ

)
= τL(ξ̃τ ) for ξ̃τ :=

x̃0 − ỹτ

τ
for some ỹτ ∈ Rm × ∂Ω.

Recall that by convexity, we have for any ξ̃ ∈ Rm+d with P+ := DL(ξ̃+) = (0, p+) with p+ ∈ ∂K

(4.3)

L(ξ̃) ≥ L(ξ̃+) + (ξ̃ − ξ̃+) ·DL(ξ̃+)
≥ L(ξ̃+) + (ξ̃ − ξ̃+) · P+

= ξ̃ · P+ −H(P+)

= ξ̃ · P+

where we have used in the third line the fact that P+ = DL(ξ̃+) is equivalent to L(ξ̃+) = ξ̃+ · P+ −H(P+).
Hence

τ−1ūs0
b (X0) = L(ξ̃τ ) ≥ ξ̃τ · P+ =

x̃0

τ
· P+ = τ−1u+(X0)

and then ūs0
b (X0) ≥ u+(X0), which implies

(4.4) ut
b(X0) ≥ u+(X0).

Step 3: The domain contribution
Because u(X0) < u+(X0), we deduce from (4.1) and (4.4) that

(4.5) u(X0) = ut
d(X0) for all t < t0.

Setting τ := t0 − t > 0 and G(ỹ) := u(t, ỹ) + τL
(
x̃0 − ỹ

τ

)
, we get

u+(X0) > u(X0) = ut
d(X0) = inf

ỹ∈Rm×Ω
G(ỹ) = inf

ỹ∈Rm×Ω
G(ỹ)

where the infimum is reached for some ỹτ ∈ Rm × Ω. We have used the superlinearity of L and the global
Lipschitz regularity of u. Notice that (4.2) implies that ỹτ ̸∈ Rm × ∂Ω, i.e. ỹτ ∈ Rm × Ω. We get

P+ · x̃0 = u+(x0) > u(X0) = u(t, ỹτ ) + τL(ξ̃τ ) ≥ u(t, ỹτ ) + τP+ · ξ̃τ with ξ̃τ :=
x̃0 − ỹ

τ

where we have used (4.3) in the last inequality. For X1 := (t, ỹτ ), this implies u+(X1) > u(X1), which is the
desired inequality. This ends the proof of the lemma.
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Lemma 4.2 (Key equality along a characteristic ξ̃−)
Assume that H satisfies (1.2) and (3.1). Let u be a globally Lipschitz continuous solution of (1.1). Let
X0 := (t0, x̃0) ∈ R1+m × Ω be such that u(X0) < u+(X0).
Then there exists ξ̃− ∈ Rm+d such that

(4.6) P− := DL(ξ̃−) = (0, p−) with p− ∈ ∂K

such that for all τ > 0, we have

u(X0) = u(X0 − τ(1, ξ̃−)) + τL(ξ̃−).

Remark 4.3 Notice that Lemma 4.2 does not exclude the existence of possibly different admissible values
of ξ̃−, in particular at points X0 where u is not C1.

Proof of Lemma 4.2
Step 1: the direction ξ̃2 remains fixed for τ2 > τ0
We apply two times Lemma 4.1. For any τ0, the first time applied from the point X0 gives the existence of
some direction ξ̃τ0X0

such that

u(X0) = u(X1) + τ0L(ξ̃τ0X0
), X1 := X0 − τ0(1, ξ̃

τ0
X0

), u(X1) < u+(X1).

For any τ1 > 0, the second time applied from the point X1, gives the direction ξ̃τ1X1
such that

u(X1) = u(X2) + τ1L(ξ̃τ1X1
), X2 := X1 − τ1(1, ξ̃

τ1
X1

), u(X2) < u+(X2).

Hence for τ2 := τ0 + τ1, we get

(4.7) u(X0) = u(X2) + τ1L(ξ̃τ1X1
) + τ0L(ξ̃τ0X0

) ≥ u(X2) + τ2(ξ̃2) with ξ̃2 := τ−1
2 (τ0ξ̃

τ0
X0

+ τ1ξ̃
τ1
X1

)

where the convex inequality remains strict if ξ̃τ1X1
̸= ξ̃τ0X0

. Now for X2 := (t2, x̃2), we have t2 = t0 − τ2 and

ξ̃2 =
x̃0 − x̃2

τ2
with x̃2 ∈ Rm × Ω, and we get

u(X2) + τ2L(ξ̃2) ≤ u(X0) = ut2
d (X0) = inf

ỹ∈Rm×Ω

{
u(t0 − τ2, ỹ) + τ2L(ξ̃)

}
with ξ̃ :=

x0 − ỹ

τ2

where we have used (4.5) for the first equality. Hence the infimum is reached for ξ̃ = ξ̃2 and we have equality
in (4.7). This implies ξ̃τ1X1

= ξ̃τ0X0
= ξ̃2. This also shows that we can choose ξ̃τ2X0

= ξ̃2 and ỹτ2 := x̃2, i.e. for
all τ2 > τ0, there exists x̃2 ∈ Rm × Ω such that X2 = (t0 − τ2, x̃2) satisfies

(4.8) u(X0) = u(X2) + τ2L(ξ̃2) with ξ̃2 =
x̃2 − x2

τ2
= ξ̃τ2X0

= ξ̃τ0X0
.

Because this is true for arbitrary τ2 > τ0, this shows that we can find a map τ 7→ ξ̃τX0
which is constant

equal to ξ2.
Step 2: proof that ξ̃2 = ξ̃− satisfies (4.6)
We now want to show that ξ̃2 = ξ̃− is indeed specific, i.e. satisfies (4.6). By assumption, we have with
X2 = X0 − τ2(1, ξ̃2)

u+(X0) > u(X0) = u(X2) + τ2L(ξ̃2) ≥ u−(X2) + τ2L(ξ̃2)
and then u+(X0)− u−(X0) > u−(X2)− u−(X0) + τ2L(ξ̃2), i.e. for P τ2

− := Du−(X2) with H(P τ2
− ) = 0

L(ξ̃2) ≤ A

τ2
+ τ−1

2 {u−(X0)− u−(X2)} with A := u+(X0)− u−(X0) > 0

≤ A

τ2
+Du−(X2) ·

{
X0 −X2

τ2

}
≤ A

τ2
+ P τ2

− · ξ̃2

where in the second line we have used the concavity of u−. For any P− ∈ Rm+d such that H(P−) = 0, we
set

SA
τ (P−) :=

{
ξ̃ ∈ Rm+d, L(ξ̃) < P− · ξ + A

τ

}
.
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Setting ξ̃− := DH(P−), we have P− = DL(ξ̃−) and L(ξ̃−) = ξ̃− · P− − H(P−) = ξ̃− · P−. Therefore
L(ξ̃) ≥ L(ξ̃−) + (ξ̃ − ξ̃−) ·DL(ξ̃−) = ξ̃ · P− , i.e.

L(ξ̃) ≥ P− · ξ̃ with equality only at ξ̃ = ξ̃− := DH(P−) with H(P−) = 0.

Hence from the strict convexity of L, we deduce that for a fixed P− ∈ Rm+d, we have

dist(
{
ξ̃−

}
, SA

τ (P−)) → 0 as τ → +∞, if

{
ξ̃− := DH(P−),
H(P−) = 0.

Indeed this convergence is event true and uniform if P− stays in some compact set. Hence we have also

dist(
{
ξ̃τ2−

}
, SA

τ (P
τ2
− )) → 0 as τ2 → +∞, with


ξ̃τ2− := DH(P τ2

− ),
H(P τ2

− ) = 0,

P τ2
− = DL(ξ̃τ2− ),

P τ2
− := Du−(X2) = Du−(X0 − τ2(1, ξ̃2)).

Because ξ̃2 ∈ SA
τ2(P

τ2
− ) with ξ̃2 fixed, we deduce that

|ξ̃2 − ξ̃τ2− | → 0, P τ2
− → P− = DL(ξ̃2) = Du−(−(1, ξ̃2)) = (0, p−), p− ∈ ∂K.

This shows that ξ̃τ2− → ξ̃− = ξ̃2 satisfies (4.6).
This ends the proof of the lemma.

Lemma 4.4 (Property of global solutions)
Assume that H satisfies (1.2) and (3.1). Let u be a globally Lipschitz continuous solution of (1.1) and let
X0 := (t0, x̃0) ∈ R1+m × Ω.
If u(X0) < u+(X0), then there exists P− = (0, p−) with p− ∈ ∂K such that we have

u(t, x̃) ≤ u(t0, x̃0) + P− · (x̃− x̃0) for all X := (t, x̃) ∈ R× Rm+d.

Proof of Lemma 4.4
From Lemma 4.2 applied to the point X0, we get the existence of some characteristic ξ̃−, such that P− =
DL(ξ̃−) = (0, p−) with p− ∈ ∂K, and for all τ > 0

u(X0) = u(Y0) + τL(ξ̃−) with Y1 := (t1, ỹ1) = (t0 − τ, x̃0 − τ ξ̃−).

From the representation formula, we also have for X ∈ R1+m+d

u(X) ≤ u(Y0) + τL(ξ̃1) with ξ̃1 :=
x̃− ỹ1

τ
= ξ̃− + ˜̄ξ, ˜̄ξ :=

x̃− x̃0

τ
.

