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Joint Segmentation of
Multivariate Astronomical Time Series:
Bayesian Sampling with a Hierarchical Model

Nicolas Dobigeon, Jean-Yves Tourneret, and Jeffrey D.dbear

Abstract— Astronomy and other sciences often face the prob- such as Markov Chain Monte Carlo (MCMC) methods [7],
lem of Qetecting and pharacterizing structure in two or more [8], [9] or perfect simulation techniques [10].
related time series. This paper approaches such problems g~ The prior distributions appropriate for Bayesian signa-se
Baye5|an priors to represent relatlonshlps petween S|gnaIW|th tation i ve h ) t hich be diffitalt
various degrees of certainty, and not just rigid constrains. The Mentation INVoIVe hyper-parameters, which may be difll
segmentation is conducted by using a hierarchical Bayesian €Stimate. There are two main approaches to estimating these
approach to a piecewise constant Poisson rate model. A Gibbshyperparameters. The first approach couples MCMCs with
sampling strategy allows joint estimation of the unknown pa an expectation-maximization (EM) algorithm, which allows
rameters and hyperparameters. Results obtained with syntétic  a 1o estimate the unknown hyperparameters [11]. The sec-
and real photon counting data illustrate the performance ofthe ond a h defi inf fi ior distributi f
proposed algorithm. pproach defines non-informative prior distributions

the hyperparameters, introducing a second level of hikyarc

within the Bayesian paradigm. The hyperparameters are then
integrated out of the joint posterior distribution or esiied
from the observed data [9].
Surprisingly, the segmentation of astronomical time sehias
] _ _ ] received less attention in the signal and image processimg ¢
The problem of signal segmentation has received increqgynity. An iterative Bayesian algorithm based on a constant
ing attention in the signal processing literature. A cort®lepgisson rate model was recently studied to solve this pnoble
bibliography of references published befoi®93 can be 12] The main idea of the proposed algorithm is to decompose
found in the textbooks of Basseville a-nd N|I_<|forov [1] andnhe opbserved signal into two subintervals (by optimizing an
Brodsky and Darkhovsky [2]. However, intensive researc$_1 hﬁppropriate criterion), to apply the same procedure on the
been conducted since)93 on developing new segmentationy, supintervals and to continue this operation severatdim
algorithms. A first class of algorithms adopts a model s&&ct the main advantage of this procedure is to handle only
approach via penalization. A parametric model is defingg changepoint at each step. However, the accuracy of the
for the signal of interest including changepoi.nts between Algorithm is limited by its greediness and the fact that an
unknown nu_m_be_r pf segments. T_he changc_epomts_ are then eéﬁpropriate stopping rule is required. The multiple chaoge
mated by minimizing an appropriate penalized criterionteNo|qrithm presented in [13] removes these limitations, but
that the penalization is necessary to avoid over-segmentat e qyires the specification of a prior distribution for thenher
Penalized pon_trast criteria that have been proposed .foaSigof changepoints, and has the disadvantage that it does not
segmentation include the penalized least squares crit8io 5,;omatically provide information on the significance oé th
and the generalized, criterion for Gaussian model selectionoptima"y determined parameters.
[4], [5]. A second class of algorithms is based on Bayesian ifthis paper studies a new Bayesian time series segmentation
ference. These algorithms consist of defining appropriaee p 4)gorithm that does not use a stopping rule and allows one
dlstrlbut|ons for the unknown.3|gnal parameters (mcllgcﬂr!\e to segment jointly multiple signals coming from different
changepoints between the different segments) and estnaliensors. The proposed strategy is based on a hierarchical
these unknown parameters from their posterior distrimstio oqe| for the segmentation problem. This model assumes that
Bayesian estimators recently used for signal segmentatig, opriate prior distributions for the unknown paranmgter
include the maximuna posteriori (MAP) estimator [6], [7], (change-point locations, Poisson parameters) are alailab
the minimum mean square estimator (MMSE) [8] and thgygye priors are then assigned to the corresponding hyper-
hierarchical .Bayesian curve fitting .est!mator [9]. NOtetthfbarameters, which are integrated out from the joint pasteri
the complexity of the posterior distributions for the unmo  gisribution (when possible) or estimated from the observe
parameters generally requires appropriate simulatiomoust 513 MCMC methods are used to draw samples according

Nicolas  Dobigeon and  Jean-Yves Tourneret are withQ the posteriors of interest. The Bayesian estimators are
IRIT/ENSEEIHT/TESA, 2 rue Camichel, BP 7122, 31071 Tosweu finally computed from these simulated samples. The proposed
cedex 7, France (e-mail.  Nicolas.Dobigeon@enseeihtfreand methodology is similar to the hierarchical Bayesian curve
Yves.Tourneret@enseeiht.fr). fitti hni died in 91, H h hod stddi

Jeffrey D. Scargle is with Space Science Division, NASA, AnfResearch _|tt|ng tec mqu'e studie _'n [9]. Owe\_/eri the met 0 st _'_e
Center, Moffett Field, CA, USA (e-mail: Jeffrey.D.Scar@®@asa.gov). in [9] was designed for linear regression models with addliti

Index Terms— Segmentation, photon counting data, Gibbs
sampling, Markov chain Monte Carlo, hierarchical Bayesian
analysis.

