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Strictly convex Hamilton-Jacobi equations:
strong trace of the derivatives in codimension > 2

R. Monneau*

November 12, 2023

Abstract

We consider Lipschitz continuous viscosity solutions to an evolutive Hamilton-Jacobi equation. The equation
arises outside a closed set I'. Under a condition of strict convexity of the Hamiltonian, we show that there exists a
notion of strong trace of the derivatives of the solution on the Lipschitz boundary I" of codimension d > 2. The very
special case d =1 is done in a separated work.

This result is based on a Liouville-type result of classification of global solutions with zero Dirichlet condition on
the boundary I', where I is an affine subspace. We show in particular that such solutions only depend on the normal
variable to I'. As a consequence, we show more generally that the existence of a pointwise tangential gradient along
I' implies the existence of pointwise directional derivatives in all directions.

This result also holds true for Hamiltonians depending on the time-space variables, under an additional Dini
condition involving certain moduli of continuity. We also give a counter-example for d = 2 in the stationary case,
where the Hamiltonian is only continuous in the space variable, and where the solution has no directional derivatives
in any directions normal to I'. Such phenomenon does not hold for d = 1.

MSC2020: 35F21.
Keywords: Strong trace, Hamilton-Jacobi equations, codimensional boundaries, Liouville-type result, regularity,
viscosity solutions.

1 Introduction

1.1 Main results
Let m > 0 and let us consider globally Lipschitz continuous solutions u = u(t,z’, ) of

(1.1) ur + H(Du) =0 on R xR™x
’ u=20 on R xR™ x9N

where the Dirichlet condition is satisfied in the strong sense (i.e. pointwisely). Here we consider the open
set whose boundary has codimension bigger or equal to 2

Q:=RN {0}, 99 ={0z}, with d>2.

The case of dimension d = 1 with a half line Q = (0, +00) has been studied in [15]. Here for d > 2, we find
a new method and get different results.
Assume

H(P
(1.2) H :R™t4 5 R is O, strictly convex, and superlinear (i.e. lim (P)

— =400
|Pl—+o00 | P| )

where we recall that H strictly convex means
HOAP+(1-XMQ)<MH(P)+(1-)NH(Q) forall Ae(0,1), P,QeR™ P#Q.

We consider the coordinates X := (t,7) with t € R and 7 = (2/,2) € R™ x R9,
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Theorem 1.1 (Liouville-type result)
Assume that the strictly convex function H satisfies (1.2). Then every globally Lipschitz continuous viscosity
solution u of (1.1) only depends on the normal variable, i.e.

u(t,2’,x) =u(0,0,z) forall (t,2',z) € RxR™ x (.

For local problems, we will need to describe directional derivatives with a single object. To this end, we
introduce the following definition.

Definition 1.2 (Bouligand derivative)
We say that a function f : R™ D B1(0) — R has a Bouligand derivative at the origin if there exists a
(positively) 1-homogeneous function Bf(0) : R™ — R (i.e. Bf(0)(Ay) = ABf(0)(y) for all A > 0) such that

fly) = 1(0) = BF(0)(y) + ollyl)

It is easy to see that any Lipschitz function has directional derivatives in any directions if and only if it
has a Bouligand derivative. The formalism of Bouligand derivative has just the practical advantage to deal
with all directional derivatives at the same time.

We now consider the following problem localized on a cylinder Qo C R!*™*¢ We denote the boundary
I :=R"™ x {Og«} and the open ball B, = B,.(0) of center the origin and radious r > 0. Then we consider
the problem:

(1.3) u + H(Du) =0 on Qo\I' CRMY™xQ,
' u=g(t;a’,0) on QNI CRY™x90.

We have the following result (at least surprising for the author).

Theorem 1.3 (Tangential gradient implies full directional derivatives)

Let Qo := (—1,1) x By C R x R™*4. Assume that H : R™*+? — R satisfies (1.2). Consider a Lipschitz
continuous function u : Qo — R which is a viscosity solution of (1.3) with w(0) = 0. Assume that v has a
tangential gradient at the origin, i.e. there exists (\,p’) € R x R™ such that

(1.4) u(t,2’,0) =Xt +p -2’ +o(|(t,2")]) forall (t,2',0) € R x R™ x 9.

Then u has Bouligand time-space derivative at the origin, i.e. there exists a (positively) 1-homogeneous
function Bu(0) : R*™m+d 5 R such that for X = (t,2',7) € Qo

(1.5) u(X) = Bu(0)(X) + o(| XT)
with the splitting Bu(0)(X’, z) = X' - D'u(0) + Bu(0)(0, z) where X’ - D'u(0) := M +p' -2’ for X' = (t,2').

Theorem 1.4 (A notion of strong trace of directional derivatives)

Let Qo := By x By C R™ x Re. Assume that H : R™*t4 — R satisfies (1.2). Consider a Lipschitz
continuous function u : Qo — R which is a viscosity solution of (1.3), with g : Qo N T — R Lipschitz
continuous.

Then for Y € R+ with X +Y € Qo, we have

(1.6) wX +Y)—u(X)=BuX)(Y)+o(|Y]|) forae X=(taz',0)el

where Bu(X) : R1T™m+d 5 R s (positively) 1-homogeneous and Lipschitz. Moreover for a.e. X € T, the
quantity Bu(X) satisfies the splitting Bu(X)(Y',y) = Y'-D'u(X)+Bu(X)(0,y) for allY' = (s,y’) € RxR™
and y € R, with Y' - D'u(X) = s + p' -y where X\ := uy(X), and the tangential space gradient is
p' = D(ur)(X).

Moreover, we have the following limit for the time-space derivatives Du = (ug, Du) with X = (X'

)

(1.7) lim |Du(X',ex) — D(Bu(X',0))(0,z)| dX = 0.

e—0t Bix B

This convergence is our definition of the strong trace of the time-space derivatives of the solution u on the
boundary I' of codimension d > 2.



Remark 1.5 We see here that the strong trace of the gradient has to be a Bouligand derivative in general,
and not a standard gradient. In other words, we see that taking the strong trace of the gradient, we may
loose the linearity along the normal variable for the first order approximation map when the boundary I’
has codimension d > 2. In particular, for a.e. point X of the boundary I', we get that u has directional
derivatives at X .

Remark 1.6 Notice that it is straightforward to adapt the proof of Theorem 1.4 to the case of Lipschitz
continuous boundary T.

Again for a cylinder Qo C R!*™%? we consider now the X-dependence in the Hamiltonian H, for
X = (t,2',x), and the problem

(1.8) { us + H(X,Du) =0 on Qo\I'
' u=g(X) on QuNT.

Recall that we say that a function u is semiconcave on an open set (g if there exists a modulus of
continuity w : (0, +00) — (0, 400), with w(0") = 0 such that

(1.9) Au(X)+(1=Nu(Y)—u(AX +(1=NY) <A1 =XN)|X = Y|w(X =Y]) forall Ae€0,1], X,Y € Q,.

Recall also that semiconcavity implies the existence of directional derivatives everywhere (see [10]). Here
we show that the lack of regularity in X can break semiconcavity property of the solution, even if the
Hamiltonian is strictly convex in the gradient.

Proposition 1.7 (A counter-example to semiconcavity)

We assume that m =0, 9; =0 and d = 2. Let h : [0,+00) — (0,400) be C? with h(1) =1 and h'(0) = 0 and
h' >0 on (0,+00) and h" > 0 on [0,+0c0). Then there exists some continuous function a : R> D By — R
and H(xz, P) = a(z)h(|P|) such that there exists a Lipschitz continuous solution v = u(x) of

H(z,Du)=1 on B; CR”

We can choose the continuous function a(-) such that our solution u has no directional derivatives at x = 0.
In particular u is not semiconcave (i.e. does not satisfy (1.9) with Qg := B%). Still, there exists a modulus
of continuity wy such that we have

(1.10) u(z +b) + u(x — b) — 2u(x) < [blwo([b]) for all x+b,x—be By

4 5o(s) = +oo for all r > 0.

S

but wg is not Dini integrable, i.e. that for

We refer the reader to Theorem 2.1.10 on page 35 in Cannarsa, Sinestrari [10], which says that (1.10)
implies semiconcavity estimate (1.9) with w(r) := C for 95 000(s).

For our ptoblem, and under a certain Dini condition on the X-dependence of H (X, P) which is continuous
in both variables and C? strictly convex and superlinear in P, it is possible to recover the results of the
homogeneous case. This is the result below.

Theorem 1.8 (Generalization to variable coefficients X)
Theorems 1.8 and 1.4 hold for equation (1.8), under the condition that H : Qo x R™T4 — R is continuous
and that P — H(X, P) satisfies (1.2) for all X € Qo, under the additional Dini condition (1.13) on a certain
modulus given below.

Assume that the solution u to (1.8) has Lipschitz constant L > 0. Let L be the Legendre-Fenchel transform
of H defined by

(1.11) L(X,€):= sup &-P—H(X,P).
PeRm+d

Assume also that there exists a map Ly : R4 — R such that L£(X, §~) > Eo(f) for all X € Qq, € € R+,
and for L > 0, we consider Ry, > 1 such that

(1.12) {Eerm+, 0@ < LI(1LE)} < Br,.



i) (modulus of strict convexity of the map ¢ — £(X,¢))
For every R > 0, we assume that there exists a (monotone) modulus of continuity wg : (0,4+00) — (0, +00)
with Gr(0T) = 0 such that for r > 0, we set

Qr(r) = /OT Wr(s) ds with @g(r):= &1—&

o inf S22 DL(X, &) — DL(X, &)
|&1—&a|>r, &€BR, XeQo \ &1 — &2

where Qg is convex mncreasing. ~
ii) (modulus of continuity of the map X — £(X,¢))
We assume the existence of the following monotone modulus of continuity

wr(r) = sup L(X,6) = L(Y,E)|.

X,Y€Qo, |X-Y|<r, £€Br
Then we require the modulus le owp to satisfy the following Dini condition

1
(1.13) / % (Qp' owr)(s) < 4+o0c for R:=1+Ry.
0
Remark 1.9 It is easy to check that Dini condition (1.13) is satisfied for instance if P — H(X,P) is
C? with 6~ > D%,H > § > 0 and X ~ H(X,P) is B-Hélder continuous for some B € (0,1]. Such
result can be compared to the precise interior semiconcavity results in Cannarsa, Cardaliaguet [9] for Holder
continuous Hamiltonians in the space variable, in the case of stationary solutions where the Hamiltonian is
1-homogeneous in the gradient.

Remark 1.10 [t is straightforward to adapt Theorem 1.8 to the case of a Lipschitz continuous boundary T.
It would be also interesting (and not quite difficult) to develop an interior theory (i.e. with T = () along
the same lines as in the present paper. For instance, the analogue of the Liouville-type result claims that
Lipschitz global time-space solutions are concave. Here we refrain us to go further in that direction.

1.2 Brief review of the literature

We refer to the pioneering work of Lions [14] on viscosity solutions of Hamilton-Jacobi equations and their
properties. The reader can also consult the reference books Cannarsa, Sinestrari [10] on semiconcave func-
tions and Bardi, Capuzo-Dolcetta [3] for Hamilton-Jacobi equations related to control problems. In Cannarsa,
Soner [11] (see also Theorem 5.3.8 on page 118 in [10]), it is proven that for Hamiltonians H (X, P) which
are locally Lipschitz in all variables and strictly convex in P, the locally Lipschitz continuous solutions are
semiconcave. This result has been extended to stationary solutions for 1-homogeneous Hamiltonians which
are Holder in the space variable in Cannarsa, Cardaliaguet [9].

