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1. Introduction

Machine learning methods have achieved significant success in solving problems across
various domains, including computer vision, medical analysis, image and speech recognition.
Despite these achievements, the limited availability of sufficiently large training datasets re-
mains a bottleneck, restricting the advancement of machine learning methods. Most machine
learning algorithms typically assume that both training and testing data originate from the
same feature space and share the same distribution. Any disparities in data distribution
or feature spaces can significantly degrade the model’s performance. Moreover, collecting a
substantial number of new samples for retraining a new model can be both challenging and
expensive. Therefore, there is a growing need to find ways to reuse existing learning models.
To address this issue, recent research has introduced the concept of Transfer Learning [1, 2].

In this work, we introduce a novel geometric transfer learning approach of learning models
on the space of probability measures, denoted as P+. The statistical analysis of probability
measures is gaining increasing importance in both applications and theory. For many appli-
cations in signal processing, text mining, data analysis, and machine learning, the natural
way to model objects is as a probability distribution. Our objective is to systematically ex-
plore the geometry of P+ and develop a powerful transfer learning algorithm that enhances
the performance of statistical models on target data.

2. Geometry of the manifold of probability measures

In this section, we introduce the problem formulation and the Riemannian geometric
structures of the space of probability measures P+ equipped with a Riemannian metric.

2.1. Problem Formulation

In this paper, we address the problem of transfer learning on the Riemannian manifold
of probability measures. Specifically, we are given two datasets: PN1 = {µi}N1

i=1 and PN2 =
{µi}N2

i=1 from two distinct domains. These datasets consist ofN1 andN2 probability measures,
with N2 � N1. Our objective is to transfer a model that has been developed for a learning
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task in the source domain, PN1 , which could include PCA, linear regression, and logistic
regression models, to construct an improved model for the target data, PN2 = {µi}N2

i=1. To
achieve this, we establish the Riemannian structure of the probability simplex embedded
with the Fisher-Rao metric and introduce a method for transfer learning using Levi-Civita
parallel transport.

2.2. Riemannian calculus on P+

In this section, we develop Riemannian calculus on P+ with the Fisher-Rao metric,
deriving various geometric concepts, such as geodesics, exponential maps, logarithm maps,
and the Levi-Civita parallel transport.

2.2.1. Manifold structure

Let I = {1, . . . , n, n + 1}, n ∈ N, be a finite sample space. Let F(I) = {f : I → R} be
the algebra of real functions on I. Its unity function 1I or simply 1 is given by 1(i) = 1, for
i = 1, . . . , n, n+ 1. A canonical basis of F(I) is defined by

ei(j) =

{
1, if i = j,

0, otherwise,
(1)

and hence, every f ∈ F(I) has the representation

f =
∑
i∈I

f iei, (2)

where f i = f(i). We will denote by S(I) the dual space of F(I), the space of R-valued linear
forms on F(I). With the Riesz representation theorem, this vector space is interpreted as
the vector space of signed measures on I, namely

S(I) = {µ : F(I)→ R | µ =
∑
i∈I

µiδ
i}, (3)

where µi = µ(ei) and δi is considered as the Dirac measure supported at i ∈ I. It is also
shown that S(I) is a smooth manifold. Besides we have a vector space isomorphism between
the space F(I) and S(I), given by

F(I) −→ S(I)

f 7−→ fµ :=
∑
i∈I

f iµiδ
i. (4)

The inverse is the Radon-Nikodym derivative with respect to µ, denoted as φµ,

φµ : S(I) −→ F(I)

ν =
∑
i∈I

νiδ
i 7−→ dν

dµ
:=
∑
i∈I

νi
µi
ei. (5)

In particular, the tangent space at the point µ ∈ S(I) is given by

TµS(I) = {µ} × S(I). (6)
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Let us consider the following submanifolds of S(I):

Sε(I) =

{
µ =

∑
i∈I

µiδ
i |
∑
i∈I

µi = ε, ε ∈ R

}
,

and

M+(I) = {µ ∈ S(I) | µi > 0, ∀ i ∈ I} ,

the space of finite strictly positive measures on I.

Definition 1. A probability measure on a finite sample space I is a map µ : I → R defined
for any A ⊂ I by µ(A) =

∑
i∈A µi and which satisfies:

1. For all i ∈ I, µi ≥ 0 and µ(∅) = 0.

2.
∑

i∈I µi = 1.

3. µ({i}) = µi.

We denote by P+(I) the space of strictly positive probability measures on I,

P+(I) =

{
µ =

∑
i∈I

µiδ
i | µi > 0, ∀i ∈ I, and

∑
i∈I

µi = 1

}
.

We check at once that P+(I) ⊂M+(I) ⊂ S(I). Therefore, as an open submanifold of S(I),
M+(I) has the same tangent space at the point µ ∈ M+(I). P+(I) is a submanifold of
S(I), and clearly, for µ ∈ P+(I), we have:

TµP+(I) = {µ} × S0(I)

= {(µ, v) | µ ∈ P+(I) and v ∈ S0(I)} .

We want to endow P+(I) with a Riemannian metric. To this end, we define a local coordinate
map on P+(I). Let U be an open set of Rn given by

U =

{
x = (x1, . . . , xn) ∈ Rn | xi > 0,∀i ∈ I, and

n∑
i=1

xi < 1

}
.

We define a map ϕ as

ϕ : P+(I) −→ U,

µ =
∑
i∈I

µiδ
i 7−→ (ϕ1(µ), ..., ϕn(µ)) = (x1(µ), ..., xn(µ)),

such that (ϕ1(µ), ..., ϕn(µ)) = (µ1, . . . , µn). Clearly, ϕ is an homomorphism and its inverse
is given by

ϕ−1 : U −→ P+(I),

(x1, . . . , xn) 7−→ µ =
n∑
i=1

xiδ
i +

(
1−

n∑
i=1

xi

)
δn+1.
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Given a point µ ∈ P+(I), let
∂

∂xi

∣∣∣
µ

be the tangent vector at µ given by

∂

∂xi

∣∣∣
µ

=
∂

∂xi

∣∣∣
ϕ(µ)

ϕ−1 =
(
δi − δn+1

)
, for i = 1, . . . , n.

Thus,

{
∂

∂xi

∣∣∣
µ
, i = 1, ..., n

}
define a local frame field of TµP+(I) at a point µ ∈ P+(I).