I. INTRODUCTION
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Gaussian noise and cannot be applied directly to Poissweith r;,, = 1 (this condition ensures that the number of
data. Our change-point detection strategy can be viewed aschange-points and the number of steps of fHe signal are
adaptation of the Bayesian curve fitting estimator to Peissequal to K; = >, r;;). The unknown parameter vector
data. Also the segmentation procedure studied in this papesulting from this reparameterization & = {64,...,0,}
allows joint segmentation of signals recorded by differemthere 8; = {r;, A;} andr; = [rj1,...,7;]. Note that
sensors, contrary to the algorithm proposed in [9]. To otine unknown parameter vectér belongs to a spac® =
knowledge, this is the first fully Bayesian algorithm deyed {0, 1}7/*" x H'j]:lRff, whose dimension depends on the
for joint segmentation of Poisson data. parameterds;, j = 1,...,J. This paper proposes to estimate
This paper is organized as follows. The segmentation pnoblehe unknown parameter vect@rby using Bayesian estimation
is formulated in Section Il. Section Il describes differentheory. Bayesian inference of is based on the posterior
elements of the hierarchical model that with be used tistribution f(6|Y). This posterior distribution is related to
solve this segmentation problem. Section IV studies a Gibte likelihood of the observations and the parameter prirs
sampler for the posteriors of the unknown parameters to Bayes' theoremf(0]Y) « f(Y|0)f(0). The likelihood and
estimated. Some simulation results on synthetic and real dpriors for the segmentation problem are summarized below.
are presented in Section V. Conclusions are reported inddect

VI. A. Likelihood
The likelihood of the observed vect®f can be expressed as
Il. PROBLEM FORMULATION follows:
As explained in [12], the arrival times of photons can be mod- \Y Jk exp ik)
eled accurately by a discrete-time Poisson counting psoce$(Y|0) = H H H I —
The numbers of photons counted in successive equally J=1k=1i€l;
spaced intervals (bins), from different signals, are denoted J K;
y;.i,» Wherey; ; is the count in bini of signalj (i =1,...,n H H o k(s )exp (=X 6k (r5))
andj =1,...,J). The bins are grouped into blocks (intervals HJ 1 Hz 1Yl 21

containing one or more bins). The summed counts of which are
assumed to obey Poisson distributions whose parameters may H H A +(9) exp (—Ajkn.k (1)) 5

or may not vary from one interval to another. Consequently, j=1k=1
the statistical properties of sudiinned data can be defined (1)
as follows: whereoc means “proportional t0”s;; (r;) = >, ¥j.: and

Yji ~ P Njk) s njx (r;) = ljx—1;k—1 (number of samples in the” interval
wherej = 1,....J, k =1,....K;, i € Iy = {ls_1 + Lk of thej*" signal).

1,...,1; %}, and the following notations have been used: _
« P(X) denotes a Poisson distribution with parameter B. Parameter Priors _
« J is the number of signals to be segmented, 1 Ind|cator Vector: The indicator Tvectors R, =
. K is the number of segments in thié observed signal, [7Li: - - 7'71} andR; = [7”1 ir,---,ryv] are assumed to
« 1, is the sample point after which thé" change occurs be mdependent for any=£ ¢’ Therefore the prior distribution
in the j* signal (by conventiort; o = 0 andl; x, = n, Of R= [Ri,...,R,] can be decomposed as follows:
where n is the number of observed samples). In other
words, the actual change locations &g = I, ;7 + 7 fR) = H f(Ry). 2
with 0 < 7 < T, whereT is the sampling period.
Moreover, the sequences = [y.1,....y.n] andy,, = The possible correlations between the change locations in
[Ym.1,- - Ymn] are assumed to be independent fof m. the different observed signals are adjusted by choosing an
Segmenting the astronomical time serygs= [y;,1,...,y;,| @appropriate prior distributiory(R|P). We assume that the
jointly consists of estimating the change-points numbirs probability of having|ry ;, ... ,rJJ]T = € does not depend on
and their positiong; ;, (for j=1,...,J andk =1,...,K;) i(withe € &= {0,1}”) and is denotetr.. As a consequence,
from the observationy = [y1,...,y,]". the indicator prior distribution is:
_ Se(R)
I1l. HIERARCHICAL BAYESIAN MODEL J(RIP) EPG ’ ®

The unknown parameters for the segmentation problem (int{Qnere P — {Pece, Pe € {Po.o,...,P1. 1} and Sc(R) is
duced in the previous section) are the numbers of segmepts number of lags such th@tl .

4, the change-point locatiorig;, and the Poisson paramete ’
)\j,k (Wlth Aj = [)\j,la ey )\jJ{JT and A = {Al, Ce ,AJ})
A standard reparameterization consists of introducingcard
torsr;,, j€{1,...,J}, i € {1,...,n} such that:

.,rJ,l]T = €. The most
r?lkely configuration [ry ;, .. .,r.],zf = € will correspond to
the highest value oP.. For instance, by choosing high values
of Py..o (resp.Py..1), the absence (resp. presence) of simul-
taneous changes in all observed signals will be favoreds Thi
{ r;; = 1 if there is a changepoint at timein the sequencg,choice induces correlation between change-point location
rj: = 0 otherwise the different time series.
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2) Poisson Parameters. By assuming the parameteis ; 2) Hyperparameter P: The Dirichlet distribution is the
are a priori independent, the prior distribution foA = wusual prior for positive parameters summing 1o It has
{A1,..., A} is: the nice property of providing a vague or informative prior

depending on its parameter values. It also allows us to in-

J K tegrate out the parametels from the joint posterior. This
FA) =TT TT £kl paper assumes that the prior distribution ®ris a Dirichlet
j=1k=1 distribution with parameter vectar = [aomo,...,al,,,lf
Gamma distributions are assigned to these Poisson parraxme%emted as.
Pla ~ Dy (). (6)
Ajklvsy ~ G (v,7), (4) This distribution is defined on the simplexp =

