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Examples of elongated vortices

Rolled-up tip vortices behind a rectangular wing, taken from Rom, J. (2012).

Propeller vortex on a F4U Corsair

Smoke ring produced by Mount Etna
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Examples of steadily translating and rotating elongated vortices

Vortex rings

RadiusR, core size a
Lord Kelvin (1883), Lamb (1932), Widnall & Bliss (1971) Moore & Sa�fman
(1972), ...

Uniform helical vortices

+ pitchH, number of helicesN
Kawada (1936), Hardin (1949), Boersma & Wood (1999), Selçuk,
Delbende & Rossi (2017), Okulov & Sørensen (2020)

Helical vortex pairs

+ separation distance d, twist parameter �
Durán Venegas & Le Dizès (2019), Schröder et al (2021),
Castillo-Castellanos & Le Dizès (2022)

Complexity

- Advective regime if a ⌧ all other scales - Global translation and rotation ! Structure is "steady" in a certain reference frame.
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Vortex structures might be steady but not stable w/ respect to external perturbations

Short-wave instabilities

- Wavelength comparable to core size

- Internal deformation of the vortex core
(e.g. elliptical, curvature instabilities)

- Interaction of vortex Kelvin modes
Kerswell (2002), Hattori & Fukumoto (2003), Fukumoto & Hattori (2005)

Leweke et al. (2016), Blanco-Rodríguez & S Le Dizès (2016,2017), ...

Long-wave instabilities

- Wavelength is large relative to core size

- Local and global pairing instabilities

- Description by a filament approach

Widnall (1972), Gupta & Loewy (1974), Quaranta et al. (2015,2019),
Durán Venegas et al. (2021), Castillo-Castellanos & Le Dizès (2022)

(Le�t) Vortex ring instability Widnall & Tsai (1977), (Right) Elliptical instability in a vortex Leweke et al. (2016)

Helical pairing instability Quaranta et al. (2015)
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Hydrodynamic instabilities are relevant for rotor systems like wind turbines

- Unperturbed wakes extend for long stretches

- Need for speed-up wake recovery

- Mitigate noise, mechanical wear, fatigue

Wake interactions in Horns Rev O�fshore Wind Farm

Active control (Rotation rate, Flaps, Yaw, Angle-of-attack, ...)

(Le�t) Flap vanes from Huang et al. (2019). (Right) Optimal yaw control from B&R Automation.

Passive control (Blade Geometry)

(Le�t) Radial asymmetry from Quaranta et al. (2019). (Right) Vane tip design from Schröder et al. (2021).
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Water channel experiments at IRPHÉ

Experimental set-up

- recirculating, free surface

- 150 cm long, 38 cm wide and 50 cm high

- free stream velocityU1
z = 56 cm/s

- f = 3Hz, or tip-speed ratio � = 2⇡fRtip/U1
z = 3

3-Bladed rotor, 3-D printed

- NACA2414,Rechord ⇠ 40000

- N = 3 blades,Rtip = 9 cm, ctip = 2.3 cm

2 ways to excite the unstable modes

Side view of the water channel test section.

NACA2414 airfoil
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Baseline wake: symmetric rotor

Perturbed wake: radial asymmetry

- Uniform expansion

- Leapfrogging wake

⇤ fluorescent dye painted on the tips, T. Leweke added colors by hand for clarity
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Baseline wake: symmetric rotor

Perturbed wake: radial asymmetry

- Uniform expansion

- Leapfrogging wake

⇤ fluorescent dye painted on the tips, T. Leweke added colors by hand for clarity
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Baseline wake: symmetric rotor

Perturbed wake: variable rotation rate

- Complex distortions

- Local pairing and
leapfrogging

⇤ fluorescent dye painted on the tips, T. Leweke added colors by hand for clarity
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Can we propose a wake model?
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Vortex filament approach

- Vortices represented as 1-D space-curves + vortex core model

Representation of a curved vortex filament, from Pinzón (2015)

- Parametrization in terms of Lagrangian coordinates

Rotor angle: = ⌦Rt (proxy of time)

Wake age: ⇣ = ⌦R(t - t0) (proxy of space)
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- Boundary conditions:
Fixed position at ⇣ = 0 (rotor plane)

Match helices at ⇣! 1 (semi-infinite helices)

from Leishman et. al (2002)

Calculation domain from Durán Venegas & Le Dizès (2020)
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This is old school. Why should we use these models?

@xj
@ 

+
@xj
@⇣

=
1

⌦R

h
uBSj (xj) + uext

i

1. Search for stationary solutions (in the rotor frame)
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2. Linear stability analysis

xj( , ⇣) = xBj (⇣) + x 0j ( , ⇣)
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3. Non-linear dynamics

xj( = 0, ⇣) = xBj (⇣) + �

Wind turbine and helicopter regimes for 2 bladed-rotors Durán Venegas & Le Dizès (2021)

Stability diagram from linear-impulse analysis Durán Venegas & Le Dizès (2021)
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Introduce a small perturbation at the rotor plane and follow its evolution

Exponential growth, then non-linear dynamics

Perturbation norm as function of space for di�ferent time instants, showing the perturbation propagating
from le�t to right until covering the computational domain.

Perturbed wake: radial asymmetry

Perturbed wake: variable rotation rate
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Can we do something simpler?
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Time evolution of uniform vortices�!Spatial evolution of stationary vortices

Helices as parallel lines in a developed plan

Use a point vortex model to approximate dynamics

- Periodic array ofN = 3 point vortex

- Add a small perturbation

- (Non-linear) temporal evolution

Then, reconstruct the helical system

Taken from Abraham, Castillo-Castellanos & Leweke (2023)

Context Water channel experiments WakeModels SimplerWakeModels

Time evolution of spatially periodic vortices�!Spatial evolution of time periodic vortices

Use a filament model to approximate dynamics

- Periodic array of 3 interlaced helical vortices

- Add a small spatially periodic perturbation

x 0j ( = 0, ⇣) = � cos(2⇡k⇣ + ')

- (Non-linear) temporal evolution

x 0j ( , ⇣)

Then, reconstruct the helical system

x⇤j (⇣, ) = x 0j ( , ⇣)

x̃j(⇣, ) = xBj (⇣) + x⇤j (⇣, )
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Comparison between experiments and point vortex model

2-bladed rotor 3-bladed rotor

Taken from Abraham, Castillo-Castellanos & Leweke (2023)

Context Water channel experiments WakeModels SimplerWakeModels

Comparison between experiments and point vortex model

Leapfrogging distance zs Vortex trajectories
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Comparison between experiments and simplified filament model

(a) (b)

(c) (d)

Comparison between experiments with k = 3/2 and simplified model at two di�ferent instants.
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Experimental results k = 3/2

- Complex distortions

- Local pairing and
leapfrogging

Vortex filament model k = 3/2

- Good agreement with experiments

- Low computational cost

- Model provides additional information E.g. minimum
distance w/respect to neighbours (in colour)
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Conclusions

A general approach for wake models

- Modelling approach based on filament vortices

- Boundary problem approach for semi-infinite helices

- Easily extended to other systems

Interest in studying non-linear regime

- A simplified model takes into account the non-linear regime

- Good quantitative agreement with experiments

- We may infer some quantities that are not easily measured from the model