In Bianchini, De Lellis, Robyr [7], the authors show that for a uniformly C? Hamiltonian H, the time-
space gradient of the solution is in SBVj,., which can be seen as a refinement of semiconcavity estimates.
This result has been extended to the case of C® Hamiltonians depending also on (¢, z) in Bianchini, Tonon
[8]. We also refer the reader to Rifford [17] for further interesting regularity results of solutions.

In the context of homogeneous scalar conservation laws, a notion of strong trace on a Lipschitz boundary
of a domain (i.e. for d = 1) has been introduced by Vasseur [21] under a condition of genuine nonlinearity of
the C3 flux function. This result has been generalized by Panov [16] to the case of C° homogeneous fluxes,
and C! boundary (the case of Lipschitz boundary is also claimed to remain valid with the same proof).

In Monneau [15], the existence of strong traces of the gradient of the solution has been obtained for
strictly convex Hamilton-Jacobi equations with boundary I' of codimension d = 1. For d = 1, no Dini
condition is required: only the continuity of the map (X, P) — H(X, P) is sufficient.

Actual researches try to understand convex Hamilton-Jacobi equations either on stratified domains (see
for instance Barles, Chasseigne [4, 5]), or with a point defect (see Achdou, Le Bris [1]). Here we hope that
our present work will help to understand better these probems where codimensions play a key role.

1.3 Organization of the paper

In Section 2, we recall the representation formula of the solutions to convex Hamilton-Jacobi equations.



In Section 3, we construct a fundamental solution @ associated to the Hamiltonian H(P), which is the

analogue of the distance to the origin for the eikonal equation. Then we show that v := 4 and u— = —4(—2x)
are both barriers, and that every global solution with zero value on the boundary I" is sandwiched in between
Uy > U_.

This is a key step towards the Liouville-type result (Theorem 1.1) whose proof is done in Section 4.
This proof is in particular based on a key equality (Lemma 4.2) satisfied by the solution on a characteristic
trajectory.

In Section 5, we study in details the characteristics of 1-homogeneous concave global solutions. This
section is of independent interest and uses the notion of extreme points and exposed points of a compact
convex set. This section is also a key step towards the proof of Theorem 1.3 on the existence of full directional
derivatives for local solutions.

Section 6 is a technical result which localizes the result of Lemma 4.2, and which is necessary for the
proof of Theorem 1.3.

Section 7 is fully devoted to the proof of Theorem 1.3 (on the existence of directional derivatives) using
ingredients of Sections 5 and 6.

Section 8 is devoted to the proof of Theorem 1.4 on the strong traces of the directional derivatives. It
starts with a building block result, which shows the strong Llloc convergence of the gradient of the blow-up
of the solution (see Proposition 8.1). The remaining part of the section proves Theorem 1.4, using covering
arguments and identification of the limits through Young measures.

Section 9 gives the proof of the counter-example to semiconcavity, namely Proposition 1.7.

Section 10 gives the proof of Theorem 1.8 which generalizes our results to Hamiltonians with time-space
dependence.

Section 11 is an appendix where we collect results on exposed points of convex sets, which are used in
the main part of the paper.

1.4 Main notations

Q = R4\ {0} = reduced space domain
R™ x Q = space domain

[ =RY™ x {Opa} = time-space boundary
L =R"™ x {Opa} = space boundary

r € R? = normal coordinates

X' = (t,2') e Rx R™ = tangential coordinates
= (2,r) € R™ x R? = space coordinates

X =(t,2',x)=(t,2) = (X', x) = time-space coordinates

Qo= (-1,1)x By or Bj;x B; =cylinderin R x R™*4 or R*™ x R4

Qrp=(-7,0)x B, = local cylinder in R x R™+4
r.,= @T’ ,NT = (closed) tangential boundary of the local cylinder
P,Q e R™td = space gradient
Du = (uy, Du) = time-space gradient
Bu = Bouligand derivative of u
H = the Hamiltonian
L=H* = the Legendre-Fenchel transform of H
E=(¢,6) eR™ x RY = velocity
L&) = c ian L(€,€) = the Legendre-Fenchel transform of H (0, -)

/e m

= fundamental convex 1-homogeneous solution

U+t = barriers.



2 Representation formula

In this section, we recall the representation formula of the solutions to convex Hamilton-Jacobi equations.

Given X = (t,7) € R x R™" and () € Llloc((—oo,t];]Rerd), we consider the following backward
trajectory
d
e ’YE((U) =¢(o) for o <t, with terminal data fyg((t) =z
o

and call for all tg <t

(5,€) € [to,t) x Li.((—o0, t]; R™+d), ¥ (s) eR™x 00  if s € (to,t)
Sﬁg = with
'ygf(a) eR™xQ, forall o€ (s,t), % (5) eR™ x if s=t

which is the set of parameters such that the backward trajectory stays in the set R™ x 2 and in a time
interval contained in [tg, t].

We recall the following standard result for convex Hamiltonians (which can be seen as a generalization
of Lax-Hopf formula).

Lemma 2.1 (Representation formula)
Assume that H : R+ x Rm+d 5 R be continuous such that P+ H(X, P) satisfies (1.2) for all X, and
let L be the Legendre-Fenchel transform of H given in (1.11). Assume that u : R+ — R is a globally
Lipschitz continuous function satisfying u =g on T' = R1T™ x {Oga}.

Then u satisfies for all X = (t,7) € RY™™*4 gnd all ty € (—o0,t)

w(X)= inf  G(s,t:7%)
(5,6)e€P

(2.1) with

ey [ ey d e [ u(sA%(s) i A% (s) ERM x Q)
et = [ £ (mokiod ook ar = { JOTEED X R

if and only if u solves (1.8) with Qo = R¥+m+d,

Representation formula (2.1) means that u(¢, x) is the infimum of some cost function over all trajecto-
ries with terminal point (¢, Z) and initial point on the part of the boundary ([to, t) X R™ x9Q)U({to} xR™ x ).

Sketch of the proof

The standard proof first shows the dynamic programming principle which implies (by variations/comparison)
the viscosity inequalities on the time interval (o, +00) (see for instance [13], or [10] for results of the same
flavour). Conversely, the comparison principle implies that every solution of (1.8) on the time interval
[to, +00) coincides with the unique solution given by the representation formula (2.1). Notice that the com-
parison principle is valid here because v is globally Lipschitz continuous. This ends the sketch of the proof.

3 Existence of barriers

In this section, we show that infre H(0,-) < 0, and that when the inequality is strict, then we can describe
the maximal solution u4 and the minimal solution u_ to equation (1.1). We show that uy = @ and
u_ = —u(—=z), where @ is a convex l-homogeneous solution, whose we study the rich properties. The
existence of the two barriers u4 is a key step towards the Liouville-type result which will be developed in
the next section.

Lemma 3.1 (Dichotomy)

Assume that H : R™+4 — R satisfies (1.2) and that u is a globally Lipschitz continuous solution of (1.1).
Then either infga H(0,-) = 0 and there exists a unique py € R? such that H(0,po) = 0 with u(t,z’,x) = po-,
or

(3.1) inf H(0,-) < 0.



Proof of Lemma 3.1
We define

u(z) =  sup  wu(t, 2’ x), u(z):= inf  w(t, 2, ).

(t,x’)ERXR™ (t,z’)ERXR™

Because u is globally Lipschitz continuous this is also the case of @ and u. Moreover % is a subsolution, and
by classical Barron-Jensen argument (see [6]) for convex Hamiltonians and Lipschitz solutions, the minimum
(here infimum) of solutions is still a solution. Hence H (0, Du) < 0 and H (0, Du) = 0 on €. Using a test
function from above, we see that p := infre H(0,-) < 0. In case p = 0, the strict convexity of H implies the
uniqueness of some pgy such that H(0,pg) = 0. Then any test function ¢ touching from above either @ or
u at some point xg € €, satisfies Dy(xg) = po. It is then easy to see that Du = py = Du which gives the
result. This ends the proof of the lemma.

In the remaining part of the paper, we assume the negativity of the infimum of H as in (3.1) and define
the convex function

(3.2) a(z):=sup p-x forall zcR? with the convex set K := {pe R, H(0,p) < 0}.
peEK

Notice that K is a strictly convex set under assumption (1.2) on H. The function @ plays a key role in the
definition of barriers, and we start to study its nice (probably classical) properties.

Lemma 3.2 (Properties of )

Under assumptions (1.2) and (3.1) on H, the function G defined in (3.2) is convex Lipschitz continuous on
R?, (positively) 1-homogeneous (i.e. u(Ax) = \u(x) for all X > 0) and belongs to C*(R?\ {0}).

Moreover, we have

(3.3) W(x) = x- Da(x) with Di(x) € 0K for all z€Q
where the conver K is defined in (3.2). In particular 4 is a (viscosity) solution of

(3.4) { H(0,D4) =0 on

=0 on 00 ={0ra}.
We have also for all z € R?

(3.5)  d(x) = inf Té(%) where  0(€) == sup {£-p—h(p)} forall €ecRe  with h(p):=H(0,p)

>0 pERI

and for x # 0
(3.6)

. X x .
i@% TE(;) = 7*6(7_—*) for some unique T, =T7.(z) >0 and €. = D, H(0,p,),

Moreover the two Legendre-Fenchel transforms ¢ and L satisfy

(3.7 U= jnf L(E,&) with L, &= sup {(£,&)-P-H(P)}, (£,6eR™ xR

g'erRm PcRm+d
Finally, @ enjoys the following strict convexity property (not along the radials):

[0, +00) -z # [0, +00) -y

(38) @A+ (1—Ny) <Ai(z)+ (1—Na(y) forall Xe(0,1), if { —

Proof of Lemma 3.2

Step 1: proof that u € C1(R?\ {0})

We first notice that by construction, @ is convex, (positively) homogeneous of degree one and Lipschitz
continuous. We now check that the strict convexity of K implies @ € C1(R9\ {0}).

To this end, we introduce the lower semi-continuous convex function v = (+00) - 1ga\ g which satisfies v = 0



on K and v = +o0o outside K. Then the Legendre-Fenchel transform v* of v satisfies v* = 4, and by convex
duality, we have 4* = v. Now assume by contradiction that for some zy # 0

p1 #p2 with p1,pa € Ot(xg) := {p e R?, W(zo +y) —w(xg) >p-y, forall ye Rd}

where 91(xg) is the subdifferential of 4 at zg. Then the full segment satisfies [p1,p2] C di(xg), which (by
convex duality) implies g € 0u*(p) = v(p) for all p € [p1,p2]. In particular, we get v(p) < 400, and then
v(p) = 0, i.e. [p1,p2] C K. If there exists p € [p1,pe] N Int(K), then we have zy € dv(p) = {0} which is
impossible. Hence [p1, p2] C 0K which is also impossible because K is strictly convex. Hence we deduce
that
0u(x) = singleton = {Du(x)} forall xz#0
which implies @ € C*(R?\ {0}).
Step 2: proof of (3.3)
We notice that @ satisfies
i(x) = sup p-ux.
peEOK
In particular for every x # 0, there exists some p € 9K such that @(z) = p- x and then p € d4(x). Because
@ € C1(R%\ {0}), we deduce that p = Dii(z) is unique. This shows (3.3) and consequently (3.4).
Step 3: proof of (3.5)

We now define 44 (z) := iI;% TE(E). By definition of ¢, we have
T T

. x
Us(z) = inf Tfﬁ@{F -p—H(Om)}

inf 7 sup {f ~p—H(0,p)}
>0 peEK T

Y

(3.9) > inf r.
> inf 7sup {-p}
=sup z-p
peK
= 4(x).
From assumption (3.1), we have
(3.10) £(0) = — inf H(0,p) <O.
peERY
Hence
(3.11) iy (0) = 0.

