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Abstract

In this paper, we introduce a set of novel data-driven regression models with
low complexities. We address the challenges of infeering and learning from a
substantial number of observations (N >> 1) with Gaussian process prior.
We propose a flexible construction of well adapted covariances originally
derived from specific differential operators.

Keywords: Gaussian process regression, Computational complexity,
Orthogonal polynomials, Differential operators.

1. Introduction

Gaussian processes are powerful and flexible statistical models that have
gained significant popularity in the field of econometrics, shape analysis,
signal processing, data science, machine learning, etc [1, 2, 3, 4, 5]. They
provide a non-parametric approach for modeling complex relationships and
uncertainty estimation in data [6]. The core idea of Gaussian processes is
the assumption that any finite set of data points can be jointly modeled as
a multivariate Gaussian distribution [7]. Rather than explicit formulations
Gaussian processes allow for the incorporation of prior knowledge and infer-
ence of a nonparametric function f that generates the Gaussian process for
given a training dataset (ti, yi)

N
i=1 where yi = f(ti)+τi; with ti ∈ Ω ⊆ Rd and

noisy measurements yi ∈ R. If f is modeled with a Gaussian process prior
then it can be fully characterized by a mean m(.) and a covariance function
k(., .) satisfying

m(t) = E
(
f(t)

)
; t ∈ Ω (1)

k(t, s) = E
(
(f(t)−m(t))(f(s)−m(s))

)
; t, s ∈ Ω (2)
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The mean function is usually assumed to be zero
(
m(t) = 0

)
whereas the co-

variance k(t, s) gives the dependence between two instances t and s. Gaussian
processes can be applied for various tasks, including regression [8], classifica-
tion [9], and time series analysis [10]. In regression, Gaussian processes can
capture complex and non-linear patterns in data, while in classification, they
enable probabilistic predictions and can handle imbalanced dataset effec-
tively [11]. Additionally, Gaussian processes have been successfully employed
in optimization, experimental design, and reinforcement learning, among
other areas [12].

Organization. The paper is organized as follows. Section 2 provides
background information on Gaussian processes regression. In Section 3, we
discuss the low complexity Gaussian processes and highlight their main ad-
vantages in terms of computational complexity. Section 4 presents the pro-
posed solutions for several differential operators with orthogonal polynomial
bases.

2. Canonical Gaussian processes regression

A Gaussian process (GP) particularly defined on an univariate index set
Ω ⊆ R is a stochastic process in which the marginal variables for any finite
set in Ω follows a Gaussian distribution. In a regression task, a nonparametric
function f is assumed to be a realization of a stochastic GP prior whereas the
likelihood term holds from observations corrupted by a noise term according
to the canonical form{

yi = f(ti) + τi; i = 1, . . . , N

f ∼ GP(0, k(t, s))
(3)

where τi ∼ N (0, σ2
n) is a Gaussian noise. Given a training dataset D =

(t,y) = (ti, yi)
N
i=1 the posterior distribution over f = f(t) = (f(t1), . . . , f(tN))T

is also Gaussian: P(f |D) = N (µ,Σ). From Bayes’ rule, we state that the
mean and the covariance posterior are expressed as

µ = K(K + σ2
nIN)−1y (4)

Σ = (K−1 +
1

σ2
n

IN)−1 (5)
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where K = [k(ti, tj)]
N
i,j=1 is the prior covariance matrix and IN is the N ×N

identity matrix. The predictive distribution at any test input t? can be
computed in closed-form as f(t?)|D, t? ∼ N

(
f̄?, v(f?)

)
, with

f̄? = k(t?)
T (K + σ2

nIN)−1y (6)
v(f?) = k(t?, t?)− k(t?)

T (K + σ2
nIN)−1k(t?) (7)

where k(t?) = [k(ti, t?)]
N
i=1.

