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Joint Segmentation of
Multivariate Astronomical Time Series:

Bayesian Sampling with a Hierarchical Model
Nicolas Dobigeon, Jean-Yves Tourneret, and Jeffrey D. Scargle

Abstract— Astronomy and other sciences often face the prob-
lem of detecting and characterizing structure in two or more
related time series. This paper approaches such problems using
Bayesian priors to represent relationships between signals with
various degrees of certainty, and not just rigid constraints. The
segmentation is conducted by using a hierarchical Bayesian
approach to a piecewise constant Poisson rate model. A Gibbs
sampling strategy allows joint estimation of the unknown pa-
rameters and hyperparameters. Results obtained with synthetic
and real photon counting data illustrate the performance ofthe
proposed algorithm.

Index Terms— Segmentation, photon counting data, Gibbs
sampling, Markov chain Monte Carlo, hierarchical Bayesian
analysis.

I. I NTRODUCTION

The problem of signal segmentation has received increas-
ing attention in the signal processing literature. A complete
bibliography of references published before1993 can be
found in the textbooks of Basseville and Nikiforov [1] and
Brodsky and Darkhovsky [2]. However, intensive research has
been conducted since1993 on developing new segmentation
algorithms. A first class of algorithms adopts a model selection
approach via penalization. A parametric model is defined
for the signal of interest including changepoints between an
unknown number of segments. The changepoints are then esti-
mated by minimizing an appropriate penalized criterion. Note
that the penalization is necessary to avoid over-segmentation.
Penalized contrast criteria that have been proposed for signal
segmentation include the penalized least squares criterion [3]
and the generalizedCp criterion for Gaussian model selection
[4], [5]. A second class of algorithms is based on Bayesian in-
ference. These algorithms consist of defining appropriate prior
distributions for the unknown signal parameters (including the
changepoints between the different segments) and estimating
these unknown parameters from their posterior distributions.
Bayesian estimators recently used for signal segmentation
include the maximuma posteriori (MAP) estimator [6], [7],
the minimum mean square estimator (MMSE) [8] and the
hierarchical Bayesian curve fitting estimator [9]. Note that
the complexity of the posterior distributions for the unknown
parameters generally requires appropriate simulation methods
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such as Markov Chain Monte Carlo (MCMC) methods [7],
[8], [9] or perfect simulation techniques [10].

The prior distributions appropriate for Bayesian signal seg-
mentation involve hyper-parameters, which may be difficultto
estimate. There are two main approaches to estimating these
hyperparameters. The first approach couples MCMCs with
an expectation-maximization (EM) algorithm, which allows
one to estimate the unknown hyperparameters [11]. The sec-
ond approach defines non-informative prior distributions for
the hyperparameters, introducing a second level of hierarchy
within the Bayesian paradigm. The hyperparameters are then
integrated out of the joint posterior distribution or estimated
from the observed data [9].
Surprisingly, the segmentation of astronomical time series has
received less attention in the signal and image processing com-
munity. An iterative Bayesian algorithm based on a constant
Poisson rate model was recently studied to solve this problem
[12]. The main idea of the proposed algorithm is to decompose
the observed signal into two subintervals (by optimizing an
appropriate criterion), to apply the same procedure on the
two subintervals and to continue this operation several times.
The main advantage of this procedure is to handle only
one changepoint at each step. However, the accuracy of the
algorithm is limited by its greediness and the fact that an
appropriate stopping rule is required. The multiple changepoint
algorithm presented in [13] removes these limitations, but
requires the specification of a prior distribution for the number
of changepoints, and has the disadvantage that it does not
automatically provide information on the significance of the
optimally determined parameters.
This paper studies a new Bayesian time series segmentation
algorithm that does not use a stopping rule and allows one
to segment jointly multiple signals coming from different
sensors. The proposed strategy is based on a hierarchical
model for the segmentation problem. This model assumes that
appropriate prior distributions for the unknown parameters
(change-point locations, Poisson parameters) are available.
Vague priors are then assigned to the corresponding hyper-
parameters, which are integrated out from the joint posterior
distribution (when possible) or estimated from the observed
data. MCMC methods are used to draw samples according
to the posteriors of interest. The Bayesian estimators are
finally computed from these simulated samples. The proposed
methodology is similar to the hierarchical Bayesian curve
fitting technique studied in [9]. However, the method studied
in [9] was designed for linear regression models with additive
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Gaussian noise and cannot be applied directly to Poisson
data. Our change-point detection strategy can be viewed as an
adaptation of the Bayesian curve fitting estimator to Poisson
data. Also the segmentation procedure studied in this paper
allows joint segmentation of signals recorded by different
sensors, contrary to the algorithm proposed in [9]. To our
knowledge, this is the first fully Bayesian algorithm developed
for joint segmentation of Poisson data.
This paper is organized as follows. The segmentation problem
is formulated in Section II. Section III describes different
elements of the hierarchical model that with be used to
solve this segmentation problem. Section IV studies a Gibbs
sampler for the posteriors of the unknown parameters to be
estimated. Some simulation results on synthetic and real data
are presented in Section V. Conclusions are reported in Section
VI.

