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Conformal transformation and Maxwell's equations

   

The dimensionless Minkowski space is dened as a (1+3)-dimensional at space with the coordinates x α = (t, x, y, z), where the Greek index runs from 0 to 3. The corresponding orthonormal basis is denoted by {e α }, and the metric is g αβ = e α • e β = diag (1, -1, -1, -1).

(1)

We always use normal letters to represent dimensionless quantities, and use bold letters for the dimensional ones. For example, the dimensional Minkowski coordinates are denoted by

x α = (t, x, y, z) = x α ℓ.

(

) 2 
When there is no ambiguity, the term dimensionless or dimensional is usually omitted.

Under the summation convention,

W = W α e α (3) 
means the contravariant components of the four-vector W are (W 0 , W 1 , W 2 , W 3 ). Note that W can be spacetime-dependent, i.e., W α = W α (x). The dimensional counterpart of Eq. ( 3) is

W = W α e α = W α [W ]e α , (4) 
where [W ] represents the unit in which W is measured, e.g., [x] = ℓ.

B. Passive and active transformations

For a given one-to-one relation in Minkowski space, x ′µ = F µ (x), [START_REF] Laue | Causality and the spontaneous break-down of conformal symmetry[END_REF] there always exist two interpretations that correspond to the passive and active transformations.

For the sake of clarity, we will henceforward use xµ = F µ (x) [START_REF] Rosen | Conformal invariance of Maxwell's equations[END_REF] for the passive transformation, and use xµ = F µ (x) [START_REF] Kyriakopoulos | Conformal invariance of Maxwell's equations with magnetic charges[END_REF] for the active one. Whenever the prime symbol still appears, it means both interpretations are possible.

From the physical point of view, Eq. ( 6) indicates using another reference frame to describe the same physical system. In contrast, Eq. ( 7) maps each spacetime point and its contents to another point. Therefore, a physical system remains unchanged under Eq. ( 6), while it generally diers to the original one after Eq. ( 7) is performed.

Geometrically speaking, dierent reference frames correspond to dierent coordinate systems and dierent bases of Minkowski space. Equation [START_REF] Kyriakopoulos | Conformal invariance of Maxwell's equations with magnetic charges[END_REF] involves only one frame; hence the basis and metric are xed. On the other hand, Eq. ( 6) generally produces a new basis êµ = ∂x α ∂x µ e α

and a new metric

ĝµν = êµ • êν = ∂x α ∂x µ ∂x β ∂x ν g αβ . ( 9 
)
Lorentz transformation is dened as a linear transformation

x ′µ = L µ α x α [START_REF] Gourgoulhon | Special Relativity in General Frames: From Particles to Astrophysics[END_REF] with the constraint

L µ α L ν β g µν = g αβ . (11) 
Examples of this transformation include rotations, boosts, and every kind of reection in Minkowski space.

By using the parameter ϑ := sgn(L 0 0 ) ̸ = 0, [START_REF] Grinfeld | Introduction to Tensor Analysis and the Calculus of Moving Surfaces[END_REF] we can classify Lorentz transformation into two distinct types [START_REF] Gourgoulhon | Special Relativity in General Frames: From Particles to Astrophysics[END_REF], where ϑ = 1 corresponds to the orthochronous Lorentz transformation, and ϑ = -1 to the antichronous one. For example, the transformation L P = diag (1, -1, -1, -1) is orthochronous, and

L T = diag (-1, 1, 1, 1) is antichronous.
In the realm of special relativity, it is well known that passive and active Lorentz transformations are physically equivalent. Nevertheless, the corresponding basis transformations are dierent. The basis is xed under active Lorentz transformation, while under passive Lorentz

transformation xµ = L µ α x α ( 13 
)
the basis vectors follow the transformation law

êµ = [L -1 ] α µ e α , (14) 
which yields metric ĝµν = g µν according to Eqs. ( 9) and [START_REF] Møller | The Theory of Relativity[END_REF].

Therefore, excluding the transformations of bases, the formulas associated with a passive Lorentz transformation are isomorphic to their active correspondents. This relation will be called the rst kind partial isomorphism, it allows us to concentrate on passive Lorentz transformation in the rest of this section.

When the passive Lorentz transformation of coordinates is generalized to that of four-vectors, the transformation law becomes more complex. For one thing, the full expression of

Ŵ µ = L µ α W α (15) is Ŵ µ (x) = L µ α W α (x), (16) 
where x = x(x) is dened by the inverse of Eq. ( 13). For another, Lorentz transformation of four-vectors does not always take the form of Eq. (15). For example, the transformation law for space inversion is indeed

Ŵ µ = [L P ] µ α W α = (W 0 , -W 1 , -W 2 , -W 3 ), (17) 
while in the case of time reversal, four-vectors need to be categorized into two groups: those that follow the transformation law

Ŵ µ = [L T ] µ α W α = (-W 0 , W 1 , W 2 , W 3 ), (18) 
and those that transform as

Ŵ µ = (-1)[L T ] µ α W α = (W 0 , -W 1 , -W 2 , -W 3 ). ( 19 
)
The former will be called typical four-vectors, and the latter atypical four-vectors. In more rigorous terms, the latter are called pseudo-four-vectors with respect to time reversal.