Now for = # 0, (3.10) shows on the one hand that the infimum defining @4 (x) is not reached as 7 — +o0.
On the other hand, we know that H satisfies (1.2), and then this is also the case of h, and by duality of .
Therefore ¢ is superlinear and the infimum defining @4 () is not reached as 7 — 0. Hence it is reached for
some 7, € (0,+00). The first variation in 7 of the map 7 — 7£(%) shows that

(3.12) UE) =6 -p. with & = Tﬁ and  p, = DU(E,).

Hence

(3.13) h(ps) = 5suﬂg {ps E=LE)}=ps- & — L&) =0 and p, € OK.
€ d

We get for = #£ 0
() =Tl
= 7.6 - DU(&)
=T p.
< a(x).

Together with (3.9) for  # 0 and (3.11) for = 0, we deduce that 44 = 4, which shows (3.5).
Step 4: proof of (3.6)



Let us consider the function f(r,x) := 7'€(£)7 for all (1,7) € (0,+00) x R%. For 74,7 > 0 and n # 22 and
T nom

2
A€ (0,1) and 7 := A1y + (1 — A)72, we get

TN (1) + (1= N f(ro,20)} =771 {)\Tlé(a:) +(1-— /\)ng(w)}

>/ (7'*1 {Azy Ji (1- )\):EQ}) -
=77 (r, Az + (1 — Vo).

In particular for 1 = 23 = # 0 and 71 # T2, we see that the map 7 — f(7, ) is strictly convex on (0, +00).
This shows the uniqueness of the minimizer 7, = 7.(x) which is the first part of (3.6).
On the other hand, we have 4(z) = 7.£(£,) with {, = =, and (3.12), (3.13) show that

w(xr) =z -p. with DU(&) =p. € 0K

and Step 2 shows that p, = Du(x). Therefore

TE =& = Dh(p.) = D;H(0,p.) = D,H(0,D,u(x)) and also Di(z) = De(&) with §:= @)

which shows the last part of (3.6).
Step 5: proof of (3.7)
From convex duality, we have

sup {r-q—1t(q)}=H(0,p) = sup {(0,p) - (¢',q) — L(¢',q)} = sup {p q— igl,fﬁ(q’,q)}

(¢",9) q

which shows by reverse convex duality that ¢(¢) = inf, £(¢’, ¢) which is (3.7).
Step 6: proof of (3.8)
Assume by contradiction that @ is affine on the segment [z1, x2] with [0, +00)-z1 # [0, +00)-22 and x1, x2 # 0.
From the positive 1-homogeneity of @, we deduce that @ is linear on the cone A := [0, +00)z1 + [0, +00)zs.
Moreover, by property (3.6) of 4, we have

Tk

(k) = mil(€k), &k = R Te(z), k=1,2

ie. w(&k) = £(&). Hence for A € (0,1) and &y := A& + (1 — A)&z, we get

(&) > inf () = ilE) = Na(6) + (1~ Ni(Ea) = (&) + (1~ V(E) > A(Ex)
where the last inequality follows from the strict convexity of ¢. Contradiction. Hence we deduce that 4 is
convex not affine on [z1, x2] as desired, which proves (3.8).
This ends the proof of the lemma.

Lemma 3.3 (Barrier uy)
Under assumptions (1.2) and (3.1) on H, for @ defined in (3.2), we set

uy(t,x',z) == a(z) forall (t,2',z) € R x R™ x R%

Then uy is a globally Lipschitz continuous viscosity solution of (1.1). Moreover any globally Lipschitz
continuous viscosity solution u of (1.1) satisfies uy > u.

Proof of Lemma 3.3

Recall that inf H(0,-) = H(0,po) < 0 with pg € Int(K). Up to redefine H, we can assume that pg = 0. Then
we have uy (Ogi+m,-) > 0 on . The graph of the solution u, is a cone that we will shrink like an umbrella
Auy for A > 1 to get a strict supersolution above u. Precisely, for any € > 0, we have for large A > 1

ui=ed g >u oon R x Q.



This is always possible, because u is globally Lipschitz. Then we now continuously unfold the umbrella (i.e.
decrease \). Either we reach the value A = 1, or we have to stop at a heigher level A, > 1 and get

uiA* >u on RIY™xQ

and for any § > 0, there exists X; = (X}, z5) € R1*™ x R? such that (ui”\*_(S —u)(Xs) < 0.
Case 1: x5 stays bounded
Then we set us := u(- + (Xj,0)) and up to extract a subsequence, we have x5 — o, us — ug, and we get

ui)‘* >ug  with equality at  (0,z0) € R*T™ x Q.

A

Because ui’ —up = € on R™ x 99, and because ug is globally Lipschitz continuous, we deduce that

(0,79) € RT™ x Q. Then ui”\* is a test function for u at (0, (), and this gives a contradiction because
Av > 1

Case 2: |z5] = 400

Then we set us := u(- + X5) — u(Xs) and ui_):; = ui_)‘( + X5) — u(X5s), and up to extract a subsequence,

we have us — ug and ui’i{‘ — ui’Ao*, which gives
uSly > ug  with equality at 0.

Here ui)b is a strict supersolution of u; + H(Du) = 0 on R'*™+4 because A\, > 1. Again this leads to a

*

contradiction because ui% is affine.

Conclusion

We conclude that A, > 1is impossible, and then we always reach the value A = 1. We get e+u > u. Because
this is true for every € > 0, we can pass to the limit € — 0 and get w4 > u. This ends the proof of the lemma.

Lemma 3.4 (Barrier u_)
Under assumptions (1.2) and (5.1) on H, for 4 defined in (3.2), we set

u_(t, o', x) = —i(—x) forall (t,2',x) € R xR™ x R%

Then u_ is a globally Lipschitz continuous viscosity solution of (1.1). Moreover any globally Lipschitz
continuous viscosity solution u of (1.1) satisfies u > u_.

Proof of Lemma 3.4
The fact that @ € C1(Q) and that H(0, Da) = 0 implies that u_ is also a viscosity solution of (1.1). We now
want to show that

(3.14) uw>u_ on R xQ.

We start with short preliminaries and then proceed to a proof by contradiction.
Step 1: preliminaries

Step 1.1: representation formula for any solution of (1.1)

From Lemma 2.1, we have for all t > s

(3.15)

(- t _
t,Z) = mi inf — ) d inf 0]
u(t, ) = min |:§€[s,t),lg§lERm><SQ {0 +/§ £ <t - s> U} ’ gjeﬂlkr'}"xﬂ {u(s,y) +/0 £ (t -8

Step 1.2: reformulation of
From Lemma 3.2, we have for x # 0

8
<
N———
IS
q
—
| IS

a(z) =7l(E) with € ==

5/ ERm™

where £, is uniquely defined from the strict convexity of £, inherited from (1.2) satisfied by H.
Step 2: comparison with u_

10



We proceed by contradiction.
Step 2.1: first consequences (of the contrapositive) -
If (3.14) is false, then there exists some £ > 0 and some X, € R x Q such that

(3.16) e+ u(Xo) < u_(Xop).

From the global Lipschitz continuity of v and u_ and their common zero value on RIF™ x 09, we deduce
that there exists r > 0 and some ball B, = B,.(0) C R? such that

(3.17) e+u>u_ on R xB,.

Because of (3.16), we can increase the size of the ball up to some finite r, > 0 such that (3.17) holds true for
r = 14, but not for any r > .. This implies that for any § > 0, there exists X5 € R'™™ x (B, 15\ B,.) such
that € + u(Xs) < u_(Xs). For X5 = (ts, 2%, x5) with x5 € B,_45\B,., we define the points X; := (t5, 2%, 0)
and Y5 := (0,0, 25) and get

(3.18) e+us(Vs) <u_(Ys) with wus(X):=u(X + Xs).
Up to extract a subsequence, we have
us = ug, Y5 =(0,0,25) — (0,0,50) = Yy € {Ogi+m } X OB,,.
Passing to the limit in (3.18), we get € +uo(Yy) < u_(Y)), and then passing to the limit in (3.17) for r = r,,

we get

> 1+m D
(3.19) { etug >u_ on R x B,

etug =u_ at Yy =(0,y0) € RY¥™ x 0B, .

Step 2.2: getting a contradiction
From Step 2.1, we have
(3.20)

u_(Yp) = —i(—yo) = L&) with & = (€,&), & =—", T =7(-w), L&) =LIE,E).

We also have
0 = UO(T*vT*&vO)

= up(Yo + 7(1,&,))
0 ~
< oY) + / L(E) do

— T

0(Yo) — u—(Yo)

= u
(3.20)
(3?9)

where we have used the representation formula (3.15) in the third line. This gives a contradiction and ends
the proof of the lemma.

4 Proof of Theorem 1.1: a Liouville-type result

The proof of the Liouville-type result is based on the barriers identified in the previous section. We make
full use of the representation formula along characteristics trajectories, for which we show a key equality
(Lemma 4.2), that is probably standard in other contexts. From this equality we deduce that the global
solutions u are concave on {u < u, }, which will very soon imply the Liouville-type result.

Lemma 4.1 (Solution along an optimal trajectory)
Assume that H satisfies (1.2) and (3.1). Let u be a globally Lipschitz continuous solution of (1.1). Let
Xo := (to, To) € R1T™ x Q be such that

u(Xo) < uy(Xo).

Then for any T > 0, there exists X1 := (tg — 7,97) € RY™ x Q such that

=T

To— Y

uw(Xo) = u(Xy) +7L(ET)  with £ := and  u(X1) < uyp(Xy).

11



Proof of Lemma 4.1
Step 1: splitting the representation formula in two parts
Recall that from the representation formula, we have for Xy = (to,Zo) and t < tg

(4.1) u(Xo) = min(uy(Xo), ug(Xo))

with the boundary term

t 5~
ub(Xo) i= inf @°(Xo) with @°(Xo):= inf {O+/L<M>da}

s0€[t,to) FER™ x 90 to — So

and the domain term

t ~ ~
t L . ~ To—Y
(4.2) ug(Xo) := ge]ll%{lﬂfo {u(t,y) +/O L ( P— > da} .

Step 2: The boundary contribution
We write & = (2§, 7o) and define (79,£.) € (0,4+00) x R™*+¥ such that

A . To Zo pt pd / Zo
Xo) = = inf 70(—=) = 100(—) = 7oL = , = —
uy (Xo) = i(zo) Int 7 (T) To (7_0) 0L(EL), & =(8,&), & .
where we have used Lemma 3.2.
Now for 7 > 0 and sg := ty — 7, we get

5T

) (Xo) = __inf 7L <a:0 — y) = Tﬁ(éT) for §~T =20~y for some ¢7 € R™ x 99.

FER™ x O T T
Recall that by convexity, we have for any £ € R4 with P, := DL(£,) = (0, ps) with p, € K

(E1) + (€ — &) - DL(Ey)

> L
>L(E)+ (&) P
(4.3) =€:~1j _H(PJ "

where we have used in the third line the fact that P, = DL(£,) is equivalent to £(£y) =&, - Py — H(Py).

Hence )
—1:s T cT L —
T (Xo) = L(§7) 2 € 'P+:7O'P+:T tu (Xo)

and then u;° (Xo) > u(Xo), which implies
(4.4 ub(Xo) > s (Xo).

Step 3: The domain contribution
Because u(Xo) < us(Xp), we deduce from (4.1) and (4.4) that

(45) U(Xo) = ’U,Z(Xo) for all ¢ < tg.

