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Abstract 10 

Against the backdrop of the environmental crisis, the socio-economic, ecological and 11 

cultural importance of the coastal zone calls for greater awareness of how coastal resources 12 

function, evolve, are managed and enhanced. This study aims to develop a high-performance 13 

(semi-)automatic coastal monitoring method based on Landsat-5 and Sentinel-2 multispectral 14 

satellite images for spatiotemporal analysis of shoreline changes and erosion risk assessment 15 

along Jerba Island (Tunisia) using remote sensing data and geospatial tools. A comparative 16 

study between the band ratioing (BR) method and the pixel-based image analysis (PBIA) and 17 

object-based image analysis (OBIA) methods has led to the development of machine learning 18 

(ML), random forest (RF), deep learning (DL) and convolutional neural network (CNN) 19 

algorithms. Using these classification methods, 15 different shorelines were successively 20 

detected in 1989, 2015 and 2023 and then compared with a digitized reference shoreline from 21 

the Landsat-5 and Sentinel-2 images. Following a quantitative evaluation, the accuracy of the 22 

classification model shows that the combined CNN-OBIA approach provided the least accurate 23 

results, with an overall accuracy (OA) index of 67%, while the OBIA-RF classification method 24 

provided the most accurate results (OA of 95%). This comparative study identified an accurate 25 

and improved extraction method for quantifying changes in the position of the shoreline on the 26 

east coast of Jerba Island, enabling managers to make better decisions on coastal protection and 27 

adaptation to climate change. 28 

Keywords: Machine learning; deep learning, erosion, Landsat-TM, Sentinel-2. 29 

1. Introduction 30 



Coastal zones are highly dynamic environments in a perpetual evolution of their natural and 31 

anthropogenic origins, generated directly or indirectly by human interventions (Yan, 2023). 32 

Factors such as winds, waves, tides, storms or sea-level variations can influence them. In 33 

response to these variations, the coastal fringe undergoes temporal and spatial changes 34 

(Zagórski et al., 2020). It is generally perceived as either a form of erosion or an accumulation 35 

of sediments (Paskoff, 1984). Erosion is thus a natural process that has always shaped the 36 

morphology of the coastal fringe and leads to a net change in the sediment budget. The main 37 

natural factors for this loss of sediment budget are a combination of material scarcity since the 38 

end of the post-glacial transgression, hydrometeorological conditions and sea-level rise 39 

(Sanlaville, 2001).  40 

Most sandy shorelines in coastal areas are eroding, which is a cause for great concern. A 41 

study of satellite shoreline data by Luijendijk et al., (2018) for the 33-year period from 1984 to 42 

2016 indicates that 24% of the world’s sandy beaches are eroding at a rate of more than 0.5 m 43 

per year, while 28% are accreting and 48% are stable. According to studies carried out by 44 

Serbaji et al., (2023) on erosion modeling, Tunisia presents a severe risk of coastal erosion, 45 

showing that 6.43% of the country's total surface area is affected by a very high rate of erosion, 46 

estimated at over 30 t/ha/year, and that 4.20% faces high average rates of erosion, ranging from 47 

20 to 30 t/ha/year. In particular, the most eroded areas were identified in the south-west, center 48 

and west of the country. At the regional level, the sandy coasts of Jerba Island in the Gulf of 49 

Gabès in southeastern Tunisia are among the areas most affected by erosion. Boussetta et al., 50 

(2022a) recently confirmed this erosion trend, with values ranging from -2.87 to -8.42 m/year 51 

between 1989 and 2021.  52 

The shoreline is considered the boundary between land and a water surface (Boak and 53 

Turner, 2005; Guariglia et al., 2006; Sunder et al., 2017). Shoreline monitoring needs to take 54 

into account the spatiotemporal elements underlying the dynamic evolution of the boundary 55 

between land and water. In order to estimate erosion rates, the precise extraction of the shoreline 56 

remains a difficult task. Various methods have been used to extract and monitor shoreline 57 

evolution (Ramesh and Singh, 2020). The most commonly used are manual identification 58 

through visual interpretation (Zhao et al., 2022), the thresholding approach  (Aedla et al., 2015; 59 