II. PROBLEM FORMULATION

As explained in [12], the arrival times of photons can be mod-
eled accurately by a discrete-time Poisson counting process.
The numbers of photons counted inn successive equally
spaced intervals (bins), fromj different signals, are denoted
yj,i, whereyj,i is the count in bini of signalj (i = 1, . . . , n

andj = 1, . . . , J). The bins are grouped into blocks (intervals
containing one or more bins). The summed counts of which are
assumed to obey Poisson distributions whose parameters may
or may not vary from one interval to another. Consequently,
the statistical properties of suchbinned data can be defined
as follows:

yj,i ∼ P (λj,k) ,

where j = 1, . . . , J , k = 1, . . . , Kj , i ∈ Ij,k = {lj,k−1 +
1, . . . , lj,k}, and the following notations have been used:

• P(λ) denotes a Poisson distribution with parameterλ,
• J is the number of signals to be segmented,
• Kj is the number of segments in thejth observed signal,
• lj,k is the sample point after which thekth change occurs

in the jth signal (by conventionlj,0 = 0 and lj,Kj
= n,

where n is the number of observed samples). In other
words, the actual change locations aretj,k = lj,kT + τ

with 0 ≤ τ < T , whereT is the sampling period.
Moreover, the sequencesyl =

[
yl,1, . . . , yl,n

]
and ym =[

ym,1, . . . , ym,n

]
are assumed to be independent forl 6= m.

Segmenting the astronomical time seriesyj =
[
yj,1, . . . , yj,n

]

jointly consists of estimating the change-points numbersKj

and their positionslj,k (for j = 1, . . . , J andk = 1, . . . , Kj)
from the observationsY =

[
y1, . . . ,yJ

]T
.

III. H IERARCHICAL BAYESIAN MODEL

The unknown parameters for the segmentation problem (intro-
duced in the previous section) are the numbers of segments
Kj , the change-point locationslj,k and the Poisson parameters
λj,k (with λj =

[
λj,1, . . . , λj,Kj

]T
andΛ = {λ1, . . . , λJ}).

A standard reparameterization consists of introducing indica-
tors rj,i, j ∈ {1, . . . , J}, i ∈ {1, . . . , n} such that:
{

rj,i = 1 if there is a changepoint at timei in the sequencej,
rj,i = 0 otherwise,

with rj,n = 1 (this condition ensures that the number of
change-points and the number of steps of thejth signal are
equal toKj =

∑n

i=1 rj,i). The unknown parameter vector
resulting from this reparameterization isθ = {θ1, . . . , θJ}
where θj = {rj , λj} and rj =

[
rj,1, . . . , rj,n

]
. Note that

the unknown parameter vectorθ belongs to a spaceΘ =
{0, 1}J×n × ∏J

j=1 R
Kj

+ , whose dimension depends on the
parametersKj , j = 1, . . . , J . This paper proposes to estimate
the unknown parameter vectorθ by using Bayesian estimation
theory. Bayesian inference onθ is based on the posterior
distribution f(θ|Y). This posterior distribution is related to
the likelihood of the observations and the parameter priorsvia
Bayes’ theoremf(θ|Y) ∝ f(Y|θ)f(θ). The likelihood and
priors for the segmentation problem are summarized below.

A. Likelihood

The likelihood of the observed vectorY can be expressed as
follows:

f(Y|θ) =
J∏

j=1

Kj∏

k=1

∏

i∈Ij,k

λ
yj,i

j,k exp (−λj,k)

yj,i!

=
1

∏J

j=1

∏n

i=1 yj,i!

J∏

j=1

Kj∏

k=1

λ
sj,k(rj)
j,k exp (−λj,knj,k (rj))

∝
J∏

j=1

Kj∏

k=1

λ
sj,k(rj)
j,k exp (−λj,knj,k (rj)) ,

(1)

where∝ means “proportional to”,sj,k (rj) =
∑

i∈Ij,k
yj,i and

nj,k (rj) = lj,k−lj,k−1 (number of samples in thekth interval
Ij,k of the jth signal).

