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HADAMARD STATES FOR LINEARIZED GRAVITY ON
SPACETIMES WITH COMPACT CAUCHY SURFACES

C. GERARD

Laboratoire de Mathématiques d’Orsay, Université Paris-Saclay, 91405 Orsay Cedex
France

ABSTRACT. We consider the quantization of linearized Einstein equa-
tions. We prove the existence of Hadamard states in the harmonic gauge
on any Einstein spacetime with compact Cauchy surfaces.

1. INTRODUCTION AND SUMMARY

Linearized gravity is an example of a linear gauge theory, for which the
construction of states is significantly more difficult than for ordinary matter
fields. While the structure of the classical linearized gravity needed for its
algebraic quantization is now well understood [BERL [FH, BDM, [HS], the
rigorous construction of physical states, ie Hadamard states, remains an
important open problem.

Let us now mention several works which are related to the present one.

The simplest example of a linear gauge theory is Maxwell equations,
which were considered by in DS|, Hadamard states being con-
structed in [FS]. For linearized Yang-Mills equations around the zero so-
lution, Hadamard states were constructed in the BRST framework in [HJ.
The case of linearized Yang—Mills equations around a non zero solution was
considered later in [GW2].

In these models, one can use spacetime deformation arguments which are
not applicable to linearized gravity.

The case of linearized gravity on asymptotically flat spacetimes was stud-
ied in [BDM] with methods drawing from earlier works [AAl [DMP], the
quantization turns out however to be limited to a subspace of classical de-
grees of freedom due to divergences at null infinity.
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More recently in [GMW] the construction of Hadamard states for lin-
earized gravity on analytic spacetimes was investigated using Wick rotation.
This consists in applying Wick rotation in some Gaussian time coordinate
with respect to a reference Cauchy surface >. The various d’ Alembertian
operators are transformed into elliptic Laplacians. In general these elliptic
Laplacians are only defined in some strip in imaginary Gaussian time.

One can recover a quasi-free state for the Lorentzian theory from Calderdn
projectors, a well-known tool in elliptic boundary value problem. This
method was first used in [GW2] to construct analytic Hadamard states for
scalar fields on analytic spacetimes.

States obtained from Calderdn projectors depend on less arbitrary choices
than those constructed by pseudodifferential calculus. Therefore it is hoped
that the crucial gauge invariance property will be automatically satisfied.

However there are still a number of difficulties to obtain gauge invariant
Hadamard states from Calderén projectors.

Firstly the Wick rotated operators should be not only elliptic but also
invertible. To define them properly one has to impose some boundary con-
ditions on the boundary of the strip in which they are defined.

The Dirichlet boundary conditions used in [GMW] have the advantage
of easily giving invertibility of the Wick rotated operators and a modified
positivity property. However they are not gauge invariant. As a consequence
in [GMW] the gauge invariance and positivity of the two-point functions are
only obtained modulo the addition of some smooth corrections.

In this paper we reconsider the problem of existence of Hadamard states
for linearized gravity by using a different strategy. We prove the following
result:

Theorem 1.1. Let (M,g) a globally hyperbolic spacetime with dim M = 4
and Ric = Ag, A € R. Assume that (M,g) has compact Cauchy surfaces.
Then there exist Hadamard states for linearized gravity on (M,g).

1.1. Description of the paper. We now briefly recall the algebraic quan-
tization of linearized gravity, explain the difficulties encountered when try-
ing to construct Hadamard states for linearized gravity, and describe the
approach we use in this paper to overcome them.

1.1.1. Linearized FEinstein equations. Let (M,g) be a globally hyperbolic
spacetime with dim M = 4 solving the Einstein equations

Ric = Ag,
where A € R is the cosmological constant. Let Vi :== C®FT*M, k = 1,2 be

the complex bundle of symmetric (0, k)-tensors on M. We consider the two
differential operators

P=—-y—~ITodod+2Riemg, K =10d,

where
- Oy is the d’Alembertian, (Hou)qp = VEV tigp,
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- I is the trace reversal (Iu)q.p = ugp — %trg(u)gab,
- d the symmetric differential (dw)a =V uy),
- ¢ is the formal adjoint of d, (du), = —2V ucq,
- Riemyg is the Ricci operator (Riemgu)q,, = RQCdbucd.
The linearized Einstein equations around g are
Pu =0, (1.1)

where w is a (symmetric) (0,2)-tensor. The identity P o K = 0 implies
that Kerg. P is invariant under linearized gauge transformations given by
u — u+ Kw, where w is a (0,1)-tensor. Therefore the natural "on-shell’
phase space is the quotient space:

Kerg. P
Rane K-

Here and below the subscripts sc resp. ¢ refer to ’space compact’, resp. ’com-
pact’ for example Kerg. P is the space of (smooth) space compact solutions

of (LI).

1.1.2. The phase space for linearized gravity. The operator P is not hyper-
bolic, hence does not have advanced/retarded propagators. To equip the
phase space with a Hermitian structure, it is necessary to add a subsidiary
gauge condition. We follow here the nice exposition in [HS]. In this paper
we will use the de Donder or harmonic gauge:

K*u=0,
where K* = ¢ is the adjoint of K for a Hermitian form (:|-)7 y, involving I,
Kerg, P
see 2.5.1] for which P is formally selfadjoint. The quotient space Sse
Rang. K

is then isomorphic to
Kery. Dy N Kerg, K*

K Kerg. Dy ’

where

D1 :KOK*:—Dl—A,

D2 =P+ KoK*= —D2—|—2Riemg
are hyperbolic operators acting respectively on (0,1)- and (0,2)-tensors.
Since Dy is hyperbolic, it admits advanced /retarded propagators G ¢ Jadv-
On can then introduce the ’off shell’ phase space:

Ker. K*
Vp=—°""
Ran.P

equipped with the Hermitian form

[u]-Qplu] == Qr2u,
where
E-QLQU = i(u]IGgu)Vz,
and Go = Goret — Goaqy 18 the commutator function for Ds.
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The algebraic quantization of linearized gravity simply consists in con-
structing the CCR *-algebra CCR(Vp, Qp).
Note that other Hermitian spaces, isomorphic to (Vp,@p) are useful. In
this paper, after fixing a reference Cauchy surface X, we will rely on the
T
Ker. Ky,

Hermitian space of Cauchy data (W, qr,2), where Ky, K; are Cauchy
allc Ay

surface analogs of K, K*, see 2711

1.1.3. Hadamard states. A quasi-free state on CCR(Vp, Qp) is defined by a
pair of Hermitian forms AfIS on Vp called covariances such that

i) A5 =A%, A5 >0,
i) Ap—Ap=Qp.

We will be interested in covariances obtained from a pair of sesquilinear
forms on C§°(M;Va) by

(1.2)

m-Alij[u] =u-Afu, (1.3)

The forms A;E have to satisfy a number of conditions.
Firstly they should ’pass to quotient’ i.e. (3] should be meaningful.
This leads to the conditions:

(1) DioAsy =AF oDy =0,
(2) Af =0on Ker. K* x Ran K.

Condition (1) corresponds to the field equations, familiar from quantization
of matter fields, while condition (2), specific to gauge fields, is the gauge
mvariance.

The next two conditions are

(3) Aét = AQjE*,Aét >0, on Ker. K*,
(4) Aé‘r - AZ_ = Q[,27

and correspond to (L2)). Condition (3) is the positivity, while condition (4)
corresponds to the CCR.

The last condition is the Hadamard condition, which singles out Hadamard
states, considered as the physically meaningful states on CCR(Vp, Qp). De-
noting by A\f € D'(M x M;L(Vy)) the distributional kernels of A3, one
requires that

(5) WE(\T) ¢ NE x N,
where N'* are the two connected components of the characteristic manifold
N ={(z,6) €T*M\o: &gl (x)¢ =0}

Conditions (1), (4) and (5) are rather easy to satisfy. In fact the con-
struction of Hadamard states for scalar fields via pseudodifferential calculus
initiated in and further developped in [GW1L [GOW] can be adapted

to the tensor case and produces a wealth of covariances satisfying (1), (4)

and (5), see [GMW, Sect. 5].
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Condition (3) (positivity) is much more delicate, because Dy is selfadjoint
only for a non-positive Hermitian form. This difficulty is at the origin of
use of Krein spaces ("Hilbert spaces’ with a non-positive scalar product)
appearing in the Gupta-Bleuler approach in QED.

