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A Phase Field model accounting for anisotropic elasticity as well as isotropic strain gradient viscoplasticity is employed to study the diffusion-controlled growth of acicular precipitates. Following some recent work [M. Cottura et al., Acta Mater., 2014], it is shown that an anisotropic eigenstrain can generate microstructures with the morphological and kinetic feature of Widmanstätten plates. Then, we demonstrate that when isotropic viscoplasticity is considered, the plate lengthening remains stationary in isothermal conditions, but features slower growth rates and larger tip radii.

liar morphologies. Around the 50's, two different pathways have been proposed that have shaped the subsequent research on the topics, with two different lines of reasoning. On one side, the nature of the transformation, i.e. either displacive or diffusive, considered at that time as mutually exclusive, has been early questioned and disputed. By means of habit plane analyses [5,6,7,8], careful observations of interface atomic structures [9,10], and critical assessments of the growth kinetics [11,12], it has been proposed that growth would preserve as much as possible the coherency of the interfaces by proceeding either by a shear dominated mechanism or by the lateral propagation of ledges with dislocation characters [13,14,15]. On the other side, the seminal work of Zener on predicting the kinetics of diffusion-controlled transformations [16] has given an essential impulsion: it has indeed settled a fertile approach based on solving the diffusion problem in microstructures with simplified shapes together with appropriate boundary conditions relying on the local equilibrium hypothesis [17,18,19,20,21,22,23]. If reasonable agreements with experiments have been achieved on the lengthening rates of Widmanstätten structures in different alloys, significant discrepancies have been observed in a number of cases [11,24,25] that have been attributed to different points discussed in [11,26,27], such as the local equilibrium or the maximum growth rate hypotheses.

Hence, although extensively studied for many years, it is still unclear how to predict the growth kinetics of these structures. We believe that there are two main reasons for this situation. First, because Widmanstätten plates feature a constant lengthening rate, models describing dendrite growth during solidification have been applied, which gives the prominent role to the interface energy, e.g. [22]. If this is legitimate for solid/liquid interfaces, attempts to reproduce Widmanstätten plates with phase field modeling (e.g. [28]) have shown that the required anisotropies of the interface energy feature unrealistic magnitudes. Second, contrary to dendrites, and despite approximate early attempts [29], there is no analytical theory encompassing both the diffusion-controlled interface migration and elasticity due to the long range nature of elasticity. Very recently, following [30], we have used the phase field approach to bring new insights into the still debated mechanism selecting the tip velocity and shape by highlighting the prominent role of the elastic driving forces [31]. The model employed incorporates driving forces generated by a diffusion field and elastic relaxation. It assumes that mechanical equilibrium is instantaneous, and that the time scale is controlled by diffusion. Therefore, our model handles the diffusive growth of Widmanstätten structures where elastic driving forces may play a major role. Conversely, it does not address transformations where the dominant mechanism is displacive i.e. where strain is the primary order parameter as it is the case in martensitic transformations [32] and as it has been suggested in other transformations in steels [START_REF] Bhadeshia | Bainite in Steels -Transformations, Microstructure and Properties[END_REF].

In the reference [31], we have shown that elastic anisotropy qualitatively changes the growth mechanism which may display a stationary regime. Based on calculations with generic elastic anisotropies, we have succeeded in rationalizing the different occurrences of Widmanstätten structures in different metallic alloys.

Usually, Widmanstätten structures are formed at intermediate temperatures where plasticity may operate to relax the transformation induced stresses. This argument has often been put forward to discard the necessity to involve elasticity in the modeling of diffusion-controlled transformations, contrary to our recent findings (see also [START_REF] Ammar | [END_REF]). Thus, it is legitimate to question the validity of our previous results when plasticity is accounted for.

To address this concern, we have used the Phase Field method. Indeed, it handles easily morphological evolutions at the mesoscale and is able to couple many phenomena. In addition to the concentration field c(r ,t), the model relies on a phase field ϕ(r , t) displaying constant values in the bulk phases: ϕ = 0 in β; ϕ = 1 in α. The mesoscopic free energy functional F is split into chemical, interfacial, elastic and viscoplastic contributions:

F = F ch (c, ϕ) + F el (c, ε ∼ el ) + F vp (α ∼ , p) (1) 
where ε ∼ el is the elastic strain tensor. The chemical free energy F ch accounts for the volume free energy associated with phase transformation and interface 3 energies.