B. Parameter Priors

1) Indicator Vector: The indicator vectors Ri =[
r1,i, . . . , rJ,i

]T
andRi′ =

[
r1,i′ , . . . , rJ,i′

]T
are assumed to

be independent for anyi 6= i′. Therefore, the prior distribution
of R =

[
R1, . . . ,Rn

]
can be decomposed as follows:

f(R) =

n−1∏

i=1

f(Ri). (2)

The possible correlations between the change locations in
the different observed signals are adjusted by choosing an
appropriate prior distributionf(R|P). We assume that the
probability of having

[
r1,i, . . . , rJ,i

]T
= ǫ does not depend on

i (with ǫ ∈ E = {0, 1}J) and is denotedPǫ. As a consequence,
the indicator prior distribution is:

f(R|P) =
∏

ǫ∈E

PSǫ(R)
ǫ

, (3)

whereP = {Pǫ}ǫ∈E , Pǫ ∈ {P0...0, . . . , P1...1} andSǫ(R) is
the number of lags such that

[
r1,i, . . . , rJ,i

]T
= ǫ. The most

likely configuration
[
r1,i, . . . , rJ,i

]T
= ǫ will correspond to

the highest value ofPǫ. For instance, by choosing high values
of P0...0 (resp.P1...1), the absence (resp. presence) of simul-
taneous changes in all observed signals will be favored. This
choice induces correlation between change-point locations in
the different time series.
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2) Poisson Parameters: By assuming the parametersλj,k

are a priori independent, the prior distribution forΛ =
{λ1, . . . , λJ} is:

f(Λ|γ) =

J∏

j=1

Kj∏

k=1

f(λj,k|ν, γ).

Gamma distributions are assigned to these Poisson parameters:

λj,k|ν, γ ∼ G (ν, γ) , (4)

whereν = 1 (as in [9]),γ is an adjustable hyperparameter and
G(a, b) denotes the Gamma distribution with parametersa and
b. The variety of distributions available whenγ varies indicates
it is possible to incorporate either vague or more specific
prior information about the parametersλj,k. Moreover, the
Gamma distribution is the conjugate prior for the parameters
λj,k, which allows us to integrate out these parameters from
the joint posterior (see section III-D). It would be possible to
define a set of hyperparametersγj , j = 1, . . . , J for signals
whose amplitudes differ significantly; however, such situations
are not considered in this paper. The previous assumptions
yield the following prior distribution forΛ:

f(Λ|γ) =

J∏

j=1

Kj∏

k=1

f(λj,k|ν, γ)

=

J∏

j=1

Kj∏

k=1

γν

Γ(ν)
λν−1

j,k e−γλj,kIR+(λj,k)

=

J∏

j=1


γνKje−γ

∑Kj

k=1
λj,k

Γ(ν)Kj

Kj∏

k=1

(
λν−1

j,k IR+(λj,k)
)

 ,

where IR+(x) is the indicator function defined onR+ (i.e.
IR+(x) = 1 if x ≥ 0 and IR+(x) = 0 otherwise).
The hyperparameter vector associated with the priors defined
above isΦ = (P, γ). Of course, the quality of the Bayesian
segmentation depends on the values of the hyperparameters.
In particular applications, these hyperparameters can be fixed
from available information regarding the observed signalsas
in [14]. However, to increase the robustness of the algorithm,
hyperparameters can be considered as random variables with
noninformative priors as in [9]. This strategy, involving dif-
ferent levels in a Bayesian prior hierarchy, results in so-called
hierarchical Bayesian models. Such models require that one
define hyperparameter priors (sometimes referred to ashyper-
priors), as detailed in the next section.

C. Hyperparameter Priors

1) Hyperparameter γ: The prior distribution forγ is a
noninformative Jeffreys’ prior (as in [9]), which reflects the
absence of knowledge regarding this hyperparameter:

f(γ) =
1

γ
IR+(γ). (5)

2) Hyperparameter P: The Dirichlet distribution is the
usual prior for positive parameters summing to1. It has
the nice property of providing a vague or informative prior
depending on its parameter values. It also allows us to in-
tegrate out the parametersPǫ from the joint posterior. This
paper assumes that the prior distribution forP is a Dirichlet
distribution with parameter vectorα =

[
α0...0, . . . , α1...1

]T
denoted as:

P|α ∼ D2J (α). (6)

This distribution is defined on the simplexP ={
P;
∑

ǫ∈E
Pǫ = 1, Pǫ > 0

}
.

