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Introduction

Machine learning methods have achieved significant success in solving problems across various domains, including computer vision, medical analysis, image and speech recognition. Despite these achievements, the limited availability of sufficiently large training datasets remains a bottleneck, restricting the advancement of machine learning methods. Most machine learning algorithms typically assume that both training and testing data originate from the same feature space and share the same distribution. Any disparities in data distribution or feature spaces can significantly degrade the model's performance. Moreover, collecting a substantial number of new samples for retraining a new model can be both challenging and expensive. Therefore, there is a growing need to find ways to reuse existing learning models. To address this issue, recent research has introduced the concept of Transfer Learning [START_REF] Thrun | Learning to Learn: Introduction and Overview[END_REF][START_REF] Pan | A Survey on Transfer Learning[END_REF].

In this work, we introduce a novel geometric transfer learning approach of learning models on the space of probability measures, denoted as P + . The statistical analysis of probability measures is gaining increasing importance in both applications and theory. For many applications in signal processing, text mining, data analysis, and machine learning, the natural way to model objects is as a probability distribution. Our objective is to systematically explore the geometry of P + and develop a powerful transfer learning algorithm that enhances the performance of statistical models on target data.

Geometry of the manifold of probability measures

In this section, we introduce the problem formulation and the Riemannian geometric structures of the space of probability measures P + equipped with a Riemannian metric.

Problem Formulation

In this paper, we address the problem of transfer learning on the Riemannian manifold of probability measures. Specifically, we are given two datasets:

P N 1 = {µ i } N 1
i=1 and P N 2 = {µ i } N 2 i=1 from two distinct domains. These datasets consist of N 1 and N 2 probability measures, with N 2 N 1 . Our objective is to transfer a model that has been developed for a learning task in the source domain, P N 1 , which could include PCA, linear regression, and logistic regression models, to construct an improved model for the target data, P N 2 = {µ i } N 2 i=1 . To achieve this, we establish the Riemannian structure of the probability simplex embedded with the Fisher-Rao metric and introduce a method for transfer learning using Levi-Civita parallel transport.

Riemannian calculus on P +

In this section, we develop Riemannian calculus on P + with the Fisher-Rao metric, deriving various geometric concepts, such as geodesics, exponential maps, logarithm maps, and the Levi-Civita parallel transport.

Manifold structure

Let I = {1, . . . , n, n + 1}, n ∈ N, be a finite sample space. Let F(I) = {f : I → R} be the algebra of real functions on I. Its unity function 1 I or simply 1 is given by 1(i) = 1, for i = 1, . . . , n, n + 1. A canonical basis of F(I) is defined by

e i (j) = 1, if i = j, 0, otherwise, (1) 
and hence, every f ∈ F(I) has the representation

f = i∈I f i e i , (2) 
where f i = f (i). We will denote by S(I) the dual space of F(I), the space of R-valued linear forms on F(I). With the Riesz representation theorem, this vector space is interpreted as the vector space of signed measures on I, namely

S(I) = {µ : F(I) → R | µ = i∈I µ i δ i }, (3) 
where µ i = µ(e i ) and δ i is considered as the Dirac measure supported at i ∈ I. It is also shown that S(I) is a smooth manifold. Besides we have a vector space isomorphism between the space F(I) and S(I), given by

F(I) -→ S(I) f -→ f µ := i∈I f i µ i δ i . ( 4 
)
The inverse is the Radon-Nikodym derivative with respect to µ, denoted as φ µ ,

φ µ : S(I) -→ F(I) ν = i∈I ν i δ i -→ dν dµ := i∈I ν i µ i e i . (5) 
In particular, the tangent space at the point µ ∈ S(I) is given by

T µ S(I) = {µ} × S(I). (6) 
Let us consider the following submanifolds of S(I):

S (I) = µ = i∈I µ i δ i | i∈I µ i = , ∈ R , and 
M + (I) = {µ ∈ S(I) | µ i > 0, ∀ i ∈ I} ,
the space of finite strictly positive measures on I.

Definition 1. A probability measure on a finite sample space I is a map µ : I → R defined for any A ⊂ I by µ(A) = i∈A µ i and which satisfies:

1. For all i ∈ I, µ i ≥ 0 and µ(∅) = 0. 2.

i∈I µ i = 1. 3. µ({i}) = µ i .
We denote by P + (I) the space of strictly positive probability measures on I,

P + (I) = µ = i∈I µ i δ i | µ i > 0, ∀i ∈ I,
and
i∈I µ i = 1 .
We check at once that P + (I) ⊂ M + (I) ⊂ S(I). Therefore, as an open submanifold of S(I), M + (I) has the same tangent space at the point µ ∈ M + (I). P + (I) is a submanifold of S(I), and clearly, for µ ∈ P + (I), we have:

T µ P + (I) = {µ} × S 0 (I) = {(µ, v) | µ ∈ P + (I) and v ∈ S 0 (I)} .
We want to endow P + (I) with a Riemannian metric. To this end, we define a local coordinate map on P + (I). Let U be an open set of R n given by

U = x = (x 1 , . . . , x n ) ∈ R n | x i > 0, ∀i ∈ I, and n i=1 x i < 1 .
We define a map ϕ as