Typical four-vectors include the four-position and four-gradient, while the four-velocity is a common atypical one. In electrodynamics, both of the four-potential and four-current-density are atypical, the latter will henceforward be called four-current for short.

Generally speaking, with respect to a Lorentz transformation L, the typical and atypical four-vectors respectively transform as Eq. ( 15) and

Ŵ µ = ϑL µ α W α , ( 20 
)
where ϑ is dened by Eq. ( 12). These two formulas can be integrated into a single one

Ŵ µ = ϑ κ L µ α W α , (21) 
where κ = 0 when W is typical, and κ = 1 when W is atypical. The covariant counterpart of Eq. ( 21),

Ŵµ = g µν Ŵ ν = ϑ κ [L -1 ] α µ W α , (22) 
can be derived from Eq. ( 11).

D. Maxwell's equations and Electromagnetic tensors

In the units specied above, the dimensional vectorial Maxwell's equations take the forms

∇ • ⃗ B = 0, ∇ × ⃗ E = - ∂ ⃗ B ∂t ; (23) 
∇ • ⃗ E = ρ, ∇ × ⃗ B = ⃗ J + ∂ ⃗ E ∂t . (24) 
In light of the dimensional analysis

[∇] = ℓ -1 , [t] = ℓ, [ ⃗ E] = [ ⃗ B] = qℓ -2 , and [ρ] = [ ⃗ J ] = qℓ -3 , (25) 
the dimensionless counterparts of Eqs. ( 23) and (24) are respectively

∇ • ⃗ B = 0, ∇ × ⃗ E = - ∂ ⃗ B ∂t ; (26) ∇ • ⃗ E = ρ, ∇ × ⃗ B = ⃗ J + ∂ ⃗ E ∂t . (27) 
It is well known that Eq. (26) enables us to express the electric eld ⃗ E and magnetic eld ⃗ B in terms of the scalar potential ϕ and vector potential ⃗ A, i.e.,

⃗ E = -∇ϕ - ∂ ⃗ A ∂t and ⃗ B = ∇ × ⃗ A. ( 28 
)
Although Eqs. ( 26)-(28) are coordinate independent, we have to choose a specic coordinate system when switching to tensor language. For example, by employing Minkowski coordinates x α = (t, x, y, z), we integrate Eq. (28) into a single tensorial formula

    0 E x E y E z -E x 0 -B z B y -E y B z 0 -B x -E z -B y B x 0     = ∂ α A β -∂ β A α =: F αβ , (29) 
where ∂ α = ∂/∂x α is the covariant four-gradient and A α = (ϕ, -A x , -A y , -A z ) the covariant four-potential.

Utilizing the fact that both ∂ α and A α follow Eq. ( 22) with κ = 0 and 1 respectively, we can prove

Fµν = ϑ[L -1 ] α µ [L -1 ] β ν F αβ , (30) 
i.e., it behaves as a covariant tensor of rank two with respect to passive Lorentz transformation.

Hence F αβ is called the covariant electromagnetic tensor.

From the denition of F αβ in Eq. ( 29), it is straightforward to derive the tensorial identity

∂ γ F αβ + ∂ α F βγ + ∂ β F γα = 0, (31) 
which is equivalent to Eq. ( 26). As for Eq. ( 27), its tensorial form in Minkowski coordinates is

∂ α F αβ = J β , (32) 
where J β = ρ, J x , J y , J z is the contravariant four-current, and

F αβ = g αγ g βδ F γδ =     0 -E x -E y -E z E x 0 -B z B y E y B z 0 -B x E z -B y B x 0     (33) 
is the contravariant electromagnetic tensor that follows the transformation law

F µν = ϑL µ α L ν β F αβ . (34) 
Finally, according to the dimensional analysis

[∂] = ℓ -1 , [F ] = qℓ -2 , and [J ] = qℓ -3 , (35) 
we multiply Eqs. (31) and (32) by qℓ -3 to obtain their dimensional counterparts

∂ γ F αβ + ∂ α F βγ + ∂ β F γα = 0; (36) 
∂ α F αβ = J β . (37) 
III. CONFORMAL TRANSFORMATION

A. Denition

The conformal transformation

x ′µ = C µ (x) (38) 
is dened as a subclass of Eq. ( 5) that satises

Λ 2 ∂x ′µ ∂x α ∂x ′ν ∂x β g µν = g αβ with Λ > 0, (39) 
or

Λ 2 ∂x ′µ ∂x α ∂x ′ν ∂x β g αβ = g µν with Λ > 0. ( 40 
)
It is obvious that Λ is related to the Jacobian determinant of this transformation, i.e.,

Λ = det ∂x ′ ∂x -1 4 . (41) 
As discussed in Sec. II B, Eq. ( 38) may be interpreted as either a passive transformation or an active one. For the passive case, the new metric can be derived from Eqs. ( 9) and (39), ĝµν = Λ 2 g µν .

