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HADAMARD STATES FOR LINEARIZED GRAVITY ON

SPACETIMES WITH COMPACT CAUCHY SURFACES

C. GÉRARD

Laboratoire de Mathématiques d’Orsay, Université Paris-Saclay, 91405 Orsay Cedex

France

Abstract. We consider the quantization of linearized Einstein equa-
tions. We prove the existence of Hadamard states in the harmonic gauge
on any Einstein spacetime with compact Cauchy surfaces.

1. Introduction and summary

Linearized gravity is an example of a linear gauge theory, for which the
construction of states is significantly more difficult than for ordinary matter
fields. While the structure of the classical linearized gravity needed for its
algebraic quantization is now well understood [BFR, FH, BDM, HS], the
rigorous construction of physical states, ie Hadamard states, remains an
important open problem.

Let us now mention several works which are related to the present one.
The simplest example of a linear gauge theory is Maxwell equations,

which were considered by in [F, FP, DS], Hadamard states being con-
structed in [FS]. For linearized Yang–Mills equations around the zero so-
lution, Hadamard states were constructed in the BRST framework in [H].
The case of linearized Yang–Mills equations around a non zero solution was
considered later in [GW2].

In these models, one can use spacetime deformation arguments which are
not applicable to linearized gravity.

The case of linearized gravity on asymptotically flat spacetimes was stud-
ied in [BDM] with methods drawing from earlier works [AA, DMP], the
quantization turns out however to be limited to a subspace of classical de-
grees of freedom due to divergences at null infinity.
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More recently in [GMW] the construction of Hadamard states for lin-
earized gravity on analytic spacetimes was investigated using Wick rotation.
This consists in applying Wick rotation in some Gaussian time coordinate
with respect to a reference Cauchy surface Σ. The various d’ Alembertian
operators are transformed into elliptic Laplacians. In general these elliptic
Laplacians are only defined in some strip in imaginary Gaussian time.

One can recover a quasi-free state for the Lorentzian theory from Calderón
projectors, a well-known tool in elliptic boundary value problem. This
method was first used in [GW2] to construct analytic Hadamard states for
scalar fields on analytic spacetimes.

States obtained from Calderón projectors depend on less arbitrary choices
than those constructed by pseudodifferential calculus. Therefore it is hoped
that the crucial gauge invariance property will be automatically satisfied.

However there are still a number of difficulties to obtain gauge invariant
Hadamard states from Calderón projectors.

Firstly the Wick rotated operators should be not only elliptic but also
invertible. To define them properly one has to impose some boundary con-
ditions on the boundary of the strip in which they are defined.

The Dirichlet boundary conditions used in [GMW] have the advantage
of easily giving invertibility of the Wick rotated operators and a modified
positivity property. However they are not gauge invariant. As a consequence
in [GMW] the gauge invariance and positivity of the two-point functions are
only obtained modulo the addition of some smooth corrections.

In this paper we reconsider the problem of existence of Hadamard states
for linearized gravity by using a different strategy. We prove the following
result:

Theorem 1.1. Let (M,g) a globally hyperbolic spacetime with dimM = 4
and Ric = Λg, Λ ∈ R. Assume that (M,g) has compact Cauchy surfaces.
Then there exist Hadamard states for linearized gravity on (M,g).

1.1. Description of the paper. We now briefly recall the algebraic quan-
tization of linearized gravity, explain the difficulties encountered when try-
ing to construct Hadamard states for linearized gravity, and describe the
approach we use in this paper to overcome them.

1.1.1. Linearized Einstein equations. Let (M,g) be a globally hyperbolic
spacetime with dimM = 4 solving the Einstein equations

Ric = Λg,

where Λ ∈ R is the cosmological constant. Let Vk ··= C⊗k
s T

∗M , k = 1, 2 be
the complex bundle of symmetric (0, k)-tensors on M . We consider the two
differential operators

P = −�2 − I ◦ d ◦ δ + 2Riemg, K = I ◦ d,

where
- �2 is the d’Alembertian, (�2u)ab = ∇c∇cuab,
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- I is the trace reversal (Iu)ab = uab −
1
2 trg(u)gab,

- d the symmetric differential (dw)ab = ∇(aub),
- δ is the formal adjoint of d, (δu)a = −2∇cuca,
- Riemg is the Ricci operator (Riemgu)ab = R cd

a bucd.

The linearized Einstein equations around g are

Pu = 0, (1.1)

where u is a (symmetric) (0, 2)-tensor. The identity P ◦ K = 0 implies
that Kersc P is invariant under linearized gauge transformations given by
u 7→ u + Kw, where w is a (0, 1)-tensor. Therefore the natural ’on-shell’
phase space is the quotient space:

Kersc P

RanscK
.

Here and below the subscripts sc resp. c refer to ’space compact’, resp. ’com-
pact’ for example Kersc P is the space of (smooth) space compact solutions
of (1.1).

1.1.2. The phase space for linearized gravity. The operator P is not hyper-
bolic, hence does not have advanced/retarded propagators. To equip the
phase space with a Hermitian structure, it is necessary to add a subsidiary
gauge condition. We follow here the nice exposition in [HS]. In this paper
we will use the de Donder or harmonic gauge:

K⋆u = 0,

where K⋆ = δ is the adjoint of K for a Hermitian form (·|·)I,V2
involving I,

see 2.5.1, for which P is formally selfadjoint. The quotient space
Kersc P

RanscK
is then isomorphic to

KerscD2 ∩KerscK
⋆

K KerscD1
,

where
D1 = K ◦K⋆ = −✷1 − Λ,

D2 = P +K ◦K⋆ = −✷2 + 2Riemg

are hyperbolic operators acting respectively on (0, 1)- and (0, 2)-tensors.
Since D2 is hyperbolic, it admits advanced/retarded propagators G2 ret/adv.
On can then introduce the ’off shell’ phase space:

VP =
KercK

⋆

RancP

equipped with the Hermitian form

[u]·QP [u] ··= u·QI,2u,

where

u·QI,2u = i(u|IG2u)V2
,

and G2 = G2 ret −G2 adv is the commutator function for D2.



HADAMARD STATES FOR LINEARIZED GRAVITY 4

The algebraic quantization of linearized gravity simply consists in con-
structing the CCR ∗-algebra CCR(VP , QP ).

Note that other Hermitian spaces, isomorphic to (VP , QP ) are useful. In
this paper, after fixing a reference Cauchy surface Σ, we will rely on the

Hermitian space of Cauchy data (
KercK

†
Σ

RancKΣ
, qI,2), where KΣ,K

†
Σ are Cauchy

surface analogs of K,K⋆, see 2.7.1.

1.1.3. Hadamard states. A quasi-free state on CCR(VP , QP ) is defined by a
pair of Hermitian forms Λ±

P on VP called covariances such that

i) Λ±
P = Λ±∗

P , Λ±
P ≥ 0,

ii) Λ+
P − Λ−

P = QP .
(1.2)

We will be interested in covariances obtained from a pair of sesquilinear
forms on C∞

0 (M ;V2) by

[u]·Λ±
P [u] ··= u·Λ±

2 u, (1.3)

The forms Λ±
2 have to satisfy a number of conditions.

Firstly they should ’pass to quotient’ i.e. (1.3) should be meaningful.
This leads to the conditions:

(1) D∗
2 ◦ Λ

±
2 = Λ±

2 ◦D2 = 0,

(2) Λ±
2 = 0 on KercK

⋆ × RancK.

Condition (1) corresponds to the field equations, familiar from quantization
of matter fields, while condition (2), specific to gauge fields, is the gauge
invariance.

The next two conditions are

(3) Λ±
2 = Λ±∗

2 ,Λ±
2 ≥ 0, on KercK

⋆,

(4) Λ+
2 − Λ−

2 = QI,2,

and correspond to (1.2). Condition (3) is the positivity, while condition (4)
corresponds to the CCR.

The last condition is the Hadamard condition, which singles out Hadamard
states, considered as the physically meaningful states on CCR(VP , QP ). De-
noting by λ±

2 ∈ D′(M × M ;L(V2)) the distributional kernels of Λ±
2 , one

requires that

(5) WF(λ±
2 )

′ ⊂ N± ×N±,

where N± are the two connected components of the characteristic manifold
N = {(x, ξ) ∈ T ∗M \o : ξ ·g−1(x)ξ = 0}.

Conditions (1), (4) and (5) are rather easy to satisfy. In fact the con-
struction of Hadamard states for scalar fields via pseudodifferential calculus
initiated in [J1, J2] and further developped in [GW1, GOW] can be adapted
to the tensor case and produces a wealth of covariances satisfying (1), (4)
and (5), see [GMW, Sect. 5].
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Condition (3) (positivity) is much more delicate, because D2 is selfadjoint
only for a non-positive Hermitian form. This difficulty is at the origin of
use of Krein spaces (’Hilbert spaces’ with a non-positive scalar product)
appearing in the Gupta-Bleuler approach in QED.

If true, condition (3) will in general only be satisfied on the subspace
KercK

⋆.
Condition (2) (gauge invariance) is also very difficult to impose, because

it has to be satisfied exactly, not only modulo smoothing errors.

1.1.4. The approach in this paper. In this paper we circumvent the difficul-
ties with conditions (2) and (3) by relying on full gauge fixing.