ϕ : P + (I) -→ U, µ = i∈I µ i δ i -→ (ϕ 1 (µ), ..., ϕ n (µ)) = (x 1 (µ), ..., x n (µ)),
such that (ϕ 1 (µ), ..., ϕ n (µ)) = (µ 1 , . . . , µ n ). Clearly, ϕ is an homomorphism and its inverse is given by

ϕ -1 : U -→ P + (I), (x 1 , . . . , x n ) -→ µ = n i=1 x i δ i + 1 - n i=1 x i δ n+1 .
Given a point µ ∈ P + (I), let ∂ ∂x i µ be the tangent vector at µ given by

∂ ∂x i µ = ∂ ∂x i ϕ(µ) ϕ -1 = δ i -δ n+1 , for i = 1, . . . , n.
Thus, ∂ ∂x i µ , i = 1, ..., n define a local frame field of T µ P + (I) at a point µ ∈ P + (I).

Similarly we can define the dual basis of ∂ ∂x i µ , the basis of the cotangent bundle T * µ P + (I) = {µ} × (F(I)/R) by dx i = e i + R, i = 1, . . . , n.

Remark 1. Let µ ∈ P + (I) and v = i∈I v i δ i ∈ T µ P + (I). It can be easily seen that, for v ∈ S 0 (I)

v = n+1 i=1 v i δ i = n i=1 v i δ i - n i=1 v i δ n+1 = n i=1 v i (δ i -δ n+1 ) = n i=1 v i ∂ ∂x i .
S(I) is a finite-dimensional linear space, and therefore, it can be naturally equipped with a metric. For v, w ∈ T µ S(I), we define the inner product as

< v, w > µ = µ dv dµ . dw dµ = i v i w i µ i , (7) 
where Definition 2. Let µ be a probability measure in P + (I). Given two tangents vectors v and w in T µ P + (I), the Fisher-Rao metric g µ :

dv dµ = i∈I v i µ i e i ∈ F(I),
T µ P + (I) × T µ P + (I) → R is defined by g µ (v, w) = i∈I v i w i µ i , (8) 
and

||v|| µ = g µ (v, v).
With respect to the coordinate map (P + (I), ϕ), the Fisher-Rao metric is expressed as

g ij (µ) = 1 µ i + 1 µ i+1 , if i = j, 1 µ n+1 , otherwise, for i, j = 1, • • • , n.
And the components of the inverse matrix are given by

g ij (µ) = µ i (1 -µ i ), if i = j, -µ i µ j , otherwise.
Our goal to make P + (I) as a Riemannian manifold is fully satisfied. Our next goal is to compute explicit expressions of geometric structures on P + (I), especially, the Levi-civita parallel transport which will be essential to make our transfer learning approach of statistical models on P + (I).

2.2.2. Fisher-Rao metric on P + Let X (P + (I)) denote the set of smooth vector fields on P + (I). Essentially, at each point µ ∈ P + (I), the Levi-Civita connection associated with the Fisher-Rao metric ∇ : X (P + (I)) × X (P + (I)) → X (P + (I)) gives a new vector field, notated ∇ X Y , telling us how the vector field Y is changing in the direction X and satisfying for all X, Y, Z ∈ X (P + (I)),

Xg(Y, Z) = g(∇ X Y, Z) + g(Y, ∇ X Z), ∇ X Y -∇ Y X = [X, Y ]. (9) 
In the local coordinate map (P + (I), ϕ), the Levi-Civita connection is defined by the Christoffel symbols Γ k ij :

P + (I) → R such that ∇ ∂x i ∂x j = Γ k ij ∂x k . Proposition 1.
With respect to the local coordinate map (P + (I), ϕ), the Christoffel symbols associated with the Fisher-Rao metric are given by

Γ k ij =              1 2 x k 1 -n h=1 x h , i = j, 1 2 x k 1 -n h=1 x h + 1 2 x k x i , i = j = k, 1 2 x k 1 -n h=1 x h - 1 2 1 -x k x k , i = j = k, (10) 
Proof. The smooth functions Γ k ij are easily computed through the characterization of the Levi-Civita connection by the Koszul formula obtained from ( 9) computed for all the circular permutations of X, Y, Z ∈ X (P + (I)),

g(∇ X Y, Z) = 1 2 {Xg(Y, Z) + Y g(Z, X) -Zg(X, Y ) +g([X, Y ], Z) -g([Y, Z], X) -g([X, Z], Y )}. ( 11 
)
Now, in the Koszul formula we set X = ∂x i , Y = ∂x j and Z = ∂x l . We get

Γ k ij = 1 2 n l=1 g kl (g il,j + g jl,i -g ij,l ) , (12) 
for i, j, k ∈ {1, ..., n}, where g il,j = ∂g il ∂x j , g jl,i = ∂g jl ∂x i , and g ij,l = ∂g ij ∂x l . In the local coordinate system, the Fisher-Rao metric and its inverse are given by

g ij =      1 x i + 1 1 -n h=1 x h , if i = j, 1 1 -n h=1 x h , if i = j, (13) 
g ij = x i (1 -x i ), if i = j, -x i x j , if i = j, (14) 
for i, j = 1, . . . , n. Now if we take the derivative of ( 13) by x l , we get

g ij,l =      - 1 (x i ) 2 + 1 (1 -n h=1 x h ) 2 , if i = j = l, 1 (1 -n h=1 x h ) 2 , otherwise. (15) 
Replace ( 15) in [START_REF] Tan | Transitive transfer learning[END_REF], the formula follows.