The covariance function k(., .) usually depends on a set of hyperparameter
denoted θk that needs to be estimated from the training dataset. The log
marginal likelihood for GP regression serves as an indicator of the degree to
which the selected model accurately captures the observed patterns. The log
marginal likelihood is typically used for model selection and optimization.
Let θ = (θk, σ

2
n) denote the set of all model parameters then the log marginal

likelihood logP(y|t, θ) is given by

l(θ) = −1

2
log |K + σ2

nIN | −
1

2
yT (K + σ2

nIN)−1y − N

2
log(2π) (8)

Here, |.| denotes the determinant. The goal is to estimate θ that maximizes
the log marginal likelihood. This can be achieved using different methods,
such as gradient-based algorithm [26], where the gradient vector w.r.t. θ is

∂l(θ)

∂θk
=

1

2
yT (K + σ2

nIN)−1∂K

∂θk
(K + σ2

nIN)−1y − 1

2
tr((K + σ2

nIN)−1∂K

∂θk
)

(9)
∂l(θ)

∂γ2
=

1

2
yT (K + σ2

nIN)−1(K + σ2
nIN)−1y − 1

2
tr((K + σ2

nIN)−1) (10)

The weakness of inferring the posterior mean or the mean prediction or even
learning the hyperparameter from the log marginal likelihood is the need to
invert the N×N Gram matrix K+σ2

nIN . This operation costs O(N3) which
limits the applicability of standard GPs when the sample size N increases
significantly. Furthermore, the memory requirements for GP regression scale
with a computational complexity of O(N2).

A covariance function k(t, s) is said to be stationary (homogeneous) if it is
invariant to translation, i.e., a function of t−s only. Two commonly used sta-
tionary covariance functions for GP regression are the Squared Exponential
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(SE) and Matérn-ν kernels defined by

k(t, s) = σ2e−ε
2(t−s)2 ; t, s ∈ Ω = R (11)

k(t, s) = σ2 21−ν

Γ(ν)

(
ε
√

2ν|t− s|
)ν
Kν

(
ε
√

2ν|t− s|
)
; t, s ∈ Ω = R (12)

respectively, where σ2 is the variance parameter controlling the amplitude
of the covariance, ε is the shape parameter and ν = k + 1/2; k ∈ N is the
half integer smoothness parameter controlling its differentiability. Here, Γ is
the gamma function and Kν is the modified Bessel function of the second
kind. Both the SE and Matérn covariance functions have hyperparameter
that needs to be estimated from the data during the model training pro-
cess. A GP with a Matérn-ν covariance is dνe − 1 times differentiable in
the mean-square sense. The SE covariance is the limit of Matérn-ν as the
smoothness parameter ν approaches infinity. When choosing between the
SE and Matérn covariance functions, it is often a matter of balancing the
trade-off between modeling flexibility and computational complexity. The
SE covariance function is simpler and more computationally efficient but
may not capture complex patterns in data as well as the Matérn covariance
function with an appropriate choice of smoothness parameter.

3. Low complexity Gaussian processes

One of the main advantages of a GP is that it can be represented as a
series expansion involving a complete set of deterministic basis functions
with corresponding random coefficients. Let the inner product in L2(Ω, ρ)
be defined as 〈

φ, ψ
〉

=

∫
Ω

φ(t)ψ(t)ρ(t)dt (13)

where ρ(t) is a positive weight function such that
∫

Ω
ρ(t)dt < ∞. Consider

a linear integral operator K : L2(Ω, ρ) 7→ L2(Ω, ρ), expressed in terms of the
inner product, as

Kφ =

∫
Ω

k(., t)φ(t)ρ(t)dt (14)

Theorem 1 (Spectral theorem). Suppose A is a compact self-adjoint opera-
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tor on a Hilbert space V. Then there is an orthonormal basis of V consisting
of eigenfunctions of A with real eigenvalues.

