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Understanding how soft particles can fill the space is still an open question. Structures far from
classical FCC or BCC phases are now commonly experimentally observed in many different systems.
Models based on pair interaction between soft particle are at present much studied in 2D. Pair
interaction with two different lengths have been shown to lead to quasicrystalline architectures. It
is also the case for a hard core with a square repulsive shoulder potential. In 3D, global approaches
have been proposed for instance by minimizing the interface area between the deformed objects in
the case of foams or micellar systems or using self-consistent mean field theory in copolymer melts.
In this paper we propose to compare a strong van der Waals attraction between spherical hard
cores and an elastic energy associated to the deformation of the soft corona. This deformation is
measured as the shift between the deformed shell compared to a corona with a perfect spherical
symmetry. The two main parameters in this model are: the hard core volume fraction and the
weight of the elastic energy compared to the van der Waals one. The elastic energy clearly favours
the BCC structure but large van der Waals forces favors Frank and Kasper phases. This result
opens a route towards controlling the building of nanoparticle superlattices with complex structures
and thus original physical properties.

http://arxiv.org/abs/1707.07897v2
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INTRODUCTION

Understanding how atoms or particles can fill the space is a very old challenge. When particles or atoms behave
like hard spheres, the structures that they form are closed-packed structures : face centered cubic (FCC) or hexagonal
close-packing (HCP). Other structures like body centered cubic structure (BCC) or Frank-Kasper phases (FK) require
more complex interactions [1] or anisotropic shapes [2]. Sixty years ago, Frank and Kasper [3] have investigated many
complex alloy structures, constructing packings of polyhedra with large coordination number (Z= 12, 14, 15 or 16)
in order to maintain tetrahedral close packing. In the Frank-Kasper (FK) structures, there are at least two types of
sites with different environments. This explains why, in atomic systems, these structures are mainly observed in alloys
with at least two types of atoms, with some exceptions such as β-Tungsten (A15 phase) or β-Uranium (σ phase).
Since soft particles can adapt their shape to the local geometrical constraints, they are excellent systems to search
for FK phases and thus also quasicrystalline structures [4, 5]. In these systems, beyond thermodynamic interaction,
entropy is suspected to drive new principles of self-organization [6, 7] and FCC, HCP and BCC structures but also
FK phases are expected as for atomic systems. Frank-Kasper phases have already been found in micellar systems [8],
liquid crystals [4, 9], star polymers, block-copolymers [10, 11].

Micellar systems [8] exhibit mainly two different FK phases: the A15 phase for direct micelles and the C15 phase
for inverted micelles. The A15 phase is a cubic phase with Pm3n as symmetry group, a AB3 stoichiometry, 8 spheres
per cubic cell and Z=12 (icosahedron) or Z=14 coordination numbers. The C15 Laves phase [12] is also cubic with
Fd3m as space group, a AB2 stoichiometry, 24 spheres per cubic cell and Z=16 or Z=12 coordination numbers. A
tetragonal FK phase, the σ phase (with symmetry P42/mnm) has been recently discovered in a micellar system [13].
FK phases and quasicrystalline phases and their transition sequence have recently been observed in mesophases of
one-component giant surfactants [14]. A hexagonal FK phase, the C14 phase, that is the hexagonal version of the
cubic C15 phase has been discovered in self-assembly of polydisperse populations of charged colloids [15].

The σ FK phase has also been reported with dendrimers [9] as in polymeric systems [10, 11]. With 30 spheres
per unit cell, it is a good dodecagonal quasicrystal approximant structure primarily reported in numerous metal
alloys. Many different Franck and Kasper or Laves phases have been observed in diblock copolymer melts depending
how specimens are cooled from the disordered state[16]. However, in surfactant or block-copolymer self-assembly,
the micelles can have different size and the system is thus closer to alloy structure. Combining molecular dynamics
simulations have shown that the appearance of these phases are due to tail number variation. Only the dendrimers
can be really considered as monodisperse objects building FK phases and dodecagonal quasicrystals.