Similarly we can define the dual basis of
∂

∂xi

∣∣∣
µ
, the basis of the cotangent bundle T ∗µP+(I) =

{µ} × (F(I)/R) by dxi = ei + R, i = 1, . . . , n.

Remark 1. Let µ ∈ P+(I) and v =
∑

i∈I viδ
i ∈ TµP+(I). It can be easily seen that, for

v ∈ S0(I)

v =
n+1∑
i=1

viδ
i =

n∑
i=1

viδ
i −

n∑
i=1

viδ
n+1

=
n∑
i=1

vi(δ
i − δn+1) =

n∑
i=1

vi
∂

∂xi
.

S(I) is a finite-dimensional linear space, and therefore, it can be naturally equipped with a
metric. For v, w ∈ TµS(I), we define the inner product as

< v,w >µ= µ

(
dv

dµ
.
dw

dµ

)
=
∑
i

viwi
µi

, (7)

where
dv

dµ
=
∑

i∈I
vi
µi
ei ∈ F(I), represents a simple version of the Radon–Nikodym derivative

with respect to µ. This metric induces a metric on M+(I). The probability manifold
P+(I) as a submanifold ofM+(I), is endowed with the Fisher-Rao metric. Hence, following
the geometry structures in M+(I) equipped with Fisher information metric, we derive the
corresponding ones in P+(I).

Definition 2. Let µ be a probability measure in P+(I). Given two tangents vectors v and
w in TµP+(I), the Fisher-Rao metric gµ : TµP+(I)× TµP+(I)→ R is defined by

gµ(v, w) =
∑
i∈I

viwi
µi

, (8)

and ||v||µ =
√

gµ(v, v). With respect to the coordinate map (P+(I), ϕ), the Fisher-Rao
metric is expressed as

gij(µ) =

{
1
µi

+ 1
µi+1

, if i = j,
1

µn+1
, otherwise,

for i, j = 1, · · · , n. And the components of the inverse matrix are given by

gij(µ) =

{
µi(1− µi), if i = j,

−µiµj, otherwise.
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Our goal to make P+(I) as a Riemannian manifold is fully satisfied. Our next goal is
to compute explicit expressions of geometric structures on P+(I), especially, the Levi-civita
parallel transport which will be essential to make our transfer learning approach of statistical
models on P+(I).

2.2.2. Fisher-Rao metric on P+

Let X (P+(I)) denote the set of smooth vector fields on P+(I). Essentially, at each
point µ ∈ P+(I), the Levi-Civita connection associated with the Fisher-Rao metric ∇ :
X (P+(I)) × X (P+(I)) → X (P+(I)) gives a new vector field, notated ∇XY , telling us how
the vector field Y is changing in the direction X and satisfying for all X, Y, Z ∈ X (P+(I)),{

Xg(Y, Z) = g(∇XY, Z) + g(Y,∇XZ),

∇XY −∇YX = [X, Y ].
(9)

In the local coordinate map (P+(I), ϕ), the Levi-Civita connection is defined by the Christof-
fel symbols Γkij : P+(I)→ R such that ∇∂xi∂xj = Γkij∂xk.

Proposition 1. With respect to the local coordinate map (P+(I), ϕ), the Christoffel sym-
bols associated with the Fisher-Rao metric are given by

Γkij =



1

2

xk
1−

∑n
h=1 xh

, i 6= j,

1

2

xk
1−

∑n
h=1 xh

+
1

2

xk
xi
, i = j 6= k,

1

2

xk
1−

∑n
h=1 xh

− 1

2

1− xk
xk

, i = j = k,

(10)

Proof. The smooth functions Γkij are easily computed through the characterization of the
Levi-Civita connection by the Koszul formula obtained from ( 9) computed for all the circular
permutations of X, Y, Z ∈ X (P+(I)),

g(∇XY, Z) =
1

2
{Xg(Y, Z) + Y g(Z,X)− Zg(X, Y )

+g([X, Y ], Z)− g([Y, Z], X)− g([X,Z], Y )}.
(11)

Now, in the Koszul formula we set X = ∂xi, Y = ∂xj and Z = ∂xl. We get

Γkij =
1

2

n∑
l=1

gkl (gil,j + gjl,i − gij,l) , (12)

for i, j, k ∈ {1, ..., n}, where gil,j =
∂gil
∂xj

, gjl,i =
∂gjl
∂xi

, and gij,l =
∂gij
∂xl

. In the local coordinate

system, the Fisher-Rao metric and its inverse are given by

gij =


1

xi
+

1

1−
∑n

h=1 xh
, if i = j,

1

1−
∑n

h=1 xh
, if i 6= j,

(13)

gij =

{
xi(1− xi), if i = j,

−xixj, if i 6= j,
(14)
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for i, j = 1, . . . , n. Now if we take the derivative of ( 13) by xl, we get

gij,l =


− 1

(xi)2
+

1

(1−
∑n

h=1 xh)
2
, if i = j = l,

1

(1−
∑n

h=1 xh)
2
, otherwise.

(15)

Replace ( 15) in ( 12), the formula follows.

Definition 3. Let X ∈ X (P+(I)) be a vector field on P+(I). Then in the local coordinate
(P+(I), ϕ), we have the representation X =

∑n
i=1Xi∂xi. X is called a constant vector field

on P+(I) if all Xi are independent of µ.

Theorem 1. Given two constant vector fields X, Y on P+(I), the Levi-Civita connection at
µ ∈ P+(I) is given by

∇XY (µ) = −1

2

(
dX

dµ

dY

dµ
− gµ(X, Y )

)
µ. (16)

Proof. Let X =
∑

i∈I Xiδ
i, Y =

∑
i∈I Yiδ

i and Z =
∑

i∈I Ziδ
i be constant vector fields on

P+(I). Thus, we get [X, Y ] = [Y, Z] = [X,Z] = 0 and consequently ( 11) gives

g(∇XY, Z) =
1

2
{Xg(Y, Z) + Y.g(X,Z)− Z.g(X, Y )} . (17)

Set µ =
∑

i∈I µiδ
i ∈ P+(I), and α(t) = µ + vt, a curve on P+(I) such that µ(0) = µ and

µ̇(0) = v = X(µ). We have

Xgµ(Y, Z) =
d

dt

∣∣∣
t=0

gµ(t)(Y, Z)

=
d

dt

∣∣∣
t=0

∑
i∈I

YiZi
µi + tvi

= −
∑
i∈I

viYiZi
µ2
i

= −
∑
i∈I

XiYiZi
µ2
i

.

