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ABSTRACT

Given the current context of climate change and the increasing population den-
sities at coastal zones around the globe, there is an increasing need to be able to
predict the development of our coasts. Recent advances in artificial intelligence
allow for automatic analysis of observational data. Symbolic Regression (SR) is
a type of Machine Learning algorithm that aims to find interpretable symbolic
expressions that can explain relations in the data. In this work, we aim to study
the problem of forecasting shoreline change using SR. We make use of Cartesian
Genetic Programming (CGP) in order to encode and improve upon ShoreFor, a
physical shoreline prediction model. During training, CGP individuals are evalu-
ated and selected according to their predictive score at five different coastal sites.
This work presents a comparison between a CGP-evolved model and the base
ShoreFor model. In addition to evolution’s ability to produce well-performing
models, it demonstrates the usefulness of SR as a research tool to gain insight into
the behaviors of shorelines in various geographical zones.

1 INTRODUCTION

Coasts around the globe are continuously facing natural and anthropogenic pressures. Our knowl-
edge and understanding of the evolution of the coastal zone over time is crucial for a large variety of
applications including coastal risk monitoring and management. Shoreline evolution forecasting is
an important element in coastal studies that aims to better understand and predict the occurrence and
intensity of erosive and accretive forces. Recently, large efforts have been made to understand and
predict shoreline evolution due to the rising social, economic and natural pressures such as climate
change [1, 2, 3, 4].
Three main types of methods have been proposed and discussed in the literature on the topic of
forecasting shoreline change [1]. Process-based models simulate multiple physical processes which
contribute to shoreline change. The simulations are coupled through mass and momentum conserva-
tion laws. Such models include MIKE 21 [5], Delft3D [6], ROMS [7] and CROCO [8]. In general,
these models are used to model short-term local events in the nearshore zone and are not consid-
ered applicable over larger spatio-temporal scales [1, 9]. Hybrid models are mixed approaches to
modelling shoreline change that incorporate general physical principles and which are calibrated
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using data-driven approaches (e.g. least-squares-fit). These models can be used to predict shoreline
position over much longer time scales, however they are generally unable to generalize to previously-
unseen areas and conditions and require site-specific field data for model calibration. Finally, data-
driven techniques range from simple regression methods to modern deep learning models, which
have demonstrated impressive capabilities over a wide variety of applications [10, 11, 12]. Arti-
ficial Neural Networks (ANN’s) are the most commonly used models in similar works employing
AI for shoreline forecasting [13, 14]. While ANN’s have helped achieve significant advances in
many domains, explaining their predictions remains relatively difficult due to their black-box nature
[15, 16].
Symbolic Regression (SR) is a domain of Machine Learning (ML) algorithms that search for sym-
bolic representations of the relationships embedded in the data. Evolutionary algorithms, and specif-
ically Genetic Programming (GP), are often used for SR. GP operates by composing a predefined
set of functions in a tree, graph, or other structure; the composition of functions is determined by an
evolutionary algorithm. As the optimized model is a functional graph or tree, GP is considered an in-
terpretable ML technique that can be used to derive simple symbolic forms of relationships in data.
GP has been demonstrated to be competitive with machine learning approaches such as gradient
boosting [17] and has been applied to a wide variety of problems [18, 19, 20, 21, 22, 23, 24].
This work frames the problem of forecasting shoreline change as a data-driven symbolic regres-
sion task. We make use of Cartesian Genetic Programming (CGP) [25] and the Non-dominated
Sorting Genetic Algorithm II (NSGA-II) [26] to encode and evolve interpretable shoreline change
models. To promote model generalization, the evolved models are optimized to maximize predic-
tion accuracy at five different coastal sites from around the globe. Evolution discovers new shoreline
forecasting models which are competitive with existing physical models across the five studied sites.

2 METHODS

2.1 SHOREFOR

ShoreFor [27] is a shoreline change forecasting model that is built upon the principle of shoreline
equilibrium [28], where shorelines continuously evolve towards a time-varying equilibrium condi-
tion. ShoreFor can be formulated according to: dx

dt = c(F+ + rF−) + b, where dx/dt is the rate
of shoreline change, F is the magnitude of wave forcing, c and b are model free parameters that are
optimized using a least-squares-fit minimizing the root-mean-squared-error (RMSE) of the model.
The wave forcing term F = P 0.5 ∆Ω

σ∆Ω
is expressed in terms of the wave energy flux P and the

normalized disequilibrium term ∆Ω/σ∆Ω using Ωeq (Equation 1) to represent beach equilibrium as
a weighted average of antecedent dimensionless fall velocities where φ is a model-free parameter
which controls the number of days in the series used to estimate the current equilibrium state.