. , . éP;ZeegPezl,P€>0}.
wherev = 1 (as in [9]),~ is an adjustable hyperparameter an

G(a, ) denotes the Gamma distribution with parametesfid  Assuming that the different hyperparametersapeiori inde-

b. The variety of distributions available whervaries indicates pendent, the prior distribution for the hyperparametertarec
it is possible to incorporate either vague or more specn% can be written as follows:

prior information about the parametels ;. Moreover, the )
Gamma.dlstrlbutlon is thg conjugate prior for the paranseter F(®|ar) x H poe=l | ZIhy (7)1 (P), @)
Aj k. Which allows us to integrate out these parameters from Y

the joint posterior (see section 11I-D). It would be possilib h Thi h q all
define a set of hyperparameters j = 1,...,.J for signals WHer€ae € {20..0,...,01..1}. This paper has assumed a
whose amplitudes differ significantly: however such sibrs  values ofa. are equal. In this case, the Dirichlet distribution
are not considered in this paper. The previous assumptl(gﬁguces to the uniform distribution ah.

yield the following prior distribution forA:

ecé

D. Posterior Distribution of @

J K;j . I .
Al — \ The posterior distribution of the unknown parameter vector
f(Aly) = H FNjklv,y) 6 = {A, R} can be computed from the following hierarchical
]jl k;l structure:
J '}/U .
=TT mate ™ Ins ) 161Y) = [ 0. #[V)d@ x [ 7(Y(6)f(0]2)7(@)a.
j=1k=1

K; where f(Y|0) and f(®) have been defined in (1) and (7).
H ( Y Mt (A ;i k)) ., This hierarchical structure is shown on the the directedlacy
k=1 graph (DAG) of Fig. 1. It allows one to integrate out the

nuisance parameterA and P from the joint distribution
where I+ (z) is the indicator function defined oR™ (i.e. f(6,®|Y), yielding:
Iz+(z) = 1if z > 0 andIg+(z) = 0 otherwise). ; K, K,
The hyperparameter vector associated with the priors diafmé R, 1Y) l H ( v ) H I (sjr+v) Tn+ (7)
above is® = (P,~). Of course, the quality of the Bayesian C( ' CR|Y) e '(v) (e +) Bl
segmentation depends on the values of the hyperparameters. (8)
In particular applications, these hyperparameters canxed fi \yith
from available information regarding the observed sigrals [Tece T (Se (R) + ae)
in [14]. However, to increase the robustness of the algarith T (Zeeg (S (R) + ae)),
hyperparameters can be considered as random variables Wltla _ . : -

is the Gamma function (i.e.T'(t) =

ut_ e Udu, t>0).

noninformative priors as in [9]. This strategy, involving-d .7,

ferent levels in a Bayesian prior hierarchy, results in albed Jo

hierarchical Bayesian models. Such models require that one The posterior distribution (8) is too complex to obtain eds

define hyperparameter priors (sometimes referred fo/per- form expressions of the Bayesian estimators for the unknown

priors), as detailed in the next section. par_ameters (such as _the mwmur_n mean square error (MMSE)

estimator or the maximura posteriori (MAP) estimator). In

this case, it is quite common to apply MCMC methods to

generate samples that are asymptotically distributedrewp

to the posteriors of interest. The samples can then be used to
1) Hyperparameter ~: The prior distribution fory is a estimate the unknown parameters. This paper studies a Gibbs

noninformative Jeffreys’ prior (as in [9]), which reflectset sampling strategy similar to the segmenter in [9]. However,

VKJe_'YZk 1

j=1

CR|Y) =

C. Hyperparameter Priors

absence of knowledge regarding this hyperparameter: it is important to note the following differences. First, rou
proposed Gibbs sampling strategy does not involve reversib
1 ' Indeed, due to the reparametrization introducetién t
fO) = =g+ () (5) Umps. ’ P

beginning of section Ill, the unknown parameters in (8) hglo
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matrix R where the column at time is supressed, the
following result can be obtained:

T P ([ o] = eRoiy 1, Y) o f (Rafe), 1Y), (9)

. r . v whereR;(e) is the matrixR vyhere the column at time is.
replaced by the vectar. This yields a closed-form expression
of the probabilitiesP ([7’171-, . r.],i]T = e|R,i,7,Y) after
appropriate normalization.

)\1 )\2 . A']

\\ / B. Generation of Samples Distributed According to
f(vIR,Y)

v v To obtain samples distributed according f¢y|R,Y), it is

convenient to simulate vectors distributed according te th
Fig. 1. DAG for the prior distributions; the fixed parameteppear dashed joint distribution distributionf(v, A|R,Y) by using Gibbs
boxes. moves. This step can be decomposed as follows:

« Draw samples according tof(A|R,v,Y)

to a space with a fixed dimension. Second, the proposed Looking carefully at the joint distributioff (6, ®[Y), the
algorithm allows joint segmentation of multiple time-sei following result can be obtained:

NjkIR, Y, Y ~ G (s)k (v)) +v,mjk (rj) +7) . (10)

» Draw samples according tof(y/R,A,Y)
This is achieved as follows:

IV. GIBBS SAMPLER FORCHANGE-POINT DETECTION

The Gibbs sampler is an iterative sampling strategy for gen-
erating samples distributed according to the full conddilo

distributions of each parameter. This paper proposes tplsam J J K
according to the distributiorf (R, |Y) defined in (8). The YR, A~ G ”ZKJ"Z Nig |- (1)
main steps of the algorithm are summarized in the table J=1 j=1k=1

“Algorithm 1” and are detailed in Subsections IV-A to IV-C.
C. Posterior Distribution of Hyperparameter P

The hyperparamet& carries information regarding the prob-
Algorithm 1: Gibbs sampling algorithm for joint segmentation  ability of having simultaneous changes at a given locathe.

a consequence, its estimation may be interesting in pedctic
applications. The posterior distribution of this parameten-
ditioned upon the indicator vectd, the vector of observed

« Initialization:
— Sample hyperparameter io from the pdfin (5),
— Sample hyperparameter P(®) from the pdfin (6),

. —(0) ~17 samplesy and the parametets, can be easily derived. This is
— Fori=1,...,n— 1sample, [rli,...,rJ.] from the T i . . )
odf in (3) , i a 27-Dirichlet distribution with parameter@ye + Se(R))ccs:
- Forj=1,...,J,k=1,...,K, sample Xio,l from the PIR,Y,a ~ Dys(ae + S(R)). (12)
pdf’sin (4),
— Sett «— 1, V. S
« lterations: fort=1,2,3,...,do - SIMULATIONS
— . .
- Fori=1,...,n—1, sample [ﬁti, e ,?f}}] according A. 9mthetic Data
to the probabilities (9), Many simulations have been conducted to validate the segmen
- Forj=1,...,J,k=1,...,K, sample X;t,l from the tation algorithm (cf. Section IV). The simulations preszhin
pdf's in (10), ’ this section have been obtained b= 2 signals ofn = 120
- Sample 7@ from the pgf(i? (11), _ samples. The change-point locations for these two seqeence
- ggt“f”a'tsfli’: sample P from the pdfin (12), arel; = (20,50,100,120) andly = (50,120). The para-
_ - )

meters of the Poisson distributions axe = [19,9, 16,6]T
and A, = [8,11]T. The hyperparameters have been set to

A G ] P Distributed  Accord v = 2 and a. = a = 1,Ve. The hyperparametersa.
- Generation  of - Samples  Distribut ceording 10 are equal to insure the Dirichlet distribution reduces to a
fR],Y) uniform distribution. Moreover, the common value of the

This generation is achieved by using the Gibbs Samyperparameters,. has been set ta = 1 < n to reduce the
pler to draw (n — 1) samples distributed according toinfluence of this parameter on the posterior (12). All figures
f(rie, ..., rz4v,Y). This random variable is discrete anchave been obtained after averaging the resulté4oMarkov
takes its values i€ = {0,1}”. Consequently, its distribution chains. The total number of runs for each Markov chain is
is fully characterized by the probabilitié([r1;, . .. ,TM]T = Ny = 1000, including Ny; = 200 burn-in iterations. Thus,
€|v,Y),e € £. By using the notation®_; to denote the only the last800 Markov chain output samples are used in
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computing the estimates. The results provided by the joint2) Posterior Distribution of (K5, K2): The proposed al-
segmentation procedure are compared with those providgmtithm generates sampleéR“%%”) distributed according
by two 1D segmentations (which consists of performing tht® the posterior distributionf (R,~|Y), which allows for
proposed algorithm on each of the two sequences). Note thaidel selection. Indeed, the change point number in each
running 100 iterations of the proposed algorithm for jointsequence can be estimated Wt = ZZ 1 jtl) Figure
segmentation takes approximatgély seconds for a MATLAB 3 shows the estimated posterlors Af; in each sequence
implementation on .8Ghz Pentium IV. (computed from the last00 Markov chain samples) for the
1D and joint segmentation algorithms. The maximum values of
|| these posteriors provide the MAP estimates of the changepoi
-l |||m|..m..um...||||||.|.|.||\|||||||||||||||||||||||||||||||||||||||||||||||.||...u|..|..u. rumber, = 43041 — 2 whichcatesponds o e acul
n = 120 in all signals, by convention.)

Y (n)

=
~05F i

D0 20 4‘0 | b 100 120
20F 0.81
g’w gﬂo.e—
] || m
100 120
1 0.2
g«as o 2 3
oL s
120 1
g |||| g
|| [l ||||.|I|| =
1 100 120 S04l
= 0.2
QFO.S* 1 L L L
- Il ) ) Ol 2 3 4 5 6 7
% 40 100 K,
201 ‘ 1 T
a0k 0.8}
|||||||I|||I||||||||I|I|||||||I|||||I||I||I i |\
1 50.4
E«o‘sf | 4 0.2r
n L IR L " 0,
O0 20 40 60 80 100 1
Fig. 2. Posterior distributions of the change-point lamasi for 1D (top) and .
joint segmentations (bottom).
0.8
1) Posterior Distribution of the Change-point Locations: g0
The MMSE estimates of the change locations are depicted in ~ ~**
Figure 2 for1D and joint approaches. These estimates have o2
been computed as follows: o 2 3 s 5 6 7
2
N
A 1 - N Fig. 3.  Posterior distributions of<; and K5 for 1D (top) and joint
— i+t .
Rmmse = F Z R( v )a (13) segmentations (bottom).
T

where Ny, is the number of burn-in iterations. Note that the 3) Poisson Parameter Estimation: The estimation of the
mean of a matrixR is distributed according t¢(R|Y) and Poisson parameters is interesting since it allows for signa
provides thea posteriori probabilities for changes at the differ-reconstruction. The posterior distributions of the partamse
ent lags and signals (sineg; is a binary random variable). A1 x and Az, conditioned uponk; = 4 and K, = 2,