Assuming that the different hyperparameters area priori inde-
pendent, the prior distribution for the hyperparameter vector
Φ can be written as follows:

f(Φ|α) ∝
(
∏

ǫ∈E

Pαǫ−1
ǫ

)
1

γ
IR+(γ)IP (P), (7)

whereαǫ ∈ {α0...0, . . . , α1...1}. This paper has assumed all
values ofαǫ are equal. In this case, the Dirichlet distribution
reduces to the uniform distribution onP .

D. Posterior Distribution of θ

The posterior distribution of the unknown parameter vector
θ = {Λ,R} can be computed from the following hierarchical
structure:

f(θ|Y) =

∫
f(θ,Φ|Y)dΦ ∝

∫
f(Y|θ)f(θ|Φ)f(Φ)dΦ,

where f(Y|θ) and f(Φ) have been defined in (1) and (7).
This hierarchical structure is shown on the the directed acyclic
graph (DAG) of Fig. 1. It allows one to integrate out the
nuisance parametersΛ and P from the joint distribution
f(θ,Φ|Y), yielding:

f(R, γ|Y)

C(R|Y)
∝ 1

γ

J∏

j=1



(

γν

Γ (ν)

)Kj
Kj∏

k=1

Γ (sj,k + ν)

(nj,k + γ)
sj,k+ν


 IR+(γ),

(8)
with

C(R|Y) =

∏
ǫ∈E

Γ (Sǫ (R) + αǫ)

Γ
(∑

ǫ∈E
(Sǫ (R) + αǫ)

) ,

and Γ(t) is the Gamma function (i.e. Γ(t) =∫ +∞

0 ut−1e−udu, t > 0).
The posterior distribution (8) is too complex to obtain closed-
form expressions of the Bayesian estimators for the unknown
parameters (such as the minimum mean square error (MMSE)
estimator or the maximuma posteriori (MAP) estimator). In
this case, it is quite common to apply MCMC methods to
generate samples that are asymptotically distributed according
to the posteriors of interest. The samples can then be used to
estimate the unknown parameters. This paper studies a Gibbs
sampling strategy similar to the segmenter in [9]. However,
it is important to note the following differences. First, our
proposed Gibbs sampling strategy does not involve reversible
jumps. Indeed, due to the reparametrization introduced in the
beginning of section III, the unknown parameters in (8) belong
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Fig. 1. DAG for the prior distributions; the fixed parametersappear dashed
boxes.

to a space with a fixed dimension. Second, the proposed
algorithm allows joint segmentation of multiple time-series.

IV. G IBBS SAMPLER FORCHANGE-POINT DETECTION

The Gibbs sampler is an iterative sampling strategy for gen-
erating samples distributed according to the full conditional
distributions of each parameter. This paper proposes to sample
according to the distributionf(R, γ|Y) defined in (8). The
main steps of the algorithm are summarized in the table
“Algorithm 1” and are detailed in Subsections IV-A to IV-C.

Algorithm 1: Gibbs sampling algorithm for joint segmentati on

• Initialization:
– Sample hyperparameter γ̃0 from the pdf in (5),
– Sample hyperparameter P̃(0) from the pdf in (6),

– For i = 1, . . . , n− 1 sample,
[
r̃
(0)
1,i , . . . , r̃

(0)
J,i

]T
from the

pdf in (3),
– For j = 1, . . . , J , k = 1, . . . , K, sample λ̃

(0)
j,k from the

pdf’s in (4),
– Set t← 1,

• Iterations: for t = 1, 2, 3, . . . , do

– For i = 1, . . . , n−1, sample
[
r̃
(t)
1,i, . . . , r̃

(t)
J,i

]T
according

to the probabilities (9),
– For j = 1, . . . , J , k = 1, . . . , K, sample λ̃

(t)
j,k from the

pdf’s in (10),
– Sample γ̃(t) from the pdf in (11),
– Optional step: sample P̃

(t) from the pdf in (12),
– Set t← t + 1.

A. Generation of Samples Distributed According to
f(R|γ,Y)

This generation is achieved by using the Gibbs Sam-
pler to draw (n − 1) samples distributed according to
f(r1,i, . . . , rJ,i|γ,Y). This random variable is discrete and
takes its values inE = {0, 1}J . Consequently, its distribution
is fully characterized by the probabilitiesP (

[
r1,i, . . . , rJ,i

]T
=

ǫ|γ,Y), ǫ ∈ E . By using the notationsR−i to denote the

matrix R where the column at timei is supressed, the
following result can be obtained:

P
([

r1,i, . . . , rJ,i

]T
= ǫ|R−i, γ,Y

)
∝ f (Ri(ǫ), γ|Y) , (9)

whereRi(ǫ) is the matrixR where the column at timei is
replaced by the vectorǫ. This yields a closed-form expression
of the probabilitiesP

([
r1,i, . . . , rJ,i

]T
= ǫ|R−i, γ,Y

)
after

appropriate normalization.