Ωeq =

∑2φ
i=1 Ωi10−i/φ∑2φ
i=1 10−i/φ

(1)

Ω, defined as Ω =
Hs,b
wTp

, represents the rate of sedimentation and is a function of the sediment grain
settling velocity w, the breaking wave height Hs,b and wave period Tp. Disequilibrium, ∆Ω =
Ωeq − Ω, is used to partition forcing F into accretion and erosion (F+, F−) according to the sign

of ∆Ω. The erosion ratio r =

∣∣∣∣∣ ∑N
i=0〈F

+
i 〉∑N

i=0〈F
−
i 〉

∣∣∣∣∣ is defined as a ratio between the detrended accretive

and erosive wave forcing. It is calculated over the full wave forcing time series and treated as a
constant to balance the accretion and erosion terms within the ShoreFor model. ShoreFor has been
used in multiple shoreline prediction studies and a number of extensions have been proposed to
improve its performance by accounting for shoreline change over different time-scales [29] as well
as alongshore sediment transport processes [30, 31]. We make use of the ShoreFor model as a base
for our experiments on the use of CGP for shoreline forecasting in a GI setting, and we highlight
the possibility of extending the base CGP-ShoreFor implementation to account for these additional
processes. The implementation of ShoreFor as a CGP individual is detailed in Appendix A

2.2 CARTESIAN GENETIC PROGRAMMING

Cartesian Genetic Programming (CGP) [25] is a form of genetic programming that encodes pro-
grams as directed acyclic graphs. An individual CGP graph is composed of input nodes, output
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nodes and computation nodes. To represent a program as a genome, each node in the graph is asso-
ciated with integers corresponding to the function of the node and its inputs; two-arity functions like
x+ y are most common and used here, so each node is represented by three integers. These integers
are optimized by evolution by constructing a graph which connects output nodes to input nodes and
which is then evaluated using an objective function. A CGP genome is of fixed size, however the
program graph can be of variable size as only a subset of nodes are connected to the output nodes.
This allows for flexibility in the number of nodes an individual can use, where nodes that do not
contribute to the output are simply ignored during evaluation. CGP has been successfully applied to
a wide range of problems [32, 33, 34, 35, 36].
In this work, we use a mostly standard CGP representation with modifications to optimization for
NSGA-II and modifications to the function set in order to represent ShoreFor. Other modifications
to the CGP algorithm are described in Appendix B. We make use of NSGA-II with five fitness
dimensions in order to rank our CGP individuals during evolution according to their predictive skills
at five different coastal sites. A brief explanation of NSGA-II is presented in Appendix C. We invite
the reader to refer to the original work in [26] for further details on the NSGA-II algorithm.

3 EXPERIMENTAL SETUP & RESULTS

3.1 STUDY SITES

Shoreline datasets from five different sites around the globe covering different coastal settings are
used in this work. As shown in Figure 1, these sites include the Grand Popo beach in Benin, Gulf
of Guinea, in West Africa. Truc Vert beach in the Aquitaine region of France. Narrabeen beach on
the coastline of the Sydney metropolitan area, on the eastern coast of Australia. In addtion to two
different sites from the USA, Duck NC on the eastern coast, and Torrey Pines on the western coast.

Figure 1: World map highlighting the locations of the five sites included in this study.

A mixture of techniques were used to gather these datasets. The shoreline time series are con-
structed using both in-situ GPS surveys and image processing to derive shoreline positions from
video. The input time series were gathered from wave-bouys, satellite altimetry, as well as global
model hindcasts (ISBA-CTRIP). The Ω and P input time series were computed according to [27].