Similarly, one obtains formulae for Y g(X,Z) and Zg(X, Y ). Now replacing the above results
in ( 17), we get

gµ(∇XY, Z)

=
1

2

{
−
∑
i∈I

XiYiZi
µ2
i

−
∑
i∈I

XiYiZi
µ2
i

+
∑
i∈I

XiYiZi
µ2
i

}

= −1

2

∑
i∈I

XiYiZi
µ2
i

. (18)

On the other hand, we have∑
i∈I

gµ(X, Y )Zi = gµ(X, Y )
∑
i∈I

Zi = 0, (19)
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since Z is a constant vector field on P+(I). Then ( 18) can be written as

gµ(∇XY, Z)

= −1

2

∑
i∈I

(
XiYi
µ2
i

− gµ(X, Y )

)
µi
Zi
µi

= gµ

(
−1

2

(
dX

dµ

dY

dµ
− gµ(X, Y )

)
µ, Z

)
.

which completes the proof.

2.2.3. Geodesics on P+

Theorem 2. Let µ =
∑

i∈I µiδ
i be a probability measure in P+(I) and v ∈ TµP+(I) a unit

tangent vector, i.e., ||v||µ = 1. Then the geodesic α that satisfies α(0) = µ and α̇(0) = v is
given by α(t) =

∑
i∈I αi(t)δ

i with

αi(t) =

(
cos

t

2
+
α̇i(0)

αi(0)
sin

t

2

)2

αi(0), (20)

where αi(0) = µi and α̇i(0) = vi, ∀i ∈ I.

Proof. Let α(t) =
∑

i∈I αi(t)δ
i and α̇(t) =

∑
i∈I α̇i(t)δ

i. Then for each t, we have{∑
i∈I αi(t) = 1, and αi(t) > 0,∀i ∈ I,∑
i∈I α̇i(t) = 0.

(21)

Set X a constant vector field in P+(I). From the condition ( 9) of Levi–Civita connection,
we have

gα(t)(∇α̇(t)α̇(t), X) = α̇(t)
(
gα(t)(α̇(t), X)

)
− gα(t)(α̇(t),∇α̇(t)X). (22)

With the properties of Levi-Civita connection, to compute ∇α̇(t)X, the tangent vector α̇(t)
can be considered as a constant vector field on P+(I) when t is fixed. Therefore, applying
( 16) for α̇(t) and X we get,

∇α̇(t)X = −1

2

(
dα̇(t)

dα(t)

dX

dα(t)
− gα(t)(α̇(t), X)

)
α(t)

= −1

2

∑
i∈I

(
α̇i
αi

Xi

αi
−
∑
j∈I

α̇jXj

αj

)
αiδ

i. (23)

Taking into account of ( 21), the last term in ( 22) becomes

g(α̇(t),∇α̇(t)X)

=

〈
dα̇

dα
,
d∇α̇(t)X

dα

〉
α(t)

= −1

2

∑
i∈I

α̇i
αi

(
α̇i
αi

Xi

αi
−
∑
j∈I

α̇jXj

αj

)
αi

= −1

2

∑
i∈I

α̇2
iXi

α2
i

. (24)
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Now, we compute the second term in ( 22). We have

α̇(t)
(
gα(t)(α̇(t), X)

)
=

d

dt
gα(t)(α̇(t), X) =

∑
i∈I

d

dt

(
α̇i
αi

)
Xi. (25)

Combining ( 24) and ( 25) in ( 22), we get

gα(t)(∇α̇(t)α̇(t), X) =
∑
i∈I

(
d

dt

(
α̇i
αi

)
+

1

2

α̇2
i

α2
i

)
Xi. (26)

Let’s define the function F (t) as

F (t) = −
∑
i∈I

(
d

dt

(
α̇i
αi

)
+

1

2

α̇2
i

α2
i

)
αi(t)

= −
∑
i∈I

d

dt

(
α̇i
αi

)
αi(t)−

1

2
gα(t)(α̇(t), α̇(t)). (27)

Hence, the measure

ν(t) =
∑
i∈I

(
d

dt

(
α̇i
αi

)
+

1

2

α̇2
i

α2
i

+ F (t)

)
αiδ

i (28)

belongs to Tα(t)P+. In this way, ( 26) can be written as gα(∇α̇α̇, X) = gα(ν,X). Since X is
an arbitrary constant vector field, we get

∇α̇α̇ = ν =
∑
i∈I

(
d

dt

(
α̇i
αi

)
+

1

2

α̇2
i

α2
i

+ F (t)

)
αiδ

i. (29)

Therefore, α(t) =
∑

i∈I αi(t)δ
i is a geodesic if and only if

d

dt

(
α̇i
αi

)
+

1

2

(
α̇i
αi

)2

+ F (t) = 0, ∀i ∈ I,∑
i∈I α̇i(t) = 0, ∀t.

(30)

Our next goal is to solve ( 30). We may remark that if α is a geodesic then gα(t)(α̇(t), α̇(t)) is
constant along α(t). Consequently, taking into account of the assumption that ||γ̇(0)||µ = 1,
we can assert that

gα(t)(α̇(t), α̇(t)) =
∑
i∈I

α̇2
i

αi
≡ 1. (31)

Thus ∑
i∈I

d

dt

(
α̇i
αi

)
αi =

d

dt

∑
i∈I

(
α̇i
αi
αi

)
−
∑
i∈I

α̇2
i

αi
= −1. (32)
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Which gives that F (t) = 1
2
. Substituting this result in ( 30), we obtain

d

dt

(
α̇i
αi

)
+

1

2

(
α̇i
αi

)2

+
1

2
= 0, ∀i ∈ I. (33)

Set ωi(t) =
α̇i(t)

αi(t)
. Equation ( 33) is written as

d

dt
ωi +

1

2
ω2
i +

1

2
= 0, ∀i ∈ I,

The solution of this differential equation is given by ωi = tan
(
− t

2
+ Θi

)
, where Θi is con-

stant, i ∈ I. Hence, we have

α̇i
αi

= tan

(
−1

2
t+ Θi

)
,∀i ∈ I

and αi(t) = Ωi cos2
(
− t

2
+ Θi

)
, where Ωi is constant, and i ∈ I. Taking into account initial

conditions, we find that

Θi = arctan

(
α̇i(0)

αi(0)

)
, (34)

Ωi =
α2
i (0) + α̇2

i (0)

αi(0)
. (35)

which proves the theorem.