Hence we get
u(X0)− u(X) = u(Y0) + τL(ξ̃−)− u(X)

≥ τL(ξ̃−)− τL(ξ̃1)

≥ −τ

∫ 1

0

dσ ˜̄ξ ·DL(ξ̃− + σ ˜̄ξ)

→ −(x̃− x̃0) ·DL(ξ̃−) as τ → +∞
= −(x̃− x̃0) · P−

which gives the desired result. This ends the proof of the lemma.

Corollary 4.5 (Characterization of global solutions)
Assume that H satisfies (1.2) and (3.1). Let u be a globally Lipschitz continuous solution of (1.1). Then
u(t, x′, x) = u(0, 0, x). Moreover either u is concave, or u is the minimum of the convex function û and of
a concave function and Ku := {û = u} is strictly convex, possibly unbounded, and contains some small ball
Br(0). Moreover we have

(4.9) û(y) ≥ u(0, 0, x+ y)− u(0, 0, x) ≥ −û(−y) for all x, y ∈ Rd.
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Proof of Corollary 4.5
Step 1: main result
Because u is Lipschitz continuous in time-space, its time-space gradient D̂u := (ut, Du) is defined almost
everywhere on R1+m × Ω. If X0 is such a point where D̂u is defined, then we have two cases.
Case 1: u(X0) = u+(X0)
Because we know that u ≤ u+, and ∂tu+ = 0 = Dx′u+, we deduce also that ∂tu(X0) = 0 = Dx′u(X0).
Case 2: u(X0) < u+(X0)
Then from Corollary 4.5, we have for all X = (t, x̃) ∈ R1+m × Ω

u(t, x̃) ≤ u(t0, x̃0) + P− · (x̃− x̃0), P− = (0, p−), p− ∈ ∂K.

This implies that D̂u(X0) = (0, 0, p−).
Conclusion
From both cases, we then conclude that ∂tu = 0 = Dx′u for a.e. X0 ∈ R1+m × Ω. Hence the Lipschitz
continuity of u implies

u(t, x′, x) = u(0, 0, x) for all (t, x′, x) ∈ R× Rm × Ω.

Step 2: further properties of the solution
Step 2.1: first properties
In this step, we make abuse of notation, and simply note u(x) = u(t, x′, x) = u(0, 0, x) and u+(x) =
u+(t, x

′, x) = u+(0, 0, x). From Lemma 4.4, if x0 ∈ {u < u+} ∩Ω, then there exists p− = p−(x0) ∈ ∂K such
that u(x) ≤ u(x0) + (x− x0) · p−(x0) for all x ∈ Ω. We define for x ∈ Ω

w(x) := inf
x0∈{u<u+}∩Ω

{u(x0) + (x− x0) · p−(x0)}

which is concave by construction, and also viscosity solution of H(0, Dw) = 0 on Rd. By construction of w,
we also have for all x, y ∈ Ω

(4.10) û(y) := sup
p∈∂K

p · y ≥ w(x+ y)− w(x) ≥ inf
p∈∂K

p · y ≥ −û(−y).

By construction of w, we also have u ≤ w and u = w on {u < û}, i.e.

(4.11) u = min(w, û)

and then w(0) ≥ u(0) = 0. Notice that (4.10) implies (4.9).
We now distinguish two cases.
Case 1: w(0) = 0
Then w ≤ û and u = w and u is concave.
Case 2: w(0) > 0
Then Ku := {u = û} = {w ≥ û} = {û− w ≤ 0} ⊂ Ω. Because û − w is convex, we deduce that Ku is also
convex. Moreover the condition w(0) > 0 = û(0) implies that the origin 0 is in the interior of Ku.
Step 2.2: strict convexity of Ku when 0 ∈ Int(Ku)
Assume by contradiction that Ku is not strictly concave. Hence there exists [x1, x2] ⊂ ∂Ku with x1 ̸= x2.
Because ∂Ku ⊂ {û = w}, we see that the equality of a convex function û and a concave function w, implies
that û = w = affine on [x1, x2]. Because û is known to be strictly convex (see (3.8)), except along lines
Re for some e ∈ Sd−1, we deduce that there exists such e such that [x1, x2] ⊂ Re. Moreover, the case
0 ∈ (x1, x2) is impossible, because we know that p0 = 0 ∈ Int(K), and then û is not linear on (x1, x2) ∋ 0.
We conclude that [x1, x2] ⊂ (0,+∞)e for such e. Then there exists an hyperplan Π tangential to the convex
Ku at x2 ∈ ∂Ku which contains the vector e. Hence 0 ∈ Π, which is impossible because 0 ∈ Int(Ku). We
conclude that Ku is strictly convex.
Step 2.3: conclusion
Hence u is convex on the the strictly convex set Ku ⊃ Br(0) for some small r > 0, and concave outside Ku.
This ends the proof of the corollary.

Proof of Theorem 1.1
From Dichotomy Lemma 3.1, we have either u(t, x′, x) = p0 · x with 0 = H(0, p0) = infH(0, ·), or
infH(0, ·) < 0, and we get u(t, x′, x) = u(0, 0, x) from Corollary 4.5. This ends the proof of the theo-
rem.
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5 Explicit characteristics for concave 1-homogeneous solutions

We now provide a refinement of Lemma 4.2, where we characterize explicitely the set of characteristics ending
at a point x0 where the key equality holds. This result is of independent interest and is done for positively
1-homogeneous concave solutions. A large part of this section will be also used in the proof of Theorem 1.3
later in Section 7.

Lemma 5.1 (Explicit characteristics for concave 1-homogeneous solutions)
Assume that H satisfies (1.2) and (3.1), and let K := {H(0, ·) = 0}. Let w be a globally Lipschitz continuous
solution of (1.1) which is (positively) 1-homogeneous. Let x0 ∈ Ω be such that w(x0) < û(x0) = u+(0, 0, x0).
i) (General result)
Then w is concave.
Let us consider the following set

Ξx0
− :=

{
ξ− ∈ Rd, w(x0) = w(x0 − τξ−) + τℓ(ξ−) for all τ > 0

}
with ℓ defined in (3.5). Then we have

Ξx0
− = DxH(0, A0) with A0 := D+w(x0) ∩ ∂K ̸= ∅, D+w(x0) ⊂ Kw ⊂ K

where there exists a unique compact convex set Kw (only depending on w) such that

w(x) = inf
p∈Kw

p · x and D+w(x0) = {p ∈ Kw, p · x0 = w(x0)} .

ii) (Properties of Ew)
Let

Ew := Kw ∩ ∂K.

Then Ew ̸= ∅ and we also have the convex hull reconstruction

(5.1) Kw = co(Ew) and w(x) = inf
p∈Ew

p · x.

Moreover, for any p− ∈ Ew, and ξ− := DxH(0, p−), we have

(5.2) Ξx0
− = {ξ−} for all x0 = −λξ− with λ > 0, and w(−ξ−) = −ℓ(ξ−).

We also have

(5.3) Ew = {p− ∈ ∂K, w(−ξ−) = −û(ξ−) for ξ− := DxH(0, p−)} .

Remark 5.2 The notation Ew is chosen to think to it as the set of exposed points of Kw.

Proof of Lemma 5.1
Step 1: preliminaries on w
Step 1.1: general preliminaries
Notice that w is in particular a solution to the Liouville-type problem. Hence by Corollary 4.5, either w is
concave, or the set {w = û} has the origin in its interior, which implies w = û. This is impossible because
w(x0) < û(x0). We conclude that w is concave, and then w ≥ −û(−·). Therefore

(5.4) v(x) := −w(−x) ≤ û(x) = sup
p∈K

p · x

is convex, and its the Legendre-Fenchel conjugate is with Kv := D−v(0)

v∗(p) := sup
x∈Rd

{p · x− v(x)} =

{
0 if p ∈ Kv

+∞ otherwise

}
= (+∞) · 1Rd\Kv

(p)

where (5.4) implies v∗ ≥ û∗ = (+∞)·1Rd\K and thenKv ⊂ K. This means that v(x) = sup
p∈Rd

{p · x− v∗(p)} =

sup
p∈Kv

p · x, i.e.

(5.5) w(x) = inf
p∈Kw

p · x with the compact convex set Kw := D+w(0) = Kv ⊂ K.
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Step 2: properties of every characteristics ending at x0

We now choose x0 ̸= 0 and consider some ξ− ∈ Rd such that

(5.6) w(x0) = w(x0 − τξ−) + τℓ(ξ−) for all τ > 0.

The fact that ℓ(0) = − infH(0, ·) > 0 excludes the case ξ− = 0.
Step 2.1: far away consequences

From (5.6), we have ℓ(ξ−) =
w(x0)− w(x0 − τξ−)

τ
→ −w(−ξ−). Recall that w(x) ≥ −û(−x), and then

ℓ(ξ−) = −w(−ξ−) ≤ û(ξ−) = inf
τ>0

τℓ(
ξ−
τ
) ≤ ℓ(ξ−)

which shows that we have equality in each inequality. Hence

w(x) ≥ −û(−x) with equality at x := −ξ−, and τ∗(ξ−) = 1.