If true, condition (3) will in general only be satisfied on the subspace
Ker, K*.

Condition (2) (gauge invariance) is also very difficult to impose, because
it has to be satisfied exactly, not only modulo smoothing errors.

1.1.4. The approach in this paper. In this paper we circumvent the difficul-
ties with conditions (2) and (3) by relying on full gauge fixing.
Ker. K. ;
RanCKg
pair )\écz of Cauchy surface covariances, see 2.9.1] whose associated A;t will
satisfy (1), (4) and (5).

We next try to find a convenient supplementary space F of Ran.Ky in

T

Ker. K.
Ker, K; We can then identify the canonical phase space RZ%CKE with F

Working with the Cauchy surface phase space , we start with a

using the associated projection m : Ker, K; — F.

The modified covariances 7 o /\5'52 om will then automatically satisfy the
gauge invariance condition.

The supplementary space E has however to be chosen appropriately. First
)\étz should be positive on E if the positivity condition (3) is to be satisfied
by the modified covariances. Second F has also to be adapted so that the
projection 7 does not spoil the microlocal Hadamard condition (5).

We select the space E using a microlocal version of the synchronous gauge
condition, see The fact that F is supplementary to Ran. Ky is equiv-
alent to the solvability of some elliptic system of equations on Cauchy data.

If the system is uniquely solvable, (the so called regular case, see Subsect.
[4.4]), then the existence of a Hadamard state for linearized gravity follows
rather easily.

If it is not uniquely solvable (the so called singular case, see Subsect. [0
and if the Cauchy surface X is compact, then by Fredholm theory it still has
finite dimensional kernel and cokernel. We can further alter the modified
covariances by some finite rank and smoothing operators to obtain a pair of
Hadamard covariances.

1.2. Notation. We now collect various notations used throughout the pa-
per.

1.2.1. Isomorphisms of vector spaces. If E,F are vector spaces and A €
L(E, F) we write A : E = F if A is an isomorphism. If £, F are topological
vector spaces, we use the same notation if A is a homeomorphism.
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1.2.2. Sesquilinear forms. If E is a complex vector space, its antidual is
denoted by E*. A sesquilinear form A on E is an element of L(E, E*) and
its action on elements of E is denoted by u- Awv.

1.2.3. Projections. If F' C E are two vector spaces we say that 7 : £ — F
is a projection if 72 = 7 and Ranm = F.

1.2.4. Operators on quotient spaces. Let F; C E;, i = 1,2 be vector spaces
and let A € L(E4, E2). Then the induced map
[A] € L(Ey/Fy, Er [ Fa),
is
1) well-defined if AE; C Ey and AF} C Fy,
2) injective iff A71Fy = Fy, (1.4)
3) surjective iff Fy = AE; + F5.
1.2.5. Sesquilinear forms on quotients. Let now E C F be vector spaces and

let C € L(E,E*). We denote by F'° C E* the annihilator of F'. Then the
induced map

[C] € L(E/F,(E/F)"),
is
1) well-defined if CE C F°, F C Ker C,
2) non-degenerate iff F' = Ker C.

If C' is hermitian or anti-hermitian then the condition F' C Ker C' implies
the other one CE C F*° (and vice versa).

(1.5)

1.2.6. Sections of vector bundles. Let V. =5 M be a finite rank complex
vector bundle over a smooth manifold M.

- If ¥ C M is a smooth manifold we denote by Vs = X the restriction
of V to X.

- We denote by C*°(M; V'), resp. C5°(M; V') the space of smooth, resp. com-
pactly supported smooth sections of V.

-We denote by D/(M;V), resp. £&'(M;V) the space of distributional,
resp. compactly supported distributional sections of V.

We use the same notations if V' is a finite dimensional vector space, i.e. we
write simply V instead of the trivial vector bundle M x V.

1.2.7. Globally hyperbolic spacetimes. We use the convention (—,+,...,+)
for the Lorentzian signature.

- If (M,g) is a spacetime,we denote by Ji(K) the future/past causal
shadow of K C M.

- If M is a globally hyperbolic spacetime we denote by CS2(M; V) the
space of space-compact sections, i.e. sections in C'*°(M; V') with compactly
supported restriction to a Cauchy surface.
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1.2.8. Distributional kernels and wavefront sets. -1f u € D'(M; V') we denote
by WF(u) C T*M \ o its wavefront set, which is invariantly defined using
local trivializations of V.

If V; 5 M; are two vector bundles as above and A : Ce(My; V1) —
D'(Ms; V3) is linear continuous, then A admits a distributional kernel, still
denoted by A € D'(My x My; Vo K V7).

- We denote by WF(A) C (T*My x T*My) \ o its primed wavefront set,
defined by

I = {((22,&2), (x1,—&1)) : ((w2,&2), (x1,&1)) € T} for T C T Mo x T* M.

2. LINEARIZED GRAVITY

In this section we review the quantization of linearized gravity, following
[HS]. We also introduce the useful phase spaces of Cauchy data, following

[GW2].

2.1. Notation and background. We start by fixing notation. Let (M, g)
be a 4-dimensional Lorentzian manifold.

2.1.1. Convention for the Riemann tensor. We use the same convention as
in e.g. [R], for the sign of the Riemann tensor i.e.

(VaVi — ViV )ue = Ry lug

on (0,1)-tensors. The Ricci tensor is Ricy, = R, = R, and the scalar

curvature R = g®Ric,,. The Einstein equations with cosmological constant
A, ie. Ric— %gR + Ag = 0, are equivalent to

Ric = Ag. (2.1)
We will say that (M, g) is Einstein if (2] is satisfied.

2.1.2. Hermitian forms on tensors. We denote by
Vi =CFT*M

the complex bundle of symmetric (0, k)-tensors. We will only need the cases
k=0,1,2. V} is equipped with the non-degenerate Hermitian form

(ulu)y, = kT (g%F) " tu. (2.2)

In abstract index notation,

a1b |

(u|u)Vk =klg e gakbkﬂaynakubl---bk‘

For example for k = 2 we have
(ulu)y, = 2tr(u*g tug™). (2.3)

The k! normalization differs from the most common convention, it has how-
ever the advantage that various expressions involving adjoints look more
symmetric.
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For U C M open, the Hermitian form (2:2) on fibers induces a Hermitian
form

(ulo)vi o) = /U (u(@)]o(@)v, dvolg, w0 € CEUVE).  (2.4)

The adjoint of A : C*°(M;V},) — C°°(M;V;) for those Hermitian forms will
be denoted by A*.
If ¥ C M is a Cauchy surface, we set

(ulo)vigs) = [ (ua)lote)v, dvoln, w0 € CR(SiVD),
by
where dvoly, is the induced density on ..

2.1.3. Decomposition of tensors. Let us assume that M = I xY where I C R
is an open interval, ¥ a smooth manifold with variables (¢,x) and

g = —dt® + h(t,x)dx>,
where h € C®°(M,®2T*Y) is a smooth t-dependent Riemannian metric on
3. We set
Vis = CeF 173
2.1.4. Decomposition of (0,1)-tensors. We identify
C(M; V1) = C=(I;C=(3; Vo)) @ C=(I; C=(3; Vis)) by
w (W, wy), (2.5)
w =: widt + wy.
The scalar product (+|)y, reads then
(wlw)y, = =|wl* + (wslws)viy = —|w* + (wsh ™ ws).
2.1.5. Decomposition of (0,2)-tensors. Similarly we identify
C(M; Vo) = C(1;C(2; Vox)) @ C°°(1; O (5 Vax)) ® C(1; C%(3; Vax)) by
u = (ugt, uts, usy),
U =: updt ® dt + ups, ® dt + dt ® ws;, + usy..
(2.6)
The scalar product (-|-)y, reads:
(ulu)vy = 2fun|* = 4us|us) g + (ussluss)vos - (2.7)
2.2. The differential and its adjoint. Let
- C®(M; V) = C%°(M; Vi)
(dw)ay...ars1 = V(a1 Yas...api1)s
where u(q,  q,) is the symmetrization of ug, g, and
C®(M; Vi) — C(M; Vi—1)
(0Way,ap; = —kV®Uaa; . ap_,-

With these conventions, we have d* = § w.r.t. the Hermitian form (24]).

0
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2.3. Operators on tensors.