Metallic or semi-conducting nanoparticles (NP) surrounded by grafted ligands forming a soft corona around them
can be considered as soft particles. Moreover they build superlattices very easily [17]. FCC and BCC structures
are commonly observed [18, 19]. Recent experiments have shown that superlattices of dodecanethiol-capped 1.8 nm
diameter gold nanocrystals can undergo a non-reversible series of ordered structure transitions at high temperature
[20]. Among these phases, several complex pseudo-FK phases have been observed: the cubic NaZn13 -type structure
(Fm3c), the hexagonal CaCu5 -type structure (P6/mmm). But in this experiment, the structure change is associated
to the NP growth and even coalescence leading to various sizes of nanoparticles. More recently, we have reported
[21] the existence of a Frank-Kasper phase with hexagonal symmetry (MgZn2 type, also labelled C14) in superlattices
of monodisperse hydrophobically-coated gold particles at room temperature obtained from suspensions in various
solvents. These different results show than even if the core is solid the corona softness can be sufficient to induce
complex packing architectures.

The final structure built by soft sphere systems results from a delicate balance between different energies but the
driving mechanisms can be very different: electrostatic interaction, steric repulsion, elastic deformation free energy,
van der Waals attraction, surface tension...There is certainly no universal answer to the question of what structure for
soft spheres packing. In copolymers, the entropic stretching usually favors a BCC structure and one can suspect that
the elastic deformation free energy also. This is the first ingredient of the model. But more complex architectures
require another ingredient. In this paper, the second ingredient will be van der Waals force. The model that we
propose thus considers an assembly of soft objects with a rigid core and a soft shell, regularly located at the main
sites of crystalline structures. The model balances attractive vdW interaction between the cores with a soft elastic
energy which attempts to mimic the behavior of the shell. The shell elastic energy is related to its deformation and
thus to the local environment of each particle. This environment is naturally described by the Voronoi cell at the
considered site. The simplest model assume that the soft objects fill the Voronoi cell around each site. This elastic
energy is measured by the shift between the deformed shell and a corona with a perfect spherical symmetry. This
approach is reminiscent of previous studies on block copolymers [22, 23]. The two main parameters of the model are
the volume fraction occupied by the hard cores and the ratio between the elastic energy parameter and the van der
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Waals one. By comparing different structures, a quantitative phase diagram involving different phases (BCC, A15,
C14, C15, σ) is deduced from this model. Whereas the elastic energy favors the BCC structure, the C14 Frank and
Kasper phases is induced by large enough van der Waals forces. The A15 or σ phase are close in energy and appear in
between. Comparing with experimental systems requires a physical analysis of the origin of the elastic energy in each
system that is often a difficult point. Nevertheless this model suggests both new design principles for superlattice
formation in nanoparticle assemblies and further opens the door to extend this heuristic approach to more complex
particle systems.

WHAT ENERGIES ARE INVOLVED IN THE MODEL FOR THE DETERMINATION OF THE FINAL

STRUCTURE?

Soft nanoparticles dispersed in solvent interact via various potentials. Considering the effect of the van der Waals
forces between the cores is certainly pertinent for different systems. For metallic nanoparticles dispersed in oil or in
water, the van der Waals attraction is notably large due to large electronic fluctuations. This is also probably the
case for diblock copolymers with large Flory Huggins parameter. In our model, the cores are assumed to be rigid and
spherical. The van der Waals interaction between two cores with diameter D0 distant of r is given by [24]:

VvdW (r,D0) = −
A

12

(

D2
0

r2 −D2
0

+
D2

0

r2
+ 2Ln

(

r2 −D2
0

r2

))

. (1)

The van der Waals energy per particle can be computed by summing the van der Waals energy between pairs of
particles, neglecting any collective effect. For each site, the sum must include not only the first neighbors but all the
particles in a large isotropic volume of the structure surrounding the considered site that are required for a proper
convergence of the sum. For a 24% core volume fraction, at least neighboring crystallographic cells must be taken into
account to have less than 3% error on the final value. When there are different sites in the crystallographic cell, the
final value will be the mean value on all the sites. Let us introduce a first important parameter, that is the volume
fraction occupied by the rigid cores ϕ. For each structure, the cell parameter depends only on ϕ and on the core
diameter D0 or the core radius rc = D0/2. This energy will be very sensitive to the distance between the cores that
is directly correlated to ϕ. But the final van der Waals energy depends only on ϕ and is independent on the core
diameter since r = D0f(ϕ). In the FCC structure, the distance between the cores is the largest one, this structure
is thus not favored at all by the van der Waals attraction. Since it is also not favored by the elastic interaction, the
FCC structure will be ignored in the following.