(42)

This metric guarantees that a passive conformal transformation is an admissible spacetime transformation [START_REF] Møller | The Theory of Relativity[END_REF] since it satises the criterion (no summation over i or j)

ĝ00 > 0, ĝii < 0, ĝii ĝij ĝji ĝjj > 0, (43) 
where i, j = 1, 2, 3, and ĝ11 ĝ12 ĝ13 ĝ21 ĝ22 ĝ23 ĝ31 ĝ32 ĝ33

< 0. (44) 
In other words, these inequalities ensure the existence of a physically feasible reference frame with the coordinates xµ = ( t, x, ŷ, ẑ). An explicit example can be found in [START_REF] Mashhoon | Conformal symmetry, accelerated observers, and nonlocality[END_REF].

B. Dilation transformation

It is obvious that Lorentz transformation is a type of conformal transformation with Λ = 1.

For Λ ̸ = 1, the simplest example is dilation (transformation) x ′µ = λ -1 x µ , ( 45 
)
where λ is a positive constant, and Λ = λ according to Eq. ( 41). Unlike Lorentz transformation, the passive and active interpretations of Eq. ( 45) are inequivalent and need to be discussed separately.

Our discussion begins with the full expression of passive version of Eq. ( 45), xµ = λ -1 x µ with êµ = λe µ and l = ℓ, (46) and its active correspondent xµ = λ -1 x µ with ẽµ = e µ and l = ℓ.

(47)

The evidence that they are not equivalent is that Eq. ( 46), as a passive transformation, preserves the length in dimensionless Minkowski space, e.g.,

ĝµν xµ xν = g αβ x α x β , (48) 
while Eq. ( 47) changes the length unless λ = 1.

Although the dimensional counterpart of Eq. ( 47),

xµ = λ -1 x µ with ẽµ = e µ and l = ℓ, (49) 
is well-dened, Eq. ( 46) possesses no such counterpart. Otherwise, there are unjustiable results such as a component of length 1cm being passively dilated to 100cm. Hence only dimensionless quantities are legitimate in the passive interpretation of dilation.

Next we discuss the behaviors of four-vector Eq. ( 3) in these two interpretations with the assumption that the physical dimension of W contains n-th power of length (including time since c = 1), i.e.,

[W ] = ℓ n • • • . (50) Ŵ µ (x) = ∂x µ ∂x α W α = λ -1 W µ (x), (51) 
where x = x(x) is dened by the inverse of Eq. ( 46). Being a formula for re-expanding W in the new basis {λe µ }, Eq. ( 51) is irrelevant to the physical dimension of W . Under active dilation, on the other hand, the scaling law demands

W µ (x) = λ -n W µ (x), (52) 
where x = x(x) is dened by the inverse of Eq. ( 47). The dimensional counterpart of Eq. ( 52),

W µ (x) = λ -n W µ (x), (53) 
can be obtained by multiplying it by

[W ] since [ W ] = [W ].
In addition to the passive and active interpretations, we can still interpret Eq. ( 45) as changing the units of length as well as time by a factor λ. This new interpretation may be expressed as

x * µ = λ -1 x µ with e * µ = e µ and ℓ * = λℓ,

and will be called the conversion interpretation. Loosely speaking, Eq. ( 54) is derived from Eq.

(46) by relocating λ. As the name indicates, Eq. ( 54) preserves the physical length, and its dimensional counterpart is

x * µ = x µ with e * µ = e µ and ℓ * = λℓ.

(55)

Following the same scaling law, the dimensionless formulas associated with dilation in the active and conversion interpretations are isomorphic. We will call this relation the second kind partial isomorphism because it does not apply to the dimensional formulas. Taking the fourcurrent J with [J ] = qℓ -3 as an example, Eqs. ( 52) and (53) yield

Jµ (x) = λ 3 J µ (x) and J µ (x) = λ 3 J µ (x), (56) 
which means the four-current at x α is dilated by a factor λ 3 then moved to λ -1 x α , and the four-current at x α is dilated by the same factor then moved to λ -1 x α . In the conversion interpretation, the correspondent of Eq. ( 56) is

J * µ (x * ) = λ 3 J µ (x) and J * µ (x * ) = J µ (x), (57) 
which means the numerical value of each component of the four-current changes under unit conversion, while the corresponding physical magnitude remains xed.

C. Linear conformal transformation

Serving as a toy model of Eq. ( 38), the linear (homogeneous) conformal transformation takes the form

x ′µ = C µ α x α , ( 58 
)
where C is a constant matrix that satises

ϱ 2 C µ α C ν β g µν = g αβ with ϱ = | det(C)| -1 4 . ( 59 
)
Comparing Eqs. ( 11) and (59), we nd ϱC =: L is a Lorentz transformation matrix. Hence it is reasonable to make the decomposition

∂x ′µ ∂x α = C µ α = ϱ -1 L µ α , (60) 
which corresponds to a dilation preceded or followed by a Lorentz transformation with ϑ = sgn L 0 0 = sgn C 0 0 .

(61)

The three interpretations of Eq. (58) will be discussed separately in the following paragraphs.

Passive interpretation:

xµ = C µ α x α = ϱ -1 L µ α x α with êµ = ϱ[L -1 ] α µ e α and l = ℓ (62)
consists of a passive dilation and a passive Lorentz transformation. The transformation law for four-vector W is a combination of Eqs. ( 21) and (51),

Ŵ µ = ϱ -1 ϑ κ L µ α W α = ϑ κ C µ α W α . ( 63 
)
Since Eq. ( 62) contains a dilation, only dimensionless quantities are legitimate in this interpretation as discussed in Sec. III B.