Corollary 1. The geodesic α(t) with α(0) = µ and α̇(0) = v, where v is a nontrivial tangent
vector (not necessary unit), is given by

α(t) =
∑
i∈I

(
cos

t‖v‖µ
2

+
vi

µi‖v‖µ
sin

t‖v‖µ
2

)2

µiδ
i. (36)

Proposition 2. The Fisher Rao distance dFR : P+(I) × P+(I) → [0, π) between two mea-
sures µ, ν ∈ P+(I) under the Fisher-Rao metric is given by

dFR(µ, ν) = 2 arccos

(∑
i∈I

√
µiνi

)
. (37)

To prove proposition ( 2), we will show the following lemma given in [39].

Lemma 3. Let

S+
(0,2)(I) =

{
f ∈ F(I) | f i > 0,∀i ∈ I and

∑
i∈I

(f i)2 = 4

}

9



be the positive sector of the sphere centered at 0 with radius 2. As a submanifold of F(I) it
carries the induced standard metric of F(I). That is for a given point f ∈ S+

(0,2)(I) and two

tangents vectors p, q ∈ TfS+
(0,2)(I), we have

〈p, q〉f =
∑
i∈I

piqi. (38)

Then the map Φ : P+(I) −→ S+
(0,2)(I) defined by

µ =
∑
i∈I

µiδ
i 7−→ 2

∑
i∈I

√
µiei

is an isometry.

Proof of the lemma. It is clear that Φ is bijective. Now, let v, w be in TµP+(I). We have〈
∂Φ

∂v
(µ),

∂Φ

∂w
(µ)

〉
=

〈
d

dt
Φ(µ+ vt)

∣∣∣
t=0
,
d

dt
Φ(µ+ wt)

∣∣∣
t=0

〉
=

〈∑
i∈I

vi√
µi
ei,
∑
i∈I

wi√
µi
ei

〉
=
∑
i∈I

viwi
µi

= gµ(v, w).

Proof of the Proposition. By virtue of Lemma 3, we get

dFR(µ, ν) = d(Φ(µ),Φ(ν)) = 2 arccos

(∑
i∈I

√
µiνi

)
.

Theorem 4. Let µ, ν be two different probability measures in P+(I). Then there exists a
unique geodesic α : [0, l] → P+(I), t → α(t), joining two points µ and ν, with α(0) = µ,
α(l) = ν and l = dFR(µ, ν), given by

α(t) =
∑
i∈I

(
cos

t

2
+
dτ

dµ
(i) sin

t

2

)2

µiδ
i, (39)

where τ is the tangent vector in TµP+(I) defined by

τ =
1

sin l
2

∑
i∈I

(√
dν

dµ
−
∑
j∈I

√
dν

dµ
(j)µ(j)

)
µiδ

i. (40)
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Proof. The proof falls naturally into three parts.
Step 1 First, let us check that τ is a tangent vector in TµP+(I). Indeed,

1

sin l
2

∑
i∈I

(√
dν

dµ
(i)−

∑
j∈I

√
dν

dµ
(j)µ(j)

)
µi

=
1

sin l
2

(∑
i∈I

√
dν

dµ
(i)µi −

∑
j∈I

√
dν

dµ
(j)µ(j)

)
= 0. (41)

Then, since (∑
j∈I

√
dν

dµ
(j)µ(j)

)2

=

(∑
j∈I

√
µjνj

)2

= cos2 l

2
. (42)

it follows that

〈τ, τ〉µ =
1

sin2 l
2

∑
i∈I

(√
dν

dµ
(i)−

∑
j∈I

√
dν

dµ
(j)µ(j)

)2

µi

=
1

sin2 l
2

∑
i∈I

ν(i)−

(∑
j∈I

√
dν

dµ
(j)µ(j)

)2


=
1

sin2 l
2

(
1− cos2 l

2

)
= 1. (43)

hence τ is a unit tangent vector.
Step 2 Now let us examine that the curve α(t) defined in ( 39) satisfies α(0) = µ and
α(1) = ν. It is easily seen that for t = 0, α(0) = µ. Now for t = l, we have

α(l) =
∑
i∈I

(
cos

l

2
+
dτ

dµ
(i) sin

l

2

)2

µiδ
i, (44)

By ( 40) we get

dτ

dµ
sin

l

2
=
∑
i∈I

(√
dν

dµ
(i)−

∑
j∈I

√
dν

dµ
(j)µ(j)

)
ei

=
∑
i∈I

(√
dν

dµ
(i)− cos

l

2

)
ei. (45)

Hence,

α(l) =
∑
i∈I

(
cos

l

2
+

√
dν

dµ
(i)− cos

l

2

)2

µiδ
i

=
∑
i∈I

νiδ
i = ν. (46)
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Step 3 Now we go to prove the uniqueness of the curve. Let µ(t) = expµ τt and µ̃(t) =
expµ τ̃ t be unit speed geodesics corresponding with τ and τ̃ , and satisfying µ(0) = µ̃(0) = µ
and µ(l) = µ̃(l) = ν. By means of Theorem 2, we have

µ(t) =
∑
i∈I

(
cos

t

2
+
dτ

dµ
sin

t

2

)2

µiδ
i, (47)

µ̃(t) =
∑
i∈I

(
cos

t

2
+
dτ̃

dµ
sin

t

2

)2

µiδ
i. (48)

From later condition, we have(
cos

l

2
+
dτ

dµ
(i) sin

l

2

)2

=

(
cos

l

2
+
dτ̃

dµ
(i) sin

l

2

)2

,∀i ∈ I (49)

⇒ cos
l

2
+
dτ

dµ
(i) sin

l

2
= ±

(
cos

l

2
+
dτ̃

dµ
(i) sin

l

2

)
,∀i ∈ I. (50)

Define

I± =

{
i ∈ I

∣∣∣ cos
l

2
+
dτ

dµ
(i) sin

l

2

= ±
(

cos
l

2
+
dτ̃

dµ
(i) sin

l

2

)} (51)

Then we have I ∪ I+ = I. Moreover I ∩ I+ = ∅. Indeed, if there exists i ∈ I ∩ I+ then