Setting 7:=to —t > 0 and G(g) := u(t,y) + 7L (xo—y>7 we get
T

ui(Xo) > u(Xo) = ug(Xo) = __inf G(y)= inf G(y)
gER™ X FER™ x Q2

where the infimum is reached for some §7 € R™ x €. We have used the superlinearity of £ and the global
Lipschitz regularity of u. Notice that (4.2) implies that §™ ¢ R™ x 942, i.e. g7 € R™ x Q. We get
Py - o = uy (o) > w(Xo) = ult,§7) +7LE) > u(t, i) + 7Py €7 with .=

where we have used (4.3) in the last inequality. For X; := (¢,¢7), this implies vy (X;) > w(X;), which is the
desired inequality. This ends the proof of the lemma.
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Lemma 4.2 (Key equality along a characteristic ¢_)

Assume that H satisfies (1.2) and (3.1). Let u be a globally Lipschitz continuous solution of (1.1). Let
Xo = (to, To) € RY™ x Q be such that u(Xo) < uy(Xo).

Then there exists é_ € R™+4 such that

(4.6) P_:=DL(E.)=(0,p_) with p_ €K
such that for all T > 0, we have
u(Xo) = u(Xo — 7(1,6-)) + TL(E-).

Remark 4.3 Notice that Lemma 4.2 does not exclude the existence of possibly different admissible values
of £_, in particular at points Xy where u is not C1.

Proof of Lemma 4.2

Step 1: the direction & remains fixed for m > 7

We apply two times Lemma 4.1. For any 7, the first time applied from the point X gives the existence of
some direction 5}00 such that

u(Xo) = u(Xy) + Toﬁ(g?o)» X =Xo— 70(175})0)7 u(X1) <uq(Xq).
For any 7 > 0, the second time applied from the point X7, gives the direction 5}11 such that
w(X1) = u(X2) + TL(ER), Xo=X1—m(LEY), u(Xa)<up(Xa).
Hence for 75 := 79 + 71, we get
(4.7) u(Xo) = u(Xa) + LR + 10L(ER) > u(Xs) + 72(&) with & =75 " (10€R, + 1Y)
where the convex inequality remains strict if 5}11 * é;go Now for X5 := (t2,Z2), we have ty =ty — 72 and

~ .’fo—xg
Lo =

with Zo € R™ x , and we get
T2

u(Xe) + 7aL(&) < ulXo) = ufp(Xo) = _int _ {utto~2.9) + L@} with §= T

where we have used (4.5) for the first equality. Hence the infimum is reached for 5 :~§~2 and we have equality

in (4.7). This implies 5}11 = Y, = &2. This also shows that we can choose ¢ = &> and §™ := 73, i.e. for
all 79 > 79, there exists Zo € R™ x Q such that Xy = (tg — 72, T2) satisfies

(4.8) U(X()) =u(X2) + 7-2,6(52) with 52 _ To — X2

“E_ =,
Because this is true for arbitrary 7 > 7¢, this shows that we can find a map 7 — 5}0 which is constant
equal to &s.
Step 2: proof that & = ¢_ satisfies (4.6)
We now want to show that §~2 = §~_ is indeed specific, i.e. satisfies (4.6). By assumption, we have with
Xy = Xo — 12(1,&2) ~ ~

ut(Xo) > u(Xo) = u(Xa) + 12L(&2) > u_(Xs2) + L(&)

and then uy (Xo) —u_(Xo) > u_(Xa) — u_(Xo) + 7L(&), ie. for P™ := Du_(X,) with H(P™) =0

L(&2)

IN

% +1y  {uo(Xo) —u—(Xa)}  with A= uy(Xo) —u_(Xo) >0

A+DU_(X2).{X0—X2}

T2 T2

IN

A -
—+ P&
T2

IN

where in the second line we have used the concavity of u_. For any P_ € R™*¢ such that H(P_) = 0, we
set 4
SAP) = {5 eR™ LE) <P £+ } .

T
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Setting £ := DH(P-), we have P = DL(E_) and L(E_) = - - P_ — H(P_) = £&_ - P_. Therefore
LE)>LE)+(E—-E)-DL(E)=E- P e

L& ) > P_ - ¢ with equality only at £ =¢&_ = DH(P-) with H(P-)=0.
Hence from the strict convexity of £, we deduce that for a fixed P_ € R™*%, we have

¢ = DH(P_),

dist({§ } SA( ) =0 as T — +oo, if {H(P_)O.

Indeed this convergence is event true and uniform if P_ stays in some compact set. Hence we have also

£ := DH(P™),

H(P™) =0,

P™ = DL(E™),

P™ := Du_(X,) = Du_(Xo — 2(1,&)).

dlst({g } SA(P™)) -0 as 7 — 400, with

Because & € SA(PT?) with &, fixed, we deduce that
& — €7 =0, P = P_=DL(&)=Du_(—(1,%)) = (0,p-), p- €0K.

This shows that £ — _ = &, satisfies (4.6).
This ends the proof of the lemma.

Lemma 4.4 (Property of global solutions)

Assume that H satisfies (1.2) and (3.1). Let u be a globally Lipschitz continuous solution of (1.1) and let
X = (to,.fo) e RIT™ x Q.

If u(Xo) < us(Xo), then there exists P— = (0,p_) with p— € 0K such that we have

u(t, @) < ulty, o) + P_ - (& —&o) forall X :=(t,7) € R x R™*4,

Proof of Lemma 4.4 R
From Lemma 4.2 applied to the point Xy, we get the existence of some characteristic {_, such that P_ =
DL(&-) = (0,p-) with p_ € 0K, and for all 7 > 0

u(Xo) = u(Yo) + TL(E-) with Yy := (t1,51) = (to — 7,70 — TE).

From the representation formula, we also have for X € Ri+m+d

uw(X) <u(Yy) +7L(&) with & = :c _Tyl - _5_57 5:: x —7—370
Hence we get )
u(Xo) —u(X) = u(Yp) +7L(E) —u(X)
Z L&) = TL(E)
> [[dr € DL +0d
— —(T —%) - DL(E-) as T — 400
= (1’*130) P_

which gives the desired result. This ends the proof of the lemma.

Corollary 4.5 (Characterization of global solutions)

Assume that H satisfies (1.2) and (3.1). Let u be a globally Lipschitz continuous solution of (1.1). Then
u(t,z’,x) = u(0,0,z). Moreover either u is concave, or u is the minimum of the convex function @ and of
a concave function and K, := { = u} is strictly convex, possibly unbounded, and contains some small ball
B.(0). Moreover we have

(49) ﬁ’(y) > U(0,0,:E + y) - U(O, Oa (E) > _ﬁ(_y) fOT‘ all T,y € Rd‘
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Proof of Corollary 4.5

Step 1: main result

Because v is Lipschitz continuous in time-space, its time-space gradient Du = (ug, Du) is defined almost
everywhere on R17™ x Q. If X; is such a point where Du is defined, then we have two cases.

Case 1: u(Xp) = us(Xp)

Because we know that v < uy, and dyuq = 0 = Dyrug, we deduce also that dyu(Xg) =0 = Dyru(Xo).
Case 2: u(Xy) < us(Xo)

Then from Corollary 4.5, we have for all X = (t,7) € R x Q

U(t,jﬁ) Su(thiO)_’_P—'(i_i'O)v P_ :(O7p—)a p- € OK.

This implies that Du(Xg) = (0,0, p_).

Conclusion

From both cases, we then conclude that d;u = 0 = Dy u for a.e. Xy € R™™ x Q. Hence the Lipschitz
continuity of w implies

u(t,’,x) =u(0,0,z) forall (¢t,2',7) € RxR™ x Q.

Step 2: further properties of the solution
Step 2.1: first properties
In this step, we make abuse of notation, and simply note u(z) = u(t,z’,z) = u(0,0,z) and uy(x) =
uy(t,2',x) = uy (0,0, 7). From Lemma 4.4, if 2o € {u < uy} N, then there exists p_ = p_(z9) € K such
that u(x) < u(zg) + (z — o) - p—(z0) for all x € Q. We define for = € Q

w(z) = inf {u(zg) + (x — z¢) - p—(x0)}

zoe{u<uy }NQ

which is concave by construction, and also viscosity solution of H (0, Dw) = 0 on R%. By construction of w,
we also have for all z,y € )

(4.10) i(y) :== sup p-y >w(x+y) —wx) > inf p-y>—i(-y).
pEOK peEOK

By construction of w, we also have v < w and v = w on {u < 4}, i.e.
(4.11) u = min(w, @)

and then w(0) > u(0) = 0. Notice that (4.10) implies (4.9).

We now distinguish two cases.

Case 1: w(0) =0

Then w < 4 and v = w and w is concave.

Case 2: w(0) >0

Then K, := {u=a} = {w >4} = {4 —w < 0} C Q. Because @ — w is convex, we deduce that K, is also
convex. Moreover the condition w(0) > 0 = @(0) implies that the origin 0 is in the interior of K.

Step 2.2: strict convexity of K, when 0 € Int(K,)

Assume by contradiction that K, is not strictly concave. Hence there exists [x1,x2] C 0K, with 21 # 5.
Because 0K, C {&t = w}, we see that the equality of a convex function % and a concave function w, implies
that & = w = affine on [z1,22]. Because @ is known to be strictly convex (see (3.8)), except along lines
Re for some e € S9!, we deduce that there exists such e such that [r1,72] C Re. Moreover, the case
0 € (z1,x2) is impossible, because we know that py = 0 € Int(K), and then @ is not linear on (z1,x2) 3 0.
We conclude that [z1, 23] C (0, +00)e for such e. Then there exists an hyperplan II tangential to the convex
K, at zo € 0K, which contains the vector e. Hence 0 € II, which is impossible because 0 € Int(K,). We
conclude that K, is strictly convex.

Step 2.3: conclusion

Hence u is convex on the the strictly convex set K,, D B,(0) for some small r > 0, and concave outside K.
This ends the proof of the corollary.

Proof of Theorem 1.1

From Dichotomy Lemma 3.1, we have either u(t,z’,2) = po -« with 0 = H(0,pp) = inf H(0,-), or
inf H(0,-) < 0, and we get u(t,2’,2) = u(0,0,z) from Corollary 4.5. This ends the proof of the theo-
rem.
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5 Explicit characteristics for concave 1-homogeneous solutions

We now provide a refinement of Lemma 4.2, where we characterize explicitely the set of characteristics ending
at a point xg where the key equality holds. This result is of independent interest and is done for positively
1-homogeneous concave solutions. A large part of this section will be also used in the proof of Theorem 1.3
later in Section 7.

Lemma 5.1 (Explicit characteristics for concave 1-homogeneous solutions)

Assume that H satisfies (1.2) and (3.1), and let K := {H(0,-) = 0}. Let w be a globally Lipschitz continuous
solution of (1.1) which is (positively) 1-homogeneous. Let xg € Q be such that w(xg) < 4(xg) = u4(0,0,x0).
i) (General result)

Then w is concave.

Let us consider the following set

27 = {¢ eRY, w(wo) = w(wg— &) +TLEZ) forall T>0}
with € defined in (3.5). Then we have
E% = D, H(0,4¢) with Ay:= D w(xg)NOK #0, D w(xg) C K, CK
where there exists a unique compact convex set K,, (only depending on w) such that

w(z) = ir}%C p-x and DTw(zg)={p€ Ky, p-z0=w(z0)}"
pPEKyw

ii) (Properties of E,,)
Let
E, :=K,NOoOK.

Then E,, # () and we also have the convex hull reconstruction

(5.1) Ky = co(Ey) and w(r)= inf p-z.

PEEy,
Moreover, for any p— € By, and é_ := D, H(0,p_), we have
(5.2) B ={¢_} forall zo=-X_ with A>0, and w(—& )= —L().
We also have
(5.3) Eyw={p- €K, w(-6)=—a(6.) for & = DH(0,p )},
Remark 5.2 The notation E,, is chosen to think to it as the set of exposed points of K.