According to our case, the operator K is self-adjoint with respect to the
inner product defined in (13) since

〈
Kφ, ψ

〉
=
〈
Kψ, φ

〉
allowing to apply the

spectral theorem for V = L2(Ω, ρ). Consequently, there exists an orthonormal
set of basis functions {φj}∞j=1 in the weighted space L2(Ω, ρ), that is,∫

Ω

φj(t)φl(t)ρ(t)dt = δjl (15)

and a set of real eigenvalues {λj}∞j=1. If further K is positive and bounded
then it admits absolutely summable positive eigenvalues λ1 ≥ λ2 ≥ · · · ≥ 0.
By the Mercer’ theorem the covariance function has the series expansion

k(t, s) =
∞∑
j=1

λjφj(t)φj(s) (16)

The eigenvalues {λj}∞j=1 and eigenfunctions {φj}∞j=1 can be obtained from
the integral operator and the solution is provided by the Fredholm integral
equation

Kφj(t) = λjφj(t) (17)

Theorem 2 (Karhunen Loève). Let f be a nonparametric function defined
on Ω modeled with a GP of a covariance function k(., .). Then, for all t ∈ Ω
the function f can be written as

f(t) =
∞∑
j=1

ajφj(t), with aj
ind∼ N

(
0, λj

)
(18)

where {λj}∞j=1 and {φj}∞j=1 are eigenvalues and eigenfunctions of the integral
operator K defined in (14).

In order to avoid the inversion of the N × N Gram matrix K + σ2
nIN

we use the approximation scheme presented above and project the GP to a
truncated set ofM basis functions. The truncated version of f at an arbitrary
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order M ∈ N∗ is given by

fM(t) =
M∑
j=1

ajφj(t) (19)

with an approximation error eM(t) =
∑∞

j=M+1 ajφj(t). The canonical GP
regression model (3) adapted to the truncated GP prior becomes{

yi = fM(ti) + τi; i = 1, . . . , N

fM ∼ GP(0, kM(t, s))
(20)

with a covariance function approximated by kM(t, s) =
∑M

j=1 λjφj(t)φj(s).

Proposition 1.

1. The approximation kM(., .) converges uniformly to k(., .) when M →
∞, i.e.,

lim
M→∞

(
sup
t,s∈Ω
|k(t, s)−

M∑
j=1

λjφj(t)φj(s)|
)

= 0 (21)

2. The mean integrated squared error (MISE) of fM tends to 0 asM →∞.

Proof. The proof of 1) was provided in [23], while here we solely present that
of 2). The MISE of fM also known as the L2 risk function is given by

MISE = E
(
||f − fM ||2L2

)
(22)

= E
(
||eM ||2L2

)
= E

( ∫
Ω

(
∞∑

j=M+1

ajφj(t))
2dt
)

= E
( ∞∑
j=M+1

a2
j

∫
Ω

φj(t)
2dt
)

= E
( ∞∑
j=M+1

a2
j

)
=

∞∑
j=M+1

λj
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which tends to 0 as M →∞ since λj are absolutely summable. �

The convergence of the Mercer’ series hardly depends on the eigenvalues
and the differentiability of the covariance function. [27] showed that the speed
of the uniform convergence varies in terms of the decay rate of eigenvalues
and demonstrated that for a 2β times differentiable covariance k(., .) the
truncated covariance kM(., .) approximates k(., .) asO

(
(
∑∞

j=M+1 λj)
β
β+1
)
. For

infinitely differentiable covariances the latter is O
(
(
∑∞

j=M+1 λj)
1−ε) for any

ε > 0. To summarize, smoother covariance functions tend to exhibit faster
convergence, while less smooth or non-differentiable covariance functions may
exhibit slower or no convergence.

The resulting covariance fall into the class of reduced-rank approxima-
tions based on approximating the covariance matrix K with a matrix K̃ =
[kM(ti, tj)]

N
i,j=1 = ΦΓΦT , where Γ is a M × M diagonal matrix eigenval-

ues such that Γjj = λj and Φ is a N × M matrix eigenfunctions such
that Φij = φj(ti). Note that the approximate covariance matrix K̃ is ill-
conditioned if λ1/λM is large or if the observation points ti are too closed to
each other [28]. This leads to much numerical errors when inverting K̃.