The fact that û ∈ C1(Ω) implies that w has a derivative at −ξ− ̸= 0, which satisfies

(5.7) p− := Dw(−ξ−) with Kw ∋ Dw(−ξ−) = Dû(ξ−) ∈ ∂K and p− = Dℓ(ξ−)

where we have identified the gradient in Kw using (5.5), and in ∂K using (3.3). Finally, we have used (3.6)
in the last equality. Hence

(5.8) ξ− = DxH(0, p−) with p− ∈ Kw ∩ ∂K.

Step 2.2: close consequences

We also have −w(−ξ−) = û(ξ−) = ℓ(ξ−) =
w(x0)− w(x0 − τξ−)

τ
= w(

x0

τ
)− w(

x0

τ
− ξ−), i.e.

w(
x0

τ
) = w(

x0

τ
− ξ−)− w(−ξ−) =

x0

τ
· p− + o

(x0

τ

)
where we have used (5.7) to identify p−. This gives w(x0) = x0 · p− + τ · o

(x0

τ

)
, which implies in the limit

τ → +∞
w(x0) = x0 · p− with p− ∈ Kw ∩ ∂K.

From (5.5), we also deduce that p− ∈ D+w(x0), and then

(5.9) p− ∈ A0 := D+w(x0) ∩ ∂K.

Step 2.3: a property of D+w(x0)
We first recall that for p ∈ D+w(x0), we have w(x0 + τh)− w(x0) ≤ p · (τh), and in the limit τ → +∞, we
get w(h) ≤ p · h which shows that p ∈ D+w(0) = Kw. Hence D+w(x0) ⊂ Kw. We want to show that

(5.10) D+w(x0) = Kx0
w with Kx0

w := {p ∈ Kw, p · x0 = w(x0)} .

Let p ∈ D+w(x0). Then we have w(x0 + h) − w(x0) ≤ p · h. For h = ±εx0 with ε > 0, we get in the limit
ε → 0+ the two inequalities ±w(x0) ≤ ±p · x0, which shows that

D+w(x0) ⊂ Kx0
w .

Conversely, for any p0 ∈ Kx0
w , we have

w(x0 + h)− w(x0) = inf
p∈Kw

p · (x0 + h)− p0 · x0 ≤ p0 · (x0 + h)− p0 · x0 = p0 · h

and then p0 ∈ D+w(x0), i.e. K
x0
w ⊂ D+w(x0) which is the reverse inequality. We conclude to (5.10).

Step 3: reaching the set DH(0, A0) with A0 = D+w(x0) ∩ ∂K
First notice that Lemma 4.2 applies to w and shows that ∅ ≠ Ξx0

− , while we know from Step 2 that
Ξx0
− ⊂ DxH(0, A0). Therefore A0 ̸= ∅.

Because D+w(0) = Kw ⊂ K, we also know that w is a subsolution at the origin. Moreover if D−w(0) ̸= ∅,
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then w(x) = p · x with p ∈ Kw has to be a solution for x ̸= 0, and then is also a supersolution at x = 0.
Hence w is a solution on the whole space of

H(0, Dw) = 0 on Rd.

From the representation formula, we have for any τ > 0

w(x0) = inf
ξ∈Rd

{w(x0 − τξ) + τℓ(ξ)}

= inf
ξ∈Rd

{{
inf

p∈Kw

p · (x0 − τξ)

}
+ τℓ(ξ)

}
= inf

p∈Kw

{
p · x0 − τ sup

ξ∈Rd

{p · ξ − ℓ(ξ)}

}
= inf

p∈Kw

{p · x0 − τH(0, p)}

≤ inf
p∈A0

{p · x0 − τH(0, p)}

= w(x0)

where using (5.10), we have
A0 = Kx0

w ∩ ∂K ̸= ∅.

This shows that the infimum in p is reached for any p− ∈ A0. Then in the third line the suppremum in ξ is
reached for ξ = ξ− = Dℓ(p−) uniquely associated to each p−. Hence the infimum in the first line is reached
for such ξ = ξ−. This shows that for all τ > 0, we have

w(x0) = w(x0 − τξ−) + τℓ(ξ−) for all ξ− := DxH(0, p−) with p− ∈ A0.

Step 4: proof of (5.2)
For any x1 ̸= 0, we know from Step 3, that A1 := D+w(x1) ∩ ∂K ̸= ∅, and A1 ⊂ Ew := Kw ∩ ∂K. Hence

Ew ̸= ∅.

and we can consider any p− ∈ Ew and ξ− := DxH(0, p−). Then p− = Dℓ(ξ−) and ℓ(ξ−)+H(0, p−) = p− ·ξ−.
Because infH(0, ·) < 0 and H is strictly convex, we first deduce that ξ− ̸= 0. We then notice that for all
λ > 0 and x0 := −λξ−, we have

(5.11) w(x0) ≥ −û(−x0) = −λû(ξ−) = −λℓ(ξ−) = −λp− · ξ− = p− · x0 ≥ inf
p∈Kw

p · x0 = w(x0)

which shows that we have equality in all inequalities. Because û ∈ C1(Ω), we deduce that w is C1 at x0 and
we get

D+w(x0) = {p∗} , p∗ = Dû(−x0) = Dû(ξ−).

Moreover, we have ℓ(ξ−) = û(ξ−) = inf
τ>0

τℓ(
ξ−
τ
), where we have used (3.6) which also shows that τ∗(ξ−) = 1

and then that p∗ = Dû(ξ−) = Dℓ(ξ−) = p−. Therefore Ξx0
− = {ξ−}. Moreover we have w(x0) = w(x0 −

τξ−) + τℓ(ξ−), and then in the limit τ → +∞, we get w(−ξ−) = −ℓ(ξ−).
Step 5: proof of (5.1)
Consider now some exposed point p0 ∈ exp Kw. Hence there exists a unit vector n ∈ Sd−1 such that for
Π±

p0,n :=
{
p ∈ Rd, (p− p0,±n) ≥ 0

}
, we have

Kw ⊂ Π−
p0,n, Kw ∩Π+

p0,n = {p0} .

Then Lemma 11.3 shows that v(x) = −w(−x) satisfies

∂v(n) = {p0}

i.e. that v is C1 at n. This means that w is C1 at −n with Dw(−n) = p0. Because the PDE is satisfied at
−n, this shows that p0 ∈ ∂K, and therefore, all exposed points of Kw are on ∂K. From ii) of Lemma 11.2
in the Appendix, we deduce that we have the following closure of the convex hull property

Kw = co(exp Kw) with exp Kw ⊂ ∂K
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which also implies (using the boundedness of A2 to assert that co(A2) = co(A2), see for instance Theorem
1.4.3 on page 31 in [12])

(5.12) Kw = co(exp Kw) with exp Kw ⊂ (Kw ∩ ∂K) = Ew.

Hence Kw = co(Ew). Furthermore point iii) of Lemma 11.2 shows that

w(x) = inf
p∈exp Kw

p · x.

From the inclusion in (5.12), we deduce that

w(x) = inf
p∈Ew

p · x.

Step 6: proof of (5.3)
We set

E′
w := {p− ∈ ∂K, w(−ξ−) = −û(ξ−) for ξ− := DxH(0, p−)} .

Notice that relation (5.11) for λ = 1 shows that

(5.13) Kw ∩ ∂K = Ew ⊂ E′
w.

Conversely, choose any p− ∈ ∂K and ξ− := DxH(0, p−). Because K is strictly convex and ξ− is orthogonal
to K at p−, we get

ξ− · (p− p−) < 0 for all p ∈ K\ {p−} .

Now if p− ̸∈ Kw ⊂ K, then we have on the compact set Kw, the strict inequality sup
p∈Kw

ξ− · (p− p−) < 0, i.e.

w(−ξ−) = inf
p∈Kw

p · (−ξ−) > p− · (−ξ−) = −û(ξ−)

where we have used (3.3) and (3.6) for the last inequality with p− = Dû(ξ−) and τ∗(ξ−) = 1. This shows
that p− ̸∈ E′

w, and then (∂K\Kw) ∩ E′
w = ∅, i.e.

Ew ⊃ E′
w.

With (5.13), this shows that Ew = E′
w, which is (5.3).

This ends the proof of the lemma.

6 Key equality for localized solutions

In this section we present a localization of Lemma 4.2. For a cylinder Q0 ⊂ R1+m+d, we consider solutions
u(t, x′, x) of

(6.1)

{
ut +H(Du) = 0 on Q0\Γ

u(t, x′, 0) = g(t, x′, 0) on Q0 ∩ Γ.

We also set for τ, ρ > 0

(6.2) Qτ,2ρ := (−τ, 0)×B2ρ, Γτ,2ρ := Qτ,2ρ ∩ Γ.

Lemma 6.1 (Key equality for localized solutions)
We use notation introduced in (6.2). Assume that H satisfies (1.2) and (3.1). For τ, ρ > 0, let

u : Q0 → R with Q0 := (−τ, 0)×B2ρ ⊂ R× Rm+d

be a Lipschitz continuous solution of (6.1), of Lipschitz constant L > 0. Define RL ≥ 1 such that{
ξ̃ ∈ Rm+d, L(ξ̃) ≤ L|(1, ξ̃)|

}
⊂ BRL
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and assume that

(6.3) ρ ≥ τRL and set κ := sup
x∈∂B1

τ∗(x) > 0, α0 := inf
n∈Sd−1, ξ0=(2κ)−1n

{ℓ(ξ0)− ξ0 ·Dℓ(ξ0)} > 0

for τ∗ defined in (3.6). For this local problem, we define the Dirichlet boundary (including the initial data)

ΓD
τ,2ρ := Γτ,2ρ ∪ Γinit

τ,2ρ with Γinit
τ,2ρ := {−τ} ×B2ρ.