Working with the Cauchy surface phase space
KercK

†
Σ

RancKΣ
, we start with a

pair λ±
2Σ of Cauchy surface covariances, see 2.9.1, whose associated Λ±

2 will
satisfy (1), (4) and (5).

We next try to find a convenient supplementary space E of RancKΣ in

KercK
†
Σ. We can then identify the canonical phase space

KercK
†
Σ

RancKΣ
with E

using the associated projection π : KercK
†
Σ → E.

The modified covariances π∗ ◦ λ±
2Σ ◦ π will then automatically satisfy the

gauge invariance condition.
The supplementary space E has however to be chosen appropriately. First

λ±
2Σ should be positive on E if the positivity condition (3) is to be satisfied

by the modified covariances. Second E has also to be adapted so that the
projection π does not spoil the microlocal Hadamard condition (5).

We select the space E using a microlocal version of the synchronous gauge
condition, see 4.1.2. The fact that E is supplementary to RancKΣ is equiv-
alent to the solvability of some elliptic system of equations on Cauchy data.

If the system is uniquely solvable, (the so called regular case, see Subsect.
4.4), then the existence of a Hadamard state for linearized gravity follows
rather easily.

If it is not uniquely solvable (the so called singular case, see Subsect. 4.5)
and if the Cauchy surface Σ is compact, then by Fredholm theory it still has
finite dimensional kernel and cokernel. We can further alter the modified
covariances by some finite rank and smoothing operators to obtain a pair of
Hadamard covariances.

1.2. Notation. We now collect various notations used throughout the pa-
per.

1.2.1. Isomorphisms of vector spaces. If E,F are vector spaces and A ∈
L(E,F ) we write A : E

∼
−→ F if A is an isomorphism. If E,F are topological

vector spaces, we use the same notation if A is a homeomorphism.
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1.2.2. Sesquilinear forms. If E is a complex vector space, its antidual is
denoted by E∗. A sesquilinear form A on E is an element of L(E,E∗) and
its action on elements of E is denoted by u·Av.

1.2.3. Projections. If F ⊂ E are two vector spaces we say that π : E → F
is a projection if π2 = π and Ranπ = F .

1.2.4. Operators on quotient spaces. Let Fi ⊂ Ei, i = 1, 2 be vector spaces
and let A ∈ L(E1, E2). Then the induced map

[A] ∈ L(E1/F1, E2/F2),

is
1) well-defined if AE1 ⊂ E2 and AF1 ⊂ F2,

2) injective iff A−1F2 = F1,

3) surjective iff E2 = AE1 + F2.

(1.4)

1.2.5. Sesquilinear forms on quotients. Let now E ⊂ F be vector spaces and
let C ∈ L(E,E∗). We denote by F ◦ ⊂ E∗ the annihilator of F . Then the
induced map

[C] ∈ L(E/F, (E/F )∗),

is
1) well-defined if CE ⊂ F ◦, F ⊂ Ker C,

2) non-degenerate iff F = Ker C.
(1.5)

If C is hermitian or anti-hermitian then the condition F ⊂ Ker C implies
the other one CE ⊂ F ◦ (and vice versa).

1.2.6. Sections of vector bundles. Let V
π
−→ M be a finite rank complex

vector bundle over a smooth manifold M .
- If Σ ⊂ M is a smooth manifold we denote by V |Σ

π
−→ Σ the restriction

of V to Σ.
- We denote by C∞(M ;V ), resp. C∞

0 (M ;V ) the space of smooth, resp. com-
pactly supported smooth sections of V .

-We denote by D′(M ;V ), resp. E ′(M ;V ) the space of distributional,
resp. compactly supported distributional sections of V .

We use the same notations if V is a finite dimensional vector space, i.e. we
write simply V instead of the trivial vector bundle M × V .

1.2.7. Globally hyperbolic spacetimes. We use the convention (−,+, . . . ,+)
for the Lorentzian signature.

- If (M,g) is a spacetime,we denote by J±(K) the future/past causal
shadow of K ⊂ M .

- If M is a globally hyperbolic spacetime we denote by C∞
sc (M ;V ) the

space of space-compact sections, i.e. sections in C∞(M ;V ) with compactly
supported restriction to a Cauchy surface.
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1.2.8. Distributional kernels and wavefront sets. -If u ∈ D′(M ;V ) we denote
by WF(u) ⊂ T ∗M \o its wavefront set, which is invariantly defined using
local trivializations of V .

-If Vi
π
−→ Mi are two vector bundles as above and A : C∞

0 (M1;V1) →
D′(M2;V2) is linear continuous, then A admits a distributional kernel, still
denoted by A ∈ D′(M2 ×M1;V2 ⊠ V1).

- We denote by WF(A)′ ⊂ (T ∗M2 × T ∗M1) \o its primed wavefront set,
defined by

Γ′ = {((x2, ξ2), (x1,−ξ1)) : ((x2, ξ2), (x1, ξ1)) ∈ Γ} for Γ ⊂ T ∗M2 × T ∗M1.

2. Linearized gravity

In this section we review the quantization of linearized gravity, following
[HS]. We also introduce the useful phase spaces of Cauchy data, following
[GW2].

2.1. Notation and background. We start by fixing notation. Let (M,g)
be a 4-dimensional Lorentzian manifold.

2.1.1. Convention for the Riemann tensor. We use the same convention as
in e.g. [R, FH, BDM] for the sign of the Riemann tensor i.e.

(∇a∇b −∇b∇a)uc = R d
abc ud

on (0, 1)-tensors. The Ricci tensor is Ricab = R c
acb = Rc

acb, and the scalar

curvatureR = gabRicab. The Einstein equations with cosmological constant
Λ, i.e. Ric− 1

2gR+ Λg = 0, are equivalent to

Ric = Λg. (2.1)

We will say that (M,g) is Einstein if (2.1) is satisfied.

2.1.2. Hermitian forms on tensors. We denote by

Vk ··= C⊗k
s T

∗M

the complex bundle of symmetric (0, k)-tensors. We will only need the cases
k = 0, 1, 2. Vk is equipped with the non-degenerate Hermitian form

(u|u)Vk
··= k!u·(g⊗k)−1u. (2.2)

In abstract index notation,

(u|u)Vk
= k!ga1b1 · · · gakbkua1...akub1...bk .

For example for k = 2 we have

(u|u)V2
= 2tr(u∗g−1ug−1). (2.3)

The k! normalization differs from the most common convention, it has how-
ever the advantage that various expressions involving adjoints look more
symmetric.
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For U ⊂ M open, the Hermitian form (2.2) on fibers induces a Hermitian
form

(u|v)Vk(U) =

ˆ

U
(u(x)|v(x))Vk

dvolg, u, v ∈ C∞
0 (U ;Vk). (2.4)

The adjoint of A : C∞(M ;Vk) → C∞(M ;Vl) for those Hermitian forms will
be denoted by A∗.

If Σ ⊂ M is a Cauchy surface, we set

(u|v)Vk(Σ) =

ˆ

Σ
(u(x)|v(x))Vk

dvolh, u, v ∈ C∞
0 (Σ;Vk),

where dvolh is the induced density on Σ.

2.1.3. Decomposition of tensors. Let us assume thatM = I×Σ where I ⊂ R

is an open interval, Σ a smooth manifold with variables (t, x) and

g = −dt2 + h(t, x)dx2,

where h ∈ C∞(M,⊗2
sT

∗Σ) is a smooth t-dependent Riemannian metric on
Σ. We set

VkΣ = C⊗k
s T

∗Σ.

2.1.4. Decomposition of (0, 1)-tensors. We identify

C∞(M ;V1)
∼
−→ C∞(I;C∞(Σ;V0Σ))⊕ C∞(I;C∞(Σ;V1Σ)) by

w 7→ (wt, wΣ),

w =·· wtdt+ wΣ.

(2.5)

The scalar product (·|·)V1
reads then

(w|w)V1
= −|wt|

2 + (wΣ|wΣ)V1Σ
= −|wt|

2 + (wΣ|h
−1wΣ).

2.1.5. Decomposition of (0, 2)-tensors. Similarly we identify

C∞(M ;V2)
∼
−→ C∞(I;C∞(Σ;V0Σ))⊕ C∞(I;C∞(Σ;V2Σ))⊕ C∞(I;C∞(Σ;V2Σ)) by

u 7→ (utt, utΣ, uΣΣ),

u =·· uttdt⊗ dt+ utΣ ⊗ dt+ dt⊗ utΣ + uΣΣ.
(2.6)

The scalar product (·|·)V2
reads:

(u|u)V2
= 2|utt|

2 − 4(utΣ|utΣ)V1Σ
+ (uΣΣ|uΣΣ)V2Σ

. (2.7)

2.2. The differential and its adjoint. Let

d :
C∞(M ;Vk) → C∞(M ;Vk+1)

(du)a1...,ak+1
= ∇(a1ua2...,ak+1),

where u(a1...ak) is the symmetrization of ua1...ak , and

δ :
C∞(M ;Vk) → C∞(M ;Vk−1)

(δu)a1,...,ak−1
= −k∇auaa1...ak−1

.

With these conventions, we have d∗ = δ w.r.t. the Hermitian form (2.4).
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2.3. Operators on tensors.