B. Generation of Samples Distributed According to
f(γ|R,Y)

To obtain samples distributed according tof(γ|R,Y), it is
convenient to simulate vectors distributed according to the
joint distribution distributionf(γ,Λ|R,Y) by using Gibbs
moves. This step can be decomposed as follows:

• Draw samples according tof(Λ|R, γ,Y)
Looking carefully at the joint distributionf(θ,Φ|Y), the
following result can be obtained:

λj,k|R, γ,Y ∼ G (sj,k (rj) + ν, nj,k (rj) + γ) . (10)

• Draw samples according tof(γ|R,Λ,Y)
This is achieved as follows:

γ|R,Λ ∼ G


ν

J∑

j=1

Kj,

J∑

j=1

Kj∑

k=1

λj,k


 . (11)

C. Posterior Distribution of Hyperparameter P

The hyperparameterP carries information regarding the prob-
ability of having simultaneous changes at a given location.As
a consequence, its estimation may be interesting in practical
applications. The posterior distribution of this parameter, con-
ditioned upon the indicator vectorR, the vector of observed
samplesY and the parametersα, can be easily derived. This is
a 2J -Dirichlet distribution with parameters(αǫ + Sǫ(R))ǫ∈E :

P|R,Y, α ∼ D2J (αǫ + Sǫ(R)). (12)

V. SIMULATIONS

A. Synthetic Data

Many simulations have been conducted to validate the segmen-
tation algorithm (cf. Section IV). The simulations presented in
this section have been obtained forJ = 2 signals ofn = 120
samples. The change-point locations for these two sequences
are l1 = (20, 50, 100, 120) and l2 = (50, 120). The para-
meters of the Poisson distributions areλ1 =

[
19, 9, 16, 6

]T

and λ2 =
[
8, 11

]T
. The hyperparameters have been set to

ν = 2 and αǫ = α = 1, ∀ǫ. The hyperparametersαǫ

are equal to insure the Dirichlet distribution reduces to a
uniform distribution. Moreover, the common value of the
hyperparametersαǫ has been set toα = 1 ≪ n to reduce the
influence of this parameter on the posterior (12). All figures
have been obtained after averaging the results of64 Markov
chains. The total number of runs for each Markov chain is
NMC = 1000, including Nbi = 200 burn-in iterations. Thus,
only the last800 Markov chain output samples are used in
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computing the estimates. The results provided by the joint
segmentation procedure are compared with those provided
by two 1D segmentations (which consists of performing the
proposed algorithm on each of the two sequences). Note that
running 100 iterations of the proposed algorithm for joint
segmentation takes approximately30 seconds for a MATLAB
implementation on a2.8Ghz Pentium IV.
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Fig. 2. Posterior distributions of the change-point locations for1D (top) and
joint segmentations (bottom).

1) Posterior Distribution of the Change-point Locations:
The MMSE estimates of the change locations are depicted in
Figure 2 for1D and joint approaches. These estimates have
been computed as follows:

R̂MMSE =
1

Nr

Nr∑

t=1

R(Nbi+t), (13)

whereNbi is the number of burn-in iterations. Note that the
mean of a matrixR is distributed according tof(R|Y) and
provides thea posteriori probabilities for changes at the differ-
ent lags and signals (sincerj,i is a binary random variable).
For example, there is a very high posterior probability that
a change occurred at lagsi = 50 and i = 100 in the first
sequence (with both1D and2D approaches). However, the two
methods seem hesitant to locate the first change (at lagi = 20)
in the first signal. The advantage of the joint segmentation
procedure is illustrated by the bottom of Figure 2: the change
at lagi = 50 in the second sequence is more clearly estimated
by the joint approach (right figure) than by the1D approach
(left figure). Thus, in this example, the joint2D segmentation
procedure provides better results than two independent1D
segmentations.