νi =

(
cos

t

2
+
dτ

dµ
sin

t

2

)2

µi = 0, (52)

contradict to ν ∈ P+. Sine 0 < l < π, we have

I+ = {i ∈ I|τi = τ̃i} , (53)

I =

{
i ∈ I|τi + τ̃i = −2µi cot

l

2

}
. (54)

Suppose I 6= ∅, since τ and τ̃ are unit tangent vectors at µ, we have∑
i∈I+

τi +
∑
i∈I

τi =
∑
i∈I+

τ̃i +
∑
i∈I

τ̃i = 0 (55)

⇒
∑
i∈I

(
τ̃i + 2µi cot

l

2

)
+
∑
i∈I

τ̃i = 0. (56)

Since ( 56) we see that if I = I, then cot l
2

= 0 contradicts to 0 < l < π. So I 6= I. We have
the claim below.
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Claim 1. For all µ ∈ P+ and 0 < l < π. If τ, τ̃ ∈ TµP+. Let

I+ = {i ∈ I|τi = τ̃i} , (57)

I =

{
i ∈ I|τi + τ̃i = −2µi cot

l

2

}
. (58)

then I = ∅.

By means of the Claim, we prove the uniqueness of the geodesic ( 39) defined with the unit
tangent vector ( 40).

The proof of Claim 1 will be given in Appendix 1.

Corollary 2. Let

ε = {(µ, v) |α(t, µ, v) is defined on an interval containing [0, l] }

The exponential map expµ : ε −→ P+(I) is defined as

expµ(v) =
∑
i∈I

(
cos
‖v‖µ

2
+

vi
µi‖v‖µ

sin
‖v‖µ

2

)2

µiδ
i. (59)

Similarly, given two points µ and ν on P+(I), the inverse exponential map (also known as
the logarithmic map) at µ, logµ : P+(I) −→ ε is defined for any ν ∈ P+(I) by

logµ(ν) =
l

sin l
2

∑
i∈I

(√
dν

dµ
(i)−

∑
j∈I

√
dν

dµ
(j)µ(j)

)
µiδ

i. (60)

2.2.4. Levi-civita parallel transport on P+

Let us consider two points µ, ν ∈ P+(I), a tangent vector v ∈ TµP+(I) and a geodesic
curve α : [0, l]→ P+(I) on P+(I) such that α(0) = µ and α(l) = ν. We would like to map v
from TµP+(I) = Tα(0)P+(I) to TνP+(I) = Tα(l)P+(I). We introduce X, a vector field defined
along the geodesic α, such that X(µ) = v and ∇α̇(t)X(α(t)) = 0. We say that the tangent
vector v is constant along the geodesic curve α with respect to ∇.

Definition 4. A metric parallel transport on P+(I) is the map

Γα(0)�α(t) : Tα(0)P+(I)→ Tα(t)P+(I) (61)

such that for any v, w ∈ TµP+(I), and for t ∈ [0, l] we have

gα(0) (v, w) = gα(t)

(
Γα(0)→α(t)(v),Γα(0)→α(t)(w)

)
. (62)

Γ is the Levi-Civita parallel transport along the geodesic curve α on P+(I) with respect to
the Fisher-Rao metric.
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Rewriting equation ∇α̇(t)X(α(t)) = 0, we conclude that computing X(t) = X(α(t)) requires
solving a linear first order differential equations on P+(I) given by

dXk

dt
+
∑
i,j

αkij
dαi
dt
Xj = 0, for k = 1, . . . , n. (63)

We check at once that it is difficult to solve Eq.( 63) directly. Hence we will use Eq.( 16).

Theorem 5. Let µ be a probability measure in P+(I) and v ∈ TµP+(I) a unit tangent vector,
i.e., ||v||µ = 1. Let α : [0, l] → P+(I) be a geodesic curve such that α(0) = µ and α̇(0) = v.
The Levi-civita parallel transport of a vector w ∈ TµP+(I) to Tα(t)P+(I), is given by

Γα(0)�α(t)(w) =
∑
i∈I

√
αi(t)

(
−F (0)

√
µi

(
2 sin

t

2
− 2

vi
µi

cos
t

2

)
+

wi√
µi
− 2F (0)

vi√
µi

)
δi,

(64)

where F (0) = 1
2
gµ(v, w).

Proof. We can proceed analogously to the proof of Theorem 2. Thus, let α(t) =
∑

i∈I αi(t)δ
i

be a geodesic curve, and define α̇(t) =
∑

i∈I α̇i(t)δ
i. Consider the vector field X on α defined

by X(α(t)) =
∑

i∈I Xi(α(t))δi, for t ∈ [0, l], as the parallel transport of vector w along α.
Then {

∇α̇(t)X(t) = 0

X(0) = w
, (65)

where we write X(α(t)) simply X(t) when no confusion can arise. Let Y be a constant vector
field (in the sense of Definition 3) on P+(I), we have

gα(t)

(
∇α̇(t)X(t), Y

)
= α̇(t)

(
gα(t)(X(t), Y )

)
− gα(t)

(
X(t),∇α̇(t)Y

)
. (66)

Applying Theorem 1, we get

∇α̇Y = −1

2

∑
i∈I

(
α̇i
αi

Yi
γi
−
∑
j∈I

α̇jYj
αj

)
αiδ

i. (67)

Hence the last term in ( 66) becomes

gα(X,∇α̇Y ) = −1

2

∑
i∈I

Xi

αi

(
α̇i
αi

Yi
αi
−
∑
j∈I

α̇jYj
αj

)
αi

= −1

2

∑
i∈I

XiYiα̇i
α2
i

. (68)
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Let us now compute the second term in ( 66). We obtain

α̇(t)
(
gα(t)(X, Y )

)
=

d

dt
gα(t)(X(t), Y )

=
∑
i∈I

d

dt

(
Xi

αi

)
Yi. (69)

Consequently, Equation ( 66) becomes

gα(∇α̇X, Y ) =
∑
i∈I

(
d

dt

(
Xi

αi

)
+

1

2

Xiα̇i
α2
i

)
Yi. (70)

Define the function F (t) by

F (t) = −
∑
i∈I

(
d

dt

(
Xi

αi

)
+

1

2

Xiα̇i
α2
i

)
αi(t)

= −
∑
i∈I

d

dt

(
Xi

αi

)
αi(t)−

1

2
gα(t)(X(t), α̇(t)). (71)