The elastic shell energy that will balance the van der Waals attraction between the cores is related to its deformation
of the soft shell and thus to the local environment of each particle. This environment is naturally described by the
Voronoi cell at the considered site. For example, Figure 1 shows different Voronoi cells in the case of the C14 structure.
The Voronoi cell is not necessarily unique in the different structures and varies a lot between the different structures
even if they have to follow generic rules in the case of FK phases. To compare the different structures, we shall
consider that the mean Voronoi cell volume is the same for all the considered structures that are compared. Table I
gives the normalized volumes of the different Voronoi cells for several structures. Variations of about 10% are observed
but these values are not sufficient to estimate the elastic free energy due to the difference of the Voronoi cells with a
spherical shape of unit volume. The main goal of this paper is to estimate properly the elastic free energy associated
to this deformation in order to balance the attractive van der Waals energy.

To estimate the free energy linked to the Voronoi cell deformation, we consider the distance ℓ from the core surface
to the Voronoi surface. For a perfect spherical particle this distance is constant and equal to ℓ0. For a deformed
particle, this distance is no longer equal to ℓ0 and the length shift δℓ = ℓ − ℓ0 varies around the core as shown in
Figure 2. The elastic deformation energy is estimated by

Uel =
1

2
k
〈

(δℓ)
2
〉

(2)

with

k =
K

(ℓ0)2
(3)
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FIG. 1. The Voronoi cells of the twelve crystallographic sites in the unit cell of the Frank-Kasper C14 structure. In this
example there are 8 cells with 12 pentagonal faces and 4 cells with 12 pentagonal faces and 4 hexagonal faces.

FIG. 2. Spokes radiating from a gold core toward surface of a Voronoi cell in a possible Frank-Kasper phase (here 12-face cell in
the A15 structure). The longest spokes (in red) correspond to the more extended region; they are directed towards the Voronoi
cell vertices. The shortest ones (in blue) correspond to the more compressed region; they are directed towards the centers of
the faces.

where the mean value is taken all around the core. K has the dimension of an energy relating the elastic deformation
to the relative length variation δℓ/ℓ0. The distance ℓ0 can be related to ϕ and to the rigid core radius rc:

4π

3
r3c = ϕ

[

4π

3
(rc + ℓ0)

3

]

. (4)

that is:

ℓ0 = rc

(

ϕ−1/3 − 1
)

. (5)

To compute the mean value of δℓ2, we consider a large number Ns of spokes radiating from a core towards the
surface of the Voronoi cell surrounding this core. The positions of the spokes on the core have been chosen using
semi-regular polyhedra or a phyllotactic organization on the sphere [25] in order to adjust more easily their number
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TABLE I. Volume of the Voronoi cell(s)for all the studied structures (F-K phase and BCC): C14, C15, A15, σ, Z and BCC.
The normalized volumes (the mean cell volume is 1) are given for the different coordination shells: Z12, Z14, Z15 and Z16. If
two different volumes appear for the same coordination type, they are indicated as Zxa or b. The quadratic deviation for these
volumes is given under the mean coordination z. All geometric figures are drawn using Mathematica.

Struct. C14 C15 A15 σ Z BCC

nb of 12 24 8 30 7 2

sites

Z12a

nb 2 16 2 2 3

cell vol. 0.935 0.9288 0.9765 0.9188 0.9044

Z12b

nb 6 8

cell vol. 0.9283 0.9524

Z14a

nb 6 8 2 2

cell vol. 1.0078 1.0317 1.02042 1

Z14b

nb 8

cell vol. 1.009

Z15

nb 8 2

cell vol. 1.0707 1.1228

Z16

nb 4 8

cell vol. 1.1397 1.1423

z 13.333 13.333 13.5 13.467 13.429 14
√

δ 0.0988 0.1006 0.0135 0.0472 0.091 0

Ns and their uniform distribution. The mean elastic energy per spoke for a given Voronoi cell takes the form of a
sum running on all the spokes (indexed by i) contained in the Voronoi cell:

Uel =
1

2NL
KΣNl

i=1

√

||ri,k − ci,k||2

(ℓ0)2
(6)

where ci,k is the vectorial position of the grafting point of the spoke i in the Voronoi cell k whereas ri,k is the vectorial
position of the free end of the spoke. Ns has been chosen close to 100. Since the shape of the Voronoi cell is not
isotropic, this energy is sensitive to the orientation of the core. Therefore the elastic energy is calculated for several
randomly chosen orientations of the set of coordinates ci,k of all spoke origins on all cores in the crystallographic unit
cell. As the obtained energy slightly depends on this choice of orientations, the final elastic energy is therefore the
average value on different orientations.
The total energy which drives the relative stability of the different phases depends on the van der Waals energy

per particle and on the elastic energy of the soft shell per particle. Let us introduce the ratio R = K/A of the elastic
constant K over the Hamaker constant A, R has no unit. This ratio is an important parameter in the balance between
the shell elastic energy and the van der Waals attraction between the cores. A large R will favor the shell elastic part
of the total energy whereas a low value of R will favor the van der Waals attraction between the cores. The other
important parameter that drives both the distance between the cores and the shell thickness reference is the core
volume fraction ϕ.
Figure 3 shows the elastic energy (with K = 1) as a function of ϕ for six different phases. The elastic energy

increases with increasing core volume fraction for all structures. When comparing the different energies, the BCC
structure is clearly the most favorable one. The A15 and σ phases are close in energy but less favorable than the BCC
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FIG. 3. The normalized elastic energy for K = 1, for BCC, C14, C15, A15, σ and Z phases as function of the volume fraction
ϕ.
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FIG. 4. The normalized van der Waals energy (A = 1), for BCC, C14, C15, A15, σ and Z phases as function of the ϕ.

phase. The C14, C15 and Z phase are also close in energy but with higher values. It has already been shown that
the entropic stretching energy evaluated in the block copolymer framework generically favors BCC over Frank Kasper
phases like A15 [26]. Predicting the relative behavior of the elastic energy for the different Frank Kasper phase is not
so easy. It is not related to the close packing volume fraction (BCC:68%, A15=52.3%, C14=55.5%). It appears that
how energies are ordered is related to the deviations of the Voronoi cell volumes compared to the mean volume in the
different phases. Large mean coordination number also seems to increase the energy. Nevertheless it is important to
notice that the cubic C15 phase is less favorable than the homologous hexagonal phase C14 in terms of ligand elastic
energy that was quite unexpected. This model is therefore an efficient way to get a quantitative comparison of the
elastic energy of different phases.
Figure 4 shows the van der Waals energy per particle as a function of ϕ for six different phases and A = 1. From the

van der Waals point of view, the comparison leads to a totally reverse conclusion compared to the elastic deformation
energy : the C14 and C15 phases are clearly favored as well as the Z phase. The BCC phase is the less favorable one.
The σ phase and the A15 phase have similar intermediate behavior. The total energy per particle combines the van
der Waals energy and the total elastic energy: it depends on ϕ, A and K. But the phase diagram depends only on ϕ
and on R = K/A.

Utot(ϕ) = UvdW (ϕ,A) + Uel(ϕ,K). (7)

Figure 5 shows the phase diagram of soft particles as a function of the core volume fraction ϕ and of the ratio
R of the elastic constant of the soft shell over the Hamaker constant. The shell elasticity (large R) favors the BCC
structure whereas the van der Waals attraction between the hard spherical cores (small R) favors the C14 structure.
The A15 structure appears in between. But the σ structure has a very close energy and thus the A15 and σ structures
cannot be distinguished in this model. The energy of the C15 structure which is the cubic version of the hexagonal
C14 structure is always larger than the energy of the C14 structure.
This elastic model remains a crude approach of the ligand response upon shell deformation. Even if our approach

to quantify the elastic deformation of the shell is rough, it enables a quantitative comparison of the different phases
and thus a prediction of phase diagrams for systems where the van der Waals attraction is expected to be large. This
is certainly the case for metallic core particles. The Hamaker constant of gold is expected to be quite high due to the
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FIG. 5. Phase diagram of soft particles as a function of the core volume fraction ϕ and of the ratio R of the elastic constant of
the soft shell over the Hamaker constant that drives the van der Waals attraction. The shell elasticity favors the BCC structure
whereas the van der Waals attraction between the hard spherical cores favors the C14 structure. The A15 or Sigma structures
appear in between.