Definition 3. Let X ∈ X (P + (I)) be a vector field on P + (I). Then in the local coordinate (P + (I), ϕ), we have the representation X = n i=1 X i ∂x i . X is called a constant vector field on P + (I) if all X i are independent of µ.

Theorem 1. Given two constant vector fields X, Y on P + (I), the Levi-Civita connection at µ ∈ P + (I) is given by

∇ X Y (µ) = - 1 2 dX dµ dY dµ -g µ (X, Y ) µ. (16) 
Proof. Let X = i∈I X i δ i , Y = i∈I Y i δ i and Z = i∈I Z i δ i be constant vector fields on P + (I). Thus, we get [X, Y ] = [Y, Z] = [X, Z] = 0 and consequently [START_REF] Zhao | OTL: A framework of online transfer learning[END_REF] gives

g(∇ X Y, Z) = 1 2 {Xg(Y, Z) + Y.g(X, Z) -Z.g(X, Y )} . (17) 
Set µ = i∈I µ i δ i ∈ P + (I), and α(t) = µ + vt, a curve on P + (I) such that µ(0) = µ and μ(0) = v = X(µ). We have

Xg µ (Y, Z) = d dt t=0 g µ(t) (Y, Z) = d dt t=0 i∈I Y i Z i µ i + tv i = - i∈I v i Y i Z i µ 2 i = - i∈I X i Y i Z i µ 2 i .
Similarly, one obtains formulae for Y g(X, Z) and Zg(X, Y ). Now replacing the above results in [START_REF] Liang | A Survey of Recent Advances in Transfer Learning[END_REF], we get

g µ (∇ X Y, Z) = 1 2 - i∈I X i Y i Z i µ 2 i - i∈I X i Y i Z i µ 2 i + i∈I X i Y i Z i µ 2 i = - 1 2 i∈I X i Y i Z i µ 2 i . ( 18 
)
On the other hand, we have

i∈I g µ (X, Y )Z i = g µ (X, Y ) i∈I Z i = 0, ( 19 
)
since Z is a constant vector field on P + (I). Then [START_REF] Zhuang | A Comprehensive Survey on Transfer Learning[END_REF] can be written as

g µ (∇ X Y, Z) = - 1 2 i∈I X i Y i µ 2 i -g µ (X, Y ) µ i Z i µ i = g µ - 1 2 dX dµ dY dµ -g µ (X, Y ) µ, Z .
which completes the proof.

2.2.3. Geodesics on P + Theorem 2. Let µ = i∈I µ i δ i be a probability measure in P + (I) and v ∈ T µ P + (I) a unit tangent vector, i.e., ||v|| µ = 1. Then the geodesic α that satisfies α(0) = µ and α(0

) = v is given by α(t) = i∈I α i (t)δ i with α i (t) = cos t 2 + αi (0) α i (0) sin t 2 2 α i (0), ( 20 
)
where α i (0) = µ i and αi (0) = v i , ∀i ∈ I.

Proof. Let α(t) = i∈I α i (t)δ i and α(t) = i∈I αi (t)δ i . Then for each t, we have

i∈I α i (t) = 1, and α i (t) > 0, ∀i ∈ I, i∈I αi (t) = 0. (21) 
Set X a constant vector field in P + (I). From the condition ( 9) of Levi-Civita connection, we have

g α(t) (∇ α(t) α(t), X) = α(t) g α(t) ( α(t), X) -g α(t) ( α(t), ∇ α(t) X). (22) 
With the properties of Levi-Civita connection, to compute ∇ α(t) X, the tangent vector α(t) can be considered as a constant vector field on P + (I) when t is fixed. Therefore, applying [START_REF] He | Multi-view transfer learning with privileged learning framework[END_REF] for α(t) and X we get,

∇ α(t) X = - 1 2 d α(t) dα(t) dX dα(t) -g α(t) ( α(t), X) α(t) = - 1 2 i∈I αi α i X i α i - j∈I αj X j α j α i δ i . (23) 
Taking into account of ( 21), the last term in [START_REF] Villani | Optimal Transport: Old and New[END_REF] becomes

g( α(t), ∇ α(t) X) = d α dα , d∇ α(t) X dα α(t) = - 1 2 i∈I αi α i αi α i X i α i - j∈I αj X j α j α i = - 1 2 i∈I α2 i X i α 2 i . (24) 
Now, we compute the second term in [START_REF] Villani | Optimal Transport: Old and New[END_REF]. We have

α(t) g α(t) ( α(t), X) = d dt g α(t) ( α(t), X) = i∈I d dt αi α i X i . (25) 
Combining ( 24) and ( 25) in ( 22), we get

g α(t) (∇ α(t) α(t), X) = i∈I d dt αi α i + 1 2 α2 i α 2 i X i . (26) 
Let's define the function F (t) as