Definition 3.1. A covariance function k(·, ·) is said to be positive semi-
definite on Ω if for all N ∈ N∗, ti ∈ Ω and bi ∈ R, i = 1, . . . , N , we have

N∑
i=1

N∑
l=1

biblk(ti, tl) ≥ 0 (23)

Proposition 2. Let M ∈ N∗ be the order of truncation. Let λj and φj be
eigenvalues and eigenfunctions of the integral operator K, for j = 1, . . . ,M .
If k(., .) is positive semi-definite then kM(., .) is also positive semi-definite.

Proof. Let N ∈ N∗, {t1, . . . , tN} and {b1, . . . , bN} be as in Definition 3.1.
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From (16), we have

N∑
i=1

N∑
l=1

biblkM(ti, tl) =
N∑
i=1

M∑
j=1

N∑
l=1

biblλjφj(ti)φj(tl)

=
M∑
j=1

λj

N∑
i=1

N∑
l=1

biblφj(ti)φj(tl)

=
M∑
j=1

λj

(
N∑
i=1

biφj(ti)

)2

≥ 0

In the above equality, we have used the fact that if k(., .) is positive semi-
definite then all eigenvalues λj are nonnegative. �

Now, we show how our regression model that utilizes Gaussian pro-
cesses decomposition technique is able to achieve low complexity. We write
down the expressions needed for both inference and hyperparameter learning
and discuss the computational requirements. Applying the matrix inversion
lemma [29] we re-rewrite the predictive distribution (6–7) as

f̄? ≈ φT? (ΦTΦ + σ2
nΓ
−1)−1ΦTy (24)

v(f?) ≈ σ2φT? (ΦTΦ + σ2
nΓ
−1)−1φ? (25)

where φ? is anM -dimensional vector with the j-th entry being φj(t?). When
the number of observations is much higher than the number of required basis
functions (N >> M) the use of this approximation is advantageous. Thus,
any prediction mean evaluation is dominated by the cost of constructing
ΦTΦ, which means that the method has an overall asymptotic computational
complexity of O(NM2).

The approximate log marginal likelihood adapted to the model (20) sat-
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isfies

l(θ) ≈− 1

2
log |ΦΓΦT + σ2

nIN | −
1

2
yT (ΦΓΦT + σ2

nIN)−1y − N

2
log(2π)

=− 1

2
(N −M) log σ2

n −
1

2
log |ΦTΦ + σ2

nΓ
−1| − 1

2

M∑
j=1

log λj (26)

− 1

2σ2
n

(yTy − yTΦ(ΦTΦ + σ2
nΓ
−1)−1ΦTy)− N

2
log(2π)

After the initial cost needed for inferring the prediction mean (24) evaluating
the approximate log marginal likelihood has O(M3) complexity needed to
inverse the M × M matrix ΦTΦ + σ2

nΓ
−1. In practice, if the sample size

N is large it is preferable to cache the result of ΦTΦ causing a memory
requirement scaling as O(M2).

4. Explicit solutions for low complexity Gaussian processes

In this section, we describe explicit solutions of the low complexity GP
(LCGP) with covariances derived from differential operators. This paper
focuses on the construction of covariance functions that incorporate orthogo-
nal polynomials as eigenfunctions for two main reasons: i) On the one hand,
polynomials can approximate a wide range of functions with various degrees
of complexity. They can be adjusted to predict different data patterns and
can capture both linear and nonlinear relationships [30]. ii) On the other
hand, polynomial regression is a well-established technique that extends lin-
ear regression by incorporating polynomial terms. It allows for more flexible
modeling and can capture complex relationships between all predictors and
the response variable.