3.2 FITNESS FUNCTION

In this work, we make use of a modified version of the Mielke skill test as proposed in [37] in order to
evaluate the performances of the models. The modified version of the Mielke skill test is formulated
as λ = 1− N−1 ∑N

i=1(oi−mi)2

σ2
o+σ2

m+(ô−m̂)2 , where o and m are the target and modelled shoreline location values
respectively, ô and m̂ their mean values, N the sample size and σ the variance. This metric is an
extension of the Pearson correlation coefficient (r) that downgrades the value of r according to
the bias between the two datasets. This score is used in order to evaluate the fitness of our CGP
individuals over the calibration period during evolution, where the objective is to maximize their
Mielke score. We also use it to evaluate the forecast performances of the individuals after evolution
as presented in Section 3.3.

3.3 MODEL EVALUATION

This section presents and analyzes the performance of the top performing generalist model produced
by CGP and NSGA-II over the test period (i.e. the model with the highest mean Mielke skill accross
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the five datasets over the test period). Figure 3 in Appendix E presents and compares the predicted
time series produced by ShoreFor and CGP over the full target time series. Table 1 presents a
numerical comparison of the Mielke skill of both models over the train and test periods.

λtrain λtest
Site ShoreFor CGP ShoreFor CGP

Grand Popo 0.65 0.73 0.51 0.51
Narrabeen 0.44 0.56 -0.04 0.11

Duck 0.22 0.49 0.56 0.67
Torrey Pines 0.36 0.48 0.14 0.23

Truc Vert 0.05 0.05 0.34 0.06

Table 1: Comparison of the Mielke skill scores of ShoreFor and CGP-evolved model over the train-
ing and test periods at the five coastal sites.

Compared to ShoreFor, the CGP-evolved model is able to produce more accurate predictions of the
seasonal to long-term trends in shoreline behavior, while ShoreFor produces better forecasts of the
shorter-term shifts in shoreline positions at some of the sites. In general, the model produced by
CGP achieves higher Mielke skill score over the training period over most sites, while achieving
similar or higher test skill over almost all sites.
Overall, these results showcase CGP’s ability to evolve an existing shoreline prediction model to
improve its prediction performance over multiple sites. They also demonstrate the usefulness of
CGP as a research tool to gain insight into the behaviors of shorelines at different areas of the world.

3.4 EVOLVED MODEL

Figure 4 presents the graph representation of the generalist model produced by CGP. The model can
also be represented by a system of a equations as presented in Equation 2.

dx

dt
=

{
1
2 P̄

0.5 d
dt

√
φ2

2 + 1
4 (R− Ω)2 + S2, if S ≥ P 0.5 + Ω

0, otherwise
(2)

We first note that the evolved model differs largely from the original ShoreFor model. While the
fall-velocity Ω is used, there is no calculation of an equilibrium term Ωeq , and the wave energy flux
P is used directly to calculate dx

dt , as opposed to calculating accretive and erosive wave forcing terms
F . The combination of information not used in ShoreFor, sea level anomaly S and river discharge
R, instead determines the influence of wave power on shoreline change. While it is notable that
wave power is the primary driver in both the evolved model and in ShoreFor, the evolved model
offers a different perspective on the relationship between sea level, river discharge, wave power, and
shoreline change.