F ch (c, ϕ) = V f hom (c, ϕ) + λ 1 2 |∇c| 2 + λ 2 2 |∇ϕ| 2 dV (2)
where the homogeneous contribution is approximated by a polynomial, whose coefficients are chosen to reproduce the equilibrium concentrations of the coexisting phases. The homogeneous free energy has been deduced from the expression proposed in [35]. The precise form of the homogeneous free energy is not relevant when studying growth, e.g. [36]. In this work, f hom has been deduced from the expression proposed in [35] in which all order parameters have been set to same value ϕ. In the framework of linear elasticity, the potential elastic energy in stress free conditions reads:

F el (ε ∼ el ) = 1 2 V λ ≈ : ε ∼ el : ε ∼ el dV (3) 
where λ ≈ is the local elastic tensor. λ ≈ is assumed to depend linearly on c(r ) and is thus space dependent [37]. The total strain ε ∼ (r ) can be split into three contributions, ε T stands for the eigenstrain associated with the α phase. In diffusive phase transformations, static mechanical equilibrium can be assumed because the relaxation of the elastic waves is by orders of magnitude faster than the evolution of c and ϕ. In the case of homogeneous elasticity, this problem can be solved analytically in Fourier space [38]. Otherwise, a fixed-point algorithm is used at each time step to numerically solve mechanical equilibrium [37].

∼ (r ) = ε ∼ el (r ) + ε ∼ 0 (r ) + ε ∼ p (r
The evolutions of c and ϕ are governed by kinetic equations relating rates to the corresponding driving forces, defined as the functional derivatives of F with respect to the fields. Assuming linear relationships, the Cahn-Hilliard equation is used for the conserved concentration field and the Allen-Cahn equation for the non-conserved order parameter one:

ċ(r , t) = M ∇ 2 δF δc(r , t) (4) φ(r , t) = -L δF δϕ(r , t) (5) 
where dots denote partial time derivatives and where M and L are assumed constant for simplicity. Following [35], the Phase Field method is coupled to a mesoscale strain gradient viscoplastic model. Also, for the sake of simplicity, the present formulation is limited to isotropic viscoplasticity even though anisotropy can be introduced with slip systems. The full derivation within a consistent thermodynamic framework is presented in [35].

The viscoplastic free energy depends on two internal variables α ∼ and p related to kinematic and isotropic hardening respectively [39], as follows:

F vp (α ∼ , p) = V 1 3 C α ∼ : α ∼ + 1 2 H p 2 + 1 2 A |∇p| 2 dV (6) 
The last term in (6), proportional to the square gradient of p introduces an intrinsic length scale in the plastic model ξ = A/E defined in [35], E being Young's modulus. The thermodynamic forces associated with the internal variables are given by:

X ∼ (r , t) = δF δα ∼ (r , t) = 2 3 C α ∼ (7) R(r , t) = δF δp(r , t) = H p -A ∆p (8) 
These thermodynamic forces correspond to the hardening variable defining the elastic domain and the corresponding plastic/viscoplastic potential [39]: X ∼ is the center of the elastic domain, and R its radius.

The kinetic equations of the viscoplastic model are expressed as:

ṗ = J 2 (S ∼ ) -R 0 -R K n (9) ε ∼ p = 3 ṗ S ∼ 2 J 2 (S ∼ ) (10) 
α ∼ = ε ∼ p -D p α ∼ ṗ (11) 
p follows a Norton type flow rule with J 2 (S ∼ ) the second invariant of the deviatoric S ∼ of effective stress S ∼ = σ ∼ -X ∼ , and where R 0 is the initial yield stress and R the isotropic hardening. It is worth noting that R includes both linear isotropic hardening and the strengthening resulting from the plastic size effect (8). In heterogeneous materials, the viscoplastic parameters C, D p , A, n, K and R 0 depend on position. In our case, only β undergoes plastic strain while α behaves elastically. To reproduce this behavior all the viscoplastic parameters have been set at their values in the β phase, except the initial yield stress R 0

which is interpolated as follows R 0 (r ) = R0 + R 0 tanh θ ϕ 2 (r ) -1/2 with R0 = (R α 0 +R β 0 )/2, R 0 = (R α 0 -R β 0
)/2 and θ a parameter controlling plasticity in the interface.

