
HAL Id: hal-04281520
https://hal.science/hal-04281520

Submitted on 23 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Astrocytes as Drivers and Disruptors of Behavior: New
Advances in Basic Mechanisms and Therapeutic

Targeting
Daniel Barnett, Kirsten Bohmbach, Valentin Grelot, Alexandre Charlet,

Glenn Dallérac, Yeon Ha Ju, Jun Nagai, Anna Orr

To cite this version:
Daniel Barnett, Kirsten Bohmbach, Valentin Grelot, Alexandre Charlet, Glenn Dallérac, et al.. Astro-
cytes as Drivers and Disruptors of Behavior: New Advances in Basic Mechanisms and Therapeutic Tar-
geting. Journal of Neuroscience, 2023, 43 (45), pp.7463-7471. �10.1523/JNEUROSCI.1376-23.2023�.
�hal-04281520�

https://hal.science/hal-04281520
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Symposium

Astrocytes as Drivers and Disruptors of Behavior: New
Advances in Basic Mechanisms and Therapeutic Targeting

Daniel Barnett,1,2,3 Kirsten Bohmbach,4 Valentin Grelot,5 Alexandre Charlet,5 Glenn Dallérac,6

Yeon Ha Ju,7 Jun Nagai,8 and Anna G. Orr1,2,3
1Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, New York 10021, 2Feil Family Brain and Mind Research Institute, Weill
Cornell Medicine, New York, New York 10021, 3Neuroscience Graduate Program, Weill Cornell Medicine, New York, New York 10021, 4Institute of Cellular
Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany, 5Institute of Cellular and Integrative Neuroscience, Centre National de la
Recherche Scientifique and University of Strasbourg, Strasbourg, 67000, France, 6Centre National de la Recherche Scientifique and Paris-Saclay University,
Paris-Saclay Institute for Neurosciences, Paris, 91400, France, 7Department of Psychiatry and Neuroscience, University of Texas–Austin Dell Medical School,
Austin, Texas 78712, and 8RIKEN Center for Brain Science, Laboratory for Glia-Neuron Circuit Dynamics, Saitama, 351-0198, Japan

Astrocytes are emerging as key regulators of cognitive function and behavior. This review highlights some of the latest advan-
ces in the understanding of astrocyte roles in different behavioral domains across lifespan and in disease. We address specific
molecular and circuit mechanisms by which astrocytes modulate behavior, discuss their functional diversity and versatility,
and highlight emerging astrocyte-targeted treatment strategies that might alleviate behavioral and cognitive dysfunction in
pathologic conditions. Converging evidence across different model systems and manipulations is revealing that astrocytes reg-
ulate behavioral processes in a precise and context-dependent manner. Improved understanding of these astrocytic functions
may generate new therapeutic strategies for various conditions with cognitive and behavioral impairments.

Introduction
Astrocytes regulate diverse brain functions, including informa-
tion processing and storage (Santello et al., 2019; Kofuji and
Araque, 2021). The exact roles of astrocytes in higher cogni-
tive function and behavior are a growing area of neuro-
science spurred by new and improved experimental tools and
better understanding of astrocyte biology, astrocytic–neuronal
interactions, and neural circuit activities underlying cognition
and behavior. Accumulating evidence suggests that astrocytes
play key roles in cognitive and behavioral processes (Han et al.,
2012; H. S. Lee et al., 2014; Habbas et al., 2015; Orr et al., 2015;
Gao et al., 2016; Papouin et al., 2017; Adamsky et al., 2018;
Curreli et al., 2022; Doron et al., 2022) and that these roles are
precise and context-dependent, and vulnerable to perturbation
in injury and disease (Rusakov et al., 2014; Chung et al., 2015;
Verkhratsky and Nedergaard, 2018). Alterations in astrocyte
function have been implicated in various disorders of cognition

and behavior (Tong et al., 2014; De Strooper and Karran, 2016;
Windrem et al., 2017; Brandebura et al., 2023). In this focused
review, we highlight recent studies mainly in mice on the effects
of astrocytes on visual processing, learning and memory, emo-
tion, attention, and motor activity in health and disease. These
studies suggest that diverse astrocytic factors and molecular
pathways regulate normal behavior and can contribute to dis-
ease-associated behavioral and cognitive deficits. These insights
enhance our understanding of astrocyte function and may facil-
itate therapeutic advancement for neurocognitive disorders.