Then we have the representation formula

(6.4) u(X) = inf
s∈(0,τ ], ξ̃∈Rm+d, Y :=X−s(1,ξ̃)∈ΓD

τ,2ρ

{
u(Y ) + sL(ξ̃)

}
, for all X = (0, x̃) ∈ {0} ×Bρ.

Moreover for r ∈ (0, ρ], if X0 = (0, x̃0) ̸∈ Γ with x̃0 = (x′
0, x0) ∈ Br, and

(6.5) u(X0) < u+(X0) + inf
s∈(0,τ ]

{
inf

Γs,r+sRL

u+ α0 max {0, s− 2κ|x0|}
}

then there exists ξ̃− ∈ BRL
such that for all s ∈ [0, τ ], we have

(6.6) u(X0) = u(X0 − s(1, ξ̃−)) + sL(ξ̃−).

Remark 6.2 Lemma 6.1 allows to connect the behaviour of the solution at short distances (for small s) to
large distances (large s). This result is crucial to show the uniqueness of the blow-up limit of the solutions
at the boundary Γ (in Theorem 1.3).

Proof of Lemma 6.1
We first notice that because the solution u is Lipschitz, and DH is continuous, we have finite propagation of
information. Then it is possible to justify representation formula (6.4), which itself implies that minimizers
ξ̃s have to satisfy ξ̃s ∈ BRL

. Moreover for X0 = (0, x̃0) ̸∈ Γ with x̃0 = (x′
0, x0) ∈ Br and r ∈ (0, ρ], if

Y = (−s, y′, 0) ∈ Γτ,2ρ is such that

u(X0) = u(Y ) + sL(ξ̃s), Y = X0 − s(1, ξ̃s), sξ̃s = (x′
0 − y′, x0).

then we have s ∈ (0, τ ]. On the one hand, we have for f(s, x0) := sℓ(
x0

s
)

sL(ξ̃s) ≥ sℓ(
x0

s
) = f(s, x0) ≥ inf

s′>0
f(s′, x0) = f(τ∗(x0), x0) = û(x0) = u+(X0)

where the map τ∗ is positively 1-homogeneous. From Step 4 of the proof of Lemma 3.2, we know that the
map f(·, x0) : (0,+∞) → R is strictly convex. If 2κ|x0| ≥ 2τ∗(x0), then we have for

α := f ′
s(2κ|x0|, x0) = ℓ(ξ0)− ξ0 ·Dℓ(ξ0) ≥ α0 > 0 for ξ0 := (2κ)−1 x0

|x0|
with α0 defined in (6.3). Hence

f(s, x0) ≥ f(2κ|x0|, x0) + α(s− 2κ|x0|)
≥ f(τ∗(x0), x0) + α(s− 2κ|x0|)
= u+(X0) + α(s− 2κ|x0|)

and then
sL(ξ̃s) ≥ f(s, x0) ≥ u+(X0) + α0 max {0, s− 2κ|x0|} .

Hence
u(X0) = u(Y ) + sL(ξ̃s)

≥

{
inf

([−s,0)×BsRL
(X0))∩Γτ,2ρ

u

}
+ u+(X0) + α0 max {0, s− 2κ|x0|}

≥ u+(X0) + inf
Γs,r+sRL

u+ α0 max {0, s− 2κ|x0|}

i.e.

u(X0) ≥ u+(X0) + inf
s∈(0,τ ]

{
inf

Γs,r+sRL

u+ α0 max {0, s− 2κ|x0|}
}
.

Then condition (6.5) prevents to have Y ∈ Γτ,2ρ. Hence Y ∈ Γinit
τ,2ρ\({−τ} × Γ̃). As in the proof of Lemma

4.2, we show that we can choose ξ̃s independent on s for s ∈ (0, τ ], and this shows (6.6). This ends the proof
of the lemma.
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7 Proof of Theorem 1.3: full directional derivatives

This section is fully devoted to the proof of Theorem 1.3.

Proof of Theorem 1.3
Up to redefine H, we can assume that λ = 0 = p′.
Step 1: blow-up limits and double blow-up limits
For ε > 0, we consider the blow-up functions

(7.1) uε(t, x̃) = ε−1u(εt, εx̃)

which are Lipschitz continuous, uniformly with respect to ε, with the same Lipschitz constant. By Ascoli-
Arzela theorem, from any sequence ε → 0, we can extract a subsequence (still denoted by ε) such that
uε → u0 locally uniformly on compact sets of R1+m+d. Moreover by stability of viscosity solutions, the limit
u0 solves the whole space problem

(7.2)

{
u0
t +H(Du0) = 0 on R1+m × Ω (in the viscosity sense),

u0 = 0 on R1+m × ∂Ω (in the strong sense).

From Theorem 1.1, we know that u0 = u0(x) with x ∈ Ω = Rd and from Corollary 4.5, we even know that

(7.3) u0(t, x′, x) = min {û(x), w(x)} with w concave solution of H(Dw) = 0 on Rd

and convex û defined in (3.2). We can now consider the rescaling for µ > 0

wµ(x) := µ−1 {w(µx)− w(0)} .

Because w is globally Lipschitz and concave, on the one hand, we know that we have the blow-up convergence

wµ(x) → w0(x) := lim
µ→0+

{
w(µx)− w(0)

µ

}
= inf

p∈D+w(0)
p · x as µ → 0+.

On the other hand, for the same reason, we have the blow-down convergence

wµ(x) → w∞(x) := lim
µ→+∞

{
w(µx)− w(0)

µ

}
as µ → +∞.

Here by construction, both w0 and w∞ are globally Lipschitz continuous, concave, and moreover 1-
homogeneous and solve H(Dw) = 0.

As a consequence, we get for u0 = u0(x) that

(u0)µ(x) = µ−1u0(µx)

satisfies (using (7.3))
(u0)µ → min(û, w∞) = w∞ as µ → +∞,

(u0)µ →
{

min(û, w0) = w0 if w(0) = 0
û if w(0) > 0

∣∣∣∣ as µ → 0+.

Notice that the limit of (u0)µ is then either equal to û, or is concave and 1-homogeneous.
Step 2: setting of the problem
Our goal is to show later the uniqueness of the blow-up limit. If infRd H(0, ·) = 0 = H(0, p0), then we know
that the blow-up limit is u0(X) = p0 · x and then is unique. We then assume from Lemma 3.1 that (3.1)
holds true. We start as follows.
Consider now two sequences εi = εik → 0 for i = 1, 2, such that for rescaling (7.1), we have uεi → ui locally
uniformly on compact sets of R1+m+d. Notice that each limit ui has a shape as in (7.3). Then by a diagonal

extraction argument, we can always find sequences aε
i → +∞ which go to infinity sufficiently slowly such

that aε
i

εi → 0 and

uaεiεi(t, x′, x) → ûi
∞(x) with ûi

∞ := lim
µ→+∞

(ui)µ
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and we can similarly find sequences bε
i → 0+ which go to zero sufficiently slowly such that

ubε
i
εi(t, x′, x) → ûi

0(x) with ûi
0 := lim

µ→0+
(ui)µ.

Hence up to redefine the sequences εi (by aε
i

εi → 0 or bε
i

εi → 0), and redefine the limit ui, we can assume
that for i = 1, 2

(7.4) uεi(t, x′, x) → ûi(x) as εi → 0

with ûi solution of (1.1), where ûi is 1-homogeneous (i.e. ûi(αx) = αûi(x) for all α ≥ 0), and either ûi = û,
or ûi is concave and then from (5.1), we see that there exists a compact set Ei ⊂ ∂K such that

(7.5) ûi(x) = inf
p∈Ei

p · x = inf
p∈Ki

p · x and Ki = co(Ei), Ei = Ki ∩ ∂K.

Moreover, we have the following property. For any η > 0, there exists εη > 0 such that for all εi < εη, we
have for X = (X ′, x) and X ′ := (t, x′)

(7.6) |uεi(X ′, x)− ûi(x)| ≤ η for all (X ′, x) ∈ [−1, 1]×B1.

Step 3: framework for a proof by contradiction
Step 3.1: position of the problem
We want to show that û1 = û2. Assume by contradiction that û1 ̸≡ û2, i.e.

(7.7) û1(e) < û2(e) for some unit vector e ∈ Sd−1.

In particular this forces û1 to be concave as in (7.5), and û2 is either equal to û or also concave as in (7.5).
We distinguish two cases.
Case A: û2 is concave
Then, with notation in (7.5), we have E1 ̸= E2. If E1 ⊂ E2, then (7.5) implies û1 ≥ û2 which is not the
case by assumption (7.7). Hence E1\E2 ̸= ∅. We now choose

p− ∈ E1\E2, ξ− := DxH(0, p−) ̸= 0.

Then from (5.3), we get (using −û(ξ−) ≤ û2(−ξ−))

û1(−ξ−) = −û(ξ−) < û2(−ξ−) and û1(−ξ−) = −û(ξ−) < 0 < û(−ξ−).

Case B: û2 = û
Then consider any

p− ∈ E1, ξ− := DxH(0, p−) ̸= 0.