Active interpretation:

xµ = C µ α x α = ϱ -1 L µ α x
α with ẽµ = e µ and l = ℓ 

According to Eq. ( 52) and the active correspondent of Eq. ( 21), the dimensionless four-vector

W transforms as W µ = ϱ -n ϑ κ L µ α W α = ϑ κ ϱ 1-n C µ α W α , (66) 
which is isomorphic to its dimensional counterpart

W µ = ϱ -n ϑ κ L µ α W α = ϑ κ ϱ 1-n C µ α W α (67) since [ W ] = [W ].

Conversion interpretation:

Analogous to Eq. ( 54), the conversion version of Eq. ( 58) can be obtained from Eq. (62) by relocating ϱ, i.e.,

x

* µ = C µ α x α = ϱ -1 L µ α x α with e * µ = [L -1 ] α µ e α and ℓ * = ϱℓ, (68) 
which consists of a conversion and a passive Lorentz transformation. In contrast, its dimensional

counterpart x * µ = L µ α x α with e * µ = [L -1 ] α µ e α and ℓ * = ϱℓ (69)
contains only a passive Lorentz transformation. Note that this new basis, as that in Eq. ( 14), yields metric g * µν = g µν according to Eqs. ( 9) and [START_REF] Møller | The Theory of Relativity[END_REF].

In light of the rst and second kind partial isomorphisms discussed above, we notice after excluding the transformations of bases, the dimensionless formulas associated with Eq. (58) in the active and conversion interpretations are isomorphic, but not the dimensional ones. We will call this relation the partial isomorphism of linear conformal transformation.

W * µ = ϱ -n ϑ κ L µ α W α = ϑ κ ϱ 1-n C µ α W α , (70) 
is isomorphic to Eq. ( 66), but its dimensional counterpart

W * µ = ϑ κ L µ α W α = ϑ κ ϱC µ α W α (71) 
is not isomorphic to Eq. ( 67) since

[W * ] = ϱ n [W ].

D. General conformal transformation

Analogous to the decomposition in Eq. ( 60), the Jacobian matrix element of the conformal transformation Eq. ( 38) can be expressed as

∂x ′µ ∂x α = ∂C µ ∂x α =: Λ -1 L µ α . (72) 
The Taylor expansion of Eq. ( 38) around a xed point x 0 then takes the form

x ′µ = C µ (x 0 ) + Λ -1 (x 0 )L µ α (x 0 )(x α -x α 0 ) + • • • . ( 73 
)
Note that the matrix

L µ α = Λ ∂x ′µ ∂x α (74) 
represents a local (i.e., spacetime-dependent) Lorentz transformation according to Eqs. [START_REF] Møller | The Theory of Relativity[END_REF] and (39), and its inverse satises

∂x α ∂x ′µ = Λ[L -1 ] α µ . (75) 
Similar to the linear case, the parameter

ϑ = sgn L 0 0 = sgn ∂t ′ ∂t (76)
needs to be taken into account when we apply Eq. ( 74) to atypical four-vectors.

Passive interpretation:

Referring to Eqs. ( 62) and ( 73), the passive version of Eq. ( 38) is

xµ = C µ (x) with êµ = Λ[L -1 ] α µ e α and l = ℓ, (77) 
which consists of a local passive dilation and a local passive Lorentz transformation. The fourvector W transforms as

Ŵ µ = Λ -1 ϑ κ L µ α W α = ϑ κ ∂x µ ∂x α W α , (78) 
which is analogous to Eq. (63).

As in the linear case, only dimensionless quantities are legitimate in this interpretation. (80)

The dimensionless four-vector W transforms as

W µ = Λ -n ϑ κ L µ α W α = ϑ κ Λ 1-n ∂x µ ∂x α W α , (81) 
which is analogous to Eq. ( 66), and the dimensional counterpart

W µ = Λ -n ϑ κ L µ α W α = ϑ κ Λ 1-n ∂x µ ∂x α W α (82) 
is analogous to Eq. (67).

Conversion interpretation:

Analogous to Eqs. ( 54) and ( 68), the conversion version of Eq. ( 38) can be obtained from Eq. ( 77) by relocating Λ,

x * µ = C µ (x) with e * µ = [L -1 ] α µ e α and ℓ * = Λℓ. (83) 
It consists of a local conversion [START_REF] Barut | Theory of the conformally invariant mass[END_REF] and a local passive Lorentz transformation, and its dimensional counterpart is

x * µ = C µ (x/ℓ)Λℓ with e * µ = [L -1 ] α µ e α and ℓ * = Λℓ. (84) 
This new basis also yields the metric g * µν = g µν .

The partial isomorphism of general conformal transformation is similar to that of linear conformal transformation. For example,

W * µ = Λ -n ϑ κ L µ α W α = ϑ κ Λ 1-n ∂x * µ ∂x α W α (85) 
is isomorphic to Eq. (81) of the active interpretation, but the dimensional counterpart

W * µ = ϑ κ L µ α W α = ϑ κ Λ ∂x * µ ∂x α W α (86) 
is not isomorphic to Eq. (82). Note that, since x α = x α ℓ and x * µ = x * µ Λℓ, only when Λ is constant will we have

L µ α = Λ ∂x * µ ∂x α = ∂x * µ ∂x α . ( 87 
)
In the literature, the so-called conformal coordinate transformation [START_REF] Fulton | Conformal invariance in physics[END_REF][START_REF] Barut | Theory of the conformally invariant mass[END_REF] is dened as a passive conformal transformation plus an ad hoc local scale transformation [START_REF] Laue | Causality and the spontaneous break-down of conformal symmetry[END_REF] ĝµν = Λ 2 g µν -→ g µν .