Astrocytes regulate cortical maturation and hippocampal
activities underlying normal behavior
Astrocytes are crucial for synaptic development and maturation,
and changes to astrocytes in critical periods (CPs) of brain develop-
ment are implicated in neurodevelopmental disorders (Molofsky et
al., 2012; Allen and Eroglu, 2017). Astrocytes are considered cru-
cial elements of brain circuitry that enable synapse formation,
maturation, activity, and elimination (Clarke and Barres, 2013).
Although how exactly they exert such control is a topic of intense
research, it is well known that astrocytes participate in critical de-
velopmental periods and affect brain disorders involving synap-
tic alterations. Unraveling how astrocytes control synaptic circuit
formation and maturation is crucial not only for the understand-
ing of normal brain development, but also for identifying effec-
tive therapeutics for neurodevelopmental disorders, such as
autism spectrum disorder, attention-deficit/hyperactivity disor-
der, and epilepsy.

In the immature brain, both neurons and astrocytes develop in
parallel during the early postnatal period characterized by enhanced
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plasticity-related processes. In the first weeks of life, there is a
period of massive synaptogenesis followed by selective prun-
ing of synapses and sculpting of synaptic connections. These
processes result in sensitive periods, known as CPs, involving
enhanced neuroplasticity during which synaptic networks are
shaped by experience in postnatal development. Synapse elim-
ination may occur through engulfing mechanisms involving
astrocytic MEGF10 and MERTK-dependent phagocytic path-
ways, which are strongly influenced by local neuronal activ-
ities (Chung et al., 2013). Conversely, astrocytes may also
control CP by releasing various synaptogenic factors. For
instance, at thalamocortical synapses, astrocytes can secrete
the glycoprotein hevin, which facilitates the development of
glutamatergic synapses between the thalamus and neocortex.
The effects of hevin involve the bridging of presynaptic factor
neurexin-1a with the postsynaptic factor neuroligin-1 (Singh
et al., 2016).

The exact time windows for CP and neural network for-
mation vary between cerebral areas and their functions
(Hensch, 2005). Importantly, closure of the CP and stabiliza-
tion of neural circuits rely on activity-dependent maturation
of local inhibitory networks, in particular parvalbumin-
expressing GABAergic interneurons. The visual cortex is
well known to undergo experience-dependent developmental
shaping of synaptic circuits during its CP with enhanced plas-
ticity that follows eye opening. Primary visual areas in the cor-
tex are typically activated more by contralateral compared with
ipsilateral eye stimulation, which is termed ocular dominance.
The start and end of visual cortex CP is classically defined
according to the development of ocular dominance.

Ocular dominance can be manipulated experimentally by
occlusion of the contralateral eye for several days, which abol-
ishes dominance or switches it to the ipsilateral eye. Pioneering
studies have revealed a key role of astrocytes in the timing of the
visual CP by showing that implantation of immature astrocytes
into the visual cortex is sufficient to reopen a period of enhanced
plasticity (Muller and Best, 1989). More recently, Ribot et al.
(2021) unveiled the mechanisms by which astrocytes modulate
the wiring of visual circuits. Astrocytes in the visual cortex were
shown to regulate the extracellular matrix that promotes matura-
tion of interneurons, and this process involves unconventional
connexin signaling in astrocytes. In particular, the timing of CP
closure was controlled by marked developmental upregulation of
astrocytic connexin-30, which inhibited the expression of ma-
trix-degrading enzyme matrix metallopeptidase 9 through the
RhoA-GTPase pathway. These findings suggest that astrocytes
control experience-dependent wiring of neuronal circuits in neu-
rodevelopment that enable visual processing. Interestingly, in
parallel work using Drosophila melanogaster, studies have also
uncovered astrocyte roles in the closure of a newly discovered
CP for motor behavior (Ackerman et al., 2021). Here, astrocytes
appear to promote the end of CP by disrupting the balance between
excitation and inhibition through astrocyte-derived neuroligins and
their neuronal target neurexin-1. This work and other studies sug-
gest that astrocytes in insects and mammals regulate early neuro-
plasticity and that astrocytes have determinant roles in early
sculpting of synaptic connections and maturation of neural circuits
involved in perception and behavior.