Proof of Lemma 5.1

Step 1: preliminaries on w

Step 1.1: general preliminaries

Notice that w is in particular a solution to the Liouville-type problem. Hence by Corollary 4.5, either w is
concave, or the set {w = @} has the origin in its interior, which implies w = 4. This is impossible because
w(zg) < u(xp). We conclude that w is concave, and then w > —a(—-). Therefore

(5.4) v(x) = —w(—z) < a(x) = sgg p-x

is convex, and its the Legendre-Fenchel conjugate is with K, := D~ v(0)

{0 if pe K,

400 otherwise } = (+00) - Ira\k, (p)

v*(p) = sup {p- 7 — v(z)) =
z€R?

where (5.4) implies v* > @* = (+00)-1ge\ g and then K, C K. This means that v(z) = sup {p-z —v"(p)} =

peER?
sup p-x,i.e.
pEK,
(5.5) w(z) = inf p-x with the compact convex set K, := DTw(0) = K, C K.

PEKw
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Step 2: properties of every characteristics ending at xzg
We now choose o # 0 and consider some £_ € R? such that

(5.6) w(zg) = w(xg — 7€) +74(~) forall 7>0.

The fact that £(0) = —inf H(0, ) > 0 excludes the case {_ = 0.
Step 2.1: far away consequences

From (5.6), we have £(£_) = w(zo) = wixo —7¢) — —w(—&_). Recall that w(x) > —i(—x), and then

0E) = —w(—€.) <ife) = inf () < ()

7>0 T

which shows that we have equality in each inequality. Hence
w(z) > —a(—z) with equality at z:=—-¢_, and 7.({_)=1.
The fact that & € C*(£2) implies that w has a derivative at —¢_ # 0, which satisfies
(5.7) p— = Dw(—€_) with K, > Dw(—¢_)=Du(_) € 0K and p_ = DI )

where we have identified the gradient in K, using (5.5), and in 0K using (3.3). Finally, we have used (3.6)
in the last equality. Hence

(5.8) & =D,H(0,p_) with p_ € K, NIK.

Step 2.2: close consequences

We also have —w(—€_) = a(e_) = f(¢_) = 2@ Zw@o =76) | Zoy  To

. — —¢&), ie
W) = w6 —w-6) =L +o ()

where we have used (5.7) to identify p_. This gives w(zp) = x¢ -p— +7-0 <@>, which implies in the limit
T
T — 400
w(xg) = o -p— with p_ € K,, NIK.

From (5.5), we also deduce that p_ € DTw(xg), and then
(5.9) p_ € Ay := DV w(xg) NOK.

Step 2.3: a property of D w(zg)
We first recall that for p € DT w(x¢), we have w(zg + 7h) — w(xo) < p- (7h), and in the limit 7 — +o00, we
get w(h) < p-h which shows that p € DTw(0) = K,,. Hence D" w(zo) C K,,. We want to show that

(5.10) Dtw(xg) = KZ with KX :={pe K,, p-x0=w(x0)}.

Let p € DT w(xg). Then we have w(zg + h) — w(zg) < p-h. For h = tex with € > 0, we get in the limit
€ — 07 the two inequalities +w(zg) < +p - x9, which shows that

DYw(zg) C K.
Conversely, for any pp € K'°, we have

w(zo + h) — w(wo) :piefg p-(zo+h)—po-zo <po-(zo+h)—po-zo=po-h
and then pg € DT w(zo), i.e. KX C DYw(xg) which is the reverse inequality. We conclude to (5.10).
Step 3: reaching the set DH(0, Ay) with Ay = DT w(x¢) N OK
First notice that Lemma 4.2 applies to w and shows that § # Z=%°, while we know from Step 2 that
= C D, H(0,Ag). Therefore Ay # 0.
Because DTw(0) = K,, C K, we also know that w is a subsolution at the origin. Moreover if D~w(0) # 0,
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then w(z) = p-x with p € K, has to be a solution for z # 0, and then is also a supersolution at = 0.
Hence w is a solution on the whole space of

H(,Dw)=0 on R%
From the representation formula, we have for any 7 > 0
w(zo) = inf {w(ze—7E) +7L(E)}
£ERE

= inf {{ inf p.(xo—rg)}Jrré(f)}

EGR‘Z PEK

= inf <p-ag—7sup {p-£&—4(&)}

PEK £€Rd
— inf . —7H(0

nf {p-2o—7H(0,p)}
< inf {p-xo— TH(O,
fpleﬂAo{p o —TH(0,p)}
= w(zo)

where using (5.10), we have
Ag = KI*NOK # 0.
This shows that the infimum in p is reached for any p_ € Ag. Then in the third line the suppremum in £ is

reached for £ = £_ = D/(p_) uniquely associated to each p_. Hence the infimum in the first line is reached
for such & = £_. This shows that for all 7 > 0, we have

w(z) = w(wg —76-) +74(§~) forall & :=D,H(0,p_) with p_ € A.

Step 4: proof of (5.2)
For any x1 # 0, we know from Step 3, that A; := DTw(z1) NOK # 0, and A; C E,, := K,, N K. Hence

Eu # 0.

and we can consider any p_ € E,, and {_ := D,H(0,p_). Then p_ = D{({_) and £(§_)+H(0,p_) =p_-&_.
Because inf H(0,-) < 0 and H is strictly convex, we first deduce that £_ # 0. We then notice that for all
A >0 and xg := —Aé_, we have

(5.11) w(zg) > —t(—xo) = —Mu(§=) = =M(§-) = —Ap_ - =p_ -9 > p.ier}g p-xo = w(zo)

which shows that we have equality in all inequalities. Because @ € C1(Q), we deduce that w is C! at zg and

we get
DYw(xzo) = {p«}, p«= Di(—x0) = Da(¢-).

Moreover, we have £(§_) = 4(£_) = 12% 7'6(6—_), where we have used (3.6) which also shows that 7.(¢§_) =1
T T

and then that p, = Da(¢_) = D(§_) = p_. Therefore Z*° = {£_}. Moreover we have w(xg) = w(xg —

7€)+ 7L(€-), and then in the limit 7 — +oo, we get w(—&_) = —£(£_).

Step 5: proof of (5.1)

Consider now some exposed point py € exp K,. Hence there exists a unit vector n € S~! such that for

I .= {p € RY, (p — po, £n) > O}, we have

Po,n

K, C I Ko NI = {po} .

Po,n?

Then Lemma 11.3 shows that v(z) = —w(—z) satisfies

dv(n) = {po}

i.e. that v is C! at n. This means that w is C! at —n with Dw(—n) = pg. Because the PDE is satisfied at
—n, this shows that py € OK, and therefore, all exposed points of K, are on K. From ii) of Lemma 11.2
in the Appendix, we deduce that we have the following closure of the convex hull property

K, =co(exp K,,) with exp K,, C 0K
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which also implies (using the boundedness of Ay to assert that co(As) = co(Ay), see for instance Theorem
1.4.3 on page 31 in [12])

(5.12) K, = co(exp K,,) with exp K,, C (K, NOK) = E,,.
Hence K, = co(E,,). Furthermore point iii) of Lemma 11.2 shows that

w(x)= _inf p-z
peeXpP Ky

From the inclusion in (5.12), we deduce that

w(z) = piEnEf p-x.

Step 6: proof of (5.3)
We set
El, ={p_ € 0K, w(-¢)=-a(& ) for & :=D,H(0,p_)}.

Notice that relation (5.11) for A = 1 shows that
(5.13) Ky NOK = E, C E.,.

Conversely, choose any p_ € 0K and £_ := D, H(0,p_). Because K is strictly convex and £_ is orthogonal
to K at p_, we get
E - (p—p_)<0 forall pe K\{p_}.

Now if p_ ¢ K,, C K, then we have on the compact set K,,, the strict inequality sup &_-(p—p—) <0, i.e.
PEK

w(—=¢§-) = inf p- (=) >p_-(=§-)=—u(¢-)

PEK .y

where we have used (3.3) and (3.6) for the last inequality with p_ = Da(¢_) and 7.({~) = 1. This shows
that p_ € E/ . and then (0K\K,)NE., =0, i.e.

E, D E,,.

With (5.13), this shows that E,, = E!,, which is (5.3).
This ends the proof of the lemma.

6 Key equality for localized solutions

In this section we present a localization of Lemma 4.2. For a cylinder Qo C R!*™*¢ we consider solutions
u(t,z’, ) of

(6.1) { u, + H(Du) =0 on  Q\T

u(t,z’,0) =g(t,2',0) on  QyNT.
We also set for 7,p > 0

(62) Q‘r,Qp = (_T, O) X B2p7 FT,QP = Q‘r,2p nT.

Lemma 6.1 (Key equality for localized solutions)
We use notation introduced in (6.2). Assume that H satisfies (1.2) and (3.1). For ,p > 0, let

u:Qy =R with Qu:=(—7,0) x By, C R x R™*¢

be a Lipschitz continuous solution of (6.1), of Lipschitz constant L > 0. Define R, > 1 such that

{€ermd £ < LI} € Ba,
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and assume that

(6.3) p>TRL and set k:= sup T.(z) >0, o«p:= inf {0(&) — & - D)} > 0
r€IB, nesSd—1, fo=(2f€)71n

for 7. defined in (3.6). For this local problem, we define the Dirichlet boundary (including the initial data)

L2y, =T, UTY5L with T4 :={-7} x Ba,.
Then we have the representation formula
6.4)  w(X)= ) inf {u(y) + sc(é)} . forall X =(0,%)€ {0} x B,
s€(0,7], EERM*E, V=X —s(1, S)EFTsz

Moreover for v € (0,pl, if Xo = (0,%0) € T with T9 = (x},z0) € B,, and

(6.5) w(Xo) < usr(Xp) + inf { inf w4+ agmax{0,s — 21<a|ac0|}}

s€(0,7] \Is,r+srp,
then there exists & € Br, such that for all s € [0,7], we have
(6.:6) u(Xo) = u(Xo = 5(1,€-)) + sL(E-).

Remark 6.2 Lemma 6.1 allows to connect the behaviour of the solution at short distances (for small s) to
large distances (large s). This result is crucial to show the uniqueness of the blow-up limit of the solutions
at the boundary I' (in Theorem 1.3).

Proof of Lemma 6.1

We first notice that because the solution u is Lipschitz, and D H is continuous, we have finite propagation of
information. Then it is possible to justify representation formula (6.4), which itself implies that minimizers
£ have to satisfy £ € Bg,. Moreover for Xg = (0,%9) ¢ I' with %9 = (2}, 20) € B, and r € (0, p], if
Y =(-s,y,0) € I's 5, is such that

w(Xo) = u(Y) +sL(E%), Y =X —s(1,€%), s = (z -y, x0).
then we have s € (0,7]. On the one hand, we have for f(s,zg) := sE( S 9)
SL(E) = sU(Z2) = f(s,20) = Inf f(',20) = f(r(20), 20) = iU(zo) = - (Xo)

where the map 7, is positively 1-homogeneous. From Step 4 of the proof of Lemma 3.2, we know that the
map f(-,x0) : (0,+00) — R is strictly convex. If 2k|zg| > 27.(z0), then we have for

a = f!(26|zo], m0) = £(&) — &0 - DU(E) > ap >0 for & = (2,1)*1%

with ag defined in (6.3). Hence

f(s;20) = f(26]wol, w0) + a(s — 2k|zol)
> f(re(20), x0) + s — 26|xo))
= uy (Xo) + a(s — 2n]zo])
and then .
sL(E%) > f(s,x0) > uy(Xo) + ap max {0, s — 2k|zo| } -
Hence
=u(Y)+ sll
> inf u p + uy(Xo) + apgmax {0, s — 2k|xg|}
[ s O)XBSRL Xo))ﬁr‘r 2p
> uy inf w4 aymax{0,s — 2x|zo|}
s,r+sRp,
i.e.

u(Xo) > uy (Xo) + inf {F inf w4+ aygmax{0,s— 2/{|m0|}} .

s€(0,7] s,r+sRp,

Then condition (6.5) prevents to have Y € I'y 5,. Hence Y € T30\ ({7} x ). As in the proof of Lemma
4.2, we show that we can choose £° independent on s for s € (0, 7], and this shows (6.6). This ends the proof

of the lemma.
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7 Proof of Theorem 1.3: full directional derivatives

This section is fully devoted to the proof of Theorem 1.3.