metallic state of gold even in small cores and is usually estimated to 75 kBT for gold in oil. This model thus explains
well the phase diagram of small gold nanoparticles with a core diameter D0 close to 2 nm. They self-assemble either in
the C14 structure for short ligands (hexane-thiol) [21] or to BCC phase with longer ligands (dodecane-thiol) [27]. The
repulsion from the ligand shell is not really known whereas the structure of the ligands in certainly an important key
to understand the various structures [28]. Unfortunately there is no theory available for interacting olimeric ligands as
those used in this system. Nevertheless the model that we propose is in good agreement with the observed structures.
For the 2nm-core gold nanoparticles, the C14 structure (and not the C15 structure) is observed for a core volume
fraction close to 24% and the BCC structure for a core volume fraction close to 18%. This is coherent with the phase
diagram of Figure 5 if the ratio R is close to 0.8. This would correspond to a constant K close to 60 kBT . The A15
or σ phase is predicted for intermediate ligand length. Experiments are at present performed to test this prediction
but to distinguish clearly between a C14 phase and a σ phase requires high quality superlattices and experiments are
carried out to grow them.

Other models are proposed to explain and predicts Frank and Kasper phases or even quasicrystalline phase for soft
sphere self-assembly. The model proposed in this paper does not take into account any interfacial energy. The core
is considered as rigid ans thus the interface between the core and the shell remains constant. This is not the case
for many soft systems as block copolymers. In such systems, this interfacial energy is known to play an important
role. In a previous study [29] of melts composed of block copolymers with multiply-branched architecture, it has been
shown that the A15 cubic phase is stabilized over the BCC phase by the tendency of the AB interfaces to conform
to the polyhedral environment of the Voronoi cell of the micelle lattice. In other soft matter systems like in foams
or in micellar systems, the energy is mainly related to surface tension; for instance the surface tension of the films
around the bubbles. The surface area of the Voronoi cells will thus play an important role in these systems [30]. In
this model, no surface tension between the shells is assumed.

In the Frank and Kasper phases or Laves phase, all the crystallographic sites are not equivalent and Voronoi cells
have different volumes. Nevertheless, there is a modification of the Voronoi construction (Laguerre construction [31])
which allows to have a weighting factor controlling cell size. It is then possible to adjust weight in order to have all
cell volumes equal. We have done this construction with the phases presented above and it appears that the total
elastic energy is only very lightly modified using this construction. The elastic energy is mainly due to fluctuations
of the crown thickness which could be expected to be lowered when all cells have an equal volume, but cells are more
irregular in that case and then there is no gain for the elastic energy.

In the same way, this model can easily be adapted to mixtures of nanoobjects with different size or nature. Indeed,
since the crystallographic sites are not equivalent, alloys like in metallic crystals are expected to stabilize these phases.
In the model presented in this paper, the polydispersity has been neglected whereas it is suspected to stabilize Frank-
Kasper phases and extend their range in the phase diagram. It should be included for a better description of the
self-assembly of soft objects.

A very important point in all the experiments is the way the superlattices are grown. The BCC structure as well as
the C14 structure are clearly equilibrium phase for gold nanoparticles self assembly. But all the possible structures are
close in energy. In block copolymers, it is clear that different processing routes drive assembly into a variety of low-
dimensional phases more typical of metal alloys [16]. For the gold nanoparticles, different self-assembly mechanisms
[32] can be used with various kinetics of the agglomeration process. As in diblock copolymers, different process routes
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are suspected to achieve different structures. Controlling the superlattice growth is thus essential to explore the phase
diagram and ensure that the observed phase is really the thermodynamically stable one.

CONCLUSION

There is certainly no universal answer to the question of what structure for soft spheres packing. In this paper,
we focus our attention on soft spheres with hard core interacting through strong van der Waals attraction. The
final structure for this soft sphere systems is assumed to result from a delicate balance between the van der Waals
attraction and the elastic ligand deformation energy. A quantitative estimation of the elastic deformation of the soft
corona is proposed. The van der Waals energy per particle as well as the mean value of the elastic energy has been
computed for different structures, classical ones (BCC) but also more complex structures as various Frank and Kasper
or Laves phases. The different structures can be compared depending on the hard core volume fraction and on the
ratio between the elastic constant and the Hamaker constant. This model is well adapted to hydrophobically coated
gold nanoparticles. It explains why the hexagonal C14 phase and not the close C15 cubic phase has been observed
for short ligands whereas the structure is BCC for longer ligands. It also predicts how other phases like the σ phase
or the A15 phase could be expected and thus can help to choose the good parameters in order to obtain the desired
structure and search for quasicrystalline phases.
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