Astrocytes also modulate synaptic function and neural circuits
in the hippocampus of young and adult animals. For instance,
astrocytes influence dendritic computations essential for spatial
learning and memory and other processes. The understanding of
microcircuit computations underlying spatial learning has grown

steadily (Geiller et al., 2023) since the discovery of place cells in
the hippocampus by O’Keefe and Dostrovsky (1971). While the
initial focus was centered on somatic neuronal activities, recent
studies have identified a crucial role for active dendritic computa-
tions in shaping place field firing patterns and spatial learning
(Sheffield and Dombeck, 2019). Similarly, the roles of astrocytes
in spatial learning has gained increased attention (Akther and
Hirase, 2022; Bohmbach et al., 2023). In particular, astrocytic
Ca21 signaling in the hippocampus has been shown to modulate
synaptic transmission and plasticity underlying spatial learning
(Perea and Araque, 2005, 2007; Shigetomi et al., 2008; Di Castro
et al., 2011; Panatier et al., 2011), and can predict the location of
an expected reward (Doron et al., 2022). However, exactly when
astrocytic Ca21 signaling pathways are recruited and whether
they modulate dendritic computation remained unknown until
recently.

In the stratum radiatum of the CA1 region in the hippo-
campus, active dendritic integration can amplify simultaneous
clustered inputs through the generation of dendritic spikes
(Losonczy and Magee, 2006; Stuart and Spruston, 2015). This
nonlinear dendritic computation has been shown to modulate
long-term plasticity (Remy and Spruston, 2007), complex
burst firing (Grienberger et al., 2014), and the formation of
place cells (Sheffield and Dombeck, 2015; Sheffield et al.,
2017). As NMDAR signaling is crucial for dendritic spikes
(Losonczy and Magee, 2006; Grienberger et al., 2014; Harnett
et al., 2015; Bohmbach et al., 2022) and astrocytes are known
to modulate NMDARs through the supply of the co-agonist
D-serine (Henneberger et al., 2010; Papouin et al., 2017;
Robin et al., 2018), it was hypothesized that astrocytes modu-
late dendritic computations. Through a series of ex vivo elec-
trophysiological experiments, Bohmbach et al. (2022) revealed
that the co-agonist binding site of NMDARs allows the modu-
lation of dendritic spikes and that this effect was mediated by
an increase in the NMDAR co-agonist D-serine. However, im-
portant questions remain. How do neurons engage astrocytes
to enhance D-serine release and what is the exact mechanism
regulating astrocytic D-serine release?

Neuronal firing can increase endocannabinoid levels, which
are lipophilic substances with short-range neuromodulatory
actions (Di Marzo et al., 1998; Wilson and Nicoll, 2002;
Chevaleyre and Castillo, 2003; Fortin et al., 2004; Dubruc et
al., 2013; Albarran et al., 2023). Astrocytes express endocan-
nabinoid receptors, including Type 1 cannabinoid receptors
(CB1R), which regulate astrocytic Ca21 levels (Navarrete and
Araque, 2008), synaptic plasticity and memory (Han et al.,
2012; Min and Nevian, 2012), and metabolic processes (Jimenez-
Blasco et al., 2020; Covelo et al., 2021). In addition, CB1R is
involved in Ca21-dependent release of gliotransmitters, including
D-serine (Gomez-Gonzalo et al., 2015; Robin et al., 2018;
Bohmbach et al., 2022). Bohmbach et al. (2022) demon-
strated that astrocytes respond to neural activity via the
activation of endocannabinoid receptors, which are recruited
for D-serine release. In turn, astrocyte-derived D-serine modu-
lated neurotransmission by lowering the threshold and increas-
ing the amplitude of dendritic spikes. Overall, these results
suggest that hippocampal astrocytes control dendritic computa-
tions through endocannabinoid receptor activation and Ca21-
dependent release of D-serine that enhances dendritic NMDAR
activation.

Bohmbach et al. (2022) also investigated when and how
this astrocytic modulation is recruited. Importantly, the recruit-
ment of astrocytic Ca21 and subsequent modulation of dendritic
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integration by D-serine exhibited a distinct activity-depend-
ent pattern. While low (4 Hz) and high (40Hz) frequency
neuronal firing did not recruit astrocytic modulation, firing
rates in the theta band (;10 Hz) recruited reciprocal signal-
ing between astrocytes and neurons. This activity-based
engagement of astrocytes is likely mediated by dendrites them-
selves, as blockade of hyperpolarization-activated cyclic nucleo-
tide-gated channels impaired feedback signaling. Moreover,
Bohmbach et al. (2022) showed that this positive feedback
exerted by astrocytes is required for spatial learning and
memory. Decreasing intracellular Ca21 levels through the
expression of hPMCA2, a Ca21 ATPase (also known as
CalEx), or ablating the cannabinoid receptor CB1R specifi-
cally in astrocytes disrupted this astrocytic–neuronal cross-
talk and impaired memory.