Then, ∀t ∈ [0, l], the probability measure

ν(t) =
∑
i∈I

(
d

dt

(
Xi

αi

)
+

1

2

Xiα̇i
α2
i

+ F (t)

)
αiδ

i

belongs to Tα(t)P+(I). Thus, Equation ( 70) can be written as

gα(∇α̇X, Y ) = gα(ν, Y ). (72)

Since Y is an arbitrary constant vector field, we get

∇α̇X = ν =
∑
i∈I

(
d

dt

(
Xi

αi

)
+

1

2

Xiα̇i
α2
i

+ F (t)

)
αiδ

i. (73)

Therefore, X(t) is the parallel transport of the vector w along the geodesic curve α(t) if and
only if 

d

dt

(
Xi

αi

)
+

1

2

Xiα̇i
α2
i

+ F (t) = 0, ∀i ∈ I,

X(0) = w.
(74)

Our next concern will be to solve Eq.( 74). We remind that

gα(t)(X(t), α̇(t)) = gα(0)(X(0), α̇(0)). (75)

Moreover ∑
i∈I

d

dt

(
Xi

αi

)
αi =

d

dt

∑
i∈I

(
Xi

αi
αi

)
−
∑
i∈I

(
Xiα̇i
αi

)
= −gα(0)(X(0), α̇(0)). (76)
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Which gives that F (t) is a constant function and F (t) = F (0) = 1
2
gα(0)(X(0), α̇(0)). Hence,

substituting this result in Eq.( 74) we get

d

dt

(
Xi

αi

)
+

1

2

Xiα̇i
α2
i

+ F (0) = 0, ∀i ∈ I. (77)

Set ωi =
Xi

αi
. Equation ( 77) can be written as

d

dt
ωi +

1

2

α̇i
αi
ωi + F (0) = 0, ∀i ∈ I. (78)

Solution of the first order differential equation ( 78) is given by

ωi(t) =
1√
αi(t)

(
−F (0)

√
αi(0)

(
2 sin

t

2
− 2

α̇i(0)

αi(0)
cos

t

2

)
+ Θi) for Ωi constant, i ∈ I.

(79)

Therefore,

Xi =
√
αi(t)

(
−F (0)

√
αi(0)

(
2 sin

t

2
− 2

α̇i(0)

αi(0)
cos

t

2

)
+ Θ

)
, (80)

for Θi constant, i ∈ I. According to the initial conditions, it follows that

Θ =
wi√
µi
− 2F (0)

vi√
µi
. (81)

We conclude that

Xi(t) =
√
αi(t)

(
−F (0)

√
µi

(
2 sin

t

2
− 2

vi
µi

cos
t

2

)
+

wi√
µi
− 2F (0)

vi√
µi

)
, i ∈ I.

(82)

and it is easy to check that, ∀t ∈ [0, l], X(t) =
∑

i∈I Xi(t)δ
i ∈ Tγ(t)P+(I) and it is the

Levi-civita parallel transport of the vector w along the geodesic curve α(t).

Theorem 6. Given two distinct probability measures µ and ν in P+(I), a nontrivial tangent
vector w ∈ TµP+(I) and a geodesic curve α : [0, l]→ P+(I) such that α(0) = µ and α(l) = ν.
The Levi-Civita parallel transport, Γµ�ν : TµP+(I) → TνP+(I), that transports a vector w
from TµP+(I) = Tα(0)P+(I) to TνP+(I) = Tα(l)P+(I) given by

Γµ�ν(w) =
∑
i∈I

√
νi

(
−F (0)

√
µi

(
2 sin

l

2
− 2

τi
µi

cos
l

2

)
+

wi√
µi
− 2F (0)

τi√
µi

)
δi,

(83)

where l = 2 arccos
∑

i∈I
√
µiνi, F (0) = 1

2
gµ(w, τ), and τ is the unit tangent vector

τ =
1

sin l
2

∑
i∈I

(√
dν

dµ
(i)−

∑
j∈I

√
dν

dµ
(j)µ(j)

)
µiδ

i. (84)

Proof. It suffices to use the equation of the geodesic curve α(t) joining two points µ and ν
given by Theorem 4 together with taking t = l in theorem 5, the proof follows.
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2.2.5. Riemannian mean on P+

Using Riemannian geodesic distance (37), the Riemannian mean of a set of probability
measures {µi}Ni=1 on P+(I) is given by

µ∗ = argminµ

N∑
i=1

dFR(µ, µi)
2 (85)

In the literature, local optima of the optimization problem (85) are known as Karcher means
while a global optimum is called the Fréchet mean [44, 42, 43]. In general Riemannian
manifold, the Riemannian mean for a set of points is not unique. Given a set of probability
measure on P+(I), existence and unicity of the Karcher mean can be proved [40, 42] and
the solution can be obtained using gradient descent algorithm.

3. Transfer Learning With Parallel Transport

Motivated by the theoretical insight from the previous section, this section studies the
transfer learning problem on the space of probability measures P+(I). Specifically, we explore
the benefits of using the Riemannian geometry of P+(I) and the integration of geodesic tools
into transfer learning. To tackle this problem, we consider two subsets, PN1 = {µi}N1

i=1 and
PN2 = {µi}N2

i=1 from two different domains consisting of N1 and N2 probability measures,
respectively, with N2 � N1. We denote their respective Karcher means as µ∗1 and µ∗2. Let
α : [0, l]→ P+(I) be the geodesic curve given in (39), joining µ∗1 and µ∗2, with α(0) = µ∗1 and
α(l) = µ∗2. Finally, let Γµ∗1�µ∗2 : Tµ∗1P+(I)→ Tµ∗1P+(I), be the Levi-Civita parallel transport
along the geodesic curve α(t) given by (83). The goal of transfer learning is to leverage
useful information from the source data PN1 , to enhance the model for the target data
PN2 . However, direct data transport from the source to the target can be computationally
expensive, especially with large source datasets. To address this challenge, we introduce a
transfer learning algorithm for statistical models, aiming to leverage the model developed
for the source domain, PN1 , as a foundation to create a robust learning model for the target
domain, PN2 . The proposed algorithm consists of four main steps:

• Step 1: Project the set of probability measure PN1 to the tangent space Tµ∗1P+(I) by
ai = logµ∗1(µi), i = 1, ..., N1, using the logarithm map (60). Similarly, lift the set of
probability measure PN2 to the tangent space Tµ∗2P+(I) by bi = logµ∗2(µi), i = 1, ..., N2.