Again from (5.3), we get
û1(−ξ−) = −û(ξ−) < 0 < û(−ξ−) = û2(−ξ−).

Conclusion
Hence in both cases, there exists p− ∈ E1 with ξ− = DxH(0, p−) ̸= 0 such that for x1 := −λ1ξ− for λ1 > 0,
we have from ii) of Lemma 5.1

(7.8) Ξx1
− = Ξx1

− (û1) = {ξ−} and û1(x1) < min
{
û(x1), û

2(x1)
}
.

Step 3.2: framework for ε1 < ε2

We assume (7.8). The idea of the proof consists to use the key equality along a characteristic of velocity ξ−
for û1 approached by uε1 , and to propagate the information far away where now uε1 behaves like uε2 , i.e.
like û2. This will lead to a contradiction because û1(−ξ−) ̸= û2(−ξ−).
We set ε = ε2, and get from (7.6) that

|uε(X ′, x)− û2(x)| ≤ η for all (X ′, x) ∈ [−1, 1]×B1.

For µ :=
ε1

ε2
∈ (0, 1), we have |uµε(X ′, x)− û1(x)| ≤ η for all (X ′, x) ∈ [−1, 1]×B1, i.e.

(7.9) |uε(X ′, x)− û1(x)| ≤ µη for all (X ′, x) ∈ [−µ, µ]×Bµ.
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Step 4: core of the proof by contradiction
Step 4.1: first bound from above on uε(Xµ)
Recall that u has Lipschitz constant L > 0, and fix τ0 > 0 such that 2τ0RL = 1 with RL ≥ 1 given in Lemma
6.1. Then there exists some fixed λ1 > 0 small enough such that

x̃1 = (0, x1) = (0,−λ1ξ−) ∈ B1, x̃µ := µx̃1 ∈ Bµ.

Then for ρ = τ0RL = 1/2, we have for µ > 0 small enough Bµ ⊂ Bρ ⊂ B2ρ ⊂ B1, and from (7.8), we have
û1(x1) < û(x1) and then for Xµ := (0, x̃µ) = (0, 0, xµ) and xµ = µx1

uε(Xµ) ≤ û1(xµ) + µη = µû(x1) + µ(η −
{
û(x1)− û1(x1)

}
) < −µη + û(xµ) = −µη + u+(Xµ)

for η small enough such that 0 < 2η < û(x1)− û1(x1). We get

(7.10) uε(Xµ) ≤ −µη + u+(Xµ).

Step 4.2: effective bound from above on uε(Xµ)
Now from (1.4) with λ = p′ = 0, we deduce that for s > 0 and µ > 0 (and using RL ≥ 1)

inf
Γs,µ+sRL

u = o(µ+ sRL).

With notation of Lemma 6.1, we have for X0 := Xµ, x0 := xµ = µx1 ∈ Bµ, and r := µ (and τ := τ0)

inf
s∈(0,τ0]

{
inf

Γs,µ+sRL

u+ α0 max {0, s− 2κ|xµ|}
}

≤ inf
s∈(0,τ0]

{o(µ+ sRL) + α0 max {0, s− 2κ|xµ|}}

≤ o(µ+ 2κµ|x1|RL))
= o(µ).

Hence from (7.10) for µ > 0 small enough, we get

uε(Xµ) < u+(Xµ) + inf
s∈(0,τ0]

{
inf

Γs,µ+sRL

u+ α0 max {0, s− 2κ|xµ|}
}
.

Step 4.3: properties along characteristics
Now from Lemma 6.1, there exists ξ̃µ− ∈ BRL

such that

(7.11) uε(Xµ) = uε(Xµ − s(1, ξ̃µ−)) + sL(ξ̃µ−) for all s ∈ [0, τ0].

Now at the scale µε with X1 = (0, x̃1), we get by change of scales s = µσ

uε(µX1) = uε(µX1 − µσ(1, ξ̃µ−)) + µσL(ξ̃µ−) for all µσ ∈ [0, τ0]

i.e.

(7.12) uµε(X1) = uµε(X1 − σ(1, ξ̃µ−)) + σL(ξ̃µ−) for all σ ∈ [0, µ−1τ0].

Step 4.4: passing to the limit
Now in the limit ε → 0 with µ → 0, we have (up to extraction of subsequences)

uε → û2, Xµ → 0R1+m+d , ξ̃µ− → ξ̃0− ∈ BRL

and passing to the limit in (7.11) for ûi(t, x′, x) = ûi(x)

(7.13) û2(0) = û2(−s(1, ξ̃0−)) + sL(ξ̃0−) for all s ∈ [0, τ0]

and in the limit in (7.12)

(7.14) û1(X1) = û1(X1 − σ(1, ξ̃0−)) + σL(ξ̃0−) for all σ ∈ [0,+∞).
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The limit σ → +∞ gives
û1(−ξ0−) + L(ξ̃0−) = 0 with ξ̃0− := (ξ0′−, ξ

0
−).

Step 4.5: identification of the limit characteristic ξ0−
Now we have

ℓ(ξ0−) = inf
ξ′∈Rm

L(ξ′, ξ0−)

≤ L(ξ0′−, ξ0−)
= −û1(−ξ0−)
≤ û(ξ0−)

= inf
τ>0

τℓ(
ξ0−
τ
)

≤ ℓ(ξ0−).

Hence we have equality in all inequalities and

(7.15) −û1(−ξ0−) = L(ξ̃0−) = ℓ(ξ0−).

Now for x1 = −λ1ξ−, relation (7.14) shows that ξ0− ∈ Ξx1
− = Ξx1

− (û1) = {ξ−}, i.e.

ξ0− = ξ− = DxH(0, p−) with p− ∈ E1 = K1 ∩ ∂K.

Step 4.6: contradiction
Now (7.13) also shows that

û2(−ξ0−) = −L(ξ̃0−) = û1(−ξ0−)

where the last equality follows for instance from (7.15). For x1 = −λ1ξ− = −λ1ξ
0
−, we deduce that

û2(x1) = û1(x1)

which is in contradiction with (7.8).
Step 5: conclusion
We conclude that û1 = û2, and then 1-homogeneous blow-up limits coincide. This implies the uniqueness of
the blow-up limit, which also has to be 1-homogeneous. This means that for X = (t, x′, x)

ε−1u(εX) → û1(x) locally on compact set of R1+m+d as ε → 0

with û1(αx) = αû1(x) for all α ≥ 0. This shows (1.5) and ends the proof of the theorem.

8 Proof of Theorem 1.4: strong traces of directional derivatives

This section is devoted to the proof of Theorem 1.4. We start with the following building block result.

Proposition 8.1 (Strong convergence of the blow-up gradient at the boundary)

We work under the assumptions of Theorem 1.3 with (λ, p′) replaced by (λ0, p′
0
). In particular, there exists

(λ0, p′
0
) ∈ R× Rm and a 1-homogeneous function u0 : R1+m+d → R such that for X = (t, x′, x), we have

u(X) = u0(X) + o(|X|) as X → 0 in R1+m+d, with u0(X) = λ0t+ p′
0 · x′ + u0(0, 0, x).

Recall that u is a Lipschitz continuous viscosity solution of ut + H(Du) = 0 in a neighborhood of 0 in
R1+m × Ω, with H strictly convex.
Then for ε > 0, the blow-up uε(X) := ε−1 {u(εX)− u(0)} enjoys the following strong convergence of its
time-space gradient towards a 0-homogeneous function

(8.1) (uε
t , Duε) → (λ0, Du0) in L1

loc(R1+m+d;R1+m+d) as ε → 0.

Proof of Proposition 8.1
Step 1: preliminaries
Because Duε is uniformly bounded, we can use standard compactness of (Young) measures, and extract a
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subsequence (still denoted by ε) and find a family of probability measures νX on Rm+d for X ∈ R1+m+d

such that for any continuous function F : Rm+d → R, we have

F (Duε) → F̄ := ⟨νX , F ⟩ =
∫
Rm+d

F (P )dνX(P ) in L∞
loc(R1+m+d) weak− ∗.

Notice that we also have for any measurable function G : R1+m+d × Rm+d → R, such that P 7→ G(X,P )
is continuous on compact sets uniformly in X, and X 7→ G(X,P ) is bounded uniformly for bounded P , we
also have (see for instance [2])

(8.2) G(X,Duε) → Ḡ(X) := ⟨νX , G(X, ·)⟩ =
∫
Rm+d

G(X,P )dνX(P ) in L∞
loc(R1+m+d) weak− ∗.

Because u is Lipschitz continuous, we have in particular almost everywhere

uε
t +H(Duε) = 0, u0

t +H(Du0) = 0.

Step 2: limit of a nonnegative integral
We set

(8.3) 0 ≤ Ψ(X,P ) := H(P )−H(P 0)− (P − P 0) ·DH(P 0) with P 0 = Du0(X)

where the nonnegativity of Ψ (a.e. in X) follows from the convexity of H. Now for any test function
0 ≤ φ ∈ C∞

c (R1+m+d), we consider the following integral

0 ≤ Iε :=

∫
R1+m+d

φ(X) Ψ(X,Duε(X)) dX.