2.3.1. Trace reversal. The operator of trace reversal I is given by

1
I =1-—-
4!g)(g\,

where
(gl : ug = (gluz)vz, |8) : uo = uog,
i.e. I is the orthogonal symmetry w.r.t. the line Cg. Equivalently

ab 1

1
(Tu)ay = Uah — trg(w)gap, trg(u) := g"%uq = §(g|u)v2.

2
It satisfies
I?=1, I=1TI"onC>®M;V). (2.8)
2.3.2. Ricci operator. The Ricci operator is
Riemg(u)ap := R, ueq = Ry Muca, u € CF(M;Vh).

The fact that Riemg preserves symmetric (0,2)-tensors follows from the
symmetries of the Riemann tensor.

Lemma 2.1. The Ricci operator satisfies:
i) Riemgg = —Ric,
it) Riemg ol =1 oRiemg, if g is Finstein, (2.9)
iii) Riemg = Riem,.
2.4. Lichnerowicz operators. Let —[J; be the rough d’Alembertian acting
on sections of Vj:

b2
—Liui = ="'V i,

where (eq)o<q<d is a local frame. The Lichnerowicz operators acting on
sections of Vj, are defined by:

Dy, = —Ly,
Dy =-0p +Ricog™, (2.10)
Dy = —0y + Rico g lo-+.0g 'oRic+ 2Riemg.
One has
Di,L = ?,L-
The proofs of the following facts can be found for example in [B].
Proposition 2.2. If (M,g) is Einstein then:
Diy1pod=doD;p, §0Diy1 = Do,
(glo Do =Dorol(gl, Darolg)=I|g)o Dor.
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2.5. Linearized gravity as a gauge theory. In this subsection we follow
[HS]. Let (M, g) be a globally hyperbolic spacetime of dimension 4. We

assume that (M, g) is Einstein. Let us introduce the differential operators
P :=-[y—~Todod+2Riemg,
(2.11)
K :=1Tod.

Pu = 0 are the linearized Einstein equations. The condition K*u = 0, where
K™ is defined below, is the linearized de Donder or harmonic gauge.

2.5.1. Physical Hermitian form. We consider Vi, k = 0,1,2 as Hermitian
bundles, where the Hermitian forms on fibers is now

(u‘u)LVk = (u’u)Vkv k=0,1, (u‘u)LVz = (U‘IU)VZ' (2'12)

The corresponding Hermitian form on smooth sections of Vi, k =1,2 is

(ulw)r vy = /U(u(ac)\u(a:))lV,c dvolg, wu,v e C5°(U; Vg). (2.13)

We denote by A* the corresponding formal adjoint of A for (-|-)7 v, () to
distinguish it from the formal adjoint A* for (-|-)y, (rs). The two are related
as follows:

A* = TA*Tif A : C(M;Va) — C®(M;V3),
A* = A*Tif A: C=(M;V},) = C®(M;V3), k=0,1

(2.14)
A*=TA*if A:C®(M;Vy) = C®(M; V), k=0,1
A=A if A: C®(M;V;) = C®(M;V;) i,j # 2.
In particular,
K*=K'ol=%§olol=04. (2.15)
2.5.2. Operators in linearized gravity. Let us set:
Dy =Dy, —2A, k=0,1,2.
Then
K*K =Dy = - — A,
(2.16)

P+ KK* = Dy = —[3 4 2Riemy.
The operator Dy is useful in connection with the traceless gauge. Note that

P =P* Dy=D;5=D5, [I,D3] =0.

The operators Dy, are Green hyperbolic and hence admit unique retarded/advanced

inverses Glret/adv- Lhe causal propagators are
Gk = Gkret - GkadW
and satisfy G}, = G} = —Gjy.
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2.6. Cauchy problem. Let > C M a smooth space-like Cauchy surface.
For k =0,1,2 we set

_ ul _( [ of 1 f.
0rU = < i_lvl,zufz > = < f(l] >, u € C(M; V),

where v is the future directed unit normal to X.
We denote by U}, the operator solving the Cauchy problem for Dy, i.e.

{DkUk -0,

ol = 1 (2.17)

2.6.1. Conserved charges. There exist a unique Hermitian form ¢, : C§°(%; Vi ®
C?) — C§°(%; Vi ® C%)* called the charge of Dy, such that

(ox[iGk Dk ) v, (M) = OkTE - Gk Ok UK
for ¢, € C3°(M; Vi) and uy, = Gy, € Kerge Dy. One can compute gy, using
the identity
(k| Do) v (12 2)) — (Drulvw)v (7))
= i oRug- qrokuk, uk, vk € CGO(M; Vy).
2.6.2. Operators on Cauchy data and physical charge. We follow here [GW2,
Subsect. 2.4].
To the operator K we associate an operator Ky acting on Cauchy data
by setting
Kz = QgKUl. (218)

Similarly since [I, D3] = 0 we can define
Iy := 021Uy = I ® C2. (2.19)
We obtain that galy; = I3.g2 and as in 2.5.]] we define the Hermitian form
qr2 = qzo I,

called the physical charge for D,.
We denote by K; the adjoint of Ky for the Hermitian forms ¢1,qr 2 i.e.

KLfyaify = ToaraKshi, fr € CF(S,V;, @ C). (2.20)
We have:
K = 01 K*Us.
Lemma 2.3. We have:
(1) KoUp =Uso Ky , K*olUy = Uy o Ky;
(2) 020 K = Kx 0 01 on Kerg D, 01 0 K* = K& 0 9y on Kerg. Dy;
(3) KoKy =0.
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2.7. Phase spaces.

Proposition 2.4. The maps

Gy Ker. K* N Kerg, P
2 Ran.P Rang. K’
Kery. Doy N Kerg, K* Kerg. P
Il = R Dy RaneK’

are well defined and bijective.

Let us define the Hermitian forms Q) on C§°(M; Vj):

k- Qruk = i(ug|Gru)v, (ar),
and the physical charge

Qr2:=Qz0l =1I"0Qs.
Definition 2.5. The physical phase space is the Hermitian space (Vp,Qp),

where:

Ker. K*
Ran.P

~ Ker. K*

Vo= qo g Qe =TQrau, [ €

Qp is a well-defined Hermitian form on Vp.

2.7.1. Phase space of Cauchy data. The following results are proved in [GW?2].

Proposition 2.6. The induced map

Kery. Dy N Kerg. K* . Ker, K;
K Kerg. Dy Ran.Kx

[02]
1s well defined and bijective.

Proposition 2.7. The map

Ker, K;
RanCKg

Ker. K*

[02G2] : (W

,Qp) — ( )

is an isomorphism of Hermitian spaces.

2.8. Quantization. The algebraic quantization of linear gauge theories is
discussed in detail in [GW2 Sect. 3]. The algebraic framework reduces the
quantization problem to showing the existence of physically relevant quan-
tum states on the CCR x-algebra CCR(Vp, @ p) associated to the Hermitian
space (Vp,Qp) defined in Subsect. 271 The notions of CCR x-algebras,
quasi-free states and covariances are explained for example in |G, Chap. 4].
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2.8.1. Covariances. A quasi-free state on CCR(Vp, Qp) is determined by a
pair AfIS of covariances, i.e. of Hermitian forms on Vp such that
i) A =AF*, AF >0,
i) A5 Ap = Qr.
We will consider quasi-free states w on CCR(Vp,Qp) with covariances ob-

tained from a pair of continuous Hermitian forms A3 on C§°(M; Va) (called
the spacetime covariances of w) by:

Ker, K*
Ran.P
Lemma 2.8. Suppose that A € L(C§(M; V), C5°(M; Va)*) are such that:
i) DioAy =A5o0Dy=0,
ii) Ay — A =Qra2 on Ker K7,
iii) Ay =0 on Ker, K* x Ran K,
v) Ay =AY, AT >0 on Ker. K*.

[@)-Afu] =@ Aju, [u] € (2.21)

(2.22)

Then A;E are the covariances of a quasi-free state on CCR(Vp,Qp).

2.9. Hadamard condition. The general consensus is that the Hadamard
condition singles out the physically meaningful states. We use the following
definition of Hadamard states [SV]. We recall that

N ={(z,6) e T*M\o:&-g ' (z)¢ =0}
is the characteristic set of the wave operator on (M, g), and
NE=Nn{(z,6) e T*M\o : +v€ > 0 Vv € T, M future-directed time-like}

are its two connected components, corresponding to the upper/lower energy
shells.