4 DISCUSSION & CONCLUSION

In this work, we have presented our work on the use of CGP and NSGA-II in order to evolve a pre-
established shoreline forecasting model, ShoreFor. CGP was used in order to encode the ShoreFor
system of equations into a format that can be evolved using evolutionary algorithms. During evolu-
tion, NSGA-II is employed in order to maintain a pareto-front of optimal solutions according to their
performances at five different coastal points from around the globe. A generalist model was selected
according to its average forecast skill score over the five different objectives, the CGP-produced
model achieved superior predictive skill than that of ShoreFor over four of the five sites used in this
work.
Future directions of this work would include the expansion of the training and testing datasets to
cover more areas around the globe. Using satellite imagery, shoreline data could be obtained from
around the world. Coupled with global atmospheric and wave models for the input parameters,
similar methodologies could be used to evolve a global shoreline forecasting model. Furthermore,
the incusion of a wider range of shorelines and coastal environments in the training data could expose
the method to different areas in the search space that could bring the algorithm closer towards finding
a globally-applicable model. In addition, the use of a larger training dataset would allow for further
development of the algorithm using a noisy fitness evaluation scheme [38, 39, 40, 41, 42] which
should aid in reducing overfitting and maximizing test performance.
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Overall, the results presented in this work are a strong motivation for further study on the use of
genetic programming and multi-objective genetic algorithms in shoreline forecasting studies due to
the wide potential applicability of the evolved models and their interpretability as ordinary systems
of equations.
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APPENDIX A SHOREFOR IN CGP
We encode the ShoreFor model as a CGP individual in order to improve it using evolution. The first
population of models is created by randomly mutating the ShoreFor individual, and random genes
are used to fill in the inactive nodes. The encoding also informs the inputs available and the function
set, as we use functions during search which are necessary to encode the ShoreFor individual.
We first implement equation 1, the Ωeq time series, by calculating the weight vector W = 10−i/φ,
which is computed such that the weighting factor decreases per day i over the number of days φ.
In order to encode the computation of this weight vector, two inputs and five different functions are
required; the inputs are the calibrated φ constant and the value of 2φ, which specifies the size of
the moving window. Given these inputs, we decompose the calculation of W as follows. First, a
vector of length 2φ with values ranging from 1 to 2φ is computed using the irange function. This
vector is then simply flipped using the reverse function, to represent the number of days back in
history each point in the time series represents. At this point, the vector of i in 10−i/φ is computed.
Then, this vector is negated using the negate function and divided by the input constant phi using
div, resulting in a vector of values representing −i/φ. This vector is passed to the tpow function
(tpow(x) = 10x), obtaining W = 10−i/φ. In order to compute the moving average over the full
time series, we make use of the convolution function. We therefore modify the computation of Ωeq

as follows: Ωeq = conv(Ω, 10−i/φ∑2φ
i=1 10−i/φ ). The next step in the computational graph is to divide the

weight vector by the sum of the vector itself to be used as the convolution filter. The graph-form of
Equation 1 is shown in Figure 2(left).
The final set of inputs used in our CGP-ShoreFor implementation is described in Table 2. We note
that not all inputs included in our implementation are used by the ShoreFor model. These additional
inputs are included so that evolution can integrate them into the evolved models.

Input Description
Ω Dimensionless fall-velocity time series
P Wave power time series
φ Pre-calibrated number of days used for the initial ShoreFor model
2φ Used to indicate the size of the weight vector in Equation 1
D* Wave direction time series
Hs,b* Peak breaking wave height
Tp* Peak wave period
S* Sea level anomaly
R* Regional river discharge

Table 2: Inputs to the CGP-ShoreFor model. *Additional inputs that are not used by ShoreFor.

Generally speaking, implementations of CGP require that all input and computed variables are
bound to a range of -1 to 1 in order to prevent various computational issues such as the existance
of NaN’s or infinities in the computational graph. However, this requirement is difficult to achieve
in the case of GI of a physical system of equations due to the lack of true maxima for each input
and the use of unbounded functions in the original model. Therefore, we instead choose to handle
out-of-bounds computation by penalizing all such individuals by assigning them a fitness value of
negative infinity, essentially discarding them from future generations.
After encoding the ShoreFor system of equations as a single CGP genome, the ShoreFor individual
can be represented as a graph structure as shown in Figure 2(right).
Currently, the implementation of ShoreFor as a CGP individual assumes that the equations to cal-
culate P and Ω are physical facts and are therefore not included in the evolvable CGP-ShoreFor
implementation, but rather passed as pre-calculated time series.

APPENDIX B CGP
The definition of CGP in this work uses standard uniform mutations where functional genes and
connection genes are modified randomly. However, the following mutation-level constraints are
also applied in order to discard invalid individuals before evaluation: 1) We discard all mutated
graphs with direct input-output connections. 2) We ensure that for the same set of random inputs,
the outputs produced by parent graph and the mutated graph are different in order to minimze the
chances of having behaviorally identical individuals in the population. 3) Since we use a mixed-type

8



Published as a workshop paper at ”Tackling Climate Change with Machine Learning”, ICLR 2023

Ω

φ

2φ

irange

reverse

negate

div

tpow

sum

div

conv

Ωeq

Ω

P 0.5

φ

2φ

irange

reverse

negate

div

tpow

sum

div

conv

subtract

stddev

div

mult

lteqgt

multmult

detrend detrend

integrate integrate

div

abs

mult

add

dx/dt

Figure 2: Graph representations of the Ωeq equation (left) and the full ShoreFor system of equations
(right).

version of CGP where both scalar and vector values exist within the computational graph, we add a
constraint that discards any mutated graph that outputs scalar values. 4) Finally, we ensure that the
size of the output vector is equal to the size of the input time series.