F (t) = - i∈I d dt αi α i + 1 2 α2 i α 2 i α i (t) = - i∈I d dt αi α i α i (t) - 1 2 g α(t) ( α(t), α(t)). (27) 
Hence, the measure

ν(t) = i∈I d dt αi α i + 1 2 α2 i α 2 i + F (t) α i δ i (28) 
belongs to T α(t) P + . In this way, ( 26) can be written as g α (∇ α α, X) = g α (ν, X). Since X is an arbitrary constant vector field, we get

∇ α α = ν = i∈I d dt αi α i + 1 2 α2 i α 2 i + F (t) α i δ i . (29) 
Therefore, α(t) = i∈I α i (t)δ i is a geodesic if and only if

     d dt αi α i + 1 2 αi α i 2 + F (t) = 0, ∀i ∈ I, i∈I αi (t) = 0, ∀t. (30) 
Our next goal is to solve [START_REF] Xie | Transitive transfer learning[END_REF]. We may remark that if α is a geodesic then g α(t) ( α(t), α(t)) is constant along α(t). Consequently, taking into account of the assumption that || γ(0)|| µ = 1, we can assert that

g α(t) ( α(t), α(t)) = i∈I α2 i α i ≡ 1. (31) 
Thus

i∈I d dt αi α i α i = d dt i∈I αi α i α i - i∈I α2 i α i = -1. (32) 
Which gives that F (t) = 1 2 . Substituting this result in [START_REF] Xie | Transitive transfer learning[END_REF], we obtain

d dt αi α i + 1 2 αi α i 2 + 1 2 = 0, ∀i ∈ I. (33) 
Set ω i (t) = αi (t) α i (t) . Equation ( 33) is written as

d dt ω i + 1 2 ω 2 i + 1 2 = 0, ∀i ∈ I,
The solution of this differential equation is given by ω i = tan -t 2 + Θ i , where Θ i is constant, i ∈ I. Hence, we have αi

α i = tan - 1 2 t + Θ i , ∀i ∈ I and α i (t) = Ω i cos 2 -t 2 + Θ i ,
where Ω i is constant, and i ∈ I. Taking into account initial conditions, we find that

Θ i = arctan αi (0) α i (0) , (34) 
Ω i = α 2 i (0) + α2 i (0) α i (0) . ( 35 
)
which proves the theorem.

Corollary 1. The geodesic α(t) with α(0) = µ and α(0) = v, where v is a nontrivial tangent vector (not necessary unit), is given by

α(t) = i∈I cos t v µ 2 + v i µ i v µ sin t v µ 2 2 µ i δ i . ( 36 
)
Proposition 2. The Fisher Rao distance d F R : P + (I) × P + (I) → [0, π) between two measures µ, ν ∈ P + (I) under the Fisher-Rao metric is given by

d F R (µ, ν) = 2 arccos i∈I √ µ i ν i . ( 37 
)
To prove proposition ( 2), we will show the following lemma given in [START_REF] Ay | Information geometry[END_REF].

Lemma 3. Let S + (0,2) (I) = f ∈ F(I) | f i > 0, ∀i ∈ I and i∈I (f i ) 2 = 4
be the positive sector of the sphere centered at 0 with radius 2. As a submanifold of F(I) it carries the induced standard metric of F(I). That is for a given point f ∈ S + (0,2) (I) and two tangents vectors p, q ∈ T f S + (0,2) (I), we have

p, q f = i∈I p i q i . ( 38 
)
Then the map Φ : P + (I) -→ S + (0,2) (I) defined by

µ = i∈I µ i δ i -→ 2 i∈I √ µ i e i
is an isometry.

Proof of the lemma. It is clear that Φ is bijective. Now, let v, w be in T µ P + (I). We have

∂Φ ∂v (µ), ∂Φ ∂w (µ) = d dt Φ(µ + vt) t=0 , d dt Φ(µ + wt) t=0 = i∈I v i √ µ i e i , i∈I w i √ µ i e i = i∈I v i w i µ i = g µ (v, w).
Proof of the Proposition. By virtue of Lemma 3, we get

d F R (µ, ν) = d(Φ(µ), Φ(ν)) = 2 arccos i∈I √ µ i ν i .
Theorem 4. Let µ, ν be two different probability measures in P + (I). Then there exists a unique geodesic α : [0, l] → P + (I), t → α(t), joining two points µ and ν, with α(0) = µ, α(l) = ν and l = d F R (µ, ν), given by

α(t) = i∈I cos t 2 + dτ dµ (i) sin t 2 2 µ i δ i , ( 39 
)
where τ is the tangent vector in T µ P + (I) defined by

τ = 1 sin l 2 i∈I dν dµ - j∈I dν dµ (j)µ(j) µ i δ i . ( 40 
)
Proof. The proof falls naturally into three parts.