To formulate the Hadamard condition, we need to identify the Hermitian
forms A5 with distributional kernels A3 (-,-) € D'(M x M; L(Vk)), called
two-point functions.

This identification is defined by the formal identity

H-Aétfu =: / (u(:v)\)\éc(:v,y)fu(y))v2 dvolg(x) dvolg(y), u,v € Cg°(M; V).
MxM

One can of course use other Hermitian forms on the fibers of V5 to do this
identification, like for example (-|-)7,1, or a Hilbertian scalar product as will
be done in Sect. Bl This change amounts to compose )\éc(a:,y) by smooth
linear operators acting on the fibers of V5 over x and y and does not change
the Hadamard condition ([223)) below.

Definition 2.9. A quasi-free state w on CCR(Vp, Qp) given by covariances
A¥ as in Lemma[Z8 is Hadamard if in addition to Z22) it satisfies:

WF(\S) € NE x NE (2.23)
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2.9.1. Hadamard condition on a Cauchy surface. One can equivalently con-
sider Hermitian forms )\étz on the space of Cauchy data C§°(3; V2 ® C?)
called Cauchy surface covariances. Namely assume that we have a pair of
Hermitian forms

NE, € LICER (S Va  C), G (3 Vi & C2)°)
and set
Ay = (02G2)" Ay (02Ga). (2.24)
The conditions on )\étz corresponding to (Z22)) are
i) Ady — Aoy = qr2 on Ker Kg,
i7) )\étz =0 on Ker, Kg x Ran. Ky, (2.25)
iMi) Ay = Ai, A& >0 on Ker K.
Since ¢r,2 is non-degenerate, we can set
Aoy, = £qr20c;. (2.26)
Proposition 2.10. Suppose cét OS5V @ C?) — O®(%; Ve ® C?) is a
pair of operators such that:
i)+ =1,
i7) cét : Ran. Ky — RanKy, (2.27)
1) qrao0 cét = céc* oqr2, £qr20 céc >0, on Ker. Kg

Then Af given by @24) and Z26) are the covariances of a quasi-free
state on CCR(Vp, Qp). Furthermore if for some neighborhood U of ¥ in M
we have:

) WE(Ugocf) € WEUF) x T*%
over U x 3, where F C T*M is a conic set with F "N = 0, then the
associated state is Hadamard.

The proof of (Z27) is analogous to the one found in [GW2l Sect. 3.4].
The proof of the statement on the Hadamard condition can be found in [G]
Sect. 11.1].

Remark 2.11. If [Cét,fz] = 0 then we can replace the first condition in

Z27)) iii) by the simpler

+ +
g2 © Cy :CQ*O(D-

Conversely if céc satisfy the conditions in Prop. then setting
. 1
&= 5(055 +Isocsoly),

we obtain that ¢ satisfy also the conditions in Prop. and &5, Is] =
0. The only point deserving some attention is the microlocal condition iv),
which follows from the fact that WF(I)" and WF(Iy)" are included in the
diagonal of T*M x T*M and T*X x T*X respectively.
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3. HADAMARD COVARIANCES

In [GMW] Sect. 5] we constructed Hadamard covariances A3 for the
operators D;, i = 1,2 appearing in linearized gravity. Some properties of
these covariances were deduced from Wick rotation, ie )\?:2 were obtained
from Calderén projectors associated to elliptic operators l~)z obtained from
D; by a Wick rotation in a Gaussian time coordinate associated to some
Cauchy surface .

This procedure requires analyticity of the metric g (or at least partial
analyticity in Gaussian time). The essential property of the covariances
constructed in this way is a positivity property with respect to an Euclidean
charge ¢ defined in ([3.32)).

In absence of analyticity, one can replace the Wick rotated metric g by
an almost analytic extension of g and obtain the same conclusions.

Another possibility is to prove the positivity property directly, which is
what we will do in this section.

3.1. The framework. In order to keep the exposition relatively short, we
will adopt the framework in [GMWI Sect. 5] to which we refer the reader
for notation and proofs.

3.1.1. Spacetime and Hermitian bundle. We set M = I; x ¥y, where I C R
is an interval with 0 € I and (2, hg) a d-dimensional Riemannian manifold
of bounded geometry.

Note that in later sections X will be assumed to be compact, so all the
assumptions below related to bounded geometry are automatically satisfied.

We set 3, = {t} x ¥ and identify 3¢ with 3. The dual variables to (¢,x)
are denoted by (7,k).

We fix a t-dependent Riemannian metric on 3,

h: 13>t~ h(t) € C°(I; BTS(Z, hy)).

We assume that h(0) = hy and for ease of notation often denote h(t) by h.
We equip M with the Lorentzian metric

g = —dt* + hydx. (3.28)

We fix a finite rank complex vector bundle V' 5 ¥ of bounded geometry
over (X, hg). We still denote by V the vector bundle over M: I x V5 M
which is a vector bundle with the same fibers as V.

We denote by Diff (M; V), resp. Diff (X; V') the space of differential oper-
ators on M resp. X acting on sections of V.

We assume that V' = M is equipped with a non-degenerate fiberwise
Hermitian structure (-|-)y, which is independent of t.

We fix a reference fiberwise Hilbertian structure (-|-)¢ on the fibers of V'
which is also independent of .

We write V instead of V' to emphasize that V is tacitely equipped with

the Hilbertian structure (-)g.
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We will use this Hilbertian structure to identify sesquilinear forms on the
fibers of V' with linear operators.
If x € M and u,v € V, we have

(ulv)y = (u|Tpv)y, 7w € L(Vi),

and we denote by 7 € C°°(M;L(V)) the corresponding section, which is
independent on ¢.
Note that 7 = 7* and without loss of generality we can assume that

77 =1, ie. 7 is unitary for (--)j.

If a € L(V,) for z € M we denote by a*, resp. a*, the adjoints of a for (:|-)3,
resp. (+|-)v. Then,
o =1t (3.29)
for some 1, € L(V).
For u,v € CSP(M; V) we set

(V) s,y 7= [, (w|v) [ ho| 2,
<u\v>v fzt (ulv)y ho| 2dx = (u|rv)p s,
(o) g gy = Sar(@B]0(E) 5 ho| 2dtdx,
W)y ar) = [y (o) Ihol ddtdx = (ulro)g yy.
If Q C M is some open set, we also denote
(ulv) gy = o (u( V]h0]2dtdx
(ulv)y () = Joul V|h0|2dtdx = (u|7'v)V(Q).

We denote by L2(E; V) the L? space obtained from the Hilbertian scalar
product ('|')\7(2)'
3.1.2. Adjoints. If a € C°(I; Diff (X;V)), resp. A € Diff(M; V'), we denote
by a* resp. A* its formal adjoint for (']-)‘7(&) resp. ("’)V(M)’ We set Rea =
s(a+a¥).

We denote by a* resp. A* its formal adjoint for (-[-)y(x,) resp. (:|')v(an-
As above we have:

o =1 ta*r, A*=1714%r

3.1.3. Hyperbolic operator. We fix a t-dependent differential operator a =
a(t,x, D) belonging to C2°(I; Diff?(X; V) and denote by o (a) € C°(T*S; L(V))
its principal symbol.
We assume the following properties:
(H1) a(t) =a*(t), t €,

(H2) ope(a)(t)(x,k) = k-hy ' (x)k Dy, t € 1.
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We set
D := 0? + a(t) acting on C§°(M; V), (3.30)

which is a hyperbolic operator with scalar principal part. Note that D = D*,
but of course D # D* in general.
The Cauchy problem

{Du:OinM

3.31
ou=feCr(E;VeC?) (3:31)

is well-posed, where

_ u(0)
ou = i‘latu(O) )
We denote by u = U f the unique solution of ([B31]). We set:

Zj::(?é),q::(?_g). (3.32)

The Cauchy evolution for D is pseudo-unitary for gq.
3.2. Hadamard projectors. In [GMW], Sect. 5] we constructed projectors
c*, acting on C§e(%; V ® C?), called Hadamard projectors such that
1) ¢t +c =1,
2) qct =g, (3.33)
3) WF(Uoct) ¢ (NFUF) x T*Y for F = {k =0} C T*M.
We define Cauchy surface covariances by
FNST = £(714¢ D syoce-
and the associated spacetime covariances by
A = (00 @) N (00G),
where G is the causal propagator for D. The charge @ is
T-Qu = i(u|Gu)y (), v € CF(M;V).
We have then
i) D*AT=AF*D=0,AT - A" =Q,
i) AT = AT
iii) WF(AE) C N+ x N+
In other words, except for the positivity, AT, /\32E are Hadamard covariances

for D.
The following lemma states the positivity of ¢* for the Euclidean charge

q defined in (332)).
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+

Lemma 3.1. We can construct the Hadamard projectors ¢* so that in ad-

dition to (3.33) one has

+ (Fla iy ypee 2 0, Vf € G (% V @ CP), (3.34)

Moreover
ﬂlcif = biﬂ'(](j:tf formf=1fi, f= ( }C? > , (3.35)
where b = b, b= = —b* and b is an elliptic first order pseudodifferential

operator such that b : H*(Z;V) — H*Y(X:V) is an isomorphism for any
seR.