(

) 88 
Comparing the transformed bases in the passive and conversion interpretations,

êµ = Λ[L -1 ] α µ e α vs. e * µ = [L -1 ] α µ e α , (89) 
we nd Eq. ( 88) is consistent with êµ -→ e * µ , implying the conformal coordinate transformation is equivalent to the conversion interpretation of conformal transformation.

Finally, thanks to the so-called Voss-Weyl formula [START_REF] Grinfeld | Introduction to Tensor Analysis and the Calculus of Moving Surfaces[END_REF] Dµ

F µν = Ω -1 ∂µ Ω F µν with Ω = | det(ĝ µν )| 1 2 , (101) 
we can convert Eq. (100) to a more familiar form

∂µ Λ 4 F µν = Λ 4 Ĵν , ( 102 
)
but it is still not isomorphic to Eq. (32).

As discussed in Sec. III, dimensional equations do not exist in this interpretation.

B. Active interpretation

Since the physical dimensions of four-gradient, four-potential, and four-current are ℓ -1 , qℓ -1 , and qℓ -3 respectively, we have the following transformation laws according to Eq. ( 81).

∂µ = Λ 2 ∂x µ ∂x α ∂ α , ( 103 
)
õ = ϑΛ 2 ∂x µ ∂x α A α , ( 104 
)
Jµ = ϑΛ 4 ∂x µ ∂x α J α . ( 105 
)
The covariant counterparts of these three formulas can be derived with the aid of active version of Eq. ( 39).

∂µ = g µν ∂ν = ∂x α ∂x µ ∂ α , (106) 
õ = g µν Ãν = ϑ ∂x α ∂x µ A α , (107) 
Jµ = g µν Jν = ϑΛ 2 ∂x α ∂x µ J α .

(108)

Analogous to Eq. ( 94), the transformed covariant electromagnetic tensor takes the form Fµν = ∂µ Ãν -∂ν õ .

(
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Since the right hand sides of Eqs. ( 106) and ( 107) are isomorphic to those of Eqs. ( 95) and ( 93) respectively, we obtain the transformation law

Fµν = ϑ ∂x α ∂x µ ∂x β ∂x ν F αβ (110) 
from Eq. ( 96) by change of notation, and it follows that

F µν = g µρ g νσ Fρσ = ϑΛ 4 ∂x µ ∂x α ∂x ν ∂x β F αβ , ( 111 
)
where the active version of Eq. ( 40) has been used in the derivation. 

J µ = ϑΛ 4 ∂ xµ ∂x α J α , (112) ∂ xµ J α , (113) 
Fµν = ϑ ∂x α ∂ xµ ∂x β ∂ xν F αβ , (114) 
F µν = g µρ g νσ Fρσ = ϑΛ 4 ∂ xµ ∂x α ∂ xν ∂x β F αβ , (115) 
where

∂ xµ ∂x α = ∂x µ ∂x α and ∂x α ∂ xµ = ∂x α ∂x µ . ( 116 
)
The physical meanings of these formulas are easy to comprehend. The active versions of Eqs. ( 74) and ( 75) allow us to rewrite Eqs. ( 105), ( 108), (112), and (113) respectively as

Jµ = Λ 3 ϑL µ α J α , ( 117 
)
Jµ = Λ 3 ϑ[L -1 ] α µ J α , (118) 
J µ = Λ 3 ϑL µ α J α , ( 119 
)
Jµ = Λ 3 ϑ[L -1 ] α µ J α , (120) 
where the factor Λ 3 is responsible for dilating the components according to scaling law. Note that Eqs. ( 117) and ( 119) can be taken as the generalization of Eq. ( 56). Similarly, Eqs. ( 110), ( 111), (114), and ( 115) can be respectively expressed as

Fµν = Λ 2 ϑ[L -1 ] α µ [L -1 ] β ν F αβ , (121) 
F µν = Λ 2 ϑL µ α L ν β F αβ , (122) 
Fµν = Λ 2 ϑ[L -1 ] α µ [L -1 ] β ν F αβ , (123) 
F µν = Λ 2 ϑL µ α L ν β F αβ . ( 124 
)
Next we discuss the transformed Maxwell's equations in this interpretation. Analogous to Eq. ( 98), the transformed Eq. ( 31) can be obtained directly from Eq. ( 109),

∂ρ Fµν + ∂µ Fνρ + ∂ν Fρµ = 0.

(125)

The transformed Eq. ( 32) can be deduced via the explicit expression of Eq. ( 102)

∂µ ϑΛ 4 ∂x µ ∂x α ∂x ν ∂x β F αβ = ϑΛ 4 ∂x µ ∂x α J α . (126) 
Referring to Eqs. ( 105) and (111), the active correspondent of Eq. ( 126) is

∂µ F µν = Jµ , (127) 
which is the sought-for equation.