Step 1 First, let us check that τ is a tangent vector in T µ P + (I). Indeed,

1 sin l 2 i∈I dν dµ (i) - j∈I dν dµ (j)µ(j) µ i = 1 sin l 2 i∈I dν dµ (i)µ i - j∈I dν dµ (j)µ(j) = 0. (41) 
Then, since

j∈I dν dµ (j)µ(j) 2 = j∈I √ µ j ν j 2 = cos 2 l 2 . ( 42 
)
it follows that

τ, τ µ = 1 sin 2 l 2 i∈I dν dµ (i) - j∈I dν dµ (j)µ(j) 2 µ i = 1 sin 2 l 2   i∈I ν(i) - j∈I dν dµ (j)µ(j) 2   
= 1 sin 2 l 2 1 -cos 2 l 2 = 1. ( 43 
)
hence τ is a unit tangent vector.

Step 2 Now let us examine that the curve α(t) defined in [START_REF] Ay | Information geometry[END_REF] satisfies α(0) = µ and α(1) = ν. It is easily seen that for t = 0, α(0) = µ. Now for t = l, we have

α(l) = i∈I cos l 2 + dτ dµ (i) sin l 2 2 µ i δ i , (44) 
By [START_REF] Lang | Fundamentals of Differential Geometry[END_REF] we get

dτ dµ sin l 2 = i∈I dν dµ (i) - j∈I dν dµ (j)µ(j) e i = i∈I dν dµ (i) -cos l 2 e i . (45) 
Hence,

α(l) = i∈I cos l 2 + dν dµ (i) -cos l 2 2 µ i δ i = i∈I ν i δ i = ν. (46) 
Step 3 Now we go to prove the uniqueness of the curve. Let µ(t) = exp µ τ t and μ(t) = exp µ τ t be unit speed geodesics corresponding with τ and τ , and satisfying µ(0) = μ(0) = µ and µ(l) = μ(l) = ν. By means of Theorem 2, we have

µ(t) = i∈I cos t 2 + dτ dµ sin t 2 2 µ i δ i , (47) μ 
(t) = i∈I cos t 2 + dτ dµ sin t 2 2 µ i δ i . (48) 
From later condition, we have

cos l 2 + dτ dµ (i) sin l 2 2 = cos l 2 + dτ dµ (i) sin l 2 2 , ∀i ∈ I (49) 
⇒ cos l 2 + dτ dµ (i) sin l 2 = ± cos l 2 + dτ dµ (i) sin l 2 , ∀i ∈ I. (50) 
Define

I ± = i ∈ I cos l 2 + dτ dµ (i) sin l 2 = ± cos l 2 + dτ dµ (i) sin l 2 (51) 
Then we have I ∪ I + = I. Moreover I ∩ I + = ∅. Indeed, if there exists i ∈ I ∩ I + then

ν i = cos t 2 + dτ dµ sin t 2 2 µ i = 0, (52) 
contradict to ν ∈ P + . Sine 0 < l < π, we have

I + = {i ∈ I|τ i = τi } , (53) 
I = i ∈ I|τ i + τi = -2µ i cot l 2 . (54) 
Suppose I = ∅, since τ and τ are unit tangent vectors at µ, we have

i∈I + τ i + i∈I τ i = i∈I + τi + i∈I τi = 0 (55) ⇒ i∈I τi + 2µ i cot l 2 + i∈I τi = 0. ( 56 
)
Since ( 56) we see that if I = I, then cot l 2 = 0 contradicts to 0 < l < π. So I = I. We have the claim below.

Rewriting equation ∇ α(t) X(α(t)) = 0, we conclude that computing X(t) = X(α(t)) requires solving a linear first order differential equations on P + (I) given by

dX k dt + i,j α k ij dα i dt X j = 0, for k = 1, . . . , n. (63) 
We check at once that it is difficult to solve Eq.( 63) directly. Hence we will use Eq.( 16).

Theorem 5. Let µ be a probability measure in P + (I) and v ∈ T µ P + (I) a unit tangent vector, i.e., ||v|| µ = 1. Let α : [0, l] → P + (I) be a geodesic curve such that α(0) = µ and α(0) = v.

The Levi-civita parallel transport of a vector w ∈ T µ P + (I) to T α(t) P + (I), is given by

Γ α(0) α(t) (w) = i∈I α i (t) -F (0) √ µ i 2 sin t 2 -2 v i µ i cos t 2 + w i √ µ i -2F (0) v i √ µ i δ i , (64) 
where F (0) = 1 2 g µ (v, w). Proof. We can proceed analogously to the proof of Theorem 2. Thus, let α(t) = i∈I α i (t)δ i be a geodesic curve, and define α(t) = i∈I αi (t)δ i . Consider the vector field X on α defined by X(α(t)) = i∈I X i (α(t))δ i , for t ∈ [0, l], as the parallel transport of vector w along α.