2.3.1. Trace reversal. The operator of trace reversal I is given by

I ··= 1l−
1

4
|g)(g|,

where

(g| : u2 7→ (g|u2)V2
, |g) : u0 7→ u0g,

i.e. I is the orthogonal symmetry w.r.t. the line Cg. Equivalently

(Iu)ab = uab −
1

2
trg(u)gab, trg(u) ··= gabuab =

1

2
(g|u)V2

.

It satisfies

I2 = 1l, I = I∗ on C∞(M ;V2). (2.8)

2.3.2. Ricci operator. The Ricci operator is

Riemg(u)ab ··= R cd
a bucd = Rc d

ab ucd, u ∈ C∞(M ;V2).

The fact that Riemg preserves symmetric (0, 2)-tensors follows from the
symmetries of the Riemann tensor.

Lemma 2.1. The Ricci operator satisfies:

i) Riemgg = −Ric,

ii) Riemg ◦ I = I ◦Riemg, if g is Einstein,

iii) Riemg = Riem∗
g.

(2.9)

2.4. Lichnerowicz operators. Let−�i be the rough d’Alembertian acting
on sections of Vk:

−�iui = −gab∇2
ea,ebui,

where (ea)0≤a≤d is a local frame. The Lichnerowicz operators [L] acting on
sections of Vk are defined by:

D0,L = −�0,

D1,L = −�1 +Ric ◦ g−1,

D2,L = −�2 +Ric ◦ g−1 ◦ ·+ · ◦ g−1 ◦Ric+ 2Riemg.

(2.10)

One has

Di,L = D∗
i,L.

The proofs of the following facts can be found for example in [B].

Proposition 2.2. If (M,g) is Einstein then:

Di+1,L ◦ d = d ◦Di,L, δ ◦Di+1,L = Di,L ◦ δ,

(g| ◦D2,L = D0,L ◦ (g|, D2,L ◦ |g) = |g) ◦D0,L.
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2.5. Linearized gravity as a gauge theory. In this subsection we follow
[FH, HS]. Let (M,g) be a globally hyperbolic spacetime of dimension 4. We
assume that (M,g) is Einstein. Let us introduce the differential operators

P ··= −�2 − I ◦ d ◦ δ + 2Riemg,

K ··= I ◦ d.
(2.11)

Pu = 0 are the linearized Einstein equations. The condition K⋆u = 0, where
K⋆ is defined below, is the linearized de Donder or harmonic gauge.

2.5.1. Physical Hermitian form. We consider Vk, k = 0, 1, 2 as Hermitian
bundles, where the Hermitian forms on fibers is now

(u|u)I,Vk
··= (u|u)Vk

, k = 0, 1, (u|u)I,V2
··= (u|Iu)V2

. (2.12)

The corresponding Hermitian form on smooth sections of Vk, k = 1, 2 is

(u|u)I,Vk(U) =

ˆ

U
(u(x)|u(x))I,Vk

dvolg, u, v ∈ C∞
0 (U ;Vk). (2.13)

We denote by A⋆ the corresponding formal adjoint of A for (·|·)I,Vk(M) to
distinguish it from the formal adjoint A∗ for (·|·)Vk(M). The two are related
as follows:

A⋆ = IA∗I if A : C∞(M ;V2) → C∞(M ;V2),

A⋆ = A∗I if A : C∞(M ;Vk) → C∞(M ;V2), k = 0, 1

A⋆ = IA∗ if A : C∞(M ;V2) → C∞(M ;Vk), k = 0, 1

A⋆ = A∗ if A : C∞(M ;Vi) → C∞(M ;Vj) i, j 6= 2.

(2.14)

In particular,

K⋆ = K∗ ◦ I = δ ◦ I ◦ I = δ. (2.15)

2.5.2. Operators in linearized gravity. Let us set:

Dk ··= Dk,L − 2Λ, k = 0, 1, 2.

Then
K⋆K = D1 = −�1 − Λ,

P +KK⋆ = D2 = −�2 + 2Riemg.
(2.16)

The operator D0 is useful in connection with the traceless gauge. Note that

P = P ⋆, D2 = D∗
2 = D⋆

2, [I,D2] = 0.

The operatorsDk are Green hyperbolic and hence admit unique retarded/advanced
inverses Gkret/adv. The causal propagators are

Gk ··= Gk ret −Gk adv,

and satisfy G⋆
k = G∗

k = −Gk.
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2.6. Cauchy problem. Let Σ ⊂ M a smooth space-like Cauchy surface.
For k = 0, 1, 2 we set

̺ku =

(
u↾Σ

i−1∇νu↾Σ

)
=

(
f0
f1

)
, u ∈ C∞

sc (M ;Vk),

where ν is the future directed unit normal to Σ.
We denote by Uk the operator solving the Cauchy problem for Dk i.e.

{
DkUk = 0,

̺kUk = 1l.
(2.17)

2.6.1. Conserved charges. There exist a unique Hermitian form qk : C∞
0 (Σ;Vk⊗

C
2) → C∞

0 (Σ;Vk ⊗ C
2)∗ called the charge of Dk, such that

(φk|iGkφk)Vk(M) = ̺kuk ·qk̺kuk

for φk ∈ C∞
0 (M ;Vk) and uk = Gkφk ∈ KerscDk. One can compute qk using

the identity

(uk|Dkvk)Vk(J±(Σ)) − (Dkuk|vk)Vk(J±(Σ))

= ±i−1̺kuk ·qk̺kuk, uk, vk ∈ C∞
0 (M ;Vk).

2.6.2. Operators on Cauchy data and physical charge. We follow here [GW2,
Subsect. 2.4].

To the operator K we associate an operator KΣ acting on Cauchy data
by setting

KΣ ··= ̺2KU1. (2.18)

Similarly since [I,D2] = 0 we can define

IΣ ··= ̺2IU2 = I ⊗ C
2. (2.19)

We obtain that q2IΣ = I∗Σq2 and as in 2.5.1 we define the Hermitian form

qI,2 ··= q2 ◦ IΣ,

called the physical charge for D2.

We denote by K†
Σ the adjoint of KΣ for the Hermitian forms q1, qI,2 i.e.

K†
Σf2 ·q1f1 = f2 ·qI,2KΣf1, fk ∈ C∞

0 (Σ, Vk ⊗ C
2). (2.20)

We have:

K†
Σ = ̺1K

⋆U2.

Lemma 2.3. We have:
(1) K ◦ U1 = U2 ◦KΣ , K⋆ ◦ U2 = U1 ◦K

†
Σ;

(2) ̺2 ◦K = KΣ ◦ ̺1 on KerscD1, ̺1 ◦K
⋆ = K†

Σ ◦ ̺2 on KerscD2;

(3) K†
Σ ◦KΣ = 0.
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2.7. Phase spaces.

Proposition 2.4. The maps

[G2] :
KercK

⋆

RancP
−→

Kersc P

RanscK
,

[Id] :
KerscD2 ∩KerscK

⋆

K KerscD1
−→

Kersc P

RanscK
,

are well defined and bijective.

Let us define the Hermitian forms Qk on C∞
0 (M ;Vk):

uk ·Qkuk ··= i(uk|Gku)Vk(M),

and the physical charge

QI,2 ··= Q2 ◦ I = I∗ ◦Q2.

Definition 2.5. The physical phase space is the Hermitian space (VP , QP ),
where:

VP =
KercK

⋆

RancP
, [u]·QP [u] = u·QI,2u, [u] ∈

KercK
⋆

RancP
.

QP is a well-defined Hermitian form on VP .

2.7.1. Phase space of Cauchy data. The following results are proved in [GW2].

Proposition 2.6. The induced map

[̺2] :
KerscD2 ∩KerscK

⋆

K KerscD1
−→

KercK
†
Σ

RancKΣ

is well defined and bijective.

Proposition 2.7. The map

[̺2G2] : (
KercK

⋆

RancP
,QP ) −→ (

KercK
†
Σ

RancKΣ
, qI,2)

is an isomorphism of Hermitian spaces.

2.8. Quantization. The algebraic quantization of linear gauge theories is
discussed in detail in [GW2, Sect. 3]. The algebraic framework reduces the
quantization problem to showing the existence of physically relevant quan-
tum states on the CCR ∗-algebra CCR(VP , QP ) associated to the Hermitian
space (VP , QP ) defined in Subsect. 2.7. The notions of CCR ∗-algebras,
quasi-free states and covariances are explained for example in [G, Chap. 4].
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2.8.1. Covariances. A quasi-free state on CCR(VP , QP ) is determined by a
pair Λ±

P of covariances, i.e. of Hermitian forms on VP such that

i) Λ±
P = Λ±∗

P , Λ±
P ≥ 0,

ii) Λ+
P − Λ−

P = QP .

We will consider quasi-free states ω on CCR(VP , QP ) with covariances ob-
tained from a pair of continuous Hermitian forms Λ±

2 on C∞
0 (M ;V2) (called

the spacetime covariances of ω) by:

[u]·Λ±
P [u] = u·Λ±

2 u, [u] ∈
KercK

⋆

RancP
. (2.21)

Lemma 2.8. Suppose that Λ±
2 ∈ L(C∞

0 (M ;V2), C
∞
0 (M ;V2)

∗) are such that:

i) D∗
2 ◦ Λ

±
2 = Λ±

2 ◦D2 = 0,

ii) Λ+
2 − Λ−

2 = QI,2 on KerK⋆
c ,

iii) Λ±
2 = 0 on KercK

⋆ × RancK,

v) Λ±
2 = Λ±∗

2 , Λ±
2 ≥ 0 on KercK

⋆.