Multiplying Eqs. ( 125) and (127) by q l-3 = qℓ -3 , we obtain their dimensional counterparts ∂ρ Fµν + ∂µ Fνρ + ∂ν Fρµ = 0;

(128) ∂µ F µν = J µ . (129) 
Note that Eqs. (125), (127), (128), and (129) are respectively isomorphic to the original Maxwell's equations Eqs. (31), (32), (36), and (37).

C. Conversion interpretation

The partial isomorphism of general conformal transformation enables us to write down the correspondents of Eqs. ( 105), ( 108), ( 110), ( 111), (125), and (127) of the active interpretation by change of notation.

J * µ = ϑΛ 4 ∂x * µ ∂x α J α , (130) 
J * µ = g µν J * ν = ϑΛ 2 ∂x α ∂x * µ J α , (131) 
F * µν = ϑ ∂x α ∂x * µ ∂x β ∂x * ν F αβ , (132) 
F * µν = g µρ g νσ F * ρσ = ϑΛ 4 ∂x * µ ∂x α ∂x * ν ∂x β F αβ , (133) 
∂ * ρ F * µν + ∂ * µ F * νρ + ∂ * ν F * ρµ = 0, (134) 
∂ * µ F * µν = J * ν . (135) 
Apparently Eqs. ( 134) and ( 135) are isomorphic to the original Maxwell's equations Eqs.

(31) and ( 32) respectively. On the other hand, since ℓ * = Λℓ is spacetime-dependent in general, only when Λ is constant can we multiply Eqs. ( 134) and ( 135) by qℓ * -3 to obtain the dimensional equations

∂ * ρ F * µν + ∂ * µ F * νρ + ∂ * ν F * ρµ = 0; (136) 
∂ * µ F * µν = J * ν . (137) 
The linear transformation Eq. ( 58) is an example that leads to Eqs. ( 136) and (137), while the nonlinear transformation Eq. ( 153) in Sec.VI is a counterexample.

As for the active formulas Eqs. ( 117)-( 124), in light of Eqs. ( 85) and ( 86), their correspondents in the conversion interpretation are respectively

J * µ = Λ 3 ϑL µ α J α , (138) 
J * µ = Λ 3 ϑ[L -1 ] α µ J α , (139) 
J * µ = ϑL µ α J α , (140) 
J * µ = ϑ[L -1 ] α µ J α , (141) 
F * µν = Λ 2 ϑ[L -1 ] α µ [L -1 ] β ν F αβ , (142) 
F * µν = Λ 2 ϑL µ α L ν β F αβ , (143) 
F * µν = ϑ[L -1 ] α µ [L -1 ] β ν F αβ , (144) 
F * µν = ϑL µ α L ν β F αβ , (145) 
where Eqs. ( 138) and ( 140) can be taken as the generalization of Eq. (57). Note that the roles of Λ n 's are dierent to those in the active interpretation, the former convert the values of those components to adapt the new local units, while the latter dilate the magnitudes of the components according to scaling law.

A. Tensor formulation

For the dimensionless tensorial Maxwell's equations, the denition of conformal invariance is that Eqs. ( 31) and (32) are form-invariant under the conformal transformation Eq. (38). As discussed in Sec. IV, the equations that possess this invariance include Eqs. ( 125) and (127) of the active interpretation, and Eqs. ( 134) and (135) of the conversion interpretation.

For the dimensional tensorial Maxwell's equations, the denition becomes that Eqs. ( 36) and

(37) are form-invariant. It is only satised by Eqs. ( 128) and (129) of the active interpretation [START_REF] Kyriakopoulos | Conformal invariance of Maxwell's equations with magnetic charges[END_REF] since Eqs. ( 136) and (137) in the conversion interpretation are not valid in general.

B. Vector formulation

For the Maxwell's equations in vector form, the conformal invariance becomes that Eqs.

(23) and ( 24), or Eqs. ( 26) and ( 27), are form-invariant under the conformal transformation Eq. ( 38). We will discuss this invariance in the three interpretations separately in the following paragraphs.

Passive interpretation:

Since the dimensional equations do not exist in this interpretation, we only need to discuss the conformal invariance of Eqs. ( 26) and ( 27).

With respect to a passive conformal transformation, although the physical quantities are invariant, their components generally change to adapt the new basis. Taking the four-current as an example,

J = J α e α = Ĵµ êµ , (146) 
where the hatted contravariant components Ĵµ = ρ, Ĵx , Ĵy , Ĵz

are relative to the new basis {ê µ }.