Then ∇ α(t) X(t) = 0 X(0) = w , (65) 
where we write X(α(t)) simply X(t) when no confusion can arise. Let Y be a constant vector field (in the sense of Definition 3) on P + (I), we have

g α(t) ∇ α(t) X(t), Y = α(t) g α(t) (X(t), Y ) -g α(t) X(t), ∇ α(t) Y . (66) 
Applying Theorem 1, we get

∇ αY = - 1 2 i∈I αi α i Y i γ i - j∈I αj Y j α j α i δ i . ( 67 
)
Hence the last term in ( 66) becomes

g α (X, ∇ αY ) = - 1 2 i∈I X i α i αi α i Y i α i - j∈I αj Y j α j α i = - 1 2 i∈I X i Y i αi α 2 i . (68) 
Let us now compute the second term in ( 66). We obtain

α(t) g α(t) (X, Y ) = d dt g α(t) (X(t), Y ) = i∈I d dt X i α i Y i . (69) 
Consequently, Equation ( 66) becomes

g α (∇ αX, Y ) = i∈I d dt X i α i + 1 2 
X i αi α 2 i Y i . (70) 
Define the function F (t) by

F (t) = - i∈I d dt X i α i + 1 2 
X i αi α 2 i α i (t) = - i∈I d dt X i α i α i (t) - 1 2 g α(t) (X(t), α(t)). (71) 
Then, ∀t ∈ [0, l], the probability measure

ν(t) = i∈I d dt X i α i + 1 2 
X i αi α 2 i + F (t) α i δ i
belongs to T α(t) P + (I). Thus, Equation ( 70) can be written as

g α (∇ αX, Y ) = g α (ν, Y ). ( 72 
)
Since Y is an arbitrary constant vector field, we get

∇ αX = ν = i∈I d dt X i α i + 1 2 
X i αi α 2 i + F (t) α i δ i . (73) 
Therefore, X(t) is the parallel transport of the vector w along the geodesic curve α(t) if and only if

   d dt X i α i + 1 2 
X i αi α 2 i + F (t) = 0, ∀i ∈ I, X(0) = w. (74) 
Our next concern will be to solve Eq.( 74). We remind that 

g α(t) (X(t), α(t)) = g α(0) (X(0), α(0)). (75) Moreover i∈I d dt X i α i α i = d dt i∈I X i α i α i - i∈I X i αi α i = -g α(0) (X(0), α(0)). ( 76 
µ * = argmin µ N i=1 d F R (µ, µ i ) 2 (85) 
In the literature, local optima of the optimization problem (85) are known as Karcher means while a global optimum is called the Fréchet mean [START_REF] Karcher | Riemannian Center of Mass and Mollifier Smoothing[END_REF][START_REF] Pennec | Intrinsic statistics on Riemannian manifolds: basic tools for geometric measurements[END_REF][START_REF] Fletcher | Statistics on manifolds[END_REF]. In general Riemannian manifold, the Riemannian mean for a set of points is not unique. Given a set of probability measure on P + (I), existence and unicity of the Karcher mean can be proved [START_REF] Lang | Fundamentals of Differential Geometry[END_REF][START_REF] Pennec | Intrinsic statistics on Riemannian manifolds: basic tools for geometric measurements[END_REF] and the solution can be obtained using gradient descent algorithm.

Transfer Learning With Parallel Transport

Motivated by the theoretical insight from the previous section, this section studies the transfer learning problem on the space of probability measures P + (I). Specifically, we explore the benefits of using the Riemannian geometry of P + (I) and the integration of geodesic tools into transfer learning. To tackle this problem, we consider two subsets, P N 1 = {µ i } N 1 i=1 and P N 2 = {µ i } N 2 i=1 from two different domains consisting of N 1 and N 2 probability measures, respectively, with N 2 N 1 . We denote their respective Karcher means as µ * 1 and µ * 2 . Let α : [0, l] → P + (I) be the geodesic curve given in [START_REF] Ay | Information geometry[END_REF], joining µ * 1 and µ * 2 , with α(0) = µ * 1 and α(l) = µ * 2 . Finally, let Γ µ * 1 µ * 2 : T µ * 1 P + (I) → T µ * 1 P + (I), be the Levi-Civita parallel transport along the geodesic curve α(t) given by (83). The goal of transfer learning is to leverage useful information from the source data P N 1 , to enhance the model for the target data P N 2 . However, direct data transport from the source to the target can be computationally expensive, especially with large source datasets. To address this challenge, we introduce a transfer learning algorithm for statistical models, aiming to leverage the model developed for the source domain, P N 1 , as a foundation to create a robust learning model for the target domain, P N 2 . The proposed algorithm consists of four main steps:

• Step 1: Project the set of probability measure P N 1 to the tangent space T µ * 1 P + (I) by a i = log µ * 1 (µ i ), i = 1, ..., N 1 , using the logarithm map (60). Similarly, lift the set of probability measure P N 2 to the tangent space T We conclude that the transfer step relies on parallel transport to move a statistical model from T µ * 1 P + (I) to T µ * 2 P + (I) along the unique geodesic α joining µ * 1 and µ * 2 . We also

  represents a simple version of the Radon-Nikodym derivative with respect to µ. This metric induces a metric on M + (I). The probability manifold P + (I) as a submanifold of M + (I), is endowed with the Fisher-Rao metric. Hence, following the geometry structures in M + (I) equipped with Fisher information metric, we derive the corresponding ones in P + (I).