2) Posterior Distribution of (K1, K2): The proposed al-
gorithm generates samples

(
R(t), γ(t)

)
distributed according

to the posterior distributionf (R, γ|Y), which allows for
model selection. Indeed, the change-point number in each
sequence can be estimated byK

(t)
j =

∑n

i=1 r
(t)
j,i . Figure

3 shows the estimated posteriors ofKj in each sequence
(computed from the last800 Markov chain samples) for the
1D and joint segmentation algorithms. The maximum values of
these posteriors provide the MAP estimates of the changepoint
numbersK̂1 = 4 andK̂2 = 2, which corresponds to the actual
numbers of changes. (Remember that there is a change at lag
n = 120 in all signals, by convention.)
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Fig. 3. Posterior distributions ofK1 and K2 for 1D (top) and joint
segmentations (bottom).

3) Poisson Parameter Estimation: The estimation of the
Poisson parameters is interesting since it allows for signal
reconstruction. The posterior distributions of the parameters
λ1,k and λ2,k, conditioned uponK1 = 4 and K2 = 2,
are depicted in Figures 4 and 5. They are clearly in good
agreement with the actual values of the parameters,λ1 =[
19, 9, 16, 6

]T
andλ2 =

[
8, 11

]T
.

4) Hyperparameter Estimation: The posterior distributions
of Pǫ are depicted in Figure 6. They are clearly in agreement
with the actual posterior distributions given by the Dirichlet
distributionD4 (n − 3, 1, 3, 2) defined in (12).

5) Sampler Convergence: A crucial issue when using
MCMC methods is convergence assessment. The Gibbs sam-
pler allows us to draw samplesR(t) asymptotically dis-
tributed according tof(R|γ,Y). The change-point posterior
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probabilities are then be estimated by (13). However, two
important questions have to be answered: 1) When can we
decide whether the simulated samples

{
R(t)

}
are distributed

according to the target distribution? 2) How many samples
do we need to obtain an accurate estimate ofR when using
(13)? This section presents some details about determining
appropriate values for parametersNr andNbi.
A first ad hoc approach consists of assessing convergence
via appropriate graphical evaluations [15, p. 28]. Here, a
reference estimate denoted as̃R has been computed for a
large number of iterations̃Nr = 10000 and Ñbi = 10000 (to
ensure convergence of the sampler and good accuracy of the
approximation (13)). Figure 7 shows the mean square error

(MSE) between this reference estimatẽR and the estimate
obtained afterNr = p runs and Ñbi = 10000 burn-in
iterations:

e2
r(p) =

∥∥∥∥∥R̃ − 1

p

p∑

t=1

R(Ñbi+t)

∥∥∥∥∥

2

.
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Fig. 7. MSE between the reference and estimateda posteriori change-point
probabilities versusp (solid line). Averaged MSE computed from64 chains
(dotted line) (Nbi = 200).

Figure 7 shows that a number of runs equal toNr = 800
is sufficient to ensure an accurate estimation of the empirical
average (13). Similarly, the MSEe2

r versus the number of burn
in iterationsNbi (for a fixed number of iterationsp = 800)
is depicted in Figure 8. This figure indicates a short burn-in
period is sufficient. We have chosenNbi = 200 for the next
simulations.
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Fig. 8. MSE between the reference and estimateda posteriori change-point
probabilities versusNbi (solid line). Averaged MSE computed from64 chains
(dotted line) (Nr = 800).

Running multiple chains with different over-dispersed initial-
izations allows us to define various convergence measures
for MCMC methods [15]. We use the popular “between-
within variance criterion” to confirm our previous convergence
diagnosis. This method was initially studied by Gelman and
Rubin in [16] and has been often used to monitor convergence
(see, for example, [17], [18] or [15, p. 33]). This criterion
requires runningM parallel chains of lengthNr with different
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starting values. The between-sequence varianceB and within-
sequence varianceW for the M Markov chains are defined
by

B =
Nr

M − 1

M∑

m=1

(κm − κ)
2
,

and

W =
1

M

M∑

m=1

1

Nr − 1

Nr∑

t=1

(
κ(t)

m − κm

)2

,

with 



κm = 1
Nr

Nr∑
t=1

κ
(t)
m ,

κ = 1
M

M∑
m=1

κm,

whereκ is the parameter of interest andκ(t)
m is thetth run of

the mth chain. The convergence of the chain is monitored by
a so-calledpotential scale reduction factor ρ̂ defined as [16]:

√
ρ̂ =

√
Nr − 1

Nr

+
M + 1

MNr

B

W
. (14)

A value of
√

ρ̂ close to1 indicates good convergence of the
sampler.
Different choices for parameterκ could be considered for our
proposed joint segmentation procedure. We propose to monitor
the convergence of the Gibbs sampler via the parametersPǫ,
ǫ ∈ E . As an example, the outputs ofM = 5 chains for
parameterP00 are depicted in Figure 9. The chains clearly
converge to similar values. The potential scale reduction
factors for all parametersPǫ are given in Table I. These values
of

√
ρ̂ confirm the good convergence of the sampler (a value

of
√

ρ̂ below 1.2 is recommended in [19, p. 332]).
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Fig. 9. Convergence assessment with five different Markov chains.