Proof. We use the notation in [GMW), 5.2.7-5.2.10]. The projectors ¢ are

given by
_ 10 _ 0 0

+ _ -l _

C—T7TT,7T—<00>,7T—<01>, (3.36)
where T is defined in [GMW]| equ. (5.13)].

A concrete expression for ¢t is:
+ Ft —b7)" T +(bt —bp7)7!

= < ToE — b)) F (b — b)) (3.37)

where b = b, b= = —b* and b is an elliptic first order pseudodifferential

operator on ..
To prove that £c™*get > 0, we need to compute T*gT. For the operator
b constructed in [GMW. Prop. 5.2] and ¢ defined in [GMW], 5.2.9] we have

o c 0 s 1 -1 %1% _\—1
T—So<0 c>’S__1<b 7_>,<b*7_>(b—|—7'b7') .

0 1

We compute T and using that ¢ = < 10

>, we obtain that

* )7k _\—1\* b+b* _b*+T*b*T *pk | —
T*qT = (e(b+ 7°b"7) 1) < bt b —r*(b+ b > (c(b+ 77b"T) 1).

Therefore using [3:36) we see that +ct*ge™ > 0 iff b + b* > 0. The con-
struction of b is given in [GMW], Prop. 5.2]. Concretely we have:

b=e+bo(1 — xR(aref)),

R > 1 being a large parameter. The first order elliptic pseudodifferential
operator e satisfies Ree > 1. Therefore

b+ b* = (2Ree)2(1 — 5_1)(2Ree)?,

[NIES

where
5.1 = —(2Ree) "2 (bo(1 — r(aret) + (1 — Xr(aret))b%) (2Ree) 2.

As in the proof of [GMW], Prop. 5.2] the norm of §_; in B(L2(%;V)) tends
to 0 when R — +00, so choosing R > 1 we obtain that b4 0* > ¢ > 0. This
completes the proof of the first statement of the lemma.
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The second statement follows from ([B.37]), except for the fact that b can be
chosen invertible. The principal symbol of b is (k-hg (X)k‘)%]l, so b is elliptic.
We have seen above that we can choose R > 1 so that b+ b* > ¢ > 0.
The sesquilinear form associated to b with domain H %(E; XN/) is closed and
coercive, so b = H %(E; V) — H _%(E; V) is an isomorphism. This extends
to any s € R by the usual argument. O

3.3. Application to Dj. Let us now recall how to apply the previous con-
structions to the operators Dy, k =1, 2.

If (M, g) is globally hyperbolic and ¥ is a smooth spacelike Cauchy sur-
face, then if (M, g) is of bounded geometry near ¥, see [GMW], Def. 3.2
for the precise definition, then using Gaussian normal coordinates to > one
can isometrically map a neighborhood of ¥ in M to I x X, equipped with
a metric as in ([B.28). The bounded geometry assumption is automatically
satisfied if ¥ is compact, as we will assume in later sections.

3.3.1. Reduced setting. Conjugating Dy by an isomorphism corresponding
to parallel transport along J; one can then reduces oneself to the situation
in Subsect. B] see [GMW], Subsect. 4.4]. For k = 2 this isomorphism maps
the background metric g to gy = —dt? + hy.

In this reduced setting, several operators take simpler forms: for example
we have

Dy, = 02 + ay(t,x,0y),

Tug = uy — 5(golu2)va,
and the expression of d can be found in [GMW] Prop. 4.11]. The operators
7t relating the Hermitian and Hilbertian structures on Vj are

o 10 0
T = 0 1 , T = 0 -1 0 5
0 0 1
where we use the decompositions of (0, k)-tensors recalled in

3.3.2. Gauge invariance modulo smooth errors. To complete this subsection,
we write an easy lemma. We state and prove it only in the case when ¥ is
compact, but the result extends easily to the bounded geometry framework.

Lemma 3.2. Assume that X is compact. Let c,f for k =1,2 be Hadamard
projectors for Dy.. Then

5 Ky = Kscf £7_,
where 1_oo = c5 Kxic] — c5 Kl € $=°(X) is smoothing.
Proof. Let f1 € &'(X; V4 ® C?), uy = Urcf f1, ug = Kuy and fo = gous =
Ky.cf fi. We have WFu; C N hence WFuy C N7 since K is a differential

operator. On the other hand WFUscs fo € N+ hence WFUsc, fo € NN
N~ = since c; =1 —cf. Therefore ¢, Kxc] is smoothing O
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3.3.3. Additional symmetry. The operator D5 has the additional symmetry
[, D3] = 0, which can be carried over to by or the Hadamard projectors céc.

In fact if by is the operator entering in the construction of céc, we see
that I o by o I also satisfies the conditions in [GMW. Prop. 5.2], which
caracterize b uniquely modulo a smoothing error. Therefore we can replace
b by 2(ba+10byol) modulo a smoothing error and assume that [1, bs] = 0.

This replacement does not invalidate the properties of céc summarized in

Subsect. The projectors céc have now the additional property
[Is, 5] = 0.

Therefore cét are also selfadjoint for the physical Hermitian form g7 o = ga0/lx
ie

(f2|<J212€§tf2)‘72®(cz = (Cétf2|Q2fzf2)‘72®Cz- (3.38)

4. GAUGE FIXING

4.1. Introduction. To motivate the constructions in this section we start
with some comments on conditions (2.22) and ([223]) in Subsect. 28 on
covariances generating a quasi-free state on CCR(Vp, Qp).

For a quantum field theory associated to Dy, one usually assumes condi-
tion (Z22) i) and Ay — Ay = iGo, ie ([222)) ii) extended to the larger space
CS°(M;Vy). Together with (Z23), these two conditions fix A3 uniquely,
modulo smooth kernels.

The positivity condition ([222]) v) is in general not satisfied on arbitrary
test fields, but only on Ker. K*. This comes from the fact that the fiber
scalar product (-|-)y, for which Dy is formally selfadjoint is non positive.

The condition (Z22)) iv) that A3 map Ran.K into RanK is the crucial
gauge invariance condition, which implies that AT are well defined on the
physical phase space Ig;;g;. This condition is the most difficult to impose.

A way out of this difficulty is to try to eliminate the remaining gauge
freedom.

Kerg. Dy N Kerge K*
Working for example with the phase space sc 2 = this amounts
K Kery. Dy

to impose more gauge fixing conditions in addition to the harmonic gauge
condition K*uo = 0 in order to eliminate the remaining gauge freedom cor-
responding to K Kery. D1.

The additional gauge fixing conditions should hence uniquely specify a
supplementary space to K Kerg. D1 inside Kerg. Do N Kerg. K*. These addi-
tional gauge fixing conditions should moreover be chosen so that the posi-
tivity condition on the covariances is satisfied on this supplementary space.

4.1.1. TT gauge condition. A first way to reduce the gauge freedom is to
impose the traceless condition by requiring that (g|ugz)y, = 0. Together with
in K*ug = 0, this is called the transverse-traceless (TT) gauge.

This is always possible if A # 0 see eg [FH, Thm. 2.7]. Setting

Ky : C®(M;Vy) 2 ug — upg € C(M; V),
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we have Kjup = —(g|uz2)y, and one can show that

Kerg. Dy N Kerge K* N Kerg, K Kerg. P

1d] : — 4.1
[1d] K Kerg. D1 N Kerge Kj Rang. K (4.1)

is again an isomorphism. The key fact is that
KoDy = D2 Ky, (4.2)

by Prop. 2.2, where Dy = —0Oy — 2A was introduced in Subsect.
This does not fully eliminate the gauge freedom, ie we still have a quotient

space in ([@.T]).