µ * 2 P 1 µ * 2 (

 212 + (I) by b i = log µ * 2 (µ i ), i = 1, ..., N 2 . • Step 2: Learn a statistical model S 1 on T µ * 1 P + (I) (respectively a statistical model S 2 on T µ * 2 P + (I)). • Step 3: Parallel transport S 1 to T µ * 2 P + (I) along the geodesic curve α by computing S T = Γ µ * S 1 ). • Step 4: Compute the fused model on T µ * 2 P + (I) using shrinkage estimation [41]: S λ = λS T + (1 -λ)S 2 , 0 ≤ λ ≤ 1.

  )2.2.5. Riemannian mean on P +Using Riemannian geodesic distance[START_REF] Amari | Methods of Information Geometry[END_REF], the Riemannian mean of a set of probability measures {µ i } N i=1 on P + (I) is given by

Claim 1. For all µ ∈ P + and 0 < l < π. If τ, τ ∈ T µ P + . Let

then

By means of the Claim, we prove the uniqueness of the geodesic [START_REF] Ay | Information geometry[END_REF] defined with the unit tangent vector [START_REF] Lang | Fundamentals of Differential Geometry[END_REF].

The proof of Claim 1 will be given in Appendix 1.

Corollary 2. Let ε = {(µ, v) |α(t, µ, v) is defined on an interval containing [0, l] }

The exponential map exp µ : ε -→ P + (I) is defined as

Similarly, given two points µ and ν on P + (I), the inverse exponential map (also known as the logarithmic map) at µ, log µ : P + (I) -→ ε is defined for any ν ∈ P + (I) by log µ (ν) = l sin l 2 i∈I dν dµ (i) -j∈I dν dµ (j)µ(j) µ i δ i . (60)

2.2.4. Levi-civita parallel transport on P + Let us consider two points µ, ν ∈ P + (I), a tangent vector v ∈ T µ P + (I) and a geodesic curve α : [0, l] → P + (I) on P + (I) such that α(0) = µ and α(l) = ν. We would like to map v from T µ P + (I) = T α(0) P + (I) to T ν P + (I) = T α(l) P + (I). We introduce X, a vector field defined along the geodesic α, such that X(µ) = v and ∇ α(t) X(α(t)) = 0. We say that the tangent vector v is constant along the geodesic curve α with respect to ∇. Definition 4. A metric parallel transport on P + (I) is the map

such that for any v, w ∈ T µ P + (I), and for t ∈ [0, l] we have

Γ is the Levi-Civita parallel transport along the geodesic curve α on P + (I) with respect to the Fisher-Rao metric.

Which gives that F (t) is a constant function and F (t) = F (0) = 1 2 g α(0) (X(0), α(0)). Hence, substituting this result in Eq.( 74) we get d dt

Set

. Equation ( 77) can be written as

Solution of the first order differential equation ( 78) is given by

Therefore,

for Θ i constant, i ∈ I. According to the initial conditions, it follows that

We conclude that

and it is easy to check that, ∀t ∈ [0, l], X(t) = i∈I X i (t)δ i ∈ T γ(t) P + (I) and it is the Levi-civita parallel transport of the vector w along the geodesic curve α(t). Theorem 6. Given two distinct probability measures µ and ν in P + (I), a nontrivial tangent vector w ∈ T µ P + (I) and a geodesic curve α : [0, l] → P + (I) such that α(0) = µ and α(l) = ν. The Levi-Civita parallel transport, Γ µ ν : T µ P + (I) → T ν P + (I), that transports a vector w from T µ P + (I) = T α(0) P + (I) to T ν P + (I) = T α(l) P + (I) given by

where l = 2 arccos i∈I √ µ i ν i , F (0) = 1 2 g µ (w, τ ), and τ is the unit tangent vector

Proof. It suffices to use the equation of the geodesic curve α(t) joining two points µ and ν given by Theorem 4 together with taking t = l in theorem 5, the proof follows.

mention that the preceding steps primarily utilized the existence of a unique geodesic curve connecting two points on P+ ( I). In the sequel, we will provide a detailed account of how parallel transport is applied to transfer some statistical models of interest, including Linear Regression, Logistic Regression, and Principal Component Analysis (PCA).

Linear regression transport

) be the inner product on T µ * 1 P + (I) given by [START_REF] Mignone | Exploiting transfer learning for the reconstruction of the human gene regulatory network[END_REF]. It can equivalently be expressed as

where β 0 ∈ R and β ∈ T µ * 1 P + (I). Such parameters can be estimated using the squared error loss function

More precisely, the estimates ( β 0 , β) are solutions of the minimization problem

Proposition 3 (Linear regression transport). The tangent vector δ ∈ T µ *

Proof. The proof is immediate since the Levi-civita parallel transport (83) conserve inner product. More accurately, we have

As shown in Proposition (3), the Levi-civita parallel transport (83) enables us to efficiently transport linear regression model defined on T µ * 1 P + (I) to the tangent space T µ * 2 P + (I). Actually, parallel transport (83) allows a vector a i in the tangent space T µ * 1 P + (I) to be transported to the tangent space T µ * 2 P + (I), by ensuring that the inner product between a i and the direction of the geodesic α, joining µ * 1 and µ * 2 , is conserved. Therefore, the estimated parameter δ is exactly the solution of the linear regression model on T µ * 2 P + (I) defined by the transported tangent vectors Γ µ * 

Since the two linear regression models ỹi and y i live in the same tangent space T µ * 2 P + (I), we can use shrinkage estimation to compute a solution for the fused model as η λ = λ δ + (1 -λ) η, 0 ≤ λ ≤ 1, where η represent the least square estimate for the slope parameter η of the linear regression model y i . It is clear that the larger λ is, the better is the influence of the linear regression model ỹi . We summarize the different steps of our approach for linear regression transport in Algorithm ??.