Proof of Theorem 1.3

Up to redefine H, we can assume that A =0 = p'.

Step 1: blow-up limits and double blow-up limits
For € > 0, we consider the blow-up functions

(7.1) uf (t,7) = e tu(et, e7)

which are Lipschitz continuous, uniformly with respect to ¢, with the same Lipschitz constant. By Ascoli-
Arzela theorem, from any sequence e — 0, we can extract a subsequence (still denoted by ) such that
u® — u locally uniformly on compact sets of R'**¢_ Moreover by stability of viscosity solutions, the limit
u® solves the whole space problem

ul + H(Du®)
w0

0 on RMY™xQ (in the viscosity sense),
0

(7.2) on RIF™ x 90 (in the strong sense).

From Theorem 1.1, we know that u® = u°(z) with x € Q = R? and from Corollary 4.5, we even know that
(7.3) u’(t, 2, x) = min {a(z),w(z)} with w concave solution of H(Dw) = 0 on R?
and convex @ defined in (3.2). We can now consider the rescaling for p > 0

wh(@) = p" {w(pz) — w(0)}.

Because w is globally Lipschitz and concave, on the one hand, we know that we have the blow-up convergence

wh(x) — w(x) = ;}Eﬁ {M} = peggfv(o)p cx as p— 0T,

On the other hand, for the same reason, we have the blow-down convergence

w(px) — w(0)
"

wh (o) = w (@) = lim {

} as u — +o0o.

Here by construction, both w® and w*™ are globally Lipschitz continuous, concave, and moreover 1-
homogeneous and solve H(Dw) = 0.
As a consequence, we get for u = u°(z) that

() (z) = p~ '’ (ne)
satisfies (using (7.3))

(u®)* — min (@, w>®) = w™ as [ — o0,
. ~ 0 O .

0\ min(d, w’) = w if w(0)=0 n

(u?) —>{A it w(0) >0 as pu— 0t.

Notice that the limit of (u®)# is then either equal to 4, or is concave and 1-homogeneous.

Step 2: setting of the problem

Our goal is to show later the uniqueness of the blow-up limit. If infga H(0,-) = 0= H(0, pg), then we know
that the blow-up limit is u%(X) = po -  and then is unique. We then assume from Lemma 3.1 that (3.1)
holds true. We start as follows. v

Consider now two sequences ' = &} — 0 for ¢ = 1,2, such that for rescaling (7.1), we have uf — u' locally
uniformly on compact sets of R*+™*¢_ Notice that each limit u’ has a shape as in (7.3). Then by a diagonal
extraction argument, we can always find sequences a® — 400 which go to infinity sufficiently slowly such
that a® e — 0 and .

w (! ) > 4l (z) with @l = lim (uf)"
p—>—+00
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and we can similarly find sequences b*' — 0% which go to zero sufficiently slowly such that

Wb (! x) — Gl (v) with @)= lim (uf)”.
pn—0+

Hence up to redefine the sequences &' (by as &' — 0 or b°'c* — 0), and redefine the limit u, we can assume
that for i = 1,2

(7.4) u (o x) > ai(z) as & — 0

with 4 solution of (1.1), where 4’ is 1-homogeneous (i.e. @‘(ax) = ad’(z) for all a > 0), and either 4 = 4,
or 4" is concave and then from (5.1), we see that there exists a compact set E* C 0K such that

(7.5) 4'(z) = inf p-x= inf p-x and K'=co(E"), E'=K'NnoK.
peE? peK?

Moreover, we have the following property. For any 7 > 0, there exists €, > 0 such that for all el < Ep, WE
have for X = (X', z) and X’ := (¢, )

(7.6) s (X' 2) —di(z)| <n forall (X',z)€[-1,1] x By.

Step 3: framework for a proof by contradiction
Step 3.1: position of the problem
We want to show that 4! = @2. Assume by contradiction that @' # 42, i.e.

(7.7 i (e) < 42(e) for some unit vector e € S¥1.

In particular this forces 4! to be concave as in (7.5), and 42 is either equal to @ or also concave as in (7.5).
We distinguish two cases.

Case A: 42 is concave

Then, with notation in (7.5), we have E! # E2. If E* C E?, then (7.5) implies 4! > 42 which is not the
case by assumption (7.7). Hence E'\E? # (). We now choose

p_ € EW\E?, ¢ :=D,H(0,p_)#0.
Then from (5.3), we get (using —a(£_) < a%(—€2))
at(=6-) = —u(§-) < @*(=¢-) and a'(—=§-) = —u(§-) <0 < (=€)

Case B: 4?2 =4
Then consider any

p_ €E', ¢ :=D,H(0,p_)#0.
Again from (5.3), we get
it (—6-) = —u(§-) < 0 < (=€) = @ (—¢-).
Conclusion

Hence in both cases, there exists p_ € E* with . = D, H(0,p_) # 0 such that for z; := —\&_ for A\; > 0,
we have from ii) of Lemma 5.1

(7.8) 2T =E"(a") ={¢.} and 4'(z1) < min{a(z1),a%(z1)} .

Step 3.2: framework for ¢! < &2

We assume (7.8). The idea of the proof consists to use the key equality along a characteristic of velocity £_
for 4! approached by uf!, and to propagate the information far away where now u°' behaves like u®2, i.e.
like @2, This will lead to a contradiction because @' (—¢_) # Gg(—€-).

We set ¢ = €2, and get from (7.6) that

u (X' 2) —a*(x)| <n forall (X' z)e€[-1,1] x B;.
1
For p := i— € (0,1), we have |[us (X', x) — al(x)| < n for all (X', z) € [-1,1] x By, i.e.
2

(7.9) e (X', @) — @ @) <y for all (X,x) € [~y 1] x B
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Step 4: core of the proof by contradiction

Step 4.1: first bound from above on u°(X),)

Recall that u has Lipschitz constant L > 0, and fix 7y > 0 such that 279 Ry, = 1 with Ry > 1 given in Lemma
6.1. Then there exists some fixed A; > 0 small enough such that

5?1 = (0,$1) = (0, —/\15_) € El, jll« = /.Li‘l S EH‘

Then for p = 1oRr = 1/2, we have for ;1 > 0 small enough B,, C B, C B, C By, and from (7.8), we have
@' (z1) < @(x1) and then for X, := (0,2,) = (0,0,z,) and z,, = px,

w(X,) < @t (@y) + pn = paen) + p(n = {a(z) —a' (1) }) < —pn + a(z,) = —pm + up (X,)
for 1 small enough such that 0 < 2n < a(z1) — @' (z1). We get
(7.10) Ut (Xp) < —pn + uyp (Xp).

Step 4.2: effective bound from above on u®(X),)
Now from (1.4) with A = p’ = 0, we deduce that for s > 0 and p > 0 (and using Ry, > 1)

inf  w=o(p+sRyr).

Us ptsry,

With notation of Lemma 6.1, we have for X := X,,, 29 := x,, = pux1 € B, and r := p (and 7 := 7¢)

inf { inf u—|—a0max{0,s—2/<|xu}}

s€(0,70] | I's,utsrp,

< i(rolf ]{o(u+sRL) + apmax {0, s — 2|z, |}}
s€(0,70

< o(p+ 26plze|RL))

= o(n).

Hence from (7.10) for x> 0 small enough, we get

u®(X,) <uy(X,)+ inf {F inf u+a0max{0,s2nx#|}}.

5€(0,70] s,u+sRp,

Step 4.3: properties along characteristics
Now from Lemma 6.1, there exists " € Bg, such that

(7.11) uf(X,,) = ut (X, — s(1,€")) + sL(€") forall s € [0,7).
Now at the scale pe with X7 = (0,Z1), we get by change of scales s = po

u (uX1) = uf (uX1 — po(1,€4)) + poL(§") for all po € [0, 7]
ie.
(7.12) (X)) = 0 (X~ o(1,E) +oLE) forall o€ [0, T,

Step 4.4: passing to the limit
Now in the limit ¢ — 0 with g — 0, we have (up to extraction of subsequences)

ut =02, X, = Ogiymsa, & =€ € By,
and passing to the limit in (7.11) for 4°(t, 2’, z) = ' (z)
(7.13) 42(0) = 4%(—s(1,€%)) + sL(€°) forall s e [0,
and in the limit in (7.12)

(7.14) Wt (X)) = 0 (X1 —0(1,€2)) + 0L(E%) forall o€ [0,+00).
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The limit ¢ — 400 gives ~ ~
at(—€2) + L(€2) =0 with €2 = (£°2,€2).
Step 4.5: identification of the limit characteristic ¢

Now we have
0E2) = inf L£(¢,€2)

£'eRm
<L ,£9)
— —al(—g0)
< a(0)
¢
= inf 74(27)
D)

Hence we have equality in all inequalities and

(7.15) —a'(—€2) = L(E2) = £(¢2).

Now for 77 = —\1£_, relation (7.14) shows that 2 € 2% = 2% (al) = {£_}, i.e.
& =¢ =D,H(,p_) with p_ e E'=K'NnoK.

Step 4.6: contradiction
Now (7.13) also shows that

W?(—¢2) = —L(€2) = a'(-¢2)
where the last equality follows for instance from (7.15). For 1 = —A\1£_ = —\1£%, we deduce that
02 (z1) = ' (21)

which is in contradiction with (7.8).

Step 5: conclusion

We conclude that @' = 42, and then 1-homogeneous blow-up limits coincide. This implies the uniqueness of
the blow-up limit, which also has to be 1-homogeneous. This means that for X = (¢,2/, x)

e tu(eX) — a'(x) locally on compact set of R1+7+d as ¢ — 0

with 4! (az) = adl(z) for all a > 0. This shows (1.5) and ends the proof of the theorem.

8 Proof of Theorem 1.4: strong traces of directional derivatives

This section is devoted to the proof of Theorem 1.4. We start with the following building block result.

Proposition 8.1 (Strong convergence of the blow-up gradient at the boundary)
We work under the assumptions of Theorem 1.3 with (A, p’) replaced by (/\O,p'o). In particular, there exists
(A%, p'°) € R x R™ and a 1-homogeneous function u® : RY™M+4 5 R such that for X = (t,2’,z), we have

wX) = (X)+o(X]) as X =0 in R with u0(X) =A%+ 2 + 00,0, 2).

Recall that w is a Lipschitz continuous viscosity solution of u; + H(Du) = 0 in a neighborhood of 0 in
R*™ x Q, with H strictly convex.

Then for e > 0, the blow-up u®(X) = e~ {u(eX) —u(0)} enjoys the following strong convergence of its
time-space gradient towards a 0-homogeneous function

(8.1) (uf, Duf) — (\°, Du®) in  Lp (RUFmHd RIFmEd)y g5 o 50,
Proof of Proposition 8.1

Step 1: preliminaries
Because Du® is uniformly bounded, we can use standard compactness of (Young) measures, and extract a
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subsequence (still denoted by €) and find a family of probability measures vx on R™+4 for X ¢ RI+tm+d
such that for any continuous function F : R™*t¢ — R, we have

F(Du®) — F := (vx,F) = / F(P)dvx(P) in L (RY™™Y)  weak — x.