These findings and related work illustrate that astrocytes mod-
ulate spatial learning-related processes in the hippocampus and
are engaged by specific types of neuronal activity patterns to mod-
ulate dendritic input computations. Further studies are needed to
determine whether additional neuronal factors act on astrocytes to
control these mechanisms and whether specific patterns of neural
activities in other brain regions similarly recruit astrocytic feedfor-
ward mechanisms.

Astrocytes modulate neural circuits in the amygdala and
striatum to affect various behavioral domains
Astrocytes in different brain regions have distinct transcriptomic,
structural, and functional properties (Chai et al., 2017; Morel et
al., 2017; Endo et al., 2022), and these regional differences are
also evident in aging and disease (Clarke et al., 2018; Hasel et al.,
2021; Burda et al., 2022; Endo et al., 2022). Throughout the
brain, astrocytes are responsive to various factors, including neu-
rotransmitters and neuropeptides, that likely promote distinct
astrocytic functions among different brain regions and circuits.
In particular, recent studies have explored the roles of astrocytes
in the effects of oxytocin (OT), a neuropeptide known for its reg-
ulation of various behavioral functions ranging from social inter-
actions to pain and anxiety (Eliava et al., 2016; Jurek and
Neumann, 2018; Hasan et al., 2019; Tang et al., 2020; Wahis et
al., 2021; Iwasaki et al., 2023). Mainly synthetized in the hypo-
thalamus, OT reaches distant brain nuclei through long-range
axonal projections of OT-synthetizing neurons (Zhang et al.,
2021). Once locally released, OT binds to its transmembrane re-
ceptor (OTR). While in the past, the effects of OT were mostly
attributed to neuronal OTR and its direct effects on neuronal
activities, new findings have uncovered a crucial role for astro-
cytes in OT-induced neuromodulation in the amygdala (Wahis
et al., 2021; Baudon et al., 2022).

The central amygdala (CeA) is a key nucleus in the brain
involved in the regulation of emotion. Wahis et al. (2021) found
that a specific subpopulation of CeA astrocytes expresses OTR.
Strikingly, these astrocytes appeared to be larger, more complex,
and more likely to be connected to neighboring astrocytes com-
pared with astrocytes lacking OTR expression. In ex vivo slice
preparations, evoked OT release using optogenetics or direct
OTR activation using TGOT, a selective OTR agonist, led to the
appearance or significant increases in astrocytic Ca21 transients.
Targeted genetic deletion of the OTR-encoding gene specifically
in CeA astrocytes revealed that CeA astrocytes express functional
OTR. The authors evaluated the functional impact of OTR-
induced astrocytic Ca21 transients on the CeA neuronal net-
work. To this end, patch-clamp recordings of electrical activities
and currents in CeA neurons revealed strong modulation of CeA

neuronal activity by astrocytic OTRs. These effects were medi-
ated by neuronal NMDARs at least in part through astrocytic
release of D-serine. Given the crucial roles of CeA in emotional
behavior, Wahis et al. (2021) also explored the behavioral effects
of astrocytic OTR using a neuropathic pain model and meas-
uring nociceptive thresholds, and assessing anxiety-like behavior
and place preferences. Although there was not a strong involve-
ment of OTR in nociception, activation of OTR reduced anxiety-
like behavior and increased place preference; and these effects
were dependent on CeA astrocytes.

These findings suggest that astrocytic OTR activation in
the CeA induces astrocytic Ca21 transients and transmitter
release that modulate neuronal activity and emotion-related
behaviors (Wahis et al., 2021). However, many important
questions remain. Do astrocyte-mediated effects by OT differ
according to brain region and pathophysiological state? Which
intracellular pathways does astrocytic OTR recruit, and are
there long-term effects of astrocytic OTR activation on astro-
cyte–neuronal interactions and behavioral functions (Baudon
et al., 2022)? Further research is necessary to unravel the exact
mechanisms and roles of astrocytes in emotion-linked circuits
and behaviors and their changes in pathologic conditions that
involve emotional dysregulation.