On the other hand, setting Bε := −(Duε −Du0) ·DH(Du0), we get

(8.4)
Iε =

∫
R1+m+d

φ
{
Bε +H(Duε)−H(Du0)

}
dX

=

∫
R1+m+d

{
φBε + φt(u

ε − u0)
}

dX

where we have used the PDE for the last line. From the strong uniform convergence of uε towards u0, we also
get

∫
φt(u

ε − u0) dX → 0. On the other hand, we split M := DH(Du0) ∈ L∞ in two parts Mδ := ρδ ⋆ M
and M̄δ := M −Mδ, where ρδ is a standard mollifier. We get Mδ ∈ C1 with bounded gradient, and M̄δ → 0
in L1

loc(R1+m+d). Hence we write

Bε = −(Duε −Du0) ·M = −(Duε −Du0) ·Mδ − (Duε −Du0) · M̄δ =: Bε
δ + B̄ε

δ

and get ∫
R1+m+d

φBε
δ dX =

∫
R1+m+d

(uε − u0) div(φMδ) dX → 0 as ε → 0.

We also have

|
∫
R1+m+d

φB̄ε
δ dX| ≤ 2Lip(Du)

∫
R1+m+d

φ|M̄δ| dX → 0 as δ → 0.

This shows that we also get
∫
φBε dX → 0. Therefore we get

Iε → 0 = I0 :=

∫
R1+m+d

φ(X)Ψ(X) dX

with 0 ≤ Ψ(X) =
∫
Rm+d Ψ(X,P ) dνX(P ) for a.e. X ∈ R1+m+d, where the nonnegativity of Ψ follows again

from the convexity of H.
Step 3: consequence
Step 1 implies φΨ̄ = 0 a.e. for all test function φ ≥ 0. Therefore we get Ψ = 0 a.e. on R1+m+d. Now the
strict convexity of H implies that supp(νX) ⊂

{
P 0(X)

}
and then

νX(P ) = δ0(P − P 0(X)) for a.e. X ∈ R1+m+d.
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We then deduce that
Duε → P 0 = Du0 in L1

loc(R1+m+d;Rd)

not only for the subsequence, but also for the full sequence ε → 0, because any limit Young measure is a
unique Dirac mass. Finally, writing again uε

t − u0
t = H(Duε)−H(Du0) and using the fact that H is locally

Lipschitz, we get the convergence uε
t → u0

t = λ0 in L1
loc. This ends the proof of the lemma.

Proof of Theorem 1.4
We precise the notation with the ball B′

1 ⊂ R1+m that we distinguish from the ball B1 ⊂ Rd.
Step 1: preliminaries
For X ′ = (t, x′) ∈ B′

1 and (X ′, 0) ∈ Γ, we consider the tangential gradient (ut, Dx′u)(X ′, 0) of the Lipschitz
continuous function X ′ 7→ u(X ′, 0). From Rademacher’s theorem, we know that the tangential gradient
exists a.e.. Now from Theorem 1.3 (up to a rescaling for each X ′ = (t, x′) by a factor µ > 0 depending on
X ′ such that (X ′, 0) + (−µ, µ)×Bµ ⊂ B′

1 ×B1), we deduce that

u(X + Y )− u(X) = Bu(X)(Y ) + o(|Y |) for a.e. X = (t, x′, 0) ∈ Γ

where Bu(X) : R1+m+d → R is 1-homogeneous and Lipschitz such that for Y = (s, y′, y)

Bu(X)(Y ) = λs+ P ′ · y′ +Bu(X)(0, y) with λ := ut(X
′, 0), P ′ := Dx′u(X ′, 0).

This shows (1.6). We now set the gradients for a.e. X ′ ∈ B′
1 and all x ∈ B1

P 0(X ′, x) := D(Bu(X ′, 0))(0, x), P (X ′, x) := Du(X ′, x).

Step 2: rescaling and extraction of some Young measure
For ε > 0, we consider the anisotropic rescaling

P ε(X ′, x) := P (X ′, εx).

Because Du is bounded, we can use standard compactness of (Young) measures, and extract a subsequence
(still denoted by ε) and find a family of probability measures νX on Rm+d for X = (X ′, x) ∈ Q0 = B′

1 ×B1

such that for any continuous function F : Rm+d → R, we have

F (P ε) → F̄ := ⟨νX , F ⟩ =
∫
Rd

F (P )dνX(P ) in L∞
loc(Q0) weak− ∗.

Step 3: characterization of the Young measure
Our goal is to show that the limit Young measure νX is a Dirac mass of center P 0(X).
Let us consider a test function 0 ≤ φ ∈ C∞

c (B1(0)), and let us consider the following integral which is well
defined for ε > 0 small enough (because φ has compact support in the unit ball) for Y = (Y ′, y) ∈ B′

1 ×B1

Jε := |B′
1|−1

∫
B′

1

φ(X ′)

{∫
B′

1×B1

|P ((X ′, 0) + εY )− P 0(X ′, y)| dY

}
dX ′.

From Proposition 8.1, we have for the special case X = (X ′, 0) for almost every X ′ ∈ B′
1

uε
X(Y ) := ε−1 {u(X + εY )− u(X)} → u0

X(Y )

and for fixed X = (X ′, 0)

P (X + εY ) = Duε
X(Y ) → Du0

X(Y ) = (DX′u0
X(Y ′, 0), Dxu

0
X(0, y)) = P 0(X ′, y) in L1

loc(R
1+m+d
Y ).

Hence on the one hand, from the Lebesgue dominated convergence theorem, we get Jε → 0. On the other
hand, consider the change of variable Z ′ = X ′ + εY ′. We get

Jε = |B′
1|−1

∫
B′

1×B1

{∫
B′

1

φ(Z ′ − εY ′) |P ε(Z ′, y)− P 0(Z ′ − εY ′, y)| dZ ′

}
dY.

We now introduce

Ĵε := |B′
1|−1

∫
B′

1×B1

{∫
B′

1

φ(Z ′) |P ε(Z ′, y)− P 0(Z ′, y)| dZ ′

}
dY
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which satisfies
Ĵε − Jε → 0

from the continuity of translations in L1 for the term P 0 and from the uniform continuity for the factor φ.
Hence Ĵε → 0 with (for z = y and Z = (Z ′, z))

Ĵε =

∫
B′

1×B1

φ(Z ′) |P ε(Z)− P 0(Z)| dZ.

By density of continuous functions in L1(B′
1 × B1), it is easy to justify by aproximations (of P 0) that we

have (for a subsequence still denoted by ε) the following limit (as in (8.2))

Ĵε → 0 = Ĵ0 :=

∫
B′

1×B1

φ(Z ′)

{∫
Rd

|P − P 0(Z)| dνZ(P )

}
dZ.

Because φ ≥ 0, this implies supp(νZ) ⊂
{
P 0(Z)

}
, and then

νZ(P ) = δ0(P − P 0(Z)) for a.e. Z ∈ B′
1 ×B1.

Step 4: conclusion
From the uniqueness and the expression of the Young measure νZ , we deduce that we have

P ε → P 0 in L1(B′
1 ×B1)

not only for the extracted subsequence, but also for the whole sequence ε (even for a continuous parameter
ε → 0). Finally, the convergence of ut(X

′, εx) follows from the PDE, the uniform bounds on the gradient, the
L1 convergence of the gradient P ε, and the continuity of H. This shows convergence (1.7) of the time-space
gradient. This ends the proof of the theorem.

9 Proof of Proposition 1.7: a counter-example

Proof of Proposition 1.7
Step 1: the rotation of the kink
For x = (x1, x2) ∈ R2, let us consider the kink function U(x) := −|x1|, which is a viscosity solution of
h(|DU |) = 1 because h(1) = 1. We now introduce polar coordinates x = (x1, x2) = Φ(r, θ) := (r cos θ, r sin θ).
Given a C1 function θ0 : (0, 1] → R, we define

u(x) = (U ◦ Φ)(r, θ − θ0(r)) = −r| cos(α)|, for α := θ − θ0(r).

For er = x
|x| , eθ := e⊥r , we have

−Du(x) = {| cosα|+ rθ′0(r) · sign(cosα) sinα} er − r {sign(cosα) sinα} eθ
r

a.e.

and
|Du|2 = 1 + (rθ′0)

2 + rθ′0 sin(2α) > 0.

Assume that
rθ′0(r) → 0 as r → 0+.

Then we have h(
√
1 + (rθ′0)

2 + rθ′0 sin(2α)) → h(1) = 1 as r → 0+. Defining

a(x) :=
1

h(
√
1 + (rθ′0)

2 + rθ′0 sin(2α))
for α := θ − θ0(r) and (r, θ) := Φ−1(x).

we see that a ∈ C(B1) and u is Lipschitz continuous. Moreover u is also C1 except on the curve

Γ0 := {Φ(r, θ), (r, θ) ∈ (0, 1]× R, θ = θ(r) mod π, r > 0} ∪ {0R2}
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We have D+u(x) ̸= ∅ for all x ∈ Γ0, while D−u(x) = ∅. Because H(x, P ) is convex in P , we can easily show
that u is a Lipschitz continuous viscosity solution of

a(x)h(|Du|) = 1 on B1 ⊂ R2.

On the other hand, if we choose θ0 such that

θ0(r) → +∞ as r → 0

then we get a counter-example. We can for instance choose θ0(r) :=
√
− ln

(
r
2

)
.