(2.22)

Then Λ±
2 are the covariances of a quasi-free state on CCR(VP , QP ).

2.9. Hadamard condition. The general consensus is that the Hadamard
condition singles out the physically meaningful states. We use the following
definition of Hadamard states [SV]. We recall that

N = {(x, ξ) ∈ T ∗M \o : ξ · g−1(x)ξ = 0}

is the characteristic set of the wave operator on (M,g), and

N± = N ∩{(x, ξ) ∈ T ∗M \o : ±v·ξ > 0 ∀v ∈ TxM future-directed time-like}

are its two connected components, corresponding to the upper/lower energy
shells.

To formulate the Hadamard condition, we need to identify the Hermitian
forms Λ±

2 with distributional kernels λ±
2 (·, ·) ∈ D′(M × M ;L(V2)), called

two-point functions.
This identification is defined by the formal identity

u·Λ±
2 v =··

ˆ

M×M
(u(x)|λ±

2 (x, y)v(y))V2
dvolg(x) dvolg(y), u, v ∈ C∞

0 (M ;V2).

One can of course use other Hermitian forms on the fibers of V2 to do this
identification, like for example (·|·)I,V2

or a Hilbertian scalar product as will
be done in Sect. 3. This change amounts to compose λ±

2 (x, y) by smooth
linear operators acting on the fibers of V2 over x and y and does not change
the Hadamard condition (2.23) below.

Definition 2.9. A quasi-free state ω on CCR(VP , QP ) given by covariances
Λ±
2 as in Lemma 2.8 is Hadamard if in addition to (2.22) it satisfies:

WF(λ±
2 )

′ ⊂ N± ×N±. (2.23)
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2.9.1. Hadamard condition on a Cauchy surface. One can equivalently con-
sider Hermitian forms λ±

2Σ on the space of Cauchy data C∞
0 (Σ;V2 ⊗ C

2)
called Cauchy surface covariances. Namely assume that we have a pair of
Hermitian forms

λ±
2Σ ∈ L(C∞

0 (Σ;V2 ⊗ C
2), C∞

0 (Σ;V2 ⊗ C
2)∗)

and set
Λ±
2 = (̺2G2)

∗λ±
2Σ(̺2G2). (2.24)

The conditions on λ±
2Σ corresponding to (2.22) are

i) λ+
2Σ − λ−

2Σ = qI,2 on KercK
†
Σ,

ii) λ±
2Σ = 0 on KercK

†
Σ × RancKΣ,

iii) λ±
2Σ = λ±∗

2Σ , λ±
2Σ ≥ 0 on KercK

†
Σ.

(2.25)

Since qI,2 is non-degenerate, we can set

λ±
2Σ =·· ±qI,2 ◦ c

±
2 . (2.26)

Proposition 2.10. Suppose c±2 : C∞
0 (Σ;V2 ⊗ C

2) → C∞(Σ;V2 ⊗ C
2) is a

pair of operators such that:

i) c+2 + c−2 = 1l,

ii) c±2 : RancKΣ → RanKΣ,

iii) qI,2 ◦ c
±
2 = c±∗

2 ◦ qI,2, ±qI,2 ◦ c
±
2 ≥ 0, on KercK

†
Σ.

(2.27)

Then Λ±
2 given by (2.24) and (2.26) are the covariances of a quasi-free

state on CCR(VP , QP ). Furthermore if for some neighborhood U of Σ in M
we have:

iv) WF(U2 ◦ c
±
2 )

′ ⊂ (N± ∪ F)× T ∗Σ

over U × Σ, where F ⊂ T ∗M is a conic set with F ∩ N = ∅, then the
associated state is Hadamard.

The proof of (2.27) is analogous to the one found in [GW2, Sect. 3.4].
The proof of the statement on the Hadamard condition can be found in [G,
Sect. 11.1].

Remark 2.11. If [c±2 , IΣ] = 0 then we can replace the first condition in
(2.27) iii) by the simpler

q2 ◦ c
±
2 = c±∗

2 ◦ q2.

Conversely if c±2 satisfy the conditions in Prop. 2.10 then setting

ĉ±2 =
1

2
(c±2 + IΣ ◦ c±2 ◦ IΣ),

we obtain that ĉ±2 satisfy also the conditions in Prop. 2.10 and [ĉ±2 , IΣ] =
0. The only point deserving some attention is the microlocal condition iv),
which follows from the fact that WF(I)′ and WF(IΣ)

′ are included in the
diagonal of T ∗M × T ∗M and T ∗Σ× T ∗Σ respectively.
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3. Hadamard covariances

In [GMW, Sect. 5] we constructed Hadamard covariances λ±
iΣ for the

operators Di, i = 1, 2 appearing in linearized gravity. Some properties of
these covariances were deduced from Wick rotation, ie λ±

iΣ were obtained

from Calderón projectors associated to elliptic operators D̃i obtained from
Di by a Wick rotation in a Gaussian time coordinate associated to some
Cauchy surface Σ.

This procedure requires analyticity of the metric g (or at least partial
analyticity in Gaussian time). The essential property of the covariances
constructed in this way is a positivity property with respect to an Euclidean
charge q̃ defined in (3.32).

In absence of analyticity, one can replace the Wick rotated metric g̃ by
an almost analytic extension of g and obtain the same conclusions.

Another possibility is to prove the positivity property directly, which is
what we will do in this section.

3.1. The framework. In order to keep the exposition relatively short, we
will adopt the framework in [GMW, Sect. 5] to which we refer the reader
for notation and proofs.

3.1.1. Spacetime and Hermitian bundle. We set M = It × Σx, where I ⊂ R

is an interval with 0 ∈ I̊ and (Σ,h0) a d-dimensional Riemannian manifold
of bounded geometry.

Note that in later sections Σ will be assumed to be compact, so all the
assumptions below related to bounded geometry are automatically satisfied.

We set Σt = {t} ×Σ and identify Σ0 with Σ. The dual variables to (t, x)
are denoted by (τ, k).

We fix a t-dependent Riemannian metric on Σ,

h : I ∋ t 7→ h(t) ∈ C∞
b (I;BT 0

2(Σ,h0)).

We assume that h(0) = h0 and for ease of notation often denote h(t) by ht.
We equip M with the Lorentzian metric

g ··= −dt2 + htdx
2. (3.28)

We fix a finite rank complex vector bundle V
π
−→ Σ of bounded geometry

over (Σ,h0). We still denote by V the vector bundle over M : I × V
π
−→ M

which is a vector bundle with the same fibers as V .
We denote by Diff(M ;V ), resp. Diff(Σ;V ) the space of differential oper-

ators on M resp. Σ acting on sections of V .

We assume that V
π
−→ M is equipped with a non-degenerate fiberwise

Hermitian structure (·|·)V , which is independent of t.
We fix a reference fiberwise Hilbertian structure (·|·)Ṽ on the fibers of V

which is also independent of t.

We write Ṽ instead of V to emphasize that V is tacitely equipped with
the Hilbertian structure (·|·)

Ṽ
.
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We will use this Hilbertian structure to identify sesquilinear forms on the
fibers of V with linear operators.

If x ∈ M and u, v ∈ Vx we have

(u|v)V = (u|τxv)Ṽ , τx ∈ L(Vx),

and we denote by τ ∈ C∞(M ;L(V )) the corresponding section, which is
independent on t.

Note that τ = τ∗ and without loss of generality we can assume that

τ∗τ = 1l, i.e. τ is unitary for (·|·)Ṽ .

If a ∈ L(Vx) for x ∈ M we denote by a∗, resp. a⋆, the adjoints of a for (·|·)Ṽ ,
resp. (·|·)V . Then,

a⋆ = τ−1
x a∗τx (3.29)

for some τx ∈ L(Vx).
For u, v ∈ C∞

sc (M ;V ) we set

(u|v)Ṽ (Σt)
··=
´

Σt
(u|v)Ṽ |h0|

1

2dx,

(u|v)V (Σt)
··=
´

Σt
(u|v)V |h0|

1

2dx = (u|τv)Ṽ (Σt)
,

(u|v)
Ṽ (M)

··=
´

M (u(t)|v(t))
Ṽ
|h0|

1

2dtdx,

(u|v)V (M) ··=
´

M (u(t)|v(t))V |h0|
1

2dtdx = (u|τv)
Ṽ (M)

.

If Ω ⊂ M is some open set, we also denote

(u|v)Ṽ (Ω)
··=
´

Ω(u(t)|v(t))Ṽ |h0|
1

2dtdx,

(u|v)V (Ω) ··=
´

Ω(u(t)|v(t))V |h0|
1

2dtdx = (u|τv)Ṽ (Ω).

We denote by L2(Σ; Ṽ ) the L2 space obtained from the Hilbertian scalar
product (·|·)Ṽ (Σ).