4.1.2. Synchronous gauge condition. A possibility is to impose the synchro-
nous gauge condition. After fixing a Cauchy surface ¥ and introducing
Gaussian normal coordinates (¢,x) to X, one requires that u;y;, = 0 near
Y. It is shown in Thm. 2.8] that for any ug € C°°(M;Vs) such that
Puy = 0, there exists u3 € C°°(M;V;), such that (ug — Kuy)iz = 0 near
3. However K*Ku; does not necessarily vanish, ie the harmonic gauge
condition K*us = 0 is destroyed by this gauge transformation.

One can weaken the synchronous gauge condition by requiring only that

uges[n= 0,V yuys|x= 0. (4.3)

Note that unlike the harmonic and traceless gauge conditions, the above
condition does not ‘propagate’ to the whole spacetime M, because in general
ugey, does not solve a hyperbolic equation, even if Dyus=0.

One can ask if is possible to impose ([43)), together with the TT gauge
condition K*us = (gluz)y, = 0. One can call this the TT-synchronous gauge
condition.

Given uy € Kerg Dy N Kerge K*, we need to find u; € C°°(M;V;) such
that

Diup =0,
1) (glKu1)vls= (glu2)nls,
2) (glVuKui)y,ls= (g8|Viu)wls, (4.4)
3) (Kui)sls= uasly,
4) (VoKuy)isle= Vyuysls -

If 4y = ug — Kuy, then K*uy = 0, the initial conditions (1) and (2) ensure
that (g|uz)y, = 0, using (£2), while (3) and (4) ensure that uy satisfies
3.

The system (4] can be rewritten as an elliptic system of equations in
terms of the Cauchy data fi = o1uq.

If 3 is compact, this elliptic system is Fredholm. FExcept for a finite
dimensional subspace in Ker Dy ([£4]) has a unique solution, modulo a finite
dimensional subspace in Ker D;.
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4.2. Microlocal TT-synchronous gauge. Even if we ignore the problem
with the possible non invertibility of (£4]), the TT-synchronous gauge con-
dition is not convenient for the construction of gauge invariant Hadamard
states for linearized gravity. In particular states constructed using the TT-
synchronous gauge fixing will in general not be Hadamard states.

It turns out that it is much better to adapt it to the Hadamard projectors
cét for Ds. Let us now define this modified gauge condition.

In the rest of the section we assume that the Cauchy surface ¥ is compact.

As before we use Gaussian normal coordinates to ¥ to isometrically iden-
tify a neighborhood of ¥ in M with I; x ¥ for some interval I > 0, equipped
the metric —dt? + hy(x)dx?. Under this identification X is identified with
{t =0}.

We denote by [ : C*°(3; V) — C*°(X; V1) the map:

1
_ ( 3(@lwwnls
uz := < 22(u2t2)f2 > ’

where in the rhs we identify as usual (v, vy) € C°(X;CoT*Y) with v.dt +
vy € COO(Z;Vl).

If cét are the Hadamard projectors whose construction is recalled in Sect.
Bl we set for fo € C™(%; Vo ® C?)

+

Ry fy = < Z:g?_ﬁ ) eC®(E;V® (C2). (4.5)
2

Here 7 : Vo @ C? — V5 denotes the projection on the first component.

Definition 4.1. The microlocal TT-synchronous gauge condition is defined
(in terms of Cauchy data on X) by:

(1) Kifs=0,

(2) Rsfz=0.

4.3. Properties of Ry and RyKs. Imposing (8 by a gauge transfor-
mation is equivalent to find f; € C°°(3; V7 ® C?) solving

Ry Ky f1 = Ry fa, (4.7)

for some given fo € C®(%; Va ® C?) N Ker K;, so that fo — Kx f1 satisfies
(#4). In this subsection we study the operator Ry K, appearing in (£1]) and
we prove an important positivity property of the microlocal TT-synchronous
gauge condition.

(4.6)

4.3.1. Some equivalent norms. The convenient Sobolev spaces for Cauchy
data are:

H (Ve @ CH = H (X, Vi) @ HY(S; V), seR
equipped with the norm

) ) 5 _( fo
I £1ls = Nl foll 5(2,Vk) + HleHS*l(E;Vk)’ f= ( i > '
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Lemma 4.2. The map:
H (2 Vi ® C2) — H3(Z; V,, @ C?)

Ly : moc f vt (4.8)
() (£)-

s an isomorphism.

We will denote by 7% : C®(%; V ® C?) — C®(%;V;) the maps v =

+
v
( _>n—>vi.
v
+

It is often more convenient to use < 5_ ) instead of f.

Proof. From the expression ([337) of ¢*, we deduce that ¢t are bounded
on H?® and since ¢t + ¢~ = 1, an equivalent norm on H?® is given by

IF11Z moa = Il FIIZ + lle™ £IIZ.

Using the second statement in Lemma Bl we obtain that an equivalent

norm is )
— 5 + +

(¥ s sy + 107 Wiy 2> 0T = moc™f,

which proves the lemma. O

4.3.2. Properties of Ry Kx,.

Proposition 4.3. (1) ReKsx : H*(X; Vi®C?) — H*1(X; Vi®@C?) is Fred-
holm of index 0 for any s € R;
(2) WiRch = O,‘
(3) 7 ReKxcj is smoothing.

Proof. From Lemma [3.2] we obtain that

ImoKxef 0

Ry Ky = < . oK > +R o, (4.9)

where R_, is a smoothing operator.
We recall that Ky decomposes as Ky, = Iy, o T%;, corresponding to K =
I od. Since Igy = —gp and I = I*, we obtain that

1
B __(g ’71' T f) p)
ImgKs f1 = ( 42(7'?0T§;f?)t; : > '

We recall that we work in the reduced setting, explained in B.3.11
If w is the solution of Dyw = 0 with pw = fy, then from [GMW], Prop.
4.11] we have:

—2(golmoTs f1)v, = (dw)y — & (ho|(dw)ss)vsy
= Oy + dxwy + %tr(ro)wt,

2moTs fi)is = 2(dw)s = dyws — Ftr(ro)ws — rows + dsw,
(4.10)
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where ry = %8th0ha L and dy, 0y, are the symmetric differential and co-
differential on (X, hy).

By Lemma Bl we know that if f; = cffl, then dyw|s= ib*wly;. There-
fore

IngKsci fi = (ib* 4+ B)moct f1 (4.11)
where
B %tr(ro) os R S/ T
A T T N St
Summarizing we obtain
: +
Ry Ky, = < (ib*™ —|—OB)77001 (- +%)7T001_ > + R_o, (4.12)

By Lemma 3], b* are elliptic and invertible and +Reb™ > C (—Af, +1)%.
The operator B belongs to \I/IN(Z; Vl) and is formally selfadjoint. Therefore
the maps (ib* + B) : H*(3; V1) — H*1(X; V1) are boundedly invertible,
which implies (1) since R_ is smoothing. (2) is obvious and (3) follows

from ({I2). O

4.3.3. Positivity property.
Lemma 4.4. We have
+qr20 céc >0 on Ker Ry..
Proof. Using (838)) and the fact that cét are projections we obtain that

+(falar.2¢5 f2) pyece = £(c3 falar2cy f2)pyece
and if Ry, fo = 0 we obtain that

i(CétfﬂquCgifz)‘;Z@(cz = i(Cétfz@Cgifz)‘;z@(cz-

This is positive by Lemma 3.1l O

4.4. Gauge fixing in the regular case. In order to lighten notation, we
often write in this subsection f-¢f for (flaf)ygo2, H® for H (X V @ C?),
H* for H*(%;V @ C?).

We assume in this subsection that Ry Ky : H*(3; ‘~/1®C2) — H*71(%; Vi®
C?) is invertible. We set

T =1- Ks(RsKx) 'Ry. (4.13)

Proposition 4.5. (1) T : H*(2; Vo ® C?) — Ker Ry, is a bounded projec-
tion on H*(X; Vo ® C?),

(2) To Ky =0,

(3) T preserves Ker Kg

(4) c¢ETcE is smoothing.
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Proof. From (3.37) we obtain that Ry, : H*(X; Vo ® C?) — H*(%; V; ® C?)
is bounded. Using the ellipticity of Ry, K5 we obtain that 7" is bounded. We
have Ry oT = 0 and 7' = 1 on Ker Ry, which implies (1). (2) and (3) are
clear.