Astrocytes also regulate neural circuits involved in movement
and attentional behaviors. Recent studies have explored the im-
portance of astrocytes in cognitive processes related to how
organisms exploit external stimuli for action selection. This pro-
cess is heavily influenced by the striatum, a major input region of
the basal ganglia, an area of the brain that coordinates voluntary
movements directed by the cerebral cortex and regulates motor
functions, innate behaviors, and cognitive processes, such as
reinforcement learning (Graybiel, 2008; Markowitz et al., 2018).
Intricate intercellular signaling plays pivotal roles in striatal
microcircuits, and impairments in these mechanisms are impli-
cated in neurodegenerative disorders, such as Parkinson’s disease
and Huntington’s disease, and in drug addiction (Burguiere et
al., 2015; Graybiel and Grafton, 2015; Khakh, 2019).

Astrocytes tile the striatum, where ;95% of neurons are
GABAergic medium spiny neurons (MSNs). Striatal astrocytes
respond to MSN activities through Gi-coupled GABAB receptors,
leading to increases in intracellular Ca21 levels (Nagai et al.,
2019). Accumulating evidence suggests that striatal astrocytes
regulate behavior. In particular, recent studies have manipulated
Ca21 signaling and metabotropic receptor activation in striatal
astrocytes using membrane-targeted expression of Ca21 ATPase
(CalEx) (Yu et al., 2018, 2021) or chemogenetic stimulation of
Gi-coupled DREADDs. Silencing astrocytic Ca21 signaling with
CalEx caused an increase in astrocytic expression of GABA
transporter GAT3, which induced repetitive self-grooming be-
havior in mice that is reminiscent of obsessive-compulsive disor-
der (Yu et al., 2018). Furthermore, Nagai et al. (2019) revealed
that chemogenetic activation of astrocytic Gi-coupled receptors
using hM4Di enhanced cortico-striatal excitatory synaptic trans-
mission through aberrant induction of a synaptogenic molecule,
thrombospondin-1, which induced behavioral hyperactivity and
disrupted attention. These findings suggest that re-activation of
astrocytic factors required in neurodevelopment can cause be-
havioral impairments in adulthood.

Striatal astrocytes are also instrumental in modulating re-
ward-seeking behavior and behavioral flexibility. In particular,
chemogenetic activation of Gq-coupled receptors in astrocytes
located in the dorsomedial striatum modulates synaptic trans-
mission in direct and indirect pathway MSNs in distinct ways,
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promoting a shift from habitual behavior to goal-directed behav-
ior (Kang et al., 2020). Astrocytic Gq-coupled signaling can also
preserve behavioral flexibility and action switching by decreasing
the expression of the glutamate transporter GLT-1, which pre-
vents excessive glutamate clearance (Boender et al., 2021).
Ventrostriatal astrocytes also respond to increases in extracellular
dopamine, which can be induced by blocking dopamine trans-
porters with psychostimulants. The increases in dopamine aug-
ment astrocytic Ca21 levels and influence synaptic depression
and addiction behavior (Corkrum et al., 2020; J. Wang et al.,
2021). Beyond GPCRs, astrocytic GluN2C-containing NMDARs
can also mediate Ca21 signaling (Chipman et al., 2021), and this
mechanism is suggested to maintain cocaine preference memory
(Shelkar et al., 2022). The diverse array of astrocytic mechanisms
and effects on striatum-dependent behaviors highlight the
engagement of astrocytes in diverse neural processing and the
functional variation observed within brain regions (Khakh and
Deneen, 2019; Endo et al., 2022) in terms of intercellular signal-
ing (Akther and Hirase, 2022), behavioral modulation (Nagai et
al., 2021a, 2021b), and disease type and progression (Escartin et
al., 2021; Burda et al., 2022).

Further understanding the specific contributions of striatal
astrocytes to behavioral functions may reveal new therapeutic
targets for conditions, such as Huntington’s disease (H. G. Lee et
al., 2022). Striatal astrocytes have highly context-specific molecu-
lar responses in disease, as evidenced by differential changes in
gene expression patterns across 14 experimental perturbations
(Yu et al., 2020). Chemogenetic stimulation of astrocytic Gi-
coupled signaling in models of Huntington’s disease pathology
led to improvements in some, but not all, behavioral symptoms
through increased expression of thrombospondin-1. Thus, stim-
ulating Gi-coupled receptors in astrocytes could promote syn-
apse formation and may offer a potential therapeutic approach
for conditions characterized by synaptic loss (Yu et al., 2020).
Future studies should address the complex interactions of astro-
cytes with neurons and other cell types within the striatum and
throughout the cortico-basal ganglia circuits to better understand
localized and broader effects of astrocytes in this region.