For example, there is a very high posterior probability thare depicted in Figures 4 and 5. They are clearly in good
a change occurred at lags= 50 andi = 100 in the first agreement Wlth the actual values of the parametiis—=
sequence (with bothD and2D approaches). However, the two|[19,9, 16 6] and\; = [8, 11}

methods seem hesitant to locate the first change (at4ago) 4) Hyperparameter Estimation: The posterior distributions

in the first signal. The advantage of the joint segmentatiafi P, are depicted in Figure 6. They are clearly in agreement
procedure is illustrated by the bottom of Figure 2: the cleangvith the actual posterior distributions given by the Ditigh

at lagi = 50 in the second sequence is more clearly estimatedbstributionD, (n — 3,1, 3,2) defined in (12).

by the joint approach (right figure) than by th® approach  5) Sampler Convergence: A crucial issue when using
(left figure). Thus, in this example, the joiaD segmentation MCMC methods is convergence assessment. The Gibbs sam-
procedure provides better results than two independént pler allows us to draw sampleR(*) asymptotically dis-
segmentations. tributed according tof (R|v,Y). The change-point posterior



6 IEEE TRANS. ON SIGNAL PROCESSING, VOL. ?, NO. ?,

/\ /\\ R LS RO
2/ N Nyit+t
22 6 8 10 12 e,_(p)— Ri;ZR( ikt
Ao t=1
4 A 10
)\14

(MSE) between this reference estimde and the estimate
obtained afterN, = p runs andN,; = 10000 burn-in
iterations:

=4)
=4)

10, vk
Iy,

2

16

=4)
=4)

0K
0 Iy.K,

14

18 20
)\11

16 18 20
)\13

e(p)

Fig. 4. Posterior distributions of the Poisson parameterg (for i =
1,...,4) conditioned onK; = 4.

6 7 8 9 1
)\21

Fig. 5. Posterior distributions of the Poisson paramelers (for ¢ = 1, 2)
conditioned onKs = 2.

0.6 4

500 1000 1500
Number of cycles p

0 11 12 13

A2
1 002 003 004

POi
2 004 006 008

Pll

=2)
=2)

0,1y,
f()\22|y"g

5 0 9 1

probabilities versu® (solid line). Averaged MSE computed frofid chains
(dotted line) (Vy; = 200).

Figure 7 shows that a number of runs equalNp = 800

is sufficient to ensure an accurate estimation of the engbiric
average (13). Similarly, the MSE& versus the number of burn
in iterations Vy,; (for a fixed number of iterationg = 800)

is depicted in Figure 8. This figure indicates a short burn-in
period is sufficient. We have choséyy,; = 200 for the next
simulations.

0.1 0.35

03

0.08
0.25
0.06 02
0.04 015
01

0.02
0.05

.8 0.85 0.95 1 05

14 Fig. 7. MSE between the reference and estima@dsteriori change-point
0.4

09
PUO

0.1 0.1

.. 0.04-
0.0351

0.03F

 0.025p,

.0:
0.05 0.05
0 0

0:

e (a)

0 0.
[ 0.02 004 006 008 0.1 [ 0.

Pio

0.1

Fig. 6. Posterior distributions of the hyperparametéts, Po1, Pio and
Pll- 0.011

0.0051

L L
0 500 1000 1500

probabilities are then be estimated by (13). However, two Number of bur-in erations

|mp9rtant questions have to be answered: 1) Whe_n can W& 8. MSE between the reference and estimatg@usteriori change-point
decide whether the simulated samp{@® } are distributed probabilities versusv,; (solid line). Averaged MSE computed fro chains
according to the target distribution? 2) How many samplédptted line) (V.. = 800).

do we need to obtain an accurate estimat@Rofvhen using

(13)? This section presents some details about determinRg@nning multiple chains with different over-dispersediati
appropriate values for paramete¥s and Ny;. izations allows us to define various convergence measures
A first ad hoc approach consists of assessing convergenice MCMC methods [15]. We use the popular “between-
via appropriate graphical evaluations [15, p. 28]. Here, within variance criterion” to confirm our previous convenge
reference estimate denoted Rs has been computed for adiagnosis. This method was initially studied by Gelman and
large number of iterationd’,, = 10000 and N,; = 10000 (to Rubin in [16] and has been often used to monitor convergence
ensure convergence of the sampler and good accuracy of ¢bee, for example, [17], [18] or [15, p. 33]). This criterion
approximation (13)). Figure 7 shows the mean square errequires running// parallel chains of lengttv,. with different
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starting values. The between-sequence varidhesmd within- B. Real Astronomical Data
sequence variancll’ for the M Markov chains are defined 1) 1p pata: This section presents the analysis of a small

by " sample of data obtained by the NASA Compton Gamma Ray
B N, Z 7 7@2 Observatory’s BATSE (Burst and Transient Source Experi-
M-—1 — m ’ ment) [20]. By the nature of this photon-counting experi-
B ment, the time series can be accurately modeled as Poisson
and processes. The Poisson rate parameter varies as determined
1 X N W = \? by the actual changes in brightness of the gamma-ray burst
W= M z:l N, —1 ; (“m N “m) ’ (GRB) source. The only significant departure from this pietu

is that the recorded photons are not quite independent,alue t
with a smalldead time in the detectors.