3.1.2. Adjoints. If a ∈ C∞
b (I; Diff(Σ;V )), resp. A ∈ Diff(M ;V ), we denote

by a∗ resp. A∗ its formal adjoint for (·|·)Ṽ (Σt)
resp. (·|·)Ṽ (M). We set Rea =

1
2(a+ a∗).
We denote by a⋆ resp. A⋆ its formal adjoint for (·|·)V (Σt) resp. (·|·)V (M).

As above we have:

a⋆ = τ−1a∗τ, A⋆ = τ−1A∗τ.

3.1.3. Hyperbolic operator. We fix a t-dependent differential operator a =
a(t, x,Dx) belonging to C

∞
b (I; Diff2(Σ;V )) and denote by σpr(a) ∈ C∞(T ∗Σ;L(V ))

its principal symbol.
We assume the following properties:

(H1) a(t) = a⋆(t), t ∈ I,

(H2) σpr(a)(t)(x, k) = k·h−1
t (x)k 1lV , t ∈ I.
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We set

D ··= ∂2
t + a(t) acting on C∞

0 (M ;V ), (3.30)

which is a hyperbolic operator with scalar principal part. Note that D = D⋆,
but of course D 6= D∗ in general.

The Cauchy problem
{
Du = 0 in M

̺u = f ∈ C∞
0 (Σ;V ⊗ C

2)
(3.31)

is well-posed, where

̺u =

(
u(0)

i−1∂tu(0)

)
.

We denote by u = Uf the unique solution of (3.31). We set:

q̃ ··=

(
0 1
1 0

)
, q ··=

(
0 τ
τ 0

)
. (3.32)

The Cauchy evolution for D is pseudo-unitary for q.

3.2. Hadamard projectors. In [GMW, Sect. 5] we constructed projectors

c±, acting on C∞
0 (Σ; Ṽ ⊗C2), called Hadamard projectors such that

1) c+ + c− = 1l,

2) qc± = c±∗q,

3) WF(U ◦ c±)′ ⊂ (N± ∪ F)× T ∗Σ for F = {k = 0} ⊂ T ∗M.

(3.33)

We define Cauchy surface covariances by

f ·λ±
Σf = ±(f |qc±f)

Ṽ (Σ)⊗C2 ,

and the associated spacetime covariances by

Λ± = (̺ ◦G)∗λ±
Σ(̺ ◦G),

where G is the causal propagator for D. The charge Q is

u·Qu = i(u|Gu)V (M), u ∈ C∞
0 (M ;V ).

We have then

i) D∗Λ± = Λ±D = 0,Λ+ − Λ− = Q,

ii) Λ± = Λ±∗,

iii) WF(λ±)′ ⊂ N± ×N±.

In other words, except for the positivity, Λ±, λ±
Σ are Hadamard covariances

for D.
The following lemma states the positivity of c± for the Euclidean charge

q̃ defined in (3.32).
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Lemma 3.1. We can construct the Hadamard projectors c± so that in ad-
dition to (3.33) one has

± (c±f |q̃c±f)Ṽ (Σ)⊗C2 ≥ 0, ∀f ∈ C∞
0 (Σ; Ṽ ⊗ C

2). (3.34)

Moreover

π1c
±f = b±π0c

±f for πif = fi, f =

(
f0
f1

)
, (3.35)

where b+ = b, b− = −b⋆ and b is an elliptic first order pseudodifferential

operator such that b : Hs(Σ; Ṽ ) → Hs−1(Σ; Ṽ ) is an isomorphism for any
s ∈ R.

Proof. We use the notation in [GMW, 5.2.7-5.2.10]. The projectors c± are
given by

c± = Tπ±T−1, π+ =

(
1 0
0 0

)
, π− =

(
0 0
0 1

)
, (3.36)

where T is defined in [GMW, equ. (5.13)].
A concrete expression for c± is:

c± =

(
∓(b+ − b−)−1b∓ ±(b+ − b−)−1

∓b±(b+ − b−)−1b∓ ±b±(b+ − b−)−1

)
, (3.37)

where b+ = b, b− = −b⋆ and b is an elliptic first order pseudodifferential
operator on Σ.

To prove that ±c±∗q̃c± ≥ 0, we need to compute T ∗q̃T . For the operator
b constructed in [GMW, Prop. 5.2] and c defined in [GMW, 5.2.9] we have

T = S ◦

(
c 0
0 c

)
, S = −i

(
1 −1
b τ∗b∗τ

)
(b+ τ∗b∗τ)−1.

We compute T ∗ and using that q̃ =

(
0 1
1 0

)
, we obtain that

T ∗q̃T = (c(b+ τ∗b∗τ)−1)∗
(

b+ b∗ −b∗ + τ∗b∗τ
−b+ τ∗bτ −τ∗(b+ b∗)τ

)
(c(b+ τ∗b∗τ)−1).

Therefore using (3.36) we see that ±c±∗q̃c± ≥ 0 iff b + b∗ ≥ 0. The con-
struction of b is given in [GMW, Prop. 5.2]. Concretely we have:

b = ǫ+ b0(1 − χR(aref)),

R ≫ 1 being a large parameter. The first order elliptic pseudodifferential
operator ǫ satisfies Reǫ ≥ 1. Therefore

b+ b∗ = (2Reǫ)
1

2 (1− s̃−1)(2Reǫ)
1

2 ,

where

s̃−1 = −(2Reǫ)−
1

2 (b0(1− χR(aref) + (1− χR(aref))b
∗
0)(2Reǫ)

− 1

2 .

As in the proof of [GMW, Prop. 5.2] the norm of s̃−1 in B(L2(Σ; Ṽ )) tends
to 0 when R → +∞, so choosing R ≫ 1 we obtain that b+ b∗ ≥ c > 0. This
completes the proof of the first statement of the lemma.
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The second statement follows from (3.37), except for the fact that b can be

chosen invertible. The principal symbol of b is (k·h0(x)k)
1

21l, so b is elliptic.
We have seen above that we can choose R ≫ 1 so that b + b∗ ≥ c > 0.

The sesquilinear form associated to b with domain H
1

2 (Σ; Ṽ ) is closed and

coercive, so b = H
1

2 (Σ; Ṽ ) → H− 1

2 (Σ; Ṽ ) is an isomorphism. This extends
to any s ∈ R by the usual argument. ✷

3.3. Application to Dk. Let us now recall how to apply the previous con-
structions to the operators Dk, k = 1, 2.

If (M,g) is globally hyperbolic and Σ is a smooth spacelike Cauchy sur-
face, then if (M,g) is of bounded geometry near Σ, see [GMW, Def. 3.2]
for the precise definition, then using Gaussian normal coordinates to Σ one
can isometrically map a neighborhood of Σ in M to I × Σ, equipped with
a metric as in (3.28). The bounded geometry assumption is automatically
satisfied if Σ is compact, as we will assume in later sections.

3.3.1. Reduced setting. Conjugating Dk by an isomorphism corresponding
to parallel transport along ∂t one can then reduces oneself to the situation
in Subsect. 3.1, see [GMW, Subsect. 4.4]. For k = 2 this isomorphism maps
the background metric g to g0 = −dt2 + h0.

In this reduced setting, several operators take simpler forms: for example
we have

Dk = ∂2
t + ak(t, x, ∂x),

Iu2 = u2 −
1
4 (g0|u2)V2

,

and the expression of d can be found in [GMW, Prop. 4.11]. The operators
τk relating the Hermitian and Hilbertian structures on Vk are

τ1 =

(
−1 0
0 −1

)
, τ2 =




1 0 0
0 −1 0
0 0 1


 ,

where we use the decompositions of (0, k)-tensors recalled in 2.1.3.

3.3.2. Gauge invariance modulo smooth errors. To complete this subsection,
we write an easy lemma. We state and prove it only in the case when Σ is
compact, but the result extends easily to the bounded geometry framework.

Lemma 3.2. Assume that Σ is compact. Let c±k for k = 1, 2 be Hadamard
projectors for Dk. Then

c±2 KΣ = KΣc
±
1 ± r−∞,

where r−∞ = c+2 KΣc
−
1 − c−2 KΣc

+
1 ∈ Ψ−∞(Σ) is smoothing.

Proof. Let f1 ∈ E ′(Σ;V1 ⊗ C
2), u1 = U1c

+
1 f1, u2 = Ku1 and f2 = ̺2u2 =

KΣc
+
1 f1. We have WFu1 ⊂ N+ hence WFu2 ⊂ N+ since K is a differential

operator. On the other hand WFU2c
±
2 f2 ⊂ N± hence WFU2c

−
2 f2 ⊂ N+ ∩

N− = ∅ since c−2 = 1− c+2 . Therefore c−2 KΣc
+
1 is smoothing ✷
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3.3.3. Additional symmetry. The operator D2 has the additional symmetry
[I,D2] = 0, which can be carried over to b2 or the Hadamard projectors c±2 .

In fact if b2 is the operator entering in the construction of c±2 , we see
that I ◦ b2 ◦ I also satisfies the conditions in [GMW, Prop. 5.2], which
caracterize b uniquely modulo a smoothing error. Therefore we can replace
b2 by

1
2(b2+I ◦b2 ◦I) modulo a smoothing error and assume that [I, b2] = 0.

This replacement does not invalidate the properties of c±2 summarized in
Subsect. 3.2. The projectors c±2 have now the additional property

[IΣ, c
±
2 ] = 0.