Step 2: checking strict convexity of g0
We set

g0(p) := h(|p|)

which is C1 because h′(0) = 0. For p ̸= 0, we have Dg0(p) = h′(|p|) p

|p|
, while Dg0(0) = 0. We also have for

p ̸= 0 with h ∈ C2

D2g0(p) = h′′(|p|)p̂⊗ p̂+
h′(|p|)
|p|

· {Id− p̂⊗ p} with p̂ :=
p

|p|

which is continuous as p → 0 with limit D2g0(0) = h′′(0) · Id. Hence g0 ∈ C2 with D2g0 > 0.
Step 3: proof of (1.10)
Assume by contradiction that (1.10) is false. Then for any δ > 0, there exists sequences R2\ {0} ∋ b → 0,
and (xb)b with xb ∈ B 1

2
, such that

u(xb + b) + u(xb − b)− 2u(xb) > δ|b|.

Defining the blow-up ub with moving center xb, and the normal vector nb

ub(x) := |b|−1 {u(xb + x)− u(xb)} , nb :=
b

|b|

up to extraction of a subsequence, we get ub → u0 and nb → n0 and

(9.1) H(x0, Du0) = 0 on R2, and u0(n0) + u0(−n0)− 2u0(0) ≥ δ > 0

Then Liouville-type Theorem 1.1 (precisely (4.11)) implies that u0 is concave which is in contradiction with
(9.1). Finally the fact that ω0 is not Dini integrable follows from Theorem 2.1.10 on page 35 in Cannarsa,
Sinestrari [10], and from the fact that semiconcavity implies the existence of directional derivatives (see
Theorem 3.2.1 on page 55 in [10]). This ends the proof of the proposition.

10 Proof of Theorem 1.8: generalization to variable coefficients

We start with the following result.

Lemma 10.1 (Modulus of strict convexity)
Assume that L : Rm+d → R is strictly convex and C1. Moreover assume that for some R > 0, there exists a
continuous modulus ω̃R : (0,+∞) → (0,+∞) with ω̃R(0

+) = 0, such that

(10.1) (P −Q,DL(P )−DL(Q)) ≥ |P −Q|ω̃R(|P −Q|) for all P,Q ∈ BR.

Then we have

(10.2) λL(P )+ (1−λ)L(Q)−L(λP +(1−λ)Q) ≥ λ(1−λ)Ω̃R(|P −Q|), for all λ ∈ [0, 1], P,Q ∈ BR

with

Ω̃R(r) :=

∫ r

0

ω̃R(s) ds.
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Proof of Lemma 10.1
For λ ∈ [0, 1], for P,Q ∈ BR, and Pλ := λP + (1− λ)Q, and P̄ := P −Q, we have

λL(P ) + (1− λ)L(Q)− L(Pλ)

= λ(1− λ)(P −Q) ·
∫ 1

0

ds DL(Pλ + s(P − Pλ)) + (1− λ)λ(Q− P ) ·
∫ 1

0

ds DL(Pλ + s(Q− Pλ))

= λ(1− λ)

∫ 1

0

ds

s
(sP̄ ) ·

{
DL(Pλ + s(1− λ)P̄ )−DL(Pλ − sλP̄ )

}
.

Setting
ps := Pλ + s(1− λ)P̄ , qs := Pλ − sλP̄ , with ps − qs = sP̄

we get ps, qs ∈ BR and

λL(P ) + (1− λ)L(Q)− L(Pλ)

= λ(1− λ)

∫ 1

0

ds

s
(ps − qs) · {DL(ps)−DL(qs)}

≥ λ(1− λ)

∫ 1

0

ds|P̄ |ω̃R(s|P̄ |)

= λ(1− λ)Ω̃R(|P̄ |)

where we have applied (10.1) in the third line. This shows (10.2), which ends the proof of the lemma.

Proof of Theorem 1.8
Part A: Proof of generalization of Theorem 1.3
Up to redefine H, we can assume that λ = 0 = p′.
Steps 1 to 3: as in the proof of Theorem 1.3
These steps are identical to the ones of the proof of Theorem 1.3, except that after the first blow-up, equation
(7.2) has to be replaced by the following

(10.3)

{
u0
t +H0(Du0) = 0 on R1+m × Ω (in the viscosity sense)

u0 = 0 on R1+m × ∂Ω (in the strong sense).

where in (7.2) the Hamiltonian H(P ) has been replaced by

H0(P ) = H(0R1+m+d , P ) for P ∈ Rm+d.

Again u0 is unique and linear if inf
Rd

H0(0Rm , ·) = 0. We then assume that H0 satisfies (3.1), and set

K :=
{
p ∈ Rd, H0(0Rm , p) ≤ 0

}
.

We recall the obtained framework. For any η > 0, there exists εη > 0 such that for all i = 1, 2 and εi < εη,
we have for X = (X ′, x) and X ′ := (t, x′)

|uεi(X ′, x)− ûi(x)| ≤ η for all X ∈ [−1, 1]×B1.

For ε = ε2 > ε1 and µ =
ε1

ε2
∈ (0, 1), we have in particular{

|uε(X ′, x)− û2(x)| ≤ η for all X ∈ [−1, 1]×B1,
|uε(X ′, x)− û1(x)| ≤ µη for all X ∈ [−µ, µ]×Bµ.

Moreover, we have û1(x) = inf
p∈E1

p · x with the compact set E1 ⊂ ∂K. There exists p− ∈ E1 with

ξ− = DxH(0, p−) such that for x1 := −λ1ξ− for λ1 > 0 and with notation of Lemma 5.1, we have

Ξx1
− = Ξx1

− (û1) = {ξ−} and û1(x1) < min
{
û(x1), û

2(x1)
}
.

Step 4: core of the proof by contradiction
Step 4.1: first bound from above on uε(Xµ)
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We proceed as in Step 4.1 of the proof of Theorem 1.3. Recall that u has Lipschitz constant L > 0, and fix
τ0 > 0 such that 2τ0RL = 1 with RL ≥ 1 given in (1.12). Then for ρ = τ0RL = 1/2, and for µ > 0 small
enough, we get

(10.4) uε(Xµ) ≤ −µη + u+(Xµ)

where Xµ := (0, x̃µ) = (0, 0, xµ) and xµ = µx1 with x̃1 = (0, x1) = (0,−λ1ξ−) ∈ B1 and x̃µ := µx̃1 ∈ Bµ.
Starting from now, the proof differs from the one of Theorem 1.3.
Step 4.2: strict convexity quantified
From Lemma 10.1 (applied for frozen X), we have with Pλ = λP + (1− λ)Q

(10.5) λL(X,P )+(1−λ)L(X,Q)−L(X,Pλ) ≥ λ(1−λ)Ω̃R(|P−Q|), for all λ ∈ [0, 1], P,Q ∈ BR, X ∈ Q0.

Step 4.3: minimization and dyadic estimate
Then we still have the following representation formula (identified with the solution, because the comparison
principle still arises for Lipschitz continuous solutions, even for low regularity in X, here continuity). Now

for ρ =
1

2
and all τ ∈ (0, τ0), and X = (0, x̃) ̸∈ Γ with x̃ ∈ Bρ, we have

u(X) = inf
s∈[−τ,0), γ(s)∈ΓD

τ,2ρ, γ(0)=X, γ((s,0))⊂Bρ\Γ̃

{
u(γ(s)) +

∫ 0

s

dσ L(σ, γ(σ), γ̇(σ))
}

where Γ̃ := Rm × {0Rd}. Notice in particular that the L-Lipschitz continuity of u imposes (for RL given in
(1.12))

(10.6) |γ̇(σ)| ≤ RL

and to have short hand notation, we set

ω := ωR, Ω̃ := Ω̃R, R := 1 +RL.

From the convexity of L in the variable γ̇(σ) and its continuity in X = (σ, γ(σ)), the existence of a minimizer
γ∗ with ”optimal exit time” s∗ is known.
Case A: γ∗(s∗) ∈ Γτ,2ρ

Recall that X = (0, x̃) with x̃ = (x′, x) and x ̸= 0. Then we have

|x| ≤ |x̃− γ∗(s∗)| =
∣∣∣∣∫ 0

s∗

γ̇∗(σ) dσ

∣∣∣∣ ≤ RL|s∗| with s∗ ∈ [−τ, 0).

This shows that for τ > 0 small enough, Case A is ruled out.
Case B: γ∗(s∗) ̸∈ Γτ,2ρ

Because γ∗(s∗) ̸∈ Γτ,2ρ, then s∗ = τ and

u(X)− u(−τ, γ∗(−τ)) =

∫ 0

−τ

dσ L(σ, γ∗(σ), γ̇∗(σ)) ≥
∫ 0

−τ

dσ L(0, x̃, γ̇∗(σ))− τω(τR)

where we have used (10.6) in the last inequality.

Setting the approximate characteristic velocity ξ̃τx̃ :=
x̃− γ∗(−τ)

τ
, we get by convexity of ξ̃ 7→ L(X, ξ̃)

that
u(X)− u(−τ, γ∗(−τ)) ≥ τL(X, ξ̃τx̃)− τω(τR).