S % kD The intensity of the GRB as a function of time often consists
i T of a series of short-time-scale structures, called pul$es.
S XM: = goal of the analysis is to determine parameters such as the
M e T rise and decay times of the pulses, and other quantities that

can be derived from a piecewise-constant representation.
wherex is the parameter of interest andf! is thet'" run of The hierarchical method presented in this paper has been
the m'™ chain. The convergence of the chain is monitored ypplied to the astronomical 1D-data studied in [12]. The raw
a so-calledpotential scale reduction factor 5 defined as [16]: counting data (which consists of aba#000 photons) have
N1 M +1B been trans_for_med in_to binned dz_ata by C(_)unting the number of
\/7 = \/ r + —. (14) photons distributed ir256 time bins of width3.68ms. Note
Ny MN, W that J = 1 in this example. The results have been averaged
A value of \/5 close tol indicates good convergence of thdfom 64 Markov chains withVy,¢ = 1550 runs and,; = 50
sampler. burn-in iterations. These values ofy;c and N; have been
Different choices for parameter could be considered for our €h0Sen in order to obtain appropriate values of the potentia
proposed joint segmentation procedure. We propose to pronitc@lar reduction factor for parametdts andP, (see the end
the convergence of the Gibbs sampler via the param@tgrs Of this section). _ _ o
e € £. As an example, the outputs dff = 5 chains for Thg f|r§t s.tep_of the analysis consists of estimating the pos-
parameterPy, are depicted in Figure 9. The chains clearl{erior dlstrlbutloq ofR_for the obseryed sequence .pllotted in
converge to similar values. The potential scale reductidndure 11(a). This estimated posterior distribution isideul
factors for all parametei®, are given in Table I. These valuesn Figure 11(b).
of v/p confirm the good convergence of the sampler (a value
of v/p below1.2 is recommended in [19, p. 332]).
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Fig. 9. Convergence assessment with five different Markainsh . .
In the second step of the analysis, we estimate the number

of change-points for the observed sequence. The posterior

TABLE | of the number of changes (computed from the 14500
POTENTIAL SCALE REDUCTION FACTORS OFP¢ (COMPUTED FROM Markov chain output samples) is depicted in Figure 10. The
M = 5 MARKOV CHAINS) corresponding MAP estimator i& = 18.
In the last step of the analysis, the different Poisson Bites
Pe Vp Pe Vo Pe Vo Pe Vp are estimated for each segment from the change locations.
Poo | 0.9995 || Po1 | 1.0000 || Pio | 0.9998 || P11 | 1.0001

More precisely, segments are obtained from tl8elargest
values of the posterior depicted in Figure 11(b). The MMSE
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energy channels a@ —60keV, 60—110keV, 110—325keV/,
and> 325keV. The variability curves at low and high energies
are typically very similar, but there can be a delay or lag
between them.

The thousands of recorded GRB light curves form an ex-
tremely heterogeneous collection. As with snowflakes, no
two are alike. They range in duration from a few tens of
milliseconds to a few hundred seconds. Their shapes range
from simple rise-and-fall forms to complex multiple-pulse
structures. The study of these objects is still much in the ex
ploratory phase, and the kind of multivariate analysis deed
here is an important part of the exploration.
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Poisson estimates are then obtained by averaging the signal s s o 7 8 s ry 1
on each segment (which corresponds to the intensity MMSE
estimator conditioned o = 18). This procedure yields
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Bayesian blocks, which are introduced in [12]. Figure 11(a) A . - m ™ - m s
shows Bayesian blocks obtained after keepiRg = 18 ! ‘ ‘ ‘ ‘ ‘ ‘

segments, as suggested by Figure 10. It is also possible to & os- 1
compute the probability of having changes within a given Oﬁ—flg—glﬁz

interval. For instance, the probability of having at leaseo
change-point in the interval0.44;0.47] appears in dotted Fig. 12.
lines in Figure 11(b). This high value could induce a modifie™®
segmentation including a change in this inter{@k4; 0.47].
These results are in good agreement with those of [12].

The convergence of the Gibbs sampler for segmenting the

real astronomical data of Figure 11(a) has been studied. The ;13WWWWWWMW

potential scalar reduction factors for parametBgsand P, :%u.%} ‘ ol {
(obtained from5 parallel chains andV, = 1500) are both oo

equal to\/p = 0.9996. The convergence criteriogp < 1.2 ;”SPMWNW“MWMWWWMWWW
(see [19, p. 332)) is satisfied for this example. Note agadi th éu%}» ‘ ‘ | | ‘ | ‘" | | ‘ {

our segmentation procedure does not require any stoppieg ru
other than what is implicit in the assessment of the Markov

chain’s convergence. 2 0
g st [l Tw [T
TABLE Il S ]
0
POTENTIAL SCALE REDUCTION FACTORS OFP¢ (COMPUTED FROM = 1}» T T | | T | T | ] T ﬂ{
=~ 05
M = 5 MARKOV CHAINS) - 00 065 O‘ll ' 0‘15 IlI]‘ZI 0‘25 ! 0‘3
. ’ i\me(s) ’ ’ ’
L P [ v [ P 1 Vb | , o . . .
Poooo | 0.9999 || Pooo | 1.0008 Fig. 13. Posterior distribution of the change-point lomasi @D astronomical
Pooor | 1.0004 || Poyor | 1.0015 data).
Poo1o 0.9999 Po110o 1.0002
Poo11 | 1.0000 || Poi11 | 1.0013 The observed data corresponding to the four channels have
Eigg? }'88(1)3 Eﬂg? 1'883(1] been processed by the proposed joint segmentation algorith
Pioto | 0.9999 || Pi110 | 0.9999 The estimated number of change-points and their positioms a
Pionn | 0.9998 || P1i11 | 0.9999 obtained afteB500 iterations including a burn-in period @fH0

runs. Figure 12 shows that the MAP estimates of parameters

2) Multidimensional Data:

The dependence of the GRBK; are K; = 5, Ko = T, I/(\g = 11 and K, = 8. The

variability on the energy of the radiation is of consideeablestimated posterior distribution & depicted in Figure 13 can
interest. In the data mode analyzed here, BATSE recorded then be used to estimate the change locations in each channel
energies of the photons in four energy channels, which gas explained in the previous section). The resulting Bayes
analogous to four colors in ordinary visible radiation. Thét blocks are shown in Figure 14. Note that the time scales are
of energy iskeV (thousand electron volts), and the nominahot the same for figures 13 and 14 (i.e. [0, 0.33s] for figure 13
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other data sets including time-tagged event (TTE) data and
time-to-spill (TTS) data (see [12] for more details). Thigdy
is currently under investigation.

y,(n)

y,(n)

ACKNOWLEDGEMENTS
This work was supported by the CNRS under MathSTIC

oF T T T T Action No. 80/0244. Jeffrey Scargle would like to thank the
{ ﬁww NASA Applied Information Systems Research Program and
0 AT

¥,4(n)

o 01 02z 03 04 05 06 07 08 06 Joseph Bredekamp, and the kind hospitality of the Institute
2 T T T T ‘ for Pure and Applied Mathematics. The authors also thank
S L David van Dyk for helpful comments.
00 . 41 0.2 0‘3 .4 . 45 " 0.6 s 0.7 ,B : 0‘9
time (s) REFERENCES

[1] M. Basseville and I. V. NikiforovDetection of Abrupt Changes: Theory
and Application. Englewood Cliffs NJ: Prentice-Hall, 1993.

[2] B. Brodsky and B. Darkhovskyonparametric methods in change-point
problems. Boston (MA): Kluwer Academic Publishers, 1993.

whereas it is [0, 0.94s] for figure 14) for clarity. Most resul [3] M. Lavielle and E. Moulines, “Least squares estimatidran unknown

. . . number of shifts in a time seriesjour. of Time Series Anal., vol. 21,
are in good agreement with those presented in [21]. However, ., 33”59 a0 2000.

the proposed joint approach makes it possible to find oyt] L. Birgé and P. Massart, “Gaussian model selectialofir. Eur. Math.
changes that were not initially detected by the iterativéhme. Soc,, vol. 3, pp. 203-268, 2001.

. [5] E. Lebarbier, “Detecting multiple change-points in tean of gaussian
For example, the second and third changepdlmsand li3 process by model selectior§ignal Processing, vol. 85, no. 4, pp. 717—

in the first channel (respectively 8t1294s and0.2316s) are 736, April 2005.
detected by the joint approach and not by fli2 approach. [6] P. M. Djuri¢, “A MAP solution to off-line segmentationfaignals,” in

Th f ch t th iti in th t Proc. |IEEE ICASSP-94, vol. 4, April 1994, pp. 505-508.
€ présence or changes a € same position in the o hﬁf M. Lavielle, “Optimal segmentation of random proces5¢EEE Trans.

channels explains this detection. Sgnal Processing, vol. 46, no. 5, pp. 1365-1373, 1998.
The convergence of the Gibbs sampler for the joint Segme,ﬁa] J.-Y. Tourneret, M. Doisy, and M. Lavielle, “Bayesiantn@spective

. . . detection of multiple changepoints corrupted by multigliee noise.
tation of the real astronomical data of figure 13 has been , jication to SAR image edge detectiosignal Processing, vol. 83,

studied. The potential scalar reduction factors for patarse no. 9, pp. 1871-1887, Sept. 2003.
Pe, € € {0, 1}4 are pro\”ded |n Table 1. The Convergence[g] E. Punskaya, C. Andrieu, A. Doucet, and W. Fitzgeralda)‘iBSian curve

o = . . e . fitting using MCMC with applications to signal segmentafiohEEE
criterion \/E < 1.2 is satisfied for this example. Trans. Sgnal Processing, vol. 50, no. 3, pp. 747758, March 2002.
[10] P. Fearnhead, “Exact Bayesian curve fitting and sigeghrentation,”

V]. CONCLUSIONS IZ%I(E)I;-Trans Sgnal Processing, vol. 53, no. 6, pp. 2160-2166, June

This paper studied Bayesian sampling algorithms for seg?! E EKkj/lh:vi?hninMMIE:i\/llice"er'o“cce%lfﬁgr?g Szlf\zoghgsgcvi?l)émmioqi’grsligfl‘
menting single and multiple time series obeying Poisson 540, P ’ + S PP '

distributions with piecewise constant parameters. Piaster[12] J. D. Scargle, “Studies in astronomical time seriedyais v. Bayesian
distributions of the unknown parameters gave estimates of blocks, a new method to analyze structure in photon courdatg,” The