APPENDIX C NSGA-II

NSGA-II is a well-known and widely used multi-objective genetic algorithm that was proposed in
[26]. It makes use of the concept of pareto dominance in order to split a population of models into
different performance-based ranks. A crowding distance measure is also used in order to maintain
the diversity of population during evolution. At generation Gt, parents (Pt) are selected from the
current population using tournament selection and are mutated in order to generate a population of
offspring models Qt. Individuals in Qt are evaluated according to the user-defined fitness function,
then a combined population Rt is created by merging both Pt and Qt. Rt is then sorted according
based on pareto dominance, as well as the crowding distance in lower-ranks, and the N top-ranking
individuals are chosen as the upcoming population. The algorithm is run in a loop until a certain
threshold is reached, such as the number of evaluations executed or a predefined fitness threshold.
Due to the elitist nature of NSGA-II, top-ranking models are guaranteed to be conserved through
the different generations until they are replaced by higher-ranking models.
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APPENDIX D EVOLUTIONARY CONFIGURATION

In this work, NSGA-II is used to evolve the CGP-encoded individuals. The algorithm is configured
according to Table 3 and run for 50 thousand generations. This setup was executed for 50 runs using
different random seeds. All runs were found to converge very early on during evolution (within
hundreds of generations). After each run, 200 different CGP individuals are recorded representing
the final generation from that run. The final generations from all runs are grouped into a single
merged population of 10000 individuals and evaluated using the calibration and forecast datasets.

Parameter Value
Population size 200
N offsprings 200
Mutation rate 0.1

Output mutation rate 0.3
Rows 1

Columns 50

Table 3: Evolutionary configuration used throughout this work.

Tables 4 and 5 document the different functions used in this work, representing the function set used
by the genetic algorithm during evolution.

Function Operation
abs |x|
sqrt

√
x

sin sinx
cos cosx

negate −x
tpow 10x

nop x
add x+ y

subtract x− y
mult x ∗ y
div x÷ y
pow xy

sqrt xy
√
x2 + y2

lteq x <= y
gt x > y

Table 4: The set of scalar operations included in the GA’s function set.

Function Operation
diff xi = xi − xi−1

sum
∑n
i=1 x

stddev σx
detrend 〈x〉

integrate*
∫ b
a
f(x)dx ≈

∑n
i=1

f(xi−1)+f(xi)
2 ∆xi

mean 1
n

∑n
i=1 x

reverse reverse(x)
irange [1, 2, 3...n], n = length(x)
conv conv(x, y)

Table 5: The set of vector operations included in the GA’s function set. * Assuming a constant time
step in the time series.
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APPENDIX E MODEL COMPARISON

Figure 3: Performances of ShoreFor and CGP-evolved model over the training and test periods at
the five coastal sites. *Shaded areas correspond to the test period at each site.

In Figure 3, we display the prediction of ShoreFor and the CGP-evolved model on the five sites.
At Grand Popo, the CGP-evolved model demonstrates higher predictive skill compared to Shore-
For in predicting longer term trends in shoreline behavior, while being less accurate in predicting
shorter-term variations in shoreline position, resulting in higher Mielke skill over the training pe-
riod, and an identical score over the test period. At Narrabeen, the generalist model achieves only
a slight improvement over the baseline ShoreFor model. Over Duck, while both models seem un-
able to accurately predict the shorter-term variations in shoreline position, the CGP-produced model
demonstrates higher skill in predicting the longer-term trends in shoreline behavior, allowing it to
have a higher Mielke skill over both the training and test periods. At Torrey Pines, the CGP model
is able to better predict the strong seasonal cycle compared to ShoreFor, achieving higher training
skill and slightly improved test skill. Finally, both models fail to produce a reliable forecast of the
shoreline position at Truc Vert as shown in Figure 3. Both models achieve poor Mielke skill over
the training period, while ShoreFor achieves a higher skill over the test period.

APPENDIX F EVOLVED GRAPH
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Figure 4: The generalist model produced by CGP and NSGA-II using ShoreFor as the starting point
for evolution.
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