In summary, astrocytes have essential roles in synaptic
transmission, plasticity, and behavioral control in the striatum
and amygdala, highlighting the potential importance of astro-
cytes in the broader landscape of neurologic and neuropsychi-
atric disorders.

Astrocytes have context-dependent and multifactorial roles
in neurocognitive disorders
Astrocytes are increasingly recognized as having phenotypic di-
versity and functional versatility (Haustein et al., 2014; Khakh
and Sofroniew, 2015; Ben Haim and Rowitch, 2017; Chai et al.,
2017; John Lin et al., 2017; Morel et al., 2017; Patani et al., 2023;
Soto et al., 2023). As mentioned above, astrocytic features
and effects can vary across brain regions and neural cir-
cuits. Astrocytes are also affected by brain maturation and
aging (Sun et al., 2013; Boisvert et al., 2018; Clarke et al.,
2018; Lattke et al., 2021; E. Lee et al., 2022), sex (Bracchi-
Ricard et al., 2008; Baier et al., 2022; Krawczyk et al., 2022;
Meadows et al., 2022), and genetic variations (Messing et
al., 2012; Arnaud et al., 2022), and they are sensitive to sen-
sory processing (Schummers et al., 2008), locomotion (Paukert et
al., 2014), arousal (Rasmussen et al., 2023; Reitman et al., 2023; F.
Wang et al., 2023), metabolic and dietary cues (Camandola, 2018;
Jimenez-Blasco et al., 2020; Nampoothiri et al., 2022; Morant-
Ferrando et al., 2023), and stressors, such as sleep deprivation

(Bellesi et al., 2017), social isolation (Cheng et al., 2023), and viral
infections (Soung and Klein, 2018; Jorgacevski and Potokar,
2023). It is possible that astrocytes play precise and context-de-
pendent roles as a result of their integrated processing of diverse
cues inherent to different biological and environmental contexts.

In brain injury and disease, astrocytic responses are emerg-
ing as highly context-dependent. These dynamics are becoming
particularly evident in neurodegenerative disorders, including
Alzheimer’s disease (AD) and related dementias. Astrocytes
express or respond to most, if not all, dementia-associated fac-
tors (Bruijn et al., 1997; Gu et al., 2010; Serio et al., 2013; Sun et
al., 2015; di Domenico et al., 2019; Sadick and Liddelow, 2019;
Patani et al., 2023) and show extensive changes in gene expres-
sion patterns and functional characteristics depending on age
(Soreq et al., 2017; Boisvert et al., 2018; Clarke et al., 2018), type
of pathology (Delekate et al., 2014; Orr et al., 2015; Jiang et al.,
2016; Liddelow et al., 2017; Giovannoni and Quintana, 2020),
and exact brain region (Boisvert et al., 2018; Clarke et al., 2018;
Itoh et al., 2018). Indeed, astrocytes have highly diversified
transcriptional signatures in different pathologic contexts at
least in part because of the combinatorial effects of various
transcriptional regulators (Burda et al., 2022).

Astrocytic context specificity is further evident in the
cell-autonomous effects of dementia-related proteinopathy
on astrocytic gene expression and astrocytic regulation of
specific neuronal functions. One of the central pathogenic
proteins implicated in neurodegenerative disorders is trans-
activating response region DNA-binding protein 43 (TDP-
43), a multifunctional and ubiquitous DNA/RNA-binding
factor that localizes primarily in the nucleus and regulates
RNA processing and trafficking, among other functions. In
disease, TDP-43 accumulates in the cytoplasm and other
subcellular compartments, and is a major component of pro-
tein inclusions in amyotrophic lateral sclerosis and frontotem-
poral dementia (Arai et al., 2006; Neumann et al., 2006; T. J.
Cohen et al., 2011). Notably, TDP-43 is also implicated in AD
and other conditions that cause behavioral impairments (Amador-
Ortiz et al., 2007; Uryu et al., 2008; Davidson et al., 2011; Nag et al.,
2015). In addition to its effects in neurons, TDP-43 also affects
glial cells and likely promotes disease by multiple mechanisms
(Uryu et al., 2008; Diaper et al., 2013; Serio et al., 2013; Uchino
et al., 2015; Takeuchi et al., 2016; Paolicelli et al., 2017;
Weskamp et al., 2020). In support, aberrant astrocytic cleavage
or accumulation of TDP-43 has been detected in amyotrophic
lateral sclerosis, frontotemporal dementia, and AD (Serio et al.,
2013; Takeuchi et al., 2016; Weskamp et al., 2020; Licht-Murava
et al., 2023), but exactly how astrocytic TDP-43 dysregulation
affects astrocyte function, astrocytic–neuronal interactions, and
behavior was not clear.