To prove (4) is suffices to show that ¢ Kx(Rx Kx) ' Rxcj is smoothing,

or using Lemma[B.2 that ¢] (REKE) ! Ry.cf is smoothing. This follows from
Prop. (2) and (3). O

Remark 4.6. Property (4) in Prop. [{.is the key property of the microlocal
TT-synchronous gauge condition. It will be used in the next subsection for
the construction of Hadamard states. It is not satisfied by the usual TT-
synchronous gauge condition.

4.5. Gauge fixing in the singular case. Assume now that Ry Ky is not
invertible.

4.5. 1 Notation. The charges g2 and hence g2 are well defined on H* for

s> 5 , which we will assume in the sequel. The orthogonal of a subspace
EC ’HS for g o will be denoted by E:2.

If A:C®(%; Vi @ C2) = C=(3; V; ® C?) we define AT : D/(2; V1 @ C?) —
D'(%;V, ® C?) by

(u|Af)L2(2;f/1®(C2) = ATU'QI,kf7
where we recall that g7 2 = g201, gr,1 = ¢1. Denoting by A* the usual adjoint
obtained from the Hilbertian structure of Vj, ® C? we have A* = quAT.

4.5.2. The space Hs,,. We set:

reg*
Hioo(S: Vo ® C?) = {f, € H*(S; Vo ® C*) : Ry f> € RanRy Ky},

for Hiee (3 Vo ® C?). The gauge fixing

Clearly

and we will sometimes write Hyo,

equation ([4.7) can be solved iif fo € H;,

reg-
Ker Ry N H® C oy, KsMH*™ C My

By ellipticity Ker(Ry Ky)* is a finite dimensional space in C*(3; V; @ C?),
and there exist u; € Ker(RyKy)*, 1 < i < n such that u € RanRy Ky, iff
(ui|u)‘~/1®c2 =0,1<i<n.

A routine computation gives that

Rt _ (bt —b7)7t (lfr b-)~! J 0
ET 0T o)t b (bt b))t 0o J )’
for J : H%(2; Vi) — H*(X; Va) defined by

1 1
(Jv)u = 3 (Ju)im = vs, (Jv)ny = _§'Uth0-
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In particular we see that RT2 D C®(8; V) ® C?) — C®(%; Ve ® C2), hence
v; = RTZui € C>®(%; Vo ® C?). Since (RxKyx)*u; = qlK;RTEui =0 we get

Klv; =0.

Without loss of generality, we can assume that the v; are linearily indepen-
dent and we set V = Vect{v; : 1 <i <n}. We have

erg ={fo e H® :Ti-qrafa =0, 1 <i<n}=V02
and Hj,, is of codimension n in H*. Let us pick a supplementary space V;

in V of VNRanKy. We can assume that vy,...,v, € Vi and vpy1,...,0, €
Y N RanKy,. Since Ker Kg = RanK%I 2 we obtain that

Ker K, N H;,, = Ker Ki, N V"2,

reg

and Ker K; N Hieg 1s of codimension p in Ker K; Therefore we can find

Wi, ..., Wy € KerK; N COO(E;VQ ® C?) such that A = [;-qr2v;]1<ij<p 18

invertible.
Since Hy,, is of codimension n in H?, we can complete the w; for 1 <i <p

by w; € C® for p+1 < i < n so that Q = [W;-q2vj]1<i j<n is invertible.

Using that w; € Ker Kg and v; € RanKy for i < p,j > p + 1 we have

Q= < g g, >, where A € M,(C), C € M,,_,(C) are invertible. Replacing
A1

= 0 .
w; by Y, Tipwy, for T = < _o-lpa-! -1 > we obtain

W;-qr,2V5 = Oij,

w; € KerK; for i < p,

(4.14)
v € KerK; for 7 < n,
v; € RanKy for j > p+ 1.
We set now
n
T2 =Y Tj-arafow;. (4.15)

j=1
Lemma 4.7. (1) 1 —7:H* — H;,, is a projection;
(2) To Ky =0;
(3) 1 —7 preserves Ker K1.;
(4) 7T preserves RanKy;.

Proof. The fact that 7 is a projection is easy. We have Ker 7 = H;., which

reg

proves (1). We have m o Ky, = 0 since v; € Ker K; and

n
wlfo = Wj-qrafov;.

i=1
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By ([@Id) this implies that 7 preserves RanKy, which implies that 7 pre-
serves Ker K; O

Let us now construct the analog of the projection 7" in the singular case.
We fix two projections

s HA (3 Vi ® C?) — Ker Ry Ky,
o+ HE (3 Vo ® C?) — RanKx N Ker Ry.
The projections 7; are finite rank with smooth distributional kernels. Let
us define the map
(ReKx) 'Ryt Hiop(% V2 @ C*) — HH(S; V1 ® C%) N Kermy,
such that f; = (ReKyx) 'Ry fs for fo € Hyeg is the unique solution of
{ Ry Kx f1 = Ry fo,

o (4.16)

We set
Treg = 1 — Kx(ReKy) 'Ry, : Hs

5e(D V2 ® C?) = 1 (ST ® C?). (4.17)
Lemma 4.8. (1)

Treg : Hioy(D; Vo @ C?) — Ker Ry,

reg
18 a projection; .
(2) Treg preserves Hio,(3; Vo © C?) N Ker K;;
(3) TregKs, = Kxmy.
Proof. We have RyT,¢; = 0 hence RanT,.; C Ker Ry and T;¢; = 1 on
Ker Ry, which implies (1). (2) follows from K;KE =0. If fo = Ky, the
unique solution of ([@I6) is f1 = (1 — m1)¢g1 which implies (3). O
We set now
T=(1—m)oTwego(l—m):H(Z;Va®C? — H(X;Va®C?). (4.18)
Proposition 4.9. (1) T : H* — Ker Ry, N Kermy is a projection;
(2) TKZ = O,‘
(3) T preserves Ker K1
(4) c¢ETcE is smoothing.
Proof. From Lemmal[L§ (1) and Ranmy C Ker Ry, we get that RyT = 0, so
RanT' C Ker Ry, N Kermy. Since Ker Ry C Hj,, we have m = 0 on Ker Ry,
hence Tieg(1 — 7) = 1 on Ker Ry; hence T' = 1 on Ker Ry, N Kermy. This
proves (1).
By Lemma[L1 (2) we have (1—m)Ky, = Ky, hence TKy, = (1—m)Kym =
0 by Lemma [£§ (3) and the definition of 1, me. This proves (2).
(3) follows from Lemma [£§] (2) and Lemma [£7] (3). To prove (4) we
argue as in the proof of Prop. (3) using Prop. 3] and additionally the
fact that 7, w9 have smooth distributional kernels. O



HADAMARD STATES FOR LINEARIZED GRAVITY 28

5. HADAMARD STATES

In this section we construct a Hadamard state by modifying the Hadamard
projectors céc using the projection 7. As in the previous section we assume
that > is compact.

We start with the simpler regular case.

5.1. Regular case. Let us set
)\g:z = :ET* (e] qLQCét oT. (51)

and as in 2.0.1F
Ay = (p2G2)* A5 (p2Ga).

Theorem 5.1. The pair A;EE are the Cauchy surface covariances of a gauge
invariant Hadamard state for P, i.e.

(1) WE(AL) c NF QN+,

(2) Ajx — Agx = qr,2 on Ker K1,

(3) A, =0 on Ker. KI, x RanKy,

(4) \g, = A5, AL, > 0 on Ker K.

Therefore A;t are the covariances of a quasi-free Hadamard state on CCR(Vp,Qp).

Proof. Let us first prove (1). We apply [G, Prop 11.1.1]. Let Us(¢,s) be
the Cauchy evolution for Dy. Writing T"qr 2 =: ngTT, we need to show
that WE (Us(-,0)TTcET) € (N* U F) x T* for some conic set F C T*M
with F NN = 0.

By Prop. cétTCQ$ is smoothing, hence cétT Tc§ is smoothing, since
&g = (¢f)t. Therefore Uy(-,0)T s T = Us(-,0)cETTT modulo a smooth
kernel. So the result follows from the Hadamard property of céc.