Therefore c±2 are also selfadjoint for the physical Hermitian form qI,2 = q2◦IΣ
ie

(f2|q2IΣc
±
2 f2)Ṽ2⊗C2 = (c±2 f2|q2IΣf2)Ṽ2⊗C2 . (3.38)

4. Gauge fixing

4.1. Introduction. To motivate the constructions in this section we start
with some comments on conditions (2.22) and (2.23) in Subsect. 2.8 on
covariances generating a quasi-free state on CCR(VP , QP ).

For a quantum field theory associated to D2, one usually assumes condi-
tion (2.22) i) and λ+

2 − λ−
2 = iG2, ie (2.22) ii) extended to the larger space

C∞
0 (M ;V2). Together with (2.23), these two conditions fix λ±

2 uniquely,
modulo smooth kernels.

The positivity condition (2.22) v) is in general not satisfied on arbitrary
test fields, but only on KercK

⋆. This comes from the fact that the fiber
scalar product (·|·)V2

for which D2 is formally selfadjoint is non positive.
The condition (2.22) iv) that λ±

2 map RancK into RanK is the crucial
gauge invariance condition, which implies that Λ± are well defined on the
physical phase space Kerc K⋆

RancP
. This condition is the most difficult to impose.

A way out of this difficulty is to try to eliminate the remaining gauge
freedom.

Working for example with the phase space
KerscD2 ∩KerscK

⋆

K KerscD1
this amounts

to impose more gauge fixing conditions in addition to the harmonic gauge
condition K⋆u2 = 0 in order to eliminate the remaining gauge freedom cor-
responding to KKerscD1.

The additional gauge fixing conditions should hence uniquely specify a
supplementary space to K KerscD1 inside KerscD2 ∩KerscK

⋆. These addi-
tional gauge fixing conditions should moreover be chosen so that the posi-
tivity condition on the covariances is satisfied on this supplementary space.

4.1.1. TT gauge condition. A first way to reduce the gauge freedom is to
impose the traceless condition by requiring that (g|u2)V2

= 0. Together with
in K⋆u2 = 0, this is called the transverse-traceless (TT) gauge.

This is always possible if Λ 6= 0 see eg [FH, Thm. 2.7]. Setting

K0 : C
∞(M ;V0) ∋ u0 7→ u0g ∈ C∞(M ;V2),
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we have K⋆
0u2 = −(g|u2)V2

and one can show that

[Id] :
KerscD2 ∩KerscK

⋆ ∩KerscK
⋆
0

K KerscD1 ∩KerscK
⋆
0

−→
Kersc P

RanscK
(4.1)

is again an isomorphism. The key fact is that

K0D0 = D2K0, (4.2)

by Prop. 2.2, where D0 = −✷0 − 2Λ was introduced in Subsect. 2.5.
This does not fully eliminate the gauge freedom, ie we still have a quotient

space in (4.1).

4.1.2. Synchronous gauge condition. A possibility is to impose the synchro-
nous gauge condition. After fixing a Cauchy surface Σ and introducing
Gaussian normal coordinates (t, x) to Σ, one requires that utΣ = 0 near
Σ. It is shown in [FH, Thm. 2.8] that for any u2 ∈ C∞(M ;V2) such that
Pu2 = 0, there exists u1 ∈ C∞(M ;V1), such that (u2 − Ku1)tΣ = 0 near
Σ. However K⋆Ku1 does not necessarily vanish, ie the harmonic gauge
condition K⋆u2 = 0 is destroyed by this gauge transformation.

One can weaken the synchronous gauge condition by requiring only that

u2tΣ↾Σ= 0,∇νu2tΣ↾Σ= 0. (4.3)

Note that unlike the harmonic and traceless gauge conditions, the above
condition does not ’propagate’ to the whole spacetime M , because in general
u2tΣ does not solve a hyperbolic equation, even if D2u2=0.

One can ask if is possible to impose (4.3), together with the TT gauge
condition K⋆u2 = (g|u2)V2

= 0. One can call this the TT-synchronous gauge
condition.

Given u2 ∈ KerscD2 ∩ KerscK
⋆, we need to find u1 ∈ C∞(M ;V1) such

that 



D1u1 = 0,

1) (g|Ku1)V2
↾Σ= (g|u2)V2

↾Σ,

2) (g|∇νKu1)V2
↾Σ= (g|∇νu2)V2

↾Σ,

3) (Ku1)tΣ↾Σ= u2tΣ↾Σ,

4) (∇νKu1)tΣ↾Σ= ∇νu2tΣ↾Σ .

(4.4)

If ũ2 = u2 −Ku1, then K⋆u2 = 0, the initial conditions (1) and (2) ensure
that (g|ũ2)V2

= 0, using (4.2), while (3) and (4) ensure that ũ2 satisfies
(4.3).

The system (4.4) can be rewritten as an elliptic system of equations in
terms of the Cauchy data f1 = ̺1u1.

If Σ is compact, this elliptic system is Fredholm. Except for a finite
dimensional subspace in KerD2 (4.4) has a unique solution, modulo a finite
dimensional subspace in KerD1.
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4.2. Microlocal TT-synchronous gauge. Even if we ignore the problem
with the possible non invertibility of (4.4), the TT-synchronous gauge con-
dition is not convenient for the construction of gauge invariant Hadamard
states for linearized gravity. In particular states constructed using the TT-
synchronous gauge fixing will in general not be Hadamard states.

It turns out that it is much better to adapt it to the Hadamard projectors
c±2 for D2. Let us now define this modified gauge condition.

In the rest of the section we assume that the Cauchy surface Σ is compact.
As before we use Gaussian normal coordinates to Σ to isometrically iden-

tify a neighborhood of Σ in M with It×Σx for some interval I ∋ 0, equipped
the metric −dt2 + ht(x)dx

2. Under this identification Σ is identified with
{t = 0}.

We denote by l : C∞(Σ;V2) → C∞(Σ;V1) the map:

lu2 ··=

(
1
2(g0|u)V2

↾Σ
2(u2tΣ)↾Σ

)
,

where in the rhs we identify as usual (vt, vΣ) ∈ C∞(Σ;C⊕T ∗Σ) with vtdt+
vΣ ∈ C∞(Σ;V1).

If c±2 are the Hadamard projectors whose construction is recalled in Sect.
3 we set for f2 ∈ C∞(Σ;V2 ⊗ C

2)

RΣf2 ··=

(
lπ0c

+
2 f2

lπ0c
−
2 f2

)
∈ C∞(Σ;V1 ⊗ C

2). (4.5)

Here π0 : V2 ⊗ C
2 → V2 denotes the projection on the first component.

Definition 4.1. The microlocal TT-synchronous gauge condition is defined
(in terms of Cauchy data on Σ) by:

(1) K†
Σf2 = 0,

(2) RΣf2 = 0.
(4.6)

4.3. Properties of RΣ and RΣKΣ. Imposing (4.6) by a gauge transfor-

mation is equivalent to find f1 ∈ C∞(Σ; Ṽ1 ⊗ C
2) solving

RΣKΣf1 = RΣf2, (4.7)

for some given f2 ∈ C∞(Σ; Ṽ2 ⊗ C
2) ∩ KerK†

Σ, so that f2 − KΣf1 satisfies
(4.6). In this subsection we study the operator RΣKΣ appearing in (4.7) and
we prove an important positivity property of the microlocal TT-synchronous
gauge condition.

4.3.1. Some equivalent norms. The convenient Sobolev spaces for Cauchy
data are:

Hs(Σ; Ṽk ⊗ C
2) = Hs(Σ; Ṽk)⊕Hs−1(Σ; Ṽk), s ∈ R

equipped with the norm

‖f‖2s = ‖f0‖
2
Hs(Σ;Ṽk)

+ ‖f1‖
2
Hs−1(Σ;Ṽk)

, f =

(
f0
f1

)
.
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Lemma 4.2. The map:

Lk :

Hs(Σ; Ṽk ⊗C
2) → Hs(Σ; Ṽk ⊗ C

2)

f 7→ Lkf =

(
π0c

+
k f

π0c
−
k f

)
=··

(
v+

v−

)
= v

(4.8)

is an isomorphism.

We will denote by π± : C∞(Σ; Ṽk ⊗ C
2) → C∞(Σ; Ṽk) the maps v =(

v+

v−

)
7→ v±.

It is often more convenient to use

(
v+

v−

)
instead of f .

Proof. From the expression (3.37) of c±, we deduce that c± are bounded
on Hs and since c+ + c− = 1l, an equivalent norm on Hs is given by

‖f‖2s,mod = ‖c+f‖2s + ‖c−f‖2s.

Using the second statement in Lemma 3.1, we obtain that an equivalent
norm is

(‖v+‖2
Hs(Σ;Ṽi)

+ ‖v−‖2
Hs(Σ;Ṽi)

)
1

2 , v± = π0c
±f,

which proves the lemma. ✷

4.3.2. Properties of RΣKΣ.

Proposition 4.3. (1) RΣKΣ : Hs(Σ; Ṽ1⊗C
2) → Hs−1(Σ; Ṽ1⊗C

2) is Fred-
holm of index 0 for any s ∈ R;

(2) π±RΣc
∓
2 = 0;

(3) π±RΣKΣc
∓
2 is smoothing.