Similarly for 2τ ∈ (0, τ0), we have (by monotonicity of ωR)

u(−τ, γ∗(−τ))− u(−2τ, γ∗(−2τ)) ≥ τL(X, ξ̃τγ∗(−τ))− τω(2τR), ξ̃τγ∗(−τ) :=
γ∗(−τ)− γ∗(−2τ)

τ

and then
u(X)− u(−2τ, γ∗(−2τ)) ≥ τL(X, ξ̃τx̃) + τL(X, ξ̃τγ∗(−τ))− 2τω(2τR).
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Now notice also that

u(X)− u(−2τ, γ∗(−2τ)) =
∫ 0

−2τ
dσ L(σ, γ∗(σ), γ̇∗(σ))

= inf
γ(0)=x̃, γ(−2τ)=γ∗(−2τ), |γ̇(σ)|≤R

∫ 0

−2τ

dσ L(σ, γ(σ), γ̇(σ))

≤ 2τω(2τR) + inf
γ(0)=x̃, γ(−2τ)=γ∗(−2τ), |γ̇(σ)|≤R

{∫ 0

−2τ

dσ L(X, γ̇(σ))

}
≤ 2τω(2τR) +

∫ 0

−2τ

dσ L(X, ξ̃2τx̃ )

with

ξ̃2τx̃ :=
x̃− γ∗(−2τ)

2τ
=

1

2

{
ξ̃τx̃ + ξ̃τγ∗(−τ)

}
.

Hence we get τL(X, ξ̃τx̃) + τL(X, ξ̃τγ∗(−τ))− 2τω(2τR) ≤ 2τω(2τR) + 2τL(X, ξ̃2τx̃ ). Therefore

2ω(2τR) ≥ 1

2

{
L(X, ξ̃τx̃) + L(X, ξ̃τγ∗(−τ))

}
− L(X, ξ̃2τx̃ ) ≥ 1

4
Ω̃(|ξ̃τx̃ − ξ̃τγ∗(−τ)|)

where the last inequality follows from (10.5) for λ = 1
2 . Notice that ξ̃τx̃ − ξ̃2τx̃ =

1

2

{
ξ̃τx̃ − ξ̃τγ∗(−τ)

}
. Hence

2ω(2τR) ≥ 1

4
Ω̃(2|ξ̃τx̃ − ξ̃2τx̃ |).

Because Ω̃ is convex, C1 with Ω̃′(0) = 0 = Ω̃(0), we have the chord inequality Ω̃(θr) ≤ θΩ̃(r) for all θ ∈ [0, 1].
Hence

ω(2τR) ≥ 1

8
Ω̃(2|ξ̃τx̃ − ξ̃2τx̃ |) ≥ Ω̃(

1

4
|ξ̃τx̃ − ξ̃2τx̃ |)

and
|ξ̃τx̃ − ξ̃2

−1τ
x̃ | ≤ 4(Ω̃−1 ◦ ω)(τR) for all τ ∈ (0, τ0).

Step 4.4: conclusion by dyadic sums
If f : [0, 1) → [0,+∞) is non-decreasing, then we have∫ 1

0

ds

s
f(s) =

∑
j∈N

∫ 2−j

2−(j+1)

ds

s
f(s) ≥

∑
j∈N

1

2
f(2−(j+1)).

Therefore we get

∑
j∈N

|ξ̃2
−jτ

x̃ − ξ̃2
−(j+1)τ

x̃ | ≤ 4
∑
j∈N

(Ω̃−1 ◦ ω)(2−jτR) ≤ 8

∫ 1

0

ds

s
(Ω̃−1 ◦ ω)(2τsR) = 8

∫ 2τR

0

ds

s
(Ω̃−1 ◦ ω)(s).

When Dini condition (1.13) holds true, this implies that the characteristic velocity converges

ξ̃2
−jτ

x̃ → ξ̃0x̃ as j → +∞.

This is then sufficient to imply the non rotation of the blow-up limit, and then the convergence of the blow-up
to a unique limit, along the same lines as the remaining part of the proof of Theorem 1.3, using equality
along the characteristic curve γ∗:

u(X) = u(−τ, γ∗(−τ)) +

∫ 0

−τ

dσ L(σ, γ∗(σ), γ̇∗(σ)) for all τ ∈ (0, τ0).

We skip the details.

Part B: Proof of generalization of Theorem 1.4
Step 1: in the adaptation of the proof of Proposition 8.1
Once we know the convergence of the blow-up uε → u0 locally uniformly, the proof is very similar to the
one of Theorem 1.4. We just have to replace everywhere H(P ) by H(0, P ) (and then in particular in the
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definition (8.3) of Ψ(X,P ), and in the expression of Bε). The definition of the integral Iε is unchanged.
Because of the relations

uε +H(εX,Duε) = 0 and u0
t +H(0, Du0) = 0

we just have in the second line of (8.4), to introduce the error term Aε := −{H(εX,Duε)−H(0, Duε)}
which converges uniformly to zero, and then does not affect the reasoning.
Step 2: in the adaptation of the proof of Theorem 1.4
The proof is unchanged (notice that to show the convergence of ut(X

′, εx) we have to use the PDE with the
X-dependence, but the same argument applies).
This ends the proof of the theorem.

11 Appendix

In this appendix, we grasp together some results on exposed points of closed convex sets, that are useful in
the main part of the paper.

We recall the following definitions.

Definition 11.1 (Extreme points and exposed points)
Let K ⊂ Rd be a convex compact set.
i) (Extreme point)
We say that p0 ∈ K is an extreme point K and denote it by p0 ∈ ext K, if there are no two different points
p1, p2 ∈ K such that p0 = λp1 + (1− λ)p2 for some λ ∈ (0, 1).
ii) (Exposed point)
We say that p0 ∈ K is an exposed point of K and denote it by p0 ∈ exp K, if there exists a closed half space
Π±

p0,n :=
{
p ∈ Rd, (p− p0,±n) ≥ 0

}
for some non-zero vector n (we can in particular choose a unit vector

n ∈ Sd−1) such that
K ⊂ Π−

p0,n, Π+
p0,n ∩K = {p0} .

We get immediately exp K ⊂ ext K, and have the following complementary result.

Lemma 11.2 (Exposed points of convex compact sets)
Let K ⊂ Rd be a convex compact set.
i)(Extreme-exposed relation)
We have

(11.1) exp K ⊂ ext K ⊂ exp K.

ii) (Property of exposed points)
We have

(11.2) K = co(exp K).

iii) (Support functions)
For every x ∈ Rd, we have

(11.3) max
p∈K

p · x = max
p∈exp K

p · x = sup
p∈exp K

p · x.

Furthermore the solution-set of the first problem is the convex hull of the solution-set of the second problem

(11.4) Argmax
p∈K

p · x = co

(
Argmax
p∈exp K

p · x

)
.

Proof of Lemma 11.2
The results are more or less classical. For completness of the argument we give some details.
Step 1: proof of i)
The first inclusion in (11.1) is straightforward, and the second inclusion is Straszewicz’s theorem [19] (see
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also theorem 1.4.7 on page 18 in Schneider [19], or theorem 18.6 on page 167 in Rockafeller [18]).
Step 2: proof of ii)
The classical Minkowski theorem (see Theorem 2.3.4 on page 42 in [12]) claims that if K is a compact convex
set, then K = co(ext K). Then (11.1) implies K = co(ext K) ⊂ co(exp K) ⊂ K, which shows (11.2).
Step 3: proof of iii)
Let φ(p) := p ·x. From Proposition 2.4.6 on page 46 in [12], we know that point iii) is true for the set exp K
replaced by ext K, i.e.

(11.5) max
K

φ = max
ext K

φ and Argmax
K

φ = co

(
Argmax
ext K

φ

)
.

Then (11.1) implies that

sup
exp K

φ ≤ sup
ext K

φ = max
ext K

φ ≤ sup
exp K

φ = sup
exp K

φ

where the last equality follows from the continuity of φ. This shows (11.3). Now co

(
Argmax
ext K

φ

)
=

co

(
Argmax
exp K

φ

)
and (11.5) show (11.4). This ends the proof of the lemma.

Lemma 11.3 (Exposed point and pointwise C1 support function)
Let K ⊂ Rd be a convex compact set and its support function v(x) := sup

p∈K
p ·x. Assume that p0 is an exposed

point of K with admissible unit normal n, i.e for Π±
p0,n :=

{
p ∈ Rd, (p− p0,±n) ≥ 0

}
, we have

(11.6) K ⊂ Π−
p0,n, K ∩Π+

p0,n = {p0} .

Then the subdifferential of the convex function v satisfies

(11.7) ∂v(n) = {p0}

i.e. v is C1 at n.

Proof of Lemma 11.3
Notice that the Legendre-Fenchel transform of v is v∗ = (+∞)1Rd\K . Moreover for p0 as in (11.6), we have
n ∈ ∂v∗(p0) and then

(11.8) v∗(p0) + v(n) = p0 · n, v∗(p0) = 0, p0 ∈ ∂v(n).

Then (11.6) implies that for all p ∈ Rd\ {p0}, we have sup
x∈Rd

{p · x− v(x)} = v∗(p) > v∗(p0) + n · (p − p0).

Hence there exists xp ∈ Rd such that

p · xp − v(xp) > v∗(p0) + n · (p− p0) = n · p− v(n)

where we have used (11.8) in the equality. This means v(xp) < v(n)+p · (xp−n) and then p ̸∈ ∂v(n). Hence
(11.8) implies ∂v(n) = {p0}, which ends the proof of the lemma.
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