Let us now prove (2). We have )\; — Ay =T"qr2T. T preserves Ker K;
by Prop. (3) and T'fy = f2 mod RanKy, hence )\;'—)\2_ = qr,2 on Ker K;

(3) follows from Prop. (2).

Since RanT C Ker Ry and :l:qgcét > 0 on Ker Ry, by Lemma 4] we
obtain (4). O

5.2. Singular case. We now consider the singular case. We need an ad-
ditional modification of cét since T*qr 2T # qr2 on Ker K; because of the

projection 7. This modification is inspired by a construction in [F'S| Subsect.
4.4]. Let

P
Tf = Tj-arafow;,
j=1
and note using ([{.I4]) that 7 = 7 on Ker K;
Consider the hermitian form

vi= qr2— (1 -7)"q2(l —7)
3 R L (5.2)
= qro7! + qrof — FIT.
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acting on C°°(%; Vo @ C?). Tt has a smooth distributional kernel and a finite
rank. Identifying it with a selfadjoint operator using the Hilbertian scalar
product (-|')y,gc2, we can find u; € C®(%; Vo ® C?), 1 < i < q linearily
independent such that

q
v="> ailu)(uil, a; #0.

im1
We set
Fo-Nanfo i= T fo-qr2cy T fo £ (folIps (V) f2) py s (5.3)

Ay = (p2G2)* A5 (p2Ga).

Theorem 5.2. The pair )\écz are the Cauchy surface covariances of a gauge
invariant Hadamard state for P, i.e.

(1) WF(AF) c Nt o N*E.

(2) Ajy — Ayy = qr,2 on Ker K;,

(3) Ay, = 0 on Ker K; x RanKy,

(4) M5, =25 A, > 0 on Ker, K.

Therefore A;t are the covariances of a quasi-free Hadamard state on CCR(Vp, Qp).

Proof. The proof of (1) is identical to Thm. [l Note that the additional
term in (B.3]) produces a smooth additional term in the two-point functions
A

Let us prove (2). We have using (5.2]):

)‘;Z — Ay = T*QI,2T +qr2 — (1-— ﬁ)*qLQ(l — 7).

Let us compute the first term in the r.h.s. on Ker K; Recall that T =
(1 — m9)Tieg(1 — 7). We have Tiee(1 — m)fo = (1 — ) fo modulo RanKy,
by (@I7). Since Ranmy C RanKy we obtain that T'fo = (1 — m)f2 modulo
RanKsy,. By Prop. T preserves Ker K; hence:

TfoqroTfo=1—m)faqro(l —7m)fo=(1—7)f2qr2(l —7)fo,

since m = 7 on Ker K% Using the definition of v in (5.2]) we obtain that
)\;2 — Aoy = qr,2 on Ker K;

We now prove (3). By Prop. (2) TKy, = 0. Since vj,w; € Ker K% for
1 < j < p, see [EIZ), we obtain that 7Ky, = 7 Ky, = 0. Therefore v = 0 on
RanKy. hence )\étz = 0 on RanKy. This proves (3).

It remains to prove (4). The first term in the rhs of (53]) is positive by
the same argument as in the proof of Thm. [E.2] since RanT C Ker Ry.
The second term is also clearly positive. This completes the proof of the
theorem. O



HADAMARD STATES FOR LINEARIZED GRAVITY 30

REFERENCES

[AA] Ashtekar A., Magnon-Ashtekar, A.: On the symplectic structure of general relativity,
Comm. Math. Phys. 86 (1982), 55-68.

[BDM] Benini M., Dappiagi C., Murro S.: Radiative observables for linearized gravity on
asymptotically flat spacetimes and their boundary induced states, J. Math. Phys.
55 (2014), 082301.

[B] Boucetta M.: Spectre des Laplaciens de Lichnerowicz sur les sphéres et les projectifs
réels, Publications Math. 43 (1999), 451-483.

[BFR] Brunetti R., Fredenhagen K., Rejzner K.: Quantum gravity from the point of view
of locally covariant quantum field theory, Comm. Math. Phys. 345 (2016), 741-779.

[DMP] Dappiagi C., Moretti W., Pinamonti N.: Hadamard states from light-like hyper-
surfaces Springer Briefs in Mathematical Physics 25 (2017).

[DS] Dappiagi C., Siemssen D.: Hadamard states for the vector potential on asymptoti-
cally flat spacetimes, Rev. Math. Phys. 25 (2013) 1350002.

[FH] Fewster C., Hunt D.: Quantization of linearized gravity in cosmological vacuum
spacetimes, Rev. Math. Phys. 25 (2013), 1330003.

[FP] Fewster C., Pfenning, M.: A quantum weak energy inequality for spin-one fields in
curved space-time, J. Math. Phys. 44 (2003) 4480-4079.

[FS] Finster F., Strohmaier A.: Gupta-Bleuler quantization of the Maxwell field in glob-
ally hyperbolic spacetimes, Ann. Henri Poincaré 16 (2015), 1837-1868.

[F]  Furlani E.: Quantization of the electromagnetic field on static space—times, J. Math.
Phys. 36 (1995), 1063-1079.

[GMW] Gérard C., Murro S., Wrochna M.: Quantization of linearized gravity by Wick
rotation in Gaussian time, (2022) ArXiv preprint 2204.01094.

[GOW] Gérard C., Oulghazi 0., Wrochna M.: Hadamard states for the Klein-Gordon
equation on Lorentzian manifolds of bounded geometry, Comm. Math. Phys. 352
(2017), 519-583.

[GW1] Gérard C., Wrochna M.: Construction of Hadamard states by pseudodifferential
calculus, Comm. Math. Phys. 325 (2014), 713-755.

[GW2] Gérard C., Wrochna M.: Hadamard states for the linearized Yang-Mills equation
on curved spacetime, Comm. Math. Phys. 337 (2015), 253-320.

[GW3] Gérard C., Wrochna M.: Analytic Hadamard states, Calderén projectors and Wick
rotation near analytic Cauchy surfaces, Comm. Math. Phys. 366 (1019), 29-65.

[G] Gérard C.: Microlocal Analysis of Quantum Fields on Curved Spacetimes, ESI Lec-
tures in Mathematics and Physics EMS (2019).

[HS] Hack T., Schenkel A.: Linear bosonic and fermionic quantum gauge theories on
curved spacetimes Gen. Relativ. Grav. 45 (2013), 877-910.

[H] Hollands S.: Renormalized quantum Yang-Mills fields in curved spacetime, Rev.
Math. Phys. 20 (2008), 1033-1172.

[J1]  Junker W.: Adiabatic Vacua and Hadamard States for Scalar Quantum Fields
on Curved Space-time, DESY-thesis-1995-144, (1995). ArXiv preprint hep-
th/9507097v1.

[J2] Junker W.: Erratum to ” Adiabatic Vacua and Hadamard States for Scalar Quantum
Fields on Curved Space-time”, Rev. Math. Phys. 207 (2002), 511-517.

[L] Lichnerowicz A.: Propagateurs et commutateurs on relativité générale, Publ. Math.
L.H.E.S. 10 (1961), 5-56.

[R] Ringstrom H. : The Cauchy Problem in General Relativity ESI Lectures in Mathe-
matics and Physics EMS (2009).

[SV] Sahlmann H., Verch R.: Microlocal spectrum condition and Hadamard form for
vector-valued quantum fields in curved spacetime. Rev. Math. Phys., 13 (2001),
1203-1246.



	1. Introduction and summary
	1.1. Description of the paper
	1.2. Notation

	2. Linearized gravity
	2.1. Notation and background
	2.2. The differential and its adjoint
	2.3. Operators on tensors
	2.4. Lichnerowicz operators
	2.5. Linearized gravity as a gauge theory
	2.6. Cauchy problem
	2.7. Phase spaces
	2.8. Quantization
	2.9. Hadamard condition

	3. Hadamard covariances
	3.1. The framework
	3.2. Hadamard projectors
	3.3. Application to Dk

	4. Gauge fixing
	4.1. Introduction
	4.2. Microlocal TT-synchronous gauge
	4.3. Properties of R and RK
	4.4. Gauge fixing in the regular case
	4.5. Gauge fixing in the singular case

	5. Hadamard states
	5.1. Regular case
	5.2. Singular case

	References