Proof. From Lemma 3.2 we obtain that

RΣKΣ =

(
lπ0KΣc

+
1 0

0 lπ0KΣc
−
1

)
+R−∞, (4.9)

where R−∞ is a smoothing operator.
We recall that KΣ decomposes as KΣ = IΣ ◦ TΣ, corresponding to K =

I ◦ d. Since Ig0 = −g0 and I = I⋆, we obtain that

lπ0KΣf1 =

(
−1

4(g0|π0TΣf1)V2

2(π0TΣf1)tΣ

)
.

We recall that we work in the reduced setting, explained in 3.3.1.
If w is the solution of D1w = 0 with ρw = f1, then from [GMW, Prop.

4.11] we have:

−1
4(g0|π0TΣf1)V2

= (dw)tt −
1
2(h0|(dw)ΣΣ)V2Σ

= ∂twt + δΣwΣ + 1
2tr(r0)wt,

2(π0TΣf1)tΣ = 2(dw)tΣ = ∂twΣ − 1
2 tr(r0)wΣ − r0wΣ + dΣwt,

(4.10)
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where r0 = 1
2∂th0h

−1
0 and dΣ, δΣ are the symmetric differential and co-

differential on (Σ,h0).
By Lemma 3.1, we know that if f1 = c±1 f1, then ∂tw↾Σ= ib±w↾Σ. There-

fore

lπ0KΣc
±
1 f1 = (ib± +B)π0c

±
1 f1 (4.11)

where

Bv =

(
1
2tr(r0) δΣ
dΣ −1

2tr(r0)−
1
2r0

)
v, v =

(
vt
vΣ

)
∈ Hs(Σ; Ṽ1).

Summarizing we obtain

RΣKΣ =

(
(ib+ +B)π0c

+
1 0

0 (ib− +B)π0c
−
1

)
+R−∞, (4.12)

By Lemma 3.1, b± are elliptic and invertible and ±Reb± ≥ C(−∆h̃0
+1)

1

2 .

The operator B belongs to Ψ1(Σ; Ṽ1) and is formally selfadjoint. Therefore

the maps (ib± + B) : Hs(Σ; Ṽ1) → Hs−1(Σ; Ṽ1) are boundedly invertible,
which implies (1) since R−∞ is smoothing. (2) is obvious and (3) follows
from (4.12). ✷

4.3.3. Positivity property.

Lemma 4.4. We have

±qI,2 ◦ c
±
2 ≥ 0 on KerRΣ.

Proof. Using (3.38) and the fact that c±2 are projections we obtain that

±(f2|qI,2c
±
2 f2)Ṽ2⊗C2 = ±(c±2 f2|qI,2c

±
2 f2)Ṽ2⊗C2 ,

and if RΣf2 = 0 we obtain that

±(c±2 f2|qI,2c
±
2 f2)Ṽ2⊗C2 = ±(c±2 f2|q̃2c

±
2 f2)Ṽ2⊗C2 .

This is positive by Lemma 3.1. ✷

4.4. Gauge fixing in the regular case. In order to lighten notation, we
often write in this subsection f ·qf for (f |qf)Ṽ⊗C2 , Hs for Hs(Σ; Ṽ ⊗ C

2),

Hs for Hs(Σ; Ṽ ⊗ C
2).

We assume in this subsection that RΣKΣ : Hs(Σ; Ṽ1⊗C
2) → Hs−1(Σ; Ṽ1⊗

C
2) is invertible. We set

T = 1−KΣ(RΣKΣ)
−1RΣ. (4.13)

Proposition 4.5. (1) T : Hs(Σ; Ṽ2 ⊗ C
2) → KerRΣ is a bounded projec-

tion on Hs(Σ; Ṽ2 ⊗ C
2),

(2) T ◦KΣ = 0,

(3) T preserves KerK†
Σ.

(4) c±2 Tc
∓
2 is smoothing.
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Proof. From (3.37) we obtain that RΣ : Hs(Σ;V2 ⊗C
2) → Hs(Σ;V1 ⊗C

2)
is bounded. Using the ellipticity of RΣKΣ we obtain that T is bounded. We
have RΣ ◦ T = 0 and T = 1l on KerRΣ which implies (1). (2) and (3) are
clear.

To prove (4) is suffices to show that c±2 KΣ(RΣKΣ)
−1RΣc

∓
2 is smoothing,

or using Lemma 3.2 that c±1 (RΣKΣ)
−1RΣc

∓
2 is smoothing. This follows from

Prop. 4.3 (2) and (3). ✷

Remark 4.6. Property (4) in Prop. 4.5 is the key property of the microlocal
TT-synchronous gauge condition. It will be used in the next subsection for
the construction of Hadamard states. It is not satisfied by the usual TT-
synchronous gauge condition.

4.5. Gauge fixing in the singular case. Assume now that RΣKΣ is not
invertible.

4.5.1. Notation. The charges q2 and hence qI,2 are well defined on Hs for

s ≥ 1
2 , which we will assume in the sequel. The orthogonal of a subspace

E ⊂ Hs for qI,2 will be denoted by EqI,2 .

If A : C∞(Σ; Ṽk⊗C
2) → C∞(Σ; Ṽ1⊗C

2) we define A† : D′(Σ; Ṽ1⊗C
2) →

D′(Σ; Ṽk ⊗ C
2) by

(u|Af)L2(Σ;Ṽ1⊗C2)
··= A†u·qI,kf,

where we recall that qI,2 = q2◦I, qI,1 = q1. Denoting by A∗ the usual adjoint

obtained from the Hilbertian structure of Ṽk ⊗ C
2 we have A∗ = qI,kA

†.

4.5.2. The space Hs
reg. We set:

Hs
reg(Σ; Ṽ2 ⊗ C

2) ··= {f2 ∈ Hs(Σ; Ṽ2 ⊗ C
2) : RΣf2 ∈ RanRΣKΣ},

and we will sometimes write Hs
reg for Hs

reg(Σ; Ṽ2 ⊗ C
2). The gauge fixing

equation (4.7) can be solved iif f2 ∈ Hs
reg. Clearly

KerRΣ ∩Hs ⊂ Hs
reg, KΣH

s+1 ⊂ Hs
reg.

By ellipticity Ker(RΣKΣ)
∗ is a finite dimensional space in C∞(Σ; Ṽ1⊗C

2),
and there exist ui ∈ Ker(RΣKΣ)

∗, 1 ≤ i ≤ n such that u ∈ RanRΣKΣ iff
(ui|u)Ṽ1⊗C2 = 0, 1 ≤ i ≤ n.

A routine computation gives that

R†
Σ =

(
(b+ − b−)−1 (b+ − b−)−1

b+(b+ − b−)−1 −b−(b+ − b−)−1

)
×

(
J 0
0 J

)
,

for J : Hs(Σ; Ṽ1) → Hs(Σ; Ṽ2) defined by

(Jv)tt =
1

2
vt, (Jv)tΣ = vΣ, (Jv)ΣΣ = −

1

2
vth0.
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In particular we see that R†
Σ : C∞(Σ; Ṽ1 ⊗ C

2) → C∞(Σ; Ṽ2 ⊗ C
2), hence

vi = R†
Σui ∈ C∞(Σ; Ṽ2 ⊗ C

2). Since (RΣKΣ)
∗ui = q1K

†
ΣR

†
Σui = 0 we get

K†
Σvi = 0.

Without loss of generality, we can assume that the vi are linearily indepen-
dent and we set V = Vect{vi : 1 ≤ i ≤ n}. We have

Hs
reg = {f2 ∈ Hs : vi ·qI,2f2 = 0, 1 ≤ i ≤ n} = VqI,2 ,

and Hs
reg is of codimension n in Hs. Let us pick a supplementary space V1

in V of V ∩RanKΣ. We can assume that v1, . . . , vp ∈ V1 and vp+1, . . . , vn ∈

V ∩ RanKΣ. Since KerK†
Σ = RanK

qI,2
Σ , we obtain that

KerK†
Σ ∩Hs

reg = KerK†
Σ ∩ V

qI,2
1 ,

and KerK†
Σ ∩ Hs

reg is of codimension p in KerK†
Σ. Therefore we can find

w1, . . . , wp ∈ KerK†
Σ ∩ C∞(Σ; Ṽ2 ⊗ C

2) such that A = [wi ·qI,2vj]1≤i,j≤p is
invertible.

Since Hs
reg is of codimension n in Hs, we can complete the wi for 1 ≤ i ≤ p

by wi ∈ C∞ for p + 1 ≤ i ≤ n so that Q = [wi ·q2vj ]1≤i,j≤n is invertible.

Using that wi ∈ KerK†
Σ and vj ∈ RanKΣ for i ≤ p, j ≥ p + 1 we have

Q =

(
A 0
B C

)
, where A ∈ Mp(C), C ∈ Mn−p(C) are invertible. Replacing

wi by
∑

k T ikwk for T =

(
A−1 0

−C−1BA−1 C−1

)
we obtain

wi ·qI,2vj = δij ,

wi ∈ KerK†
Σ for i ≤ p,

vj ∈ KerK†
Σ for j ≤ n,

vj ∈ RanKΣ for j ≥ p+ 1.

(4.14)

We set now

πf2 =

n∑

j=1

vj ·qI,2f2wj . (4.15)

Lemma 4.7. (1) 1− π : Hs → Hs
reg is a projection;

(2) π ◦KΣ = 0;

(3) 1− π preserves KerK†
Σ;

(4) π† preserves RanKΣ.