The connection between a differential operator denoted L and the linear
integral operator K have been largely used, see for example [31]. We follow
the same idea and we define the Green’s functionG of the differential operator
L as its "right inverse", i.e.,

LG(t− s) = δ(t− s); t, s ∈ Ω (27)

where δ(.) denotes the Kronecker delta function. If {λj}∞j=1 and {φj}∞j=1

refer to the eigenvalues and eigenfunctions of the integral operator K and
the Green’s function acts as a stationary covariance function, i.e., G(t− s) =
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k(t, s) = k(t− s), we have

λjLφj(t) = LKφj(t) (28)

=

∫
Ω

Lk(t− s)φj(s)ρ(s)ds

=

∫
Ω

δ(t− s)φj(s)ρ(s)ds

= φj(t)

Finally, we get

Lφj(t) =
1

λj
φj(t) (29)

This shows that the eigenvalues of K correspond to reciprocal eigenvalues
of L, while the corresponding eigenfunctions still the same [32, 33]. At this
stage, we compute eigenvalues and eigenfunctions of L, from which we deduce
the Mercer’ decomposition of k(t, s) given in (16) replacing λj by γj = 1

λj
.

This task is available for a wide range of differential operators with positive
and bounded corresponding integral operators.

Operator L Ω ρ γj γ2
j φj ||φj||L2 MISE

Matérn1 σ−2
(
ε− d2

dt2

)α
[0, 1] 1 σ−2

(
ε+ j2π2

)α -
√

2 sin(jπt) 1 σ2
∑∞

j=M+1

(
ε+ j2π2

)−α
Legendre −(1− t2) d

2

dt2
+ 2t d

dt
[−1, 1] 1 j(j + 1) - 1

2jj!
dj

dtj
(t2 − 1)j

√
2

2j+1
1

M+1

Laguerre t d
2

dt2
+ (1− t) d

dt
[0,∞) e−t −j j2 et

j!
dj

dtj
(e−ttj) 1 π2

6
−
∑M

j=1
1
j2

Hermite d2

dt2
− 2t d

dt
R e−t

2 −2j 4j2 (−1)jet
2 dj

dtj
e−t

2
√√

π2jj! 1
4

(
π2

6
−
∑M

j=1
1
j2

)

Chebyshev (1− t2) d
2

dt2
− t d

dt
[−1, 1] 1√

1−t2 −j2 j4 cos(j arccos t)
√

π
2

π4

90
−
∑M

j=1
1
j4

1Matérn hyperparameters: σ2 for variance, ε for shape and α for smoothness: α = ν + 1/2 = k + 1; k ∈ N

In this paper and without loss of generality, we choose a list of some
interesting and useful differential operators that act on L2(Ω, ρ): Matérn,
Legendre, Laguerre, Hermite and Chebyshev from which we explicitly find
the corresponding decompositions. Table ?? summarizes each class of L, the
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Figure 1: The eigenvalues λj of different operators using a base-logarithmic scale. For
Matérn we consider: ε = 2 and α = 1.

index set Ω, the weight function ρ, the eigenvalues γj, the eigenfunctions as
polynomials φj and the resulting MISE. Note that for Laguerre, Hermite and
Chebyshev polynomials the eigenvalues γj of L are negatives. Therefore, we
consider the iterated operator L2 with eigenvalues γ2

j and unchanged eigen-
functions φj. Besides, for Legendre, Hermite and Chebyshev we remark that
||φj||L2 6= 1 which means that φj should be normalized to produce an or-
thonormal basis allowing to build the truncated covariance cM(., .). Figure 1
shows the behavior of the eigenvalues λj = 1

γj
of K when varying the index

j between 1 to 30. It can be observed that, for all truncated covariances, an
order as low as M = 30 yields a very good convergence, while for Chebyshev
a smaller M is enough. This is due the smoothness of the true covariance
when M tends to infinity. Along the rest of the paper, we will use M = 30
in order to perform inference with LCGP.

5. Conclusion

In this paper, we have introduced a novel regression model with a Gaussian
process prior. This nonparametric model is designed for inferring, predicting,
and learning. The proposed methods are derived from specific differential op-
erators. We study and test different configurations with will adapted eigen-
functions’ bases, enabling straightforward implementations with closed-form
expressions.
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