For the same reason, the hatted contravariant electromagnetic tensor is made of the transformed electric and magnetic elds,

F µν =     0 -Êx -Êy -Êz Êx 0 -Bz By Êy Bz 0 -Bx Êz -By Bx 0     . (148) 
Therefore, when we substitute Eqs. ( 147) and (148) into Eq. ( 102), the invariance is destroyed by the Λ 4 terms therein. Similar situation arises in Eq. ( 98) since

Fµν = ĝµρ ĝνσ F ρσ = Λ 4     0 Êx Êy Êz -Êx 0 -Bz By -Êy Bz 0 -Bx -Êz -By Bx 0     . (149) 
In the active interpretation of conformal transformation, the correspondents of Eqs. ( 147) and ( 148) are respectively Jµ = ρ, Jx , Jy , Jz ,

F µν =     0 -Ẽx -Ẽy -Ẽz Ẽx 0 -Bz By Ẽy Bz 0 -Bx Ẽz -By Bx 0     , (150) 
and it follows that

Fµν = g µρ g νσ F ρσ =     0 Ẽx Ẽy Ẽz -Ẽx 0 -Bz By -Ẽy Bz 0 -Bx -Ẽz -By Bx 0     . (152) 
Equations ( 150)-( 152) ensure that Eqs. ( 125) and ( 127) can be converted to the tilde versions of Eqs. ( 26) and ( 27) respectively. Hence we conclude that the dimensionless vectorial Maxwell's equations are form-invariant under the active conformal transformation.

Using a similar argument, we can prove that the dimensional vectorial Maxwell's equations Eqs. ( 23) and ( 24) also possess the conformal invariance.

Conversion interpretation:

Owing to the partial isomorphism of general conformal transformation, the proof of conformal invariance of the dimensionless vectorial Maxwell's equations in this interpretation is formally the same as that in the active interpretation. On the other hand, since Eqs. ( 136) and (137) are not valid in general, the dimensional vectorial Maxwell's equations possess no such invariance in the conversion interpretation.

VI. AN ENLIGHTENING EXAMPLE

A. Conformal inversion

In this section we consider a common nonlinear conformal transformation, the conformal inversion, which is dened as

x ′µ = ε x µ x 2 , (153) 
where ε = 1 or -1, and

x

2 := t 2 -x 2 -y 2 -z 2 = t 2 -r 2 ̸ = 0, (154) 
i.e., the light cone x 2 = 0 is excluded from the domain of this transformation.

With respect to Eq. ( 153), we rst calculate the Jacobian matrix element

∂x ′µ ∂x α = εx -4 (x 2 δ µ α -2x µ x α ), (155) 
and obtain the result

ϑ = sgn ∂t ′ ∂t = -ε. (156) 
Then from the product

∂x ′µ ∂x α ∂x ′ν ∂x β = x -8 x 4 δ µ α δ ν β -2x 2 (δ µ α x ν x β + δ ν β x µ x α ) + 4x µ x ν x α x β , (157) 
we derive the relation

∂x ′µ ∂x α ∂x ′ν ∂x β g µν = x -4 g αβ , (158) 
which is equivalent to Eq. ( 39) with

Λ = |x 2 | = sgn(x 2 )x 2 . ( 159 
)
Being a conformal transformation, Eq. ( 153) can be endowed with three interpretations as discussed in Sec. III, but we are only interested in those that give rise to the conformal invariance of dimensionless Maxwell's equations, i.e., the active and conversion interpretations.

Although the dimensionless formulas of these two interpretations are isomorphic except for the transformations of bases, there exists a crucial dierence which will be discussed in details in the following demonstration.

B. The original electromagnetic system

The source we consider is a point unit charge resting at the origin of the spatial part of Minkowski coordinate system. Hence the four-current is

J α = δ(x)δ(y)δ(z)(1, 0, 0, 0), (160) 
where δ(u) is the Dirac delta function, and the electric and magnetic elds are respectively

⃗ E = 1 4πr 3 [x, y, z] and ⃗ B = 0. (161) 
According to Eq. (33), the contravariant electromagnetic tensor takes the form In order to nd out the correct answer, we substitute the active versions of Eqs. (156), (157), and (159) into Eq. ( 111) and obtain F µν = -ε x 4 F µν + 2x 2 (x µ F νρx ν F µρ )x ρ .

F αβ = 1 4πr 3     0 -x -y -z x 0 0 0 y 0 0 0 z 0 0 0     . (162 
(166) For the specic case Eq. (162), the above relation becomes 

where r * = r/Λ is the new radial coordinate.

Since sgn(x * 2 ) = sgn(x 2 ), Eq. ( 174) is only form-invariant inside the light cone x 2 = 0, but there is no ambiguity using it to depict the electric eld. This is because Λ → 0 near x 2 = 0 and hence r * → ∞ and ⃗ E * → 0 on both sides of this light cone. It then follows that ∆ ⃗ E * = 0, which ensures ⃗ E * (x * ) inside the light cone is compatible with that outside.

  active dilation and an active Lorentz transformation. It is isomorphic to its dimensional counterpart xµ = C µ α x α = ϱ -1 L µ α x α with ẽµ = e µ and l = ℓ.

  xµ = C µ (x) with ẽµ = e µ and l = ℓ (79) consists of a local active dilation and a local active Lorentz transformation according to Eq. (73), and its dimensional counterpart is xµ = C µ (x/ℓ)ℓ with ẽµ = e µ and l = ℓ.