Proof. The fact that π is a projection is easy. We have Kerπ = Hs
reg which

proves (1). We have π ◦KΣ = 0 since vi ∈ KerK†
Σ and

π†f2 =

n∑

j=1

wj ·qI,2f2vj.
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By (4.14) this implies that π† preserves RanKΣ which implies that π pre-

serves KerK†
Σ. ✷

Let us now construct the analog of the projection T in the singular case.
We fix two projections

π1 : H
s(Σ; Ṽ1 ⊗C

2) → KerRΣKΣ,

π2 : H
s(Σ; Ṽ2 ⊗ C

2) → RanKΣ ∩KerRΣ.

The projections πi are finite rank with smooth distributional kernels. Let
us define the map

(RΣKΣ)
−1RΣ : Hs

reg(Σ; Ṽ2 ⊗ C
2) → Hs+1(Σ; Ṽ1 ⊗ C

2) ∩Kerπ1,

such that f1 = (RΣKΣ)
−1RΣf2 for f2 ∈ Hs

reg is the unique solution of
{

RΣKΣf1 = RΣf2,

π1f1 = 0.
(4.16)

We set

Treg = 1l−KΣ(RΣKΣ)
−1RΣ : Hs

reg(Σ; Ṽ2 ⊗ C
2) → Hs(Σ; Ṽ2 ⊗ C

2). (4.17)

Lemma 4.8. (1)

Treg : Hs
reg(Σ; Ṽ2 ⊗ C

2) → KerRΣ

is a projection;

(2) Treg preserves Hs
reg(Σ; Ṽ2 ⊗ C

2) ∩KerK†
Σ;

(3) TregKΣ = KΣπ1.

Proof. We have RΣTreg = 0 hence RanTreg ⊂ KerRΣ and Treg = 1l on

KerRΣ which implies (1). (2) follows from K†
ΣKΣ = 0. If f2 = KΣg1, the

unique solution of (4.16) is f1 = (1− π1)g1 which implies (3). ✷

We set now

T = (1− π2) ◦ Treg ◦ (1− π) : Hs(Σ; Ṽ2 ⊗ C
2) → Hs(Σ; Ṽ2 ⊗ C

2). (4.18)

Proposition 4.9. (1) T : Hs → KerRΣ ∩Kerπ2 is a projection;
(2) TKΣ = 0;

(3) T preserves KerK†
Σ;

(4) c±2 Tc
∓
2 is smoothing.

Proof. From Lemma 4.8 (1) and Ranπ2 ⊂ KerRΣ we get that RΣT = 0, so
RanT ⊂ KerRΣ ∩ Kerπ2. Since KerRΣ ⊂ Hs

reg we have π = 0 on KerRΣ,
hence Treg(1 − π) = 1l on KerRΣ hence T = 1l on KerRΣ ∩ Kerπ2. This
proves (1).

By Lemma 4.7 (2) we have (1−π)KΣ = KΣ hence TKΣ = (1−π2)KΣπ1 =
0 by Lemma 4.8 (3) and the definition of π1, π2. This proves (2).

(3) follows from Lemma 4.8 (2) and Lemma 4.7 (3). To prove (4) we
argue as in the proof of Prop. 4.5 (3) using Prop. 4.3, and additionally the
fact that π, π2 have smooth distributional kernels. ✷
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5. Hadamard states

In this section we construct a Hadamard state by modifying the Hadamard
projectors c±2 using the projection T . As in the previous section we assume
that Σ is compact.

We start with the simpler regular case.

5.1. Regular case. Let us set

λ±
2Σ

··= ±T ∗ ◦ qI,2c
±
2 ◦ T. (5.1)

and as in 2.9.1:

Λ±
2
··= (ρ2G2)

∗λ±
2Σ(ρ2G2).

Theorem 5.1. The pair λ±
2Σ are the Cauchy surface covariances of a gauge

invariant Hadamard state for P , i.e.
(1) WF(Λ±

2 )
′ ⊂ N± ⊗N±.

(2) λ+
2Σ − λ−

2Σ = qI,2 on KerK†
Σ,

(3) λ±
2Σ = 0 on KercK

†
Σ × RanKΣ

(4) λ±
2Σ = λ±∗

2Σ, λ
±
2Σ ≥ 0 on KercK

†
Σ.

Therefore Λ±
2 are the covariances of a quasi-free Hadamard state on CCR(VP , QP ).

Proof. Let us first prove (1). We apply [G, Prop 11.1.1]. Let U2(t, s) be
the Cauchy evolution for D2. Writing T ∗qI,2 =·· qI,2T

†, we need to show

that WF(U2(·, 0))T
†c±2 T )

′ ⊂ (N± ∪ F)× T ∗Σ for some conic set F ⊂ T ∗M
with F ∩N = ∅.

By Prop. 4.5 c±2 Tc
∓
2 is smoothing, hence c±2 T

†c∓2 is smoothing, since

c±2 = (c±2 )
†. Therefore U2(·, 0)T

†c±2 T = U2(·, 0)c
±
2 T

†T modulo a smooth
kernel. So the result follows from the Hadamard property of c±2 .

Let us now prove (2). We have λ+
2 − λ−

2 = T ∗qI,2T . T preserves KerK†
Σ

by Prop. 4.5 (3) and Tf2 = f2 mod RanKΣ hence λ+
2 −λ−

2 = qI,2 on KerK†
Σ.

(3) follows from Prop. 4.5 (2).
Since RanT ⊂ KerRΣ and ±q2c

±
2 ≥ 0 on KerRΣ by Lemma 4.4, we

obtain (4). ✷

5.2. Singular case. We now consider the singular case. We need an ad-

ditional modification of c±2 since T ∗qI,2T 6= qI,2 on KerK†
Σ because of the

projection π. This modification is inspired by a construction in [FS, Subsect.
4.4]. Let

π̃f2 =

p∑

j=1

vj ·qI,2f2wj ,

and note using (4.14) that π̃ = π on KerK†
Σ.

Consider the hermitian form

ν ··= qI,2 − (1− π̃)∗qI,2(1− π̃)

= qI,2π̃
† + qI,2π̃ − q2π̃

†π̃.
(5.2)
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acting on C∞(Σ; Ṽ2⊗C
2). It has a smooth distributional kernel and a finite

rank. Identifying it with a selfadjoint operator using the Hilbertian scalar
product (·|·)Ṽ2⊗C2 , we can find ui ∈ C∞(Σ; Ṽ2 ⊗ C

2), 1 ≤ i ≤ q linearily
independent such that

ν =

q∑

i=1

αi|ui)(ui|, αi 6= 0.

We set

f2 ·λ
±
2Σf2 ··= ±Tf2 ·qI,2c

±
2 Tf2 ± (f2|1lR±(ν)νf2)Ṽ2⊗C2 , (5.3)

Λ±
2
··= (ρ2G2)

∗λ±
2Σ(ρ2G2).

Theorem 5.2. The pair λ±
2Σ are the Cauchy surface covariances of a gauge

invariant Hadamard state for P , i.e.
(1) WF(Λ±

2 )
′ ⊂ N± ⊗N±.

(2) λ+
2Σ − λ−

2Σ = qI,2 on KerK†
Σ,

(3) λ±
2Σ = 0 on KercK

†
Σ × RanKΣ

(4) λ±
2Σ = λ±∗

2Σ, λ
±
2Σ ≥ 0 on KercK

†
Σ.

Therefore Λ±
2 are the covariances of a quasi-free Hadamard state on CCR(VP , QP ).

Proof. The proof of (1) is identical to Thm. 5.1. Note that the additional
term in (5.3) produces a smooth additional term in the two-point functions
Λ±
2 .
Let us prove (2). We have using (5.2):

λ+
2Σ − λ−

2Σ = T ∗qI,2T + qI,2 − (1− π̃)∗qI,2(1− π̃).

Let us compute the first term in the r.h.s. on KerK†
Σ. Recall that T =

(1 − π2)Treg(1 − π). We have Treg(1 − π)f2 = (1 − π)f2 modulo RanKΣ

by (4.17). Since Ranπ2 ⊂ RanKΣ we obtain that Tf2 = (1 − π)f2 modulo

RanKΣ. By Prop. 4.9 T preserves KerK†
Σ hence:

Tf2 ·qI,2Tf2 = (1− π)f2 ·qI,2(1− π)f2 = (1− π̃)f2 ·qI,2(1− π̃)f2,

since π = π̃ on KerK†
Σ. Using the definition of ν in (5.2) we obtain that

λ+
2Σ − λ−

2Σ = qI,2 on KerK†
Σ.

We now prove (3). By Prop. 4.9 (2) TKΣ = 0. Since vj, wj ∈ KerK†
Σ for

1 ≤ j ≤ p, see (4.14), we obtain that π̃KΣ = π̃†KΣ = 0. Therefore ν = 0 on
RanKΣ hence λ±

2Σ = 0 on RanKΣ. This proves (3).
It remains to prove (4). The first term in the rhs of (5.3) is positive by

the same argument as in the proof of Thm. 5.2, since RanT ⊂ KerRΣ.
The second term is also clearly positive. This completes the proof of the
theorem. ✷
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