Rm+d

Notice that we also have for any measurable function G : R1*m*d x Rm+d 5 R such that P ~ G(X, P)
is continuous on compact sets uniformly in X, and X — G(X, P) is bounded uniformly for bounded P, we
also have (see for instance [2])

(82) G(X,Duf) = G(X):= (vx,G(X,")) = / G(X,P)dvx(P) in L (RY™H)  weak — .

Rm+d

Because u is Lipschitz continuous, we have in particular almost everywhere
u$ + H(Du®) =0, u)+ H(Du’) =0.

Step 2: limit of a nonnegative integral
We set

(8.3) 0<¥(X,P):=H(P)—H(P°) — (P - P°-DH(P°) with P°= Du’X)

where the nonnegativity of ¥ (a.e. in X) follows from the convexity of H. Now for any test function
0 < ¢ € C®(R'"™*4) we consider the following integral

0<I* ::/ o(X) U(X, Du® (X)) dX.
Rl+m+d
On the other hand, setting B¢ := —(Du® — Du®) - DH(Du°), we get

Ir = / ¢ {B°+ H(Dvw) — H(Du’)} dX

(8.4) 1+m—+d
{(pBE + pp(u® — uo)} dX
R

1+m+d

where we have used the PDE for the last line. From the strong uniform convergence of u® towards u°, we also
get [ ¢1(u® —u®) dX — 0. On the other hand, we split M := DH(Du®) € L*> in two parts Ms := ps* M
and Mj := M — Mjy, where ps is a standard mollifier. We get M; € C' with bounded gradient, and Mz — 0
in L}, (R'™*4). Hence we write

B® = —(Du® — Du") - M = —(Du® — Du°) - M5 — (Du® — Du°) - Ms =: B§ + BS
and get

/ pB5 dX = (uf —u®) div(pMs) dX —0 as &— 0.
R1+m+d R1+m+d

We also have
| ©B§ dX| < 2Lip(Du)/ o|Ms| dX =0 as §—0.

R1+77L+d R1+77L+d

This shows that we also get f pB® dX — 0. Therefore we get
IF—0=1"= / P(X)V(X) dX
Rl+m'+d

with 0 < U(X) = [5.40 (X, P) dux(P) for a.e. X € R"™ ¥4 where the nonnegativity of ¥ follows again
from the convexity of H.

Step 3: consequence

Step 1 implies ¥ = 0 a.e. for all test function ¢ > 0. Therefore we get ¥ = 0 a.e. on R+ Now the
strict convexity of H implies that supp(vx) C {P(X)} and then

vx(P) =8o(P — P°(X)) forae X e€R'mtd
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We then deduce that
Duf — P° =Dy’ in Lj, (R4 RY)

not only for the subsequence, but also for the full sequence ¢ — 0, because any limit Young measure is a
unique Dirac mass. Finally, writing again u§ — u9 = H(Du®) — H(Du®) and using the fact that H is locally

Lipschitz, we get the convergence u§ — uY = \° in Llloc. This ends the proof of the lemma.

Proof of Theorem 1.4

We precise the notation with the ball B} C R!*™ that we distinguish from the ball B; C R,

Step 1: preliminaries

For X' = (t,2’) € By and (X’,0) € I', we consider the tangential gradient (u:, Dyu)(X’,0) of the Lipschitz
continuous function X’ — u(X’,0). From Rademacher’s theorem, we know that the tangential gradient
exists a.e.. Now from Theorem 1.3 (up to a rescaling for each X’ = (¢,2’) by a factor p > 0 depending on
X’ such that (X’,0) + (—p,p) x B, C B} x By), we deduce that

WX +Y)—u(X)=BuX)Y)+o(Y|) forae X=(ta2',00el
where Bu(X) : R1*™+4 _ R is 1-homogeneous and Lipschitz such that for Y = (s,3/,y)
Bu(X)(Y)=As+ P -y + Bu(X)(0,y) with X:=u;(X",0), P :=Dyu(X’,0).
This shows (1.6). We now set the gradients for a.e. X’ € B} and all z € B;
PY%X’,x) := D(Bu(X',0))(0,2), P(X',z):= Du(X',x).

Step 2: rescaling and extraction of some Young measure
For € > 0, we consider the anisotropic rescaling

Po(X' z) = P(X',ex).

Because Du is bounded, we can use standard compactness of (Young) measures, and extract a subsequence
(still denoted by ¢) and find a family of probability measures vx on R™* for X = (X', z) € Qo = B} x By
such that for any continuous function F : R”™t¢ - R, we have

F(P°) = F :=(vx,F) = /]Rd F(P)dvx(P) in L75.(Qo) weak — .

Step 3: characterization of the Young measure

Our goal is to show that the limit Young measure vx is a Dirac mass of center PY(X).

Let us consider a test function 0 < ¢ € C*(B1(0)), and let us consider the following integral which is well
defined for € > 0 small enough (because ¢ has compact support in the unit ball) for Y = (Y, y) € B} x By

JE = \B;|—1/ Lp(X/){/ |P((X',0) +eY) — P°(X',y)] dY} ax’.
B! B xB;

1

From Proposition 8.1, we have for the special case X = (X’,0) for almost every X’ € B]
us (V) = e Hu(X +eY) —u(X)} = u% (V)
and for fixed X = (X’,0)
P(X +¢Y) = Du(Y) = Du%(Y) = (Dxu% (Y',0), Dyu (0,)) = PU(X',y) in Li,(Ry™ ).

Hence on the one hand, from the Lebesgue dominated convergence theorem, we get J¢ — 0. On the other
hand, consider the change of variable Z’ = X’ +cY’. We get

rep [
BixB;, |/B

We now introduce

o(Z' —eY") |P(Z',y) — P°(Z' —&Y',y)| dZ’} dy.

/
1

i =i {/
B/ xBy | /B

1

o(Z') |P(Z'y) = P)(Z,y)] dZ’} dy
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which satisfies

JE—J" =0

from the continuity of translations in L! for the term P° and from the uniform continuity for the factor .
Hence J¢ — 0 with (for z =y and Z = (Z/, 2))

i [ w2y P2 - P2z
B xB1

By density of continuous functions in L'(B} x By), it is easy to justify by aproximations (of PY) that we
have (for a subsequence still denoted by ¢) the following limit (as in (8.2))

j€—>0=j0::/

Bi ><Bl

w2\ { [ 1= P@) )} az.

Because ¢ > 0, this implies supp(vz) C {P°(Z)}, and then
vz(P) = 6o(P — P°(Z)) forae. Z¢€ Bjx By.

Step 4: conclusion
From the uniqueness and the expression of the Young measure vz, we deduce that we have

P - P’ in LYB) xB)

not only for the extracted subsequence, but also for the whole sequence e (even for a continuous parameter
¢ — 0). Finally, the convergence of u; (X', ex) follows from the PDE, the uniform bounds on the gradient, the
L' convergence of the gradient P¢, and the continuity of H. This shows convergence (1.7) of the time-space
gradient. This ends the proof of the theorem.

9 Proof of Proposition 1.7: a counter-example

Proof of Proposition 1.7

Step 1: the rotation of the kink

For # = (z1,22) € R2, let us consider the kink function U(x) := —|x1|, which is a viscosity solution of
h(|DU|) = 1 because h(1) = 1. We now introduce polar coordinates x = (z1,x2) = ®(r,0) := (rcos b, rsinb).
Given a C! function 6y : (0,1] — R, we define

u(x) = (Uo®)(r,0 —Oy(r)) = —r|cos(a)|, for a:=80—0y(r).
For e, = %, eg = ef:, we have
—Du(z) = {| cos a| + rf(r) - sign(cos @) sina} e, — r {sign(cos o) sin a} % e
r
and
|Dul? = 1+ (r8f)? + r6} sin(2a) > 0.

Assume that
r0y(r) =0 as r—0t.

Then we have h(y/1+ (r8})2 + rf) sin(2a)) — k(1) = 1 as r — 0F. Defining

1

= for a:=0—0p(r) and (r,0):=d ().
h(\/1+ (r8;)2 + r0; sin(20)) o(r) (r.0) (z)

a(x) :

we see that @ € C'(By) and u is Lipschitz continuous. Moreover u is also C'! except on the curve

Ty :={®(r,0), (r,0)€(0,1] xR, 6=0(r) modmw, r>0}U{0Og}
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We have Dt u(x) # () for all x € T, while D~ u(x) = (). Because H(z, P) is convex in P, we can easily show
that u is a Lipschitz continuous viscosity solution of

a(x)h(|Dul) =1 on B; C R%
On the other hand, if we choose 6y such that

Oo(r) = 400 as r—0

then we get a counter-example. We can for instance choose 8o(r) := {/—In (3).
Step 2: checking strict convexity of gg
We set
90(p) := h(|pl)
which is C! because h'(0) = 0. For p # 0, we have Dgo(p) = h'(\p|)%, while Dgy(0) = 0. We also have for
p
p # 0 with h € C?
oo Mp A R |
Dgo(p) = 1" (Ip)p @ p+ |(]|)| ) ra-pop) with = il

which is continuous as p — 0 with limit D2go(0) = h”(0) - Id. Hence go € C? with D%gy > 0.

Step 3: proof of (1.10)

Assume by contradiction that (1.10) is false. Then for any § > 0, there exists sequences R?\ {0} > b — 0,
and (), with xp, € E%, such that

w(zp + ) + u(xy — b) — 2u(ay) > ]b).

Defining the blow-up u, with moving center xp, and the normal vector n,

_ b
up(x) := b7 {u(zy + ) —u(xp)y, npi= m
up to extraction of a subsequence, we get u, — ug and np — ng and
(9.1) H(zo,Dug) =0 on R2 and wug(ng) + uo(—ng) — 2ue(0) >3 >0

Then Liouville-type Theorem 1.1 (precisely (4.11)) implies that ug is concave which is in contradiction with
(9.1). Finally the fact that wg is not Dini integrable follows from Theorem 2.1.10 on page 35 in Cannarsa,
Sinestrari [10], and from the fact that semiconcavity implies the existence of directional derivatives (see
Theorem 3.2.1 on page 55 in [10]). This ends the proof of the proposition.

10 Proof of Theorem 1.8: generalization to variable coefficients
We start with the following result.

Lemma 10.1 (Modulus of strict convexity)
Assume that £ : R™T? — R is strictly convex and C'. Moreover assume that for some R > 0, there exists a
continuous modulus g : (0,400) — (0, +00) with wr(0") =0, such that

(10.1) (P —Q,DL(P) - DL(Q)) > |P = Q|wr(|P - Q) for all P,Q € Bp.
Then we have
(10.2) AML(P)+ (1 =NL(Q)—LOP+(1-M)Q) > A1 - )\)QR(|P -Ql), forall X€0,1], P,QE€ Bgr

with

Qr(r) := /OT wr(s) ds.
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Proof of Lemma 10.1 B
For A € [0,1], for P,@Q € Bpg, and Py := AP + (1 — \)Q, and P := P — @, we have

AL(P) + (1 - A)ﬁ(Qz = L(Py) X
— M- N(P-Q)- /O ds DL(Py + s(P — Py)) + (1= MA(Q — P) - /O ds DL(Py + 5(Q — Py))

YOEDY) /01 % (sP) - {DL(Px+ s(1 = A)P) — DL(Py — sAP)} .

Setting

ps =P\ +5s(1=A\)P, qs:=P\—s\P, with p,—q,=sP
we get ps, s € Bpg and
AL(P) + (1= NE(Q) ~ £(P3)
ds
= 20N [ -0 (DL, - DL()
0

> A(1-2) / ds| P|isr (5| P)

= AL = N)Qr(P)
where we have applied (10.1) in the third line. This shows (10.2), which ends the proof of the lemma.