  Due to the fact that [ J ] = [J ] and [ F ] = [F ], the dimensional counterparts of Eqs. (105), (108), (110), and (111) are respectively

  ) C. Transformed results in the active interpretation Substituting Eq. (160) and the active versions of Eqs. (155), (156), and (159) into Eq. (105), we obtain the transformed four-currentJµ = x 6 δ(x)δ(y)δ(z)(1, 0, 0, 0) = δ(x)δ(ỹ)δ(z)(1, 0, 0, 0), line of Eq. (163) is isomorphic to Eq. (160), it is dangerous to jump to the conclusion⃗ Ẽ = 1 4πr 3 [x, ỹ, z] with r = r/|x 2 | = r/Λ (165)because Eq. (153) is not dened in the whole Minkowski space.

F µν = εx 4 F 2 )

 42 µν = εΛ 2 F µν ,(167)which is equivalent to⃗ Ẽ(x) = εΛ 2 4πr 3 [x, y, z] and ⃗ B = 0.(168)Using Eq. (164), we express the transformed electric eld in terms of the tilde variables, = sgn(x 2 ) has been used. Since there is only one frame in the active interpretation, Eq. (169) may be rewritten as⃗ Ẽ(x) = sgn(x 2 ) 4πr 3 [x, y, z],(170)which indicates the transformed electric eld is the same as the original one only when x 2 > 0,i.e., inside the light cone x 2 = 0, and it follows that across the light cone ∆ ⃗ Ẽ(x) = 1 2πr 3 [x, y, z].

  physical meaning of Eq. (171), we switch to the spherical coordinate system and express Eq. (170) as⃗ Ẽ(r, t) = r 4πr 2 -H(r -|t|) r 2πr 2 , (172)where H(u) is the Heaviside step function whose derivative is δ(u). Referring to Eq. (27), the last term of Eq. (172) is attributed to a spherically-symmetric current density with the speed of light. Thus we can only conclude that the electric eld in Eq. (170) is unphysical.D. Transformed results in the conversion interpretationAccording to the partial isomorphism of general conformal transformation, the correspondents of Eqs. (163) and (169) in the conversion interpretation are respectivelyJ * µ (x * ) = δ(x * )δ(y * )δ(z * )(1, 0, 0, 0)(173) and ⃗ E * (x * ) = sgn(x * 2 ) 4πr * 3 [x * , y * , z * ],

A. Passive interpretation

First we consider the passive conformal transformation of four-current J. Since it is atypical, its contravariant components follow the transformation law Eq. ( 78) with κ = 1, Ĵµ = ϑ ∂x µ ∂x α J α .

(90)

Then according to Eq. ( 9),

where ĝµν is given in Eq. (42). Similarly, the transformation laws for four-potential A are

After the transformation, the covariant electromagnetic tensor dened in Eq. ( 29) becomes

where

Substituting Eq. (93) into Eq. (94), we are able to derive the following transformation laws:

where ĝµρ = Λ -2 g µρ according to Eq. (42). These two formulas may be taken as generalizations of Eqs. ( 30) and (34).

Now we are ready to study the conformal transformation of Maxwell's equations. First, just as Eq. ( 31) is a direct consequence of Eq. (29), Eq. ( 94) leads to the identity

which is isomorphic to Eq. ( 31).

Next, we rewrite Eq. (32) as

where D α denotes the covariant derivative that reduces to ∂ α in Minkowski coordinates, while the explicit form of D α is not needed here. Now that Eq. ( 99) is a tensorial equation, we can be sure that it becomes Dµ F µν = Ĵν 

VII. DISCUSSION AND CONCLUSION

The main achievements of this research can be summarized in the following three facets:

(i) Identifying an often-neglected parameter ϑ which is dened by Eq. ( 76). Since the local Lorentz transformation in Eq. ( 74) is physically meaningful both for the passive and active interpretations, this parameter is indispensable no matter which interpretation is used.

Ignoring this parameter is mathematically equivalent to setting ϑ = 1, and sign errors may occur under certain circumstances. Taking the transformation Eq. ( 153) as an example, ϑ = 1 implies ε = -1 according to Eq. ( 156), and the correct formula is [START_REF] Codirla | Conformal invariance and electrodynamics: applications and general formalism[END_REF] x ′µ =

x µ

If we use the formula

instead [START_REF] Arrayás | Knots in electromagnetism[END_REF][START_REF] Goldin | Conformal symmetry transformations and nonlinear Maxwell equations[END_REF], an extra minus sign will inevitably appear in the related formulas.

(ii) Another achievement of this paper is introducing the conversion interpretation. For one thing, this interpretation is equivalent to conformal coordinate transformation; thus it provides a concrete physical meaning for the latter. For another, contrary to what is often thought, it is this interpretation instead of the passive one that gives rise to the conformal invariance of dimensionless Maxwell's equations. Some authors proved the non-active version of this invariance without explicitly claiming they employed the conversion interpretation, and the equations they studied are dimensionless instead of dimensional [START_REF] Cunningham | The principle of relativity in electrodynamics and an extension thereof[END_REF][START_REF] Bateman | The transformation of the electrodynamical equations[END_REF][START_REF] Rosen | Conformal invariance of Maxwell's equations[END_REF].

(iii) We present an explicit example to show that, in contrast to the conversion interpretation, the active conformal transformation does not always produce a physically meaningful result.

Despite its established history, conformal transformation of Maxwell's equations remains a perennially relevant topic that continues to inspire both teaching and research in related elds.

In light of this enduring signicance, we are compelled to engage with these long-standing yet overlooked issues with the utmost rigor and dedication.