• Step 2: Learn a statistical model S1 on Tµ∗1P+(I) (respectively a statistical model S2

on Tµ∗2P+(I)).

• Step 3: Parallel transport S1 to Tµ∗2P+(I) along the geodesic curve α by computing
ST = Γµ∗1�µ∗2(S1).

• Step 4: Compute the fused model on Tµ∗2P+(I) using shrinkage estimation [41]:
Sλ = λST + (1− λ)S2, 0 ≤ λ ≤ 1.

We conclude that the transfer step relies on parallel transport to move a statistical
model from Tµ∗1P+(I) to Tµ∗2P+(I) along the unique geodesic α joining µ∗1 and µ∗2. We also
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mention that the preceding steps primarily utilized the existence of a unique geodesic curve
connecting two points on P+(I). In the sequel, we will provide a detailed account of how
parallel transport is applied to transfer some statistical models of interest, including Linear
Regression, Logistic Regression, and Principal Component Analysis (PCA).

3.1. Linear regression transport
Let gµ∗1 : Tµ∗1P+(I)×Tµ∗1P+(I)→ R, (v, w)→ gµ∗1(v, w) be the inner product on Tµ∗1P+(I)

given by (8). It can equivalently be expressed as gµ∗1(v, w) = vTGµ∗1
w, where Gµ∗1

denotes the

Fisher-Rao matrix. Given a data set D = {(ai, ti), i = 1, ..., N1} where {ai}N1
i=1 are tangents

vectors on Tµ∗1P+(I) defined by ai = logµ∗1(µi), i = 1, ..., N1 and {ti}N1
i=1 ∈ R denote their

corresponding label, a linear regression model Tµ∗1P+(I)→ R is defined as

yi = aTi β + β0 = gµ∗1(ai, G
−1
µ∗1
β) + β0, (86)

where β0 ∈ R and β ∈ Tµ∗1P+(I). Such parameters can be estimated using the squared error
loss function li : R→ R+, li(yi) = (yi− ti)2 = (aTi β+β0− ti)2. More precisely, the estimates

(β̂0, β̂) are solutions of the minimization problem

(β̂0, β̂) = argmin
β∈Tµ∗1P+(I),β0∈R

N1∑
i=1

li(a
T
i β + β0). (87)

Proposition 3 (Linear regression transport). The tangent vector δ̂ ∈ Tµ∗2P+(I) de-

fined by δ̂ = Gµ∗2
Γµ∗1�µ∗2(G−1

µ∗1
β̂) is the estimate for the weight parameter δ ∈ Tµ∗2P+(I) on

the linear regression model Tµ∗2P+(I)→ R given by ỹi =
(
Γµ∗1�µ∗2(ai)

)T
δ + β0 . Specifically,

we have

δ̂ = argmin
δ∈Tµ∗2P+(I)

N2∑
i=1

li(
(
Γµ∗1�µ∗2(ai)

)T
δ + β0) (88)

Proof. The proof is immediate since the Levi-civita parallel transport (83) conserve inner
product. More accurately, we have gµ∗1(ai, G

−1
µ∗1
β) = gµ∗2(Γµ∗1�µ∗2(ai),Γµ∗1�µ∗2(G−1

µ∗1
β)).

As shown in Proposition (3), the Levi-civita parallel transport (83) enables us to effi-
ciently transport linear regression model defined on Tµ∗1P+(I) to the tangent space Tµ∗2P+(I).
Actually, parallel transport (83) allows a vector ai in the tangent space Tµ∗1P+(I) to be trans-
ported to the tangent space Tµ∗2P+(I), by ensuring that the inner product between ai and
the direction of the geodesic α, joining µ∗1 and µ∗2, is conserved. Therefore, the estimated

parameter δ̂ is exactly the solution of the linear regression model on Tµ∗2P+(I) defined by
the transported tangent vectors Γµ∗1�µ∗2(ai) and is easily computed as the parallel trans-
port of the solution (87) of the linear regression model (86) on Tµ∗1P+(I). Furthermore,
let yi = bTi η + η0 be the linear regression model on Tµ∗2P+(I) defined by tangents vectors
bi = logµ∗2(µi), i = 1, ..., N2. Since the two linear regression models ỹi and yi live in the same
tangent space Tµ∗2P+(I), we can use shrinkage estimation to compute a solution for the fused

model as ηλ = λδ̂ + (1 − λ)η̂, 0 ≤ λ ≤ 1, where η̂ represent the least square estimate for
the slope parameter η of the linear regression model yi. It is clear that the larger λ is, the
better is the influence of the linear regression model ỹi. We summarize the different steps of
our approach for linear regression transport in Algorithm ??.
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3.2. Logistic regression transport

Let D = {(ai, ti)}N1
i=1 be a data set with respect to class labels, where ai ∈ Tµ∗1P+(I)

defined by ai = logµ∗1(µi) and ti ∈ {0, 1}, i = 1, ..., N1. The probability of ti being in class 1
can be represented by a logistic regression function defined by

p(ai) =
1

1 + e−(aTi ω+ω0)
=

1

1 + e
−
(
gµ∗1

(ai,G
−1
µ∗1
ω)+ω0

) (89)

where ω0 ∈ R and ω ∈ Tµ∗1P+(I). The probability of ti being in class 0 is given by: P (ti =
0|ai) = 1 − p(ai). Instead of least-squares, we make use of the maximum likelihood (MLE)
to find the estimate prameters ω0 and ω in the logistic regression function. Nevertheless, it
is easily seen that the logistic regression function is defined by means of the inner product
gµ∗1 on Tµ∗1P+(I). Hence, with the property that Levi-civita parallel transport preserves the
inner product between tangent vectors, we can parallel transport logistic regression model to
Tµ∗2P+(I) to obtain a better classification model in this last tangent space. More precisely, if
(ω̂0, ω̂) denote the maximum likelihood estimators (MLE) of (ω0, ω), then the tangent vector
$̂ ∈ Tµ∗2P+(I) defined by $̂ = Gµ∗2

Γµ∗1�µ∗2(G−1
µ∗1
ω̂) is the estimate for the weight parameter

$ on the logistic regression model given by

p(Γµ∗1�µ∗2(ai)) =
1

1 + e
−
(

Γµ∗1�µ∗2
(ai)T$+ω0

) (90)

Similar to the linear regression model, we make use of shrinkage estimation to compute a
solution for the fused logistic regression model on Tµ∗2P+(I) represented by the transported
data Γµ∗1�µ∗2(ai), i = 1, ..., N1 and tangents vectors bi = logµ∗2(µi), i = 1, ..., N2. An equivalent
version of Algorithm ?? holds for the transport of logistic regression model.