Proof of Theorem 1.8

Part A: Proof of generalization of Theorem 1.3

Up to redefine H, we can assume that A =0 = p'.

Steps 1 to 3: as in the proof of Theorem 1.3

These steps are identical to the ones of the proof of Theorem 1.3, except that after the first blow-up, equation
(7.2) has to be replaced by the following

0 on RIF™ x Q) (in the viscosity sense)
0 on RM™ x 90 (in the strong sense).

(10.3)

ud + Ho(DuP)
ud

where in (7.2) the Hamiltonian H(P) has been replaced by
Ho(P) = H(OR1+m+d, P) for P ¢ Rm+d.

0

Again v’ is unique and linear if inf Hy(Ogm,-) = 0. We then assume that Hj satisfies (3.1), and set
R

K = {p € Rd) Ho(O]Rm,p) < 0} .

We recall the obtained framework. For any 7 > 0, there exists &, > 0 such that for all i = 1,2 and £’ < g,
we have for X = (X', z) and X’ := (¢,2/)
lus' (X', 2) — @' (z)| <n forall X e[-1,1] x By.
1

€
For e = ¢* > ¢ and p = = € (0,1), we have in particular
€

|us (X', x) —a2(x)] < n for all X € [-1,1] x By,
[us (X', 2) — 4l (x)] < un for all X € [—u, pu] x B,.

Moreover, we have 4! (x) = inf1 p - = with the compact set E' C OK. There exists p_ € E' with
peE
- =D, H(0,p_) such that for 21 := =)\ £_ for A\; > 0 and with notation of Lemma 5.1, we have

[1]

=20 ={¢} and 4'(zy) <min{d(zy), @ (z1)} .

Step 4: core of the proof by contradiction
Step 4.1: first bound from above on u*(X,,)
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We proceed as in Step 4.1 of the proof of Theorem 1.3. Recall that u has Lipschitz constant L > 0, and fix
7o > 0 such that 279Ry, = 1 with Ry > 1 given in (1.12). Then for p = 1oRz, = 1/2, and for g > 0 small
enough, we get

(10.4) W (X)) < —pm + s (X,.)

where X,, := (0,%,) = (0,0,2z,) and z,, = pxy with &1 = (0,21) = (0,—\1&_) € By and &, := u¥; € B,.
Starting from now, the proof differs from the one of Theorem 1.3.

Step 4.2: strict convexity quantified

From Lemma 10.1 (applied for frozen X), we have with Py = AP + (1 — \)Q

(10.5) AL(X, P)+(1-N)L(X,Q)—L(X, P\) > \1-NQr(|P-Q|), forallxe[0,1], P,Q € Br, X € Q.

Step 4.3: minimization and dyadic estimate
Then we still have the following representation formula (identified with the solution, because the comparison
principle still arises for Lipschitz continuous solutions, even for low regularity in X, here continuity). Now

1
for p = 5 and all 7 € (0,79), and X = (0,%) ¢ I" with & € B,, we have

u(X) = inf {urien + | o £lo2(0) 3o |

56[77—’0)’ ’Y(S)GFE,QP’ 'Y(O):X) 7((570))CBP\f‘

where T := R™ x {Oga}. Notice in particular that the L-Lipschitz continuity of w imposes (for Ry, given in
(1.12))

(10.6) (o) < Re
and to have short hand notation, we set
W = WR, QIZ QR, R:=1+Ry..

From the convexity of £ in the variable 4(o) and its continuity in X = (o,7(0)), the existence of a minimizer
v« with ”optimal exit time” s, is known.

Case A: 7.(s«) €I'r 2

Recall that X = (0,%) with & = (2/,z) and x # 0. Then we have

/SO (o) do

*

|z] < |Z — vu(s4)| = < Rpls«| with s, €[-7,0).

This shows that for 7 > 0 small enough, Case A is ruled out.
Case B: v.(s) €179,
Because 7. (s) € I';2,, then s, = 7 and

0 0
u(X) = u(-r (1) = [ do Lo1(0),30(0)) 2 [ do £0.544(0)) - rlrR)
where we have used (10.6) in the last inequality.
Setting the approximate characteristic velocity ég = L*(_T), we get by convexity of é — L(X, £~)
T

that -
w(X) —u(—7,7(—7)) > 7L(X, &) — Tw(TR).

Similarly for 27 € (0, 79), we have (by monotonicity of wg)

Ve (=T) = 7(=27)

w(=7,7e(=7)) = u(=27, 7 (=27)) = TL(X, &, ) —Tw(2rR), &, = .

and then ) )
w(X) — u(=27,v.(—27)) > 7L(X, &%) + 7L(X, 5;*(_7)) — 27w(27R).
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Now notice also that
u(X) — (=27, 7.(=27)) = [°, do L(0,7.(0),%(0)) i
= inf do L(o,7(0),%(0))

Y(0)=&, v(=27)=7«(=27), [¥(0)I<R —27 0
< 27w(27R) + do E(X,"y(a))}

inf {
v(OO):iﬁ Y(=27)=7x(-27), [¥(0)I<R —or

< 27w(27R) —|—/ do L(X,€27)
—27

with

=t - g fn)

Hence we get 7L(X, 1) + 7L(X, §,Y (—ry) — 21w(2TR) < 27w(2TR) + 27L(X, £€27). Therefore
1 cT cT 21 s T T
2w(2rR) 2 5 { L(X,€0) + L(X, &, ) } = £(X,87) = 30018 - &7, )

- 1
where the last inequality follows from (10.5) for A = % Notice that £ — £27 = 3 {{T ;*(77)}. Hence

2w(2TR) > ZQ(2/€F — €77)).

N

Because  is convex, C! with €/(0) = 0 = Q(0), we have the chord inequality Q(6r) < 6Q(r) for all 6 € [0,1].
Hence

w(2rR) > SOIE ~ &7)) > O(1EF - )

| =

and _ . -
1€ — €2 T <4(Q ' ow)(rR) forall 7€ (0,7).

Step 4.4: conclusion by dyadic sums
If £:[0,1) — [0, +00) is non-decreasing, then we have

/ Z/z G+» 8 ZZ%JC(T(Hl)).

JEN jEN

Therefore we get

) 1 2TR
Z |€27'T — 2 o >T| < 42 )(27ITR) < 8/ @(fl_l ow)(27sR) = 8/0 @(Q_l ow)(s).

£ 0o S S
JEN jJEN

When Dini condition (1.13) holds true, this implies that the characteristic velocity converges
é{” — ég as j — +oo.

This is then sufficient to imply the non rotation of the blow-up limit, and then the convergence of the blow-up
to a unique limit, along the same lines as the remaining part of the proof of Theorem 1.3, using equality
along the characteristic curve ~,:

0
w(X) = u(—7,7.(—7)) + do L(o,7:(0),¥«(0)) forall 7€ (0,79).

—T
We skip the details.
Part B: Proof of generalization of Theorem 1.4
Step 1: in the adaptation of the proof of Proposition 8.1

Once we know the convergence of the blow-up u® — u locally uniformly, the proof is very similar to the
one of Theorem 1.4. We just have to replace everywhere H(P) by H(0, P) (and then in particular in the
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definition (8.3) of ¥(X, P), and in the expression of B?). The definition of the integral I¢ is unchanged.
Because of the relations
uf + H(eX,Du®) =0 and u+ H(0,Du") =0

we just have in the second line of (8.4), to introduce the error term A® := —{H(¢X, Du®) — H(0, Du®)}
which converges uniformly to zero, and then does not affect the reasoning.

Step 2: in the adaptation of the proof of Theorem 1.4

The proof is unchanged (notice that to show the convergence of u;(X’, ex) we have to use the PDE with the
X-dependence, but the same argument applies).

This ends the proof of the theorem.

11 Appendix

In this appendix, we grasp together some results on exposed points of closed convex sets, that are useful in
the main part of the paper.

We recall the following definitions.

Definition 11.1 (Extreme points and exposed points)

Let K ¢ R? be a convex compact set.

i) (Extreme point)

We say that po € K is an extreme point K and denote it by pg € ext K, if there are no two different points
p1,p2 € K such that po = Ap1 + (1 — X)pa for some A € (0,1).

ii) (Exposed point)

We say that pg € K is an exposed point of K and denote it by pg € exp K, if there exists a closed half space

Hpio,n = {p €RY,  (p—pg,+n) > O} for some non-zero vector n (we can in particular choose a unit vector
n € S1) such that
— + —
Kcl, ., I ,NK={po}.

We get immediately exp K C ext K, and have the following complementary result.

Lemma 11.2 (Exposed points of convex compact sets)
Let K ¢ R? be a conver compact set.
i) (Extreme-exposed relation)

We have

(11.1) exp K C ext K C exp K.
ii) (Property of exposed points)

We have

(11.2) K =to(exp K).

iii) (Support functions)
For every x € R%, we have

(11.3) max p-r= max p-xr= Sup p-zT.
peK peEeTP K peexrp K

Furthermore the solution-set of the first problem is the convex hull of the solution-set of the second problem

(11.4) Argmar p-x =co| Argmaz p-z|.
pPEK peeTp K

Proof of Lemma 11.2

The results are more or less classical. For completness of the argument we give some details.

Step 1: proof of i)

The first inclusion in (11.1) is straightforward, and the second inclusion is Straszewicz’s theorem [19] (see
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also theorem 1.4.7 on page 18 in Schneider [19], or theorem 18.6 on page 167 in Rockafeller [18]).

Step 2: proof of ii)

The classical Minkowski theorem (see Theorem 2.3.4 on page 42 in [12]) claims that if K is a compact convex
set, then K = co(ext K). Then (11.1) implies K = co(ext K) C to(exp K) C K, which shows (11.2).

Step 3: proof of iii)

Let ¢(p) := p-x. From Proposition 2.4.6 on page 46 in [12], we know that point iii) is true for the set exp K
replaced by ext K, i.e.

(11.5) maxp = max ¢ and Argmax ¢ = co (Argmax gp) .
K ext K K ext K

Then (11.1) implies that

sup ¢ < Ssup = max @ < sSup Y= sup @
exp K ext K ext K exp K exp K

where the last equality follows from the continuity of ¢. This shows (11.3). Now co <Argmax <p> =
ext K

co (Argmax <p> and (11.5) show (11.4). This ends the proof of the lemma.

exp K

Lemma 11.3 (Exposed point and pointwise C! support function)
Let K C R? be a conver compact set and its support function v(x) := sup p-x. Assume that py is an exposed

peK
point of K with admissible unit normal n, i.e for H;,tom = {p € R4, (p—po,£n) > 0}, we have
(11.6) KcI, ,, KnILf  ={po}.

Then the subdifferential of the convex function v satisfies

(11.7) dv(n) = {po}
ie. vis Cl atn.

Proof of Lemma 11.3
Notice that the Legendre-Fenchel transform of v is v* = (4+00)1ga\ . Moreover for pg as in (11.6), we have
n € Ov*(po) and then

(11.8) v (po) +v(n) =po-n, v*(po) =0, po€ dv(n).
Then (11.6) implies that for all p € R\ {pg}, we have sup {p-x —v(x)} = v*(p) > v*(po) +n - (p — po)-

rERd
Hence there exists =, € R such that

pap—v(xp) >0 (Po) + N (p—po) =n-p—wv(n)

where we have used (11.8) in the equality. This means v(z,) < v(n)+p- (x, —n) and then p € dv(n). Hence
(11.8) implies dv(n) = {po}, which ends the proof of the lemma.
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