The following calculations are not intended to study a specific material but rather to investigate the generic role of isotropic plasticity during the growth of acicular precipitates in metallic alloys at high temperatures. Consequently, the Table 1: Phase field and viscoplasticity parameters. This choice ensures that the interface width is 6d in order to avoid pinning by the numerical grid. Without loss of generality, the equilibrium concentrations of the phases are set to c 0 β = 0 and c 0 α = 1. We have used L = 100 M d -2 , where d is the grid spacing, to ensure that kinetics is much faster for ϕ than for c. M is such as to recover the interdiffusion coefficient D. We have used θ = 100 which leads to variations of the viscoplastic parameters over one grid spacing d, a distance smaller than the interface width. Finally, purely for numerical reasons, the value of R α 0 is chosen large enough (100 GPa) to prevent any plastic relaxation of α even when ξ = 0, and the linear isotropic hardening modulus H and yield stress in β R β 0 are set to zero to mimic a high temperature situation where plastic relaxation always occurs.

For the sake of comparison, we first recall the main conclusions found recently in [31] concerning the role played by anisotropic elasticity in the growth of Widmanstätten plates. We focus here on a particular eigenstrain (only ε T 22 = 0) which features a single soft elastic direction corresponding to an infinite plate with an interface perpendicular to [010] as the equilibrium shape. We refer the reader to [31] for a complete investigation of different generic shapes of the eigenstrain able to generate Widmanstätten structures.

Consistently with many experimental observations, we have considered a 2D system with 3D elasticity (invariant along [001]). Preliminary calculations have shown that a 1024 × 384 nodes box is necessary to obtain free growth with the periodic conditions. We have considered a small grid spacing d = 1.8 nm leading to a total size 1.9 × 0.7 µm 2 . Initially a circular nucleus of radius 18 nm, with a concentration c 0 α = 1 and an eigenstrain ε T 22 = 4% is introduced in a supersaturated β matrix with c ∞ = 0.3. The initial size has been chosen to be greater than the critical size above which the plate shape induced by the anisotropic elastic energy is favored over the circular shape favored by the isotropic interface energy. Growth is thus promoted along the [100] direction from the very beginning of the process.

The evolution of the tip position, along the horizontal axis, has been determined from the level set ϕ = 0.5 (Fig. 1 -left, green curve). After a transient stage shorter than 1 min, the lengthening is linear in time. The growth rate is quantitatively measured by fitting the position after the transient stage with a polynomial ax m +b. A linear regime is admitted when m = 1±0.01 for a growth of at least 100 nm. The stationary growth rate is 0.9 nm/s. The determination of the tip radius R p requires a more elaborated procedure and relies on high order interpolations of the phase field to reach a precision smaller than the grid spacing [31]. The evolution of R p first decreases during 3 min down to a plateau at the value of 8 nm (Fig. 2, green). Moreover, the effective equivalent von Mises stress J 2 (S ∼ ) is plotted in Fig. 1 (right) to reveal that plastic relaxation will be activated in front of the plate tips.

Next, we have investigated the role that viscoplasticity can play in the growth of Widmanstätten plates using the coupled phase field-viscoplasticity model.

Beyond the elastic anisotropy, that we show to be of prime importance for generating Widmanstätten structures, other relevant ingredients are included in the plasticity model such as the hardening and viscosity. In particular, it accounts for the size effect of the plastic behavior beyond the volume fraction effect, i.e. for the hardening (resp. softening) induced by the decrease (resp. increase) of the size of the plastic regions. During the acicular precipitate growth, since the stresses generated by the eigenstrain are strongly localized in front of the precipitate tip as shown in Fig. 1 (right), it is important to account for this size effect.

Considering the same configuration as for the elastic case, we have performed calculations with ξ = 10 nm and without intrinsic plastic length ( ξ = 0), i.e. conventional viscoplasticity. Figure 3 compares the corresponding microstructures predicted after t = 5 min. In both cases, the initial ellipsoidal precipitates grow from the supersaturated matrix into acicular precipitates elongated along the [100] direction. Both follow also stationary growth regimes after short initial transient stages (Fig. 1 -left, blue and red). Concomitantly, the tip radii R p decrease during the transient stages down to stationary values (Fig. 2, blue and red). The case with ξ = 0 (red) features the slowest growth rate with the largest tip radius whereas the case with ξ = 10 nm (blue) is in between the elastic case and ξ = 0. Hence, plasticity only seems to reduce the growth rate and to coarsen the plate tip without changing the mechanism. Finally, it is worth noting that R p V p remains nearly the same for elasticity and conventional viscoplasticity, whereas it is slightly larger for ξ = 10 nm (Fig. 2 inset). This is likely due to the influence of the intrinsic plastic length on the tip selection.