. - . . Astrophysical Journal, vol. 504, pp. 405-418, Sept. 1998.
the unknown parameters and their uncertainties. SimwlatiQs; g jackson, J. Scargle, D. Barnes, S. Arabhi, A. Alt, RUBIOUSIS,

Fig. 14. Block representationtl) astronomical data).

results conducted on synthetic and real signals illusirdie E. Gwin, P. Sangtrakulcharoen, L. Tan, and T. T. Tsai, “Arogthm
performance of the proposed methodologies. for optimal partitioning of data on an interval EEE Signal Processing
One of the t t important ts of this Work is it mE wovorgonp 105-108, Feb. 2005,

ne o € two r_nos PO a ! aspects o S 0 S t[514] R. E. McCulloch and R. S. Tsay, “Bayesian inference aratijgction for
treatment of possible relationships between the obseimet mean and variance shifts in autoregressive time serdesrnal of the

series. In many scientific areas, astronomy in particulag o American Satistical Association, vol. 88, no. 423, pp. 968-978, 1993.
h . lete knowled head of tim indeed. th mgl.?]] C. P. Robert and S. Richardson, “Markov Chain Monte €arkthods,
as incomplete owledge ahead o e - eeaq, the in Discretization and MCMC Convergence Assessment, C. P. Robert, Ed.

goal of the data analysis is typically to uncover such inter- New York: Springer Verlag, 1998, pp. 1-25.
relationships. On the other hand, one typically has some {46l A. Gelman and D. Rubin, “Inference from iterative simtibn using

f . £ | h he diff . . multiple sequences3atistical Science, vol. 7, no. 4, pp. 457-511, 1992.
ormation, for example, that the different time Series aen [17] s Godsill and P. Rayner, “Statistical reconstructiand analysis of

or less similar. This kind of vague but important knowledge autoregressive signals in impulsive noise using the Giabeper,”|EEE
is naturally expressed in a Bayesian context by the priﬂ% | Trans. Speech, Audio Proc., vol. 6, no. 4, pp. 352-372, 1998.

. . . P. M. Djuric and J.-H. Chun, “An MCMC sampling approac¢h
distribution adopted for the models and their parameters. estimation of nonstationary hidden markov modelEEE Trans. Sgnal

The second important aspect is that information about the Processing, vol. 50, no. 5, pp. 1113-1123, 2002. _
uncertainties of the parameter estimates arises as a roattelt® A Gelman, J. B. Carlin, H. P. Robert, and D. B. Rutf#iayesian Data
. .. R Analysis. London: Chapman & Hall, 1995.

course from the sampling strategy. This is typical of Markopéo] W. S. Paciesaset a., “The fourth BATSE burst revised
chain Monte Carlo methods but, for example, the methods in  catalog” Astrophysical  Journal ~ Supplement  Series,  vol.
[12], [13] do not explore the relevant parameter space and 122, pp. 465-497, June 1999, the data are avallable at

. . . . . http://cossc. gsfc. nasa. gov/ bat se/ .
p_rowde no chrect variance estimation. _ . . [21] J. D. Scargle, J. Norris, and B. Jackson, “Studies irroasimical
Finally, it is interesting to note that the hierarchical Baian time series analysis: vi. optimal segmentation : blocksograms and

algorithm developed in this paper could be modified to handle triggers.” to be submitted.



10

Nicolas Dobigeonwas born in Angouléme, France, §
in 1981. He received the Eng. degree in Electrica
Engineering from ENSEEIHT, Toulouse, France
and the M.Sc. degree in signal processing from th!
National Polytechnic Institute of Toulouse, both in
June 2004. He is currently pursuing the Ph.D. degre
with the Signal and Communication group at the
IRIT Laboratory, Toulouse. His research interestdg:
are centered around Bayesian inference and Markg
chain Monte Carlo (MCMC) methods for the joint
segmentation of multiple signals or images.

IEEE TRANS. ON SIGNAL PROCESSING, VOL. ?, NO. ?,

Jeffrey D. Scarglegraduated from Pomona College,
Summa Cum Laude, and received a Ph.D. in astro-
physics from the California Institute of Technology.
Following a series of positions at Lick Observatory
and the University of California, at Berkley and
Santa Cruz, he is now a research astrophysicist in the
Astrobiology and Space Science Division at the U.S.
National Aeronautics and Space Administration, at
the Ames Research Center. His research centers
on the study of variability of astronomical objects,
especially at high energies — gamma-rays and x-

rays. He has developed a number of techniques for analysisnef series
data, including a widely used periodogram for unevenly dathplata, time
domain modeling techniques, and most recently a generabagip to optimal
partitioning of data in spaces of arbitrary dimension.

Jean-Yves Tourneretreceived the ingénieur degree

in electrical engineering from Ecole Nationale

Supérieure  d’Electronique,  d’Electrotechnique,

d’'Informatique et d’Hydrauligue in Toulouse

(ENSEEIHT). He received the Ph.D. degree from

the National Polytechnic Institute from Toulouse

in 1992. He is currently a professor in the

university of Toulouse, France (ENSEEIHT). He is

a member of the IRIT laboratory (UMR 5505 of

the CNRS), where his research activity is centered

around estimation, detection and classification of

non-Gaussian and non-stationary processes. He was theapradpair of the

European conference on signal processing (EUSIPCO), whih held in

Toulouse (France) in 2002. He is also member of the ICASSBIgénizing

committee. He has been a member of different technical ctteesi

including the Signal Processing Theory and Methods (SPTdMmmittee of

the IEEE Signal Processing Society.