TABLE I

POTENTIAL SCALE REDUCTION FACTORS OFPǫ (COMPUTED FROM

M = 5 MARKOV CHAINS)

Pǫ

√

ρ̂ Pǫ

√

ρ̂ Pǫ

√

ρ̂ Pǫ

√

ρ̂

P00 0.9995 P01 1.0000 P10 0.9998 P11 1.0001

B. Real Astronomical Data

1) 1D Data: This section presents the analysis of a small
sample of data obtained by the NASA Compton Gamma Ray
Observatory’s BATSE (Burst and Transient Source Experi-
ment) [20]. By the nature of this photon-counting experi-
ment, the time series can be accurately modeled as Poisson
processes. The Poisson rate parameter varies as determined
by the actual changes in brightness of the gamma-ray burst
(GRB) source. The only significant departure from this picture
is that the recorded photons are not quite independent, due to
a smalldead time in the detectors.
The intensity of the GRB as a function of time often consists
of a series of short-time-scale structures, called pulses.The
goal of the analysis is to determine parameters such as the
rise and decay times of the pulses, and other quantities that
can be derived from a piecewise-constant representation.
The hierarchical method presented in this paper has been
applied to the astronomical 1D-data studied in [12]. The raw
counting data (which consists of about29000 photons) have
been transformed into binned data by counting the number of
photons distributed in256 time bins of width3.68ms. Note
that J = 1 in this example. The results have been averaged
from 64 Markov chains withNMC = 1550 runs andNbi = 50
burn-in iterations. These values ofNMC and Nbi have been
chosen in order to obtain appropriate values of the potential
scalar reduction factor for parametersP0 andP1 (see the end
of this section).
The first step of the analysis consists of estimating the pos-
terior distribution ofR for the observed sequence plotted in
Figure 11(a). This estimated posterior distribution is depicted
in Figure 11(b).
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Fig. 10. Posterior distribution of the change-point number(1D astronomical
data).

In the second step of the analysis, we estimate the number
of change-points for the observed sequence. The posterior
of the number of changes (computed from the last1500
Markov chain output samples) is depicted in Figure 10. The
corresponding MAP estimator iŝK = 18.
In the last step of the analysis, the different Poisson intensities
are estimated for each segment from the change locations.
More precisely, segments are obtained from the18 largest
values of the posterior depicted in Figure 11(b). The MMSE
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Fig. 11. (a) Original and segmented data, (b) Posterior distribution of the
change-point locations (1D astronomical data).

Poisson estimates are then obtained by averaging the signal
on each segment (which corresponds to the intensity MMSE
estimator conditioned onK = 18). This procedure yields
Bayesian blocks, which are introduced in [12]. Figure 11(a)
shows Bayesian blocks obtained after keepingK = 18
segments, as suggested by Figure 10. It is also possible to
compute the probability of having changes within a given
interval. For instance, the probability of having at least one
change-point in the interval

[
0.44; 0.47

]
appears in dotted

lines in Figure 11(b). This high value could induce a modified
segmentation including a change in this interval

[
0.44; 0.47

]
.

These results are in good agreement with those of [12].
The convergence of the Gibbs sampler for segmenting the
real astronomical data of Figure 11(a) has been studied. The
potential scalar reduction factors for parametersP0 and P1

(obtained from5 parallel chains andNr = 1500) are both
equal to

√
ρ̂ = 0.9996. The convergence criterion

√
ρ̂ < 1.2

(see [19, p. 332]) is satisfied for this example. Note again that
our segmentation procedure does not require any stopping rule,
other than what is implicit in the assessment of the Markov
chain’s convergence.