New findings by Licht-Murava et al. (2023) indicate that
aberrant buildup of TDP-43 in astrocytes is sufficient to cause
progressive memory loss, but not other types of behavioral
impairments, suggesting that hippocampal astrocytes are
more vulnerable to TDP-43 pathology compared with astro-
cytes in other brain regions. Although hippocampal pathol-
ogy and dysfunction are prevalent in aging and dementia,
exact causes are uncertain and treatment options for neuro-
cognitive decline in dementia are limited. In the context of
TDP-43 pathology, Licht-Murava et al. (2023) uncovered
abnormal increases in antiviral gene activities in hippocampal
astrocytes and excessive production of interferon-inducible
chemokines. These chemokines are known to activate Gi-
coupled CXCR3 receptors, which are typically enriched in
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immune cells. However, in TDP-43 pathology, the increases in
hippocampal CXCR3 levels were localized to excitatory presyn-
aptic terminals. Chronic stimulation of presynaptic CXCR3
caused aberrant increases in neuronal activities, and genetic
ablation of CXCR3 prevented memory loss. Together, these
findings reveal that TDP-43-linked increases in astrocytic anti-
viral signaling and chemokine production can trigger selective
neuronal dysregulation and progressive cognitive decline.

Intriguingly, viral infections and other immune challenges
can cause changes in memory, mood, and behavior, including
sickness behavior and post-acute sequelae of SARS-CoV-2 infec-
tion (D’Mello and Swain, 2017; Becker et al., 2021; Damiano et
al., 2022; Devlin et al., 2022; Hampshire et al., 2022; Takao and
Ohira, 2023). Astrocytic antiviral pathways might contribute to
these symptoms in part through increased release of chemokines
and other immune response factors (Habbas et al., 2015) that
disrupt specific synaptic activities. Of note, CXCR3 blockers
have been developed and tested in clinical trials for arthritis and
other peripheral inflammatory conditions but have not been
assessed in behavioral disorders.

In addition to neuroimmune signaling, metabolic pathways
may underlie astrocytic context-specific modulation of neuro-
transmission and behavior in disease. Astrocytes are crucial for
maintaining brain homeostasis and neuronal health in part
through astrocytic uptake, processing, and release of various
metabolic factors (Belanger et al., 2011; Siracusa et al., 2019).
These mechanisms modulate the extracellular environment, con-
trol neurotransmitter levels, and regulate energy metabolism. An
important component of astrocytic metabolism is the urea cycle,
a pathway associated with detoxification of ammonia, a byprod-
uct of amino acid metabolism (P. P. Cohen, 1981; Meijer et al.,
1990; Morris, 2002; Gropman et al., 2007).

Recent findings by Ju et al. (2022) have shed new light on the
intricate relationship between the urea cycle in astrocytes and their
roles in neurotransmission, and reveal how altered astrocyte me-
tabolism can contribute to neurocognitive deficits in disease. In
AD patients, astrocytes were found to have increased expression of
urea cycle enzymes, including carbamoyl phosphate synthetase-1

and ornithine transcarbamylase, enabling astrocytes to convert
toxic ammonia into less harmful byproducts (Ju et al., 2022).
Because amyloid-b(Ab ) catabolism results in the production of
ammonia, the upregulation of the urea cycle enzymes in AD sug-
gests an adaptive response to the elevated ammonia levels. Ju et
al. (2022) found that, although the urea cycle is relatively inactive
in healthy astrocytes, it is engaged in AD and linked to the
clearance of toxic Ab aggregates. However, excessive activation
of the astrocytic urea cycle was found to disrupt the delicate
balance of neurotransmitters, including glutamate and GABA,
leading to synaptic dysfunction and memory impairments. In
particular, increased urea cycle metabolism led to the produc-
tion of putrescine via ornithine decarboxylase 1 (ODC1).
Subsequently, excessive conversion of putrescine to GABA, an
inhibitory neurotransmitter, and hydrogen peroxide (H2O2), a
toxic byproduct of GABA production in astrocytes, was found
to disrupt neurotransmission and impair hippocampal synap-
tic plasticity, thereby contributing to cognitive decline (Chun
et al., 2020).