Logistic regression transport

Let D = {(a i , t i )} N 1 i=1 be a data set with respect to class labels, where a i ∈ T µ * 1 P + (I) defined by a i = log µ * 1 (µ i ) and t i ∈ {0, 1}, i = 1, ..., N 1 . The probability of t i being in class 1 can be represented by a logistic regression function defined by

where ω 0 ∈ R and ω ∈ T µ * 1 P + (I). The probability of t i being in class 0 is given by: P (t i = 0|a i ) = 1 -p(a i ). Instead of least-squares, we make use of the maximum likelihood (MLE) to find the estimate prameters ω 0 and ω in the logistic regression function. Nevertheless, it is easily seen that the logistic regression function is defined by means of the inner product g µ * 1 on T µ * 1 P + (I). Hence, with the property that Levi-civita parallel transport preserves the inner product between tangent vectors, we can parallel transport logistic regression model to T µ * 2 P + (I) to obtain a better classification model in this last tangent space. More precisely, if ( ω 0 , ω) denote the maximum likelihood estimators (MLE) of (ω 0 , ω), then the tangent vector

) is the estimate for the weight parameter on the logistic regression model given by

Similar to the linear regression model, we make use of shrinkage estimation to compute a solution for the fused logistic regression model on

An equivalent version of Algorithm ?? holds for the transport of logistic regression model.

Principle component analysis transport

Given the two populations

, the commonly used covariance matrix estimator is the sample covariance matrix defined as

may be a poor estimate of the true covariance matrix of P N 2 . Hence, our goal is to enhance the covariance estimation C N 2 by exploiting C N 1 . As a consequence, a well-performed PCA model is constructed on the tangent space T µ * 2 P + (I). Proposition 4 (PCA transport). Let V DU T be the SVD of A = [a 1 , ..., a N 1 ] ∈ T µ * 1 P + (I) with the diagonal entries of D is sorted in non-increasing order and let V D 2 V T be the eigendecomposition of AA T . Then

R n×n is an orthogonal matrix which contains eigenvectors of AA T and U = [u 1 , ..., u N 1 ] ∈ R N 1 ×N 1 is an orthogonal matrix which contains the eigenvectors of A T A. Let's define the matrix Z = [z 1 , ..., z N 1 ] ∈ R n×N 1 by Z = V T A = SU T . Thus A = V Z and its vector column a i is consequently defined by

which means

2 is a metric parallel transport, Ṽ is an orthogonal matrix. Furthermore, we assert that Ṽ SU T is the SVD of Ã. Moreover,

Hence, Ṽ D 2 Ṽ T is the eigen-decomposition of the covariance matrix à ÃT .

b) Follows directly from the proof of part a).

Again, we can apply shrinkage estimation to combine the two covariance matrices C N 2 and CN

It is easily seen that in the case λ = 1, C λ performs extremely well in modeling unseen examples of the small-sample population P N 2 . Moreover, for PCA, let V = [v 1 , ..., v n ] ∈ R n×n an orthogonal matrix which contains eigenvectors of BB T . We can consider {ṽ

i=1 as a PCA model on T µ * 2 P + (I), as we can also construct a fused model represented by an orthonormalization of the subspace {ṽ, v} formed by k 1 eigenvectors of Ṽ and k 2 eigenvectors of V and their corresponding (k 1 , k 2 ) eigen-values. We summarize different steps of transfer learning covariance matrix and PCA model in Algorithm ??.

Conclusion

In this paper, we proposed a new transfer learning approach of learning models on the space of probability measures P + using the analytic expression of parallel transport under the Levi-Civita connection. We provided the mathematical foundation of the proposed transfer learning method. Specifically, we established new results in the geometry of the probability manifold. Finally, an experimental study was conducted to demonstrate the effectiveness of our framework.

Appendix 1. Proof of Claim 1

Proof. We proof the Claim by induction on the degree of I. If |I| is one or two the Claim is true since I + is not empty. Suppose the Claim is trus for |I| = n. We go to prove the Claim for |I| = n + 1. Let µ ,τ , τ and l like in the Claim. Suppose I = ∅ then |I | ≥ 2. Let g, h be two distinct index in I , this means τ g + τg = -2µ g cot l 2 and τ h + τh = -2µ h cot l 2 . Now let k ∈ I + and define three measures τ , τ , µ on I \ {k} as follow τ = i∈I,i =k,h,g 

We have τ , τ ∈ T µ P + (I \ {k}), and h ∈ I = ∅. This contradicts to the hypothesis. This shows the Claim for |I| = n + 1.