3.3. Principle component analysis transport

Given the two populations PN1 = {µi}N1
i=1 and PN2 = {µi}N2

i=1, the commonly used covari-
ance matrix estimator is the sample covariance matrix defined as

CN1 =
1

N1 − 1

N1∑
i=1

logµ∗1(µi) logµ∗1(µi)
T =

1

N1 − 1

N1∑
i=1

aia
T
i =

1

N1 − 1
AAT

and

CN2 =
1

N2 − 1

N2∑
i=1

logµ∗2(µi) logµ∗2(µi)
T =

1

N2 − 1

N2∑
i=1

bib
T
i =

1

N2 − 1
BBT

where A = [a1, ..., aN1 ] ∈ Rn×N1 and B = [b1, ..., bN2 ] ∈ Rn×N2 . Since PN2 is of small size, CN2

may be a poor estimate of the true covariance matrix of PN2 . Hence, our goal is to enhance
the covariance estimation CN2 by exploiting CN1 . As a consequence, a well-performed PCA
model is constructed on the tangent space Tµ∗2P+(I).

Proposition 4 (PCA transport). Let V DUT be the SVD of A = [a1, ..., aN1 ] ∈ Tµ∗1P+(I)
with the diagonal entries of D is sorted in non-increasing order and let V D2V T be the eigen-
decomposition of AAT . Then
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a) Ṽ DUT is the SVD of Ã = [ã1, . . . , ãN1 ] = Γµ∗1→µ∗2({ai}N1
i=1) in Tµ∗1P+(I) and Ṽ D2Ṽ T is

the eigen-decomposition of ÃÃT .

b) If k1 < n1, then the k1-dimensional PCA model of Ã is given by {ṽi}k1i=1

and {Di,i/
√
N1 − 1}k1i=1.

Proof. a) Let V DUT be the SVD of A = [a1, ..., aN1 ] ∈ Tµ∗1P+(I), thus V = [v1, ..., vn] ∈ Rn×n

is an orthogonal matrix which contains eigenvectors of AAT and U = [u1, ..., uN1 ] ∈ RN1×N1

is an orthogonal matrix which contains the eigenvectors of ATA. Let’s define the matrix
Z = [z1, ..., zN1 ] ∈ Rn×N1 by Z = V TA = SUT . Thus A = V Z and its vector column ai is
consequently defined by ai = V zi =

∑n
j=1 vjZj,i

∼= Rn1 . By linearity of Γµ∗1�µ∗2 , we get

ãi = Γµ∗1�µ∗2(ai) = Γµ∗1�µ∗2

(
N1∑
j=1

vjZj,i

)
=

N1∑
j=1

ṽjᵀZj,i, (91)

which means

Ã = [ṽ1, ..., ṽn1 ]Z = [ṽ1, ..., ṽn1 ]SU
T = Ṽ SUT . (92)

Since Γµ∗1�µ∗2 is a metric parallel transport, Ṽ is an orthogonal matrix. Furthermore, we

assert that Ṽ SUT is the SVD of Ã. Moreover,

ÃÃT = Ṽ DUTUDṼ T = Ṽ D2Ṽ T . (93)

Hence, Ṽ D2Ṽ T is the eigen-decomposition of the covariance matrix ÃÃT .

b) Follows directly from the proof of part a).

Again, we can apply shrinkage estimation to combine the two covariance matrices CN2

and C̃N1 = 1
N1−1

ÃÃT as follow,

Cλ = λC̃N1 + (1− λ)CN2 , 0 ≤ λ ≤ 1. (94)

It is easily seen that in the case λ = 1, Cλ performs extremely well in modeling unseen
examples of the small-sample population PN2 . Moreover, for PCA, let V = [v1, ..., vn] ∈ Rn×n

an orthogonal matrix which contains eigenvectors of BBT . We can consider {ṽi}k1i=1 and
{Di,i/

√
N1 − 1}k1i=1 as a PCA model on Tµ∗2P+(I), as we can also construct a fused model

represented by an orthonormalization of the subspace {ṽ, v} formed by k1 eigenvectors of
Ṽ and k2 eigenvectors of V and their corresponding (k1, k2) eigen-values. We summarize
different steps of transfer learning covariance matrix and PCA model in Algorithm ??.

4. Conclusion

In this paper, we proposed a new transfer learning approach of learning models on the
space of probability measures P+ using the analytic expression of parallel transport under the
Levi-Civita connection. We provided the mathematical foundation of the proposed transfer
learning method. Specifically, we established new results in the geometry of the probability
manifold. Finally, an experimental study was conducted to demonstrate the effectiveness of
our framework.
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Appendix 1. Proof of Claim 1

Proof. We proof the Claim by induction on the degree of I. If |I| is one or two the Claim is
true since I+ is not empty. Suppose the Claim is trus for |I| = n. We go to prove the Claim
for |I| = n+ 1. Let µ ,τ , τ̃ and l like in the Claim. Suppose I 6= ∅ then |I | ≥ 2. Let g, h be
two distinct index in I , this means τg + τ̃g = −2µg cot l

2
and τh + τ̃h = −2µh cot l

2
. Now let

k ∈ I+ and define three measures τ ′, τ̃ ′, µ′ on I \ {k} as follow

τ ′ =
∑

i∈I,i 6=k,h,g

τiδ
i + τgδ

g + (τh + τk)δ
h, (.1)

τ̃ ′ =
∑

i∈I,i 6=k,h,g

τ̃iδ
i + (τ̃g + 2τ̃k)δ

g + (τ̃h − τ̃k)δh, (.2)

µ′ =
∑

i∈I,i 6=k,h,g

µiδ
i + (µg + µk)δ

g + µhδ
h. (.3)

We have τ ′, τ̃ ′ ∈ Tµ′P+(I \ {k}), and h ∈ I 6= ∅. This contradicts to the hypothesis. This
shows the Claim for |I| = n+ 1.
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