Targeting astrocytic urea cycle-related mechanisms may hold
therapeutic potential for mitigating cognitive deficits in AD. Ju et
al. (2022) targeted ODC1 to avoid disrupting the urea cycle, an
essential detoxification pathway that promotes Ab clearance.
ODC1 inhibition prevented GABA overproduction and restored
memory in mice with AD-linked pathology. Activation of the
urea cycle in AD illustrates a context-dependent shift in astro-
cytic metabolism that also alters neurotransmission and cogni-
tion. Furthermore, the duality of the beneficial removal of Ab
with the subsequent detrimental effects of excess putrescine on
neurotransmitter balance and memory emphasizes the complex-
ity of astrocytic roles in disease. Understanding the precise
mechanisms underlying the interplay between astrocytic urea
cycle activity and cognitive decline in AD may inform therapeu-
tic strategies aimed at preserving cognitive function while main-
taining ammonia detoxification.

The relationship between astrocytes and the urea cycle repre-
sents a fascinating area of research with significant implications
for brain metabolism and neurologic health. Elucidating the

Figure 1. Newly uncovered astrocytic mechanisms and behavioral effects in health and disease. Simplified summaries of select studies. Refer to the corresponding text and original reports for
details. A, Ribot et al. (2021). B, Bohmbach et al. (2022). C, Wahis et al. (2021). D, Yu et al. (2018); Nagai et al. (2019). E, Ju et al. (2022). F, Licht-Murava et al. (2023).
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precise mechanisms and regulation of these interactions may
open new avenues for therapeutic interventions. Dysregulation
of astrocyte–urea cycle axis has been implicated in several neuro-
logic conditions, including hepatic encephalopathy, a neuro-
psychiatric disorder associated with liver dysfunction. Notably,
metabolic activities in astrocytes and the expression of astrocytic
metabolic and mitochondrial genes can be region-specific (Hasel
et al., 2021), but it is not clear whether astrocyte metabolism in
distinct brain regions responds differently to AD pathology.

Together, these studies suggest that astrocytes can disrupt
cognitive function in disease and affect pathology in a con-
text-dependent and dynamic manner through specific changes
in neuroimmune and metabolic pathways that influence neu-
rotransmission. There is a strong bidirectional relationship
between immune responses and metabolism (Tannahill et al.,
2013; O’Neill et al., 2016), which may converge on neural
mechanisms underlying neurotransmission and cognitive
processes. Further unraveling these glial-neuronal molecular
networks may be crucial for better understanding and effec-
tively treating neurocognitive disorders that involve neuroim-
mune and metabolic alterations.

In conclusion, astrocytes are increasingly recognized as active
contributors to behavior and cognitive processes. As summarized
in Figure 1, new studies have revealed how astrocytes regulate
synaptic maturation in the visual cortex and dendritic integra-
tion in the hippocampus through context-dependent engage-
ment of astrocytic connexins and endocannabinoid pathways,
respectively, that affect visual perception and spatial memory
(Fig. 1A,B). Moreover, in the amygdala, a subset of astrocytes
were found to express OT receptors and selectively modulate
anxiety-like behaviors and place preference, and astrocytes in the
striatum were found to control synaptic activities through Gi-
coupled signaling and modulate attention, hyperactivity, and re-
petitive behaviors through multiple molecular mechanisms (Fig.
1C,D). In neuropathological conditions, changes in astrocyte
functions can contribute to neurocognitive decline in a pathol-
ogy-specific and context-dependent manner. In particular, de-
mentia-associated Ab and TDP-43 proteinopathies were found
to alter specific metabolic and neuroimmune pathways in hippo-
campal astrocytes that disrupted select aspects of neurotransmis-
sion (Fig. 1E,F). Future studies should continue to make use of
advanced experimental approaches to gain further insights into
the complex and diverse mechanisms by which astrocytes modu-
late neural signaling, plasticity, network activities, and behavior.
Growing evidence points to astrocyte dysfunction in cognitive
and behavioral impairments in a wide range of neurologic and
neuropsychiatric disorders, suggesting that new therapeutic
strategies that target astrocytes may be useful in the treatment
of these disorders.
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