From a quantitative point of view, spurious effects cannot be discarded when the tip radius is not much larger than the interface width δ. However, we have shown in a previous paper [31] that local equilibrium at the interface is recovered even if R p ≈ δ.

In Fig. 3, in agreement with the distribution of the equivalent Von Mises stress in Fig. 1 (right), the plastic strain rate is non-zero mainly in front of the plate tip. This distribution explains the decrease in growth rate with respect to the elastic case because it relaxes the coherent stresses at the interface of the tip.

The plastic length introduces the following differences with conventional plasticity: (i) p varies more smoothly in space, and (ii) the plastic activity is weaker. This second feature is due to the hardening associated with the confinement of plasticity in the matrix close to the tip. Indeed, the magnitude of this strengthening increases with ∆p as given by Eq. 8. Due to this back stress, increasing ξ makes β behave closer to pure elasticity. A dedicated study remains to be done to characterize the thickening of the plate and the tip shape. As already observed in the elastic case, the tip shape deviates from the classic Ivantsov parabola [40].

A few major conclusions can be drawn from the present investigation. (i) First, we confirm that the case without mechanics cannot always be considered as a limit case of plastic relaxation, as usually implicitly assumed in the modeling of diffusion-controlled transformations, and as found previously in simpler cases [41]. Indeed, with a shear dominated eigenstrain, neglecting elasticity would simply generate circular precipitates. (ii) The stationary growth obtained when only elasticity is accounted for is still predicted with isotropic plastic relaxation, with or without plastic length: plasticity only modifies the couple tip radius/growth rate. (iii) Conventional viscoplasticity can be considered as an upper bound for relaxation corresponding to a lower bound for the lengthening rate. It gives qualitatively the same trend as decreasing the magnitude of the eigenstrain [35], but it is unlikely that this similarity is quantitative because the pattern of plastic strain is inhomogeneous. (iv) Finally, the influence of the plastic length is only moderate and cannot be considered as the main selection mechanism for the tip radius as proposed in [42].

Though our model has been shown to reproduce the generic features of the Widmanstätten structures in different alloys, it may not be directly applied to study the growth of acicular structures in steels, in particular sheaves of subunits as more commonly observed in bainite [START_REF] Bhadeshia | Bainite in Steels -Transformations, Microstructure and Properties[END_REF]. Quantitative comparisons against experiments would require improvements along several directions which are in progress: the identification of the intrinsic plastic length by comparison with experimental behaviors as in [35]; and the extension towards anisotropic viscoplasticity by introducing slip systems [43]. Finally, it would be of great interest to investigate the growth of Widmanstätten colonies where the elastic interactions and their screening by plastic relaxation may be changed compared to single plates.
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 1 Figure 1: Left: Lengthening vs. time. Right: Snapshot at t = 4 min of the effective Von Mises equivalent stress J2(S ∼ ) in the matrix, from dark blue to red (only 1/4 and 1/3 of the full box is shown along [100] and [010] directions respectively).

6 physical

 6 parameters used for the calculations (Tab. 1) are not those of a particular alloy, but have nonetheless been selected to comply with realistic orders of magnitude. Homogeneous elasticity is assumed. The non-dimensional gradient coefficients λ1 = λ 1 /(∆f d 2 ) and λ2 = λ 2 /(∆f d 2 ), where d is the grid spacing and ∆f is an energy density scale, are chosen as λ1 = 0.21 and λ2 = 9.8 10 -4 .
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 2 Figure 2: Tip radius Rp vs. time. Inset: Velocity Vp vs. Rp.
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 3 Figure 3: Snapshots at t = 5 min (same enlargement as in Fig. 1) of c(r ) (blue: matrix, red: precipitate) on left, and of ṗ(r ) (from dark blue to red) on right, for ξ = 10 nm (top) and ξ = 0 (bottom).