TABLE II

POTENTIAL SCALE REDUCTION FACTORS OFPǫ (COMPUTED FROM

M = 5 MARKOV CHAINS)

Pǫ

√

ρ̂ Pǫ

√

ρ̂

P0000 0.9999 P0100 1.0008
P0001 1.0004 P0101 1.0015
P0010 0.9999 P0110 1.0002
P0011 1.0000 P0111 1.0013
P1000 1.0013 P1100 1.0021
P1001 1.0000 P1101 1.0000
P1010 0.9999 P1110 0.9999
P1011 0.9998 P1111 0.9999

2) Multidimensional Data: The dependence of the GRB
variability on the energy of the radiation is of considerable
interest. In the data mode analyzed here, BATSE recorded the
energies of the photons in four energy channels, which are
analogous to four colors in ordinary visible radiation. Theunit
of energy iskeV (thousand electron volts), and the nominal

energy channels are25−60keV , 60−110keV , 110−325keV ,
and> 325keV . The variability curves at low and high energies
are typically very similar, but there can be a delay or lag
between them.
The thousands of recorded GRB light curves form an ex-
tremely heterogeneous collection. As with snowflakes, no
two are alike. They range in duration from a few tens of
milliseconds to a few hundred seconds. Their shapes range
from simple rise-and-fall forms to complex multiple-pulse
structures. The study of these objects is still much in the ex-
ploratory phase, and the kind of multivariate analysis described
here is an important part of the exploration.

2 3 4 5 6 7 8 9
0

0.5

1

f(
K

1|y
)

4 5 6 7 8 9 10 11
0

0.5

1

f(
K

2|y
)

8 9 10 11 12 13 14 15
0

0.5

1

f(
K

3|y
)

5 6 7 8 9 10 11 12
0

0.5

1

f(
K

4|y
)

Fig. 12. Posterior distribution of the change-point number(4D astronomical
data).
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Fig. 13. Posterior distribution of the change-point locations (4D astronomical
data).

The observed data corresponding to the four channels have
been processed by the proposed joint segmentation algorithm.
The estimated number of change-points and their positions are
obtained after3500 iterations including a burn-in period of200
runs. Figure 12 shows that the MAP estimates of parameters
Kj are K̂1 = 5, K̂2 = 7, K̂3 = 11 and K̂4 = 8. The
estimated posterior distribution ofR depicted in Figure 13 can
then be used to estimate the change locations in each channel
(as explained in the previous section). The resulting Bayesian
blocks are shown in Figure 14. Note that the time scales are
not the same for figures 13 and 14 (i.e. [0, 0.33s] for figure 13
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Fig. 14. Block representation (4D astronomical data).

whereas it is [0, 0.94s] for figure 14) for clarity. Most results
are in good agreement with those presented in [21]. However,
the proposed joint approach makes it possible to find out
changes that were not initially detected by the iterative method.
For example, the second and third changepointsl1,2 and l1,3

in the first channel (respectively at0.1294s and0.2316s) are
detected by the joint approach and not by the1D approach.
The presence of changes at the same position in the other
channels explains this detection.
The convergence of the Gibbs sampler for the joint segmen-
tation of the real astronomical data of figure 13 has been
studied. The potential scalar reduction factors for parameters
Pǫ, ǫ ∈ {0, 1}4 are provided in Table II. The convergence
criterion

√
ρ̂ < 1.2 is satisfied for this example.

VI. CONCLUSIONS

This paper studied Bayesian sampling algorithms for seg-
menting single and multiple time series obeying Poisson
distributions with piecewise constant parameters. Posterior
distributions of the unknown parameters gave estimates of
the unknown parameters and their uncertainties. Simulation
results conducted on synthetic and real signals illustrated the
performance of the proposed methodologies.
One of the two most important aspects of this work is its
treatment of possible relationships between the observed times
series. In many scientific areas, astronomy in particular, one
has incomplete knowledge ahead of time – indeed, the main
goal of the data analysis is typically to uncover such inter-
relationships. On the other hand, one typically has some in-
formation, for example, that the different time series are more
or less similar. This kind of vague but important knowledge
is naturally expressed in a Bayesian context by the prior
distribution adopted for the models and their parameters.
The second important aspect is that information about the
uncertainties of the parameter estimates arises as a matterof
course from the sampling strategy. This is typical of Markov
chain Monte Carlo methods but, for example, the methods in
[12], [13] do not explore the relevant parameter space and
provide no direct variance estimation.
Finally, it is interesting to note that the hierarchical Bayesian
algorithm developed in this paper could be modified to handle

other data sets including time-tagged event (TTE) data and
time-to-spill (TTS) data (see [12] for more details). This study
is currently under investigation.
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[4] L. Birgé and P. Massart, “Gaussian model selection,”Jour. Eur. Math.
Soc., vol. 3, pp. 203–268, 2001.

[5] E. Lebarbier, “Detecting multiple change-points in themean of gaussian
process by model selection,”Signal Processing, vol. 85, no. 4, pp. 717–
736, April 2005.
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