McAllister et al., 2022; Toure et al., 2019), airborne LiDAR (Wang et al., 2023), band ratios 60 

(Boussetta et al., 2022a; Görmüş et al., 2021) and image classification; supervised and 61 

unsupervised (Islam et al., 2021; Souto-Ceccon et al., 2023; Yang et al., 2022).  62 



Over the past decade, approaches to monitoring coastal erosion and shoreline evolution have 63 

focused on the spatiotemporal analysis of satellite images. The current trend is towards 64 

developing ML and artificial intelligence techniques, such as the CNN model, which can 65 

support automated shoreline extraction (Görmüş et al., 2021; Tsiakos and Chalkias, 2023).  66 

ML and DL algorithms, such as neural networks and random forests (RF), have recently 67 

been successfully adopted for remote sensing applications (Bengoufa et al., 2021a; Dang et al., 68 

2022; Erdem et al., 2021; Niculescu et al., 2018; Seale et al., 2022), and have the potential to 69 

improve our understanding of coastline evolution (Gomez-de la Pena et al., 2023). However, 70 

limited research has focused on tasks related to shoreline detection, mainly due to the various 71 

morphological features of the shoreline that need to be considered, especially in large-scale 72 

monitoring scenarios (Seale et al., 2022). Furthermore, Toure et al., (2019) claimed that the 73 

relevance of these methods for shoreline detection had not been sufficiently investigated, and a 74 

limited number of studies have assessed the accuracy of these classification approaches based 75 

on various new algorithms. Recently, Tsiakos and Chalkias (2023) have argued that using 76 

neural networks and deep learning (DL) approaches should be expanded as they can support 77 

different land and water segmentation models and coastal zone classification. 78 

Bengoufa et al., (2021a) studied the contribution of several ML algorithms and their 79 

accuracy in detecting the shoreline of Mostaganem (Algeria). This research focused on a small 80 

section of the coastline and used very high-resolution images (Pleiades), which produced very 81 

good results. However, these very high-resolution images are costly and difficult to obtain for 82 

third-world countries that need an open source of data to effectively monitor the environmental 83 

status of their coastlines. In addition, their research did not include an estimation of the erosion 84 

rate, which is the main reason for the shoreline extraction process. We have proposed this 85 

research paper to overcome these limitations and as an update and improvement to the work of 86 

Bengoufa et al., (2021a) in another complex geographical area using open-source data. 87 

In this context, this study aims to highlight and facilitate the understanding of different 88 

approaches based on deep and shallow (semi-)automatic learning applied to coastal erosion and 89 

shoreline change monitoring using 1989, 2015 and 2023 medium- and high-resolution 90 

multispectral optical images, and in particular open access images (Landsat-5 TM and Sentinel-91 

2 MSI), providing details on their performance, strengths and weaknesses.  92 

Therefore, this study focused on algorithmic development by comparing the effectiveness of 93 

the RF algorithm, which is considered a powerful ensemble training technique (Demir et al., 94 



2017; Millard and Richardson, 2015; Rodriguez-Galiano et al., 2012); and the CNN, which is 95 

theoretically superior to DL algorithms, and has been successful in classifying remote sensing 96 

images (Zhu et al., 2017). Furthermore, this contribution aims to show the potential of OBIA 97 

classification method in predicting shoreline evolution, and therefore, a more exhaustive search 98 

of parameters could be useful to find the best performing ML model on the study site.  99 

This study allows conclusions to be drawn from new perspectives on multitemporal and 100 

multisensory satellite imagery processing. It thus presents a detailed long-term analysis of the 101 

evolution of the shoreline of the east coast of Jerba Island with very high accuracy, and validated 102 

mainly by in situ observations. 103 

2. Study area 104 

Jerba, located in southeastern Tunisia at northern latitude between 33°57’0.56” and 105 

33°37’46.82” and an eastern longitude between 10°45’38.43” and 11°3’53.802”, is considered 106 

the largest island in North Africa. The choice of our study site was based on its ecological 107 

importance. It hosts three wetlands of international importance listed by the Ramsar Convention 108 

on 7 November 2007, namely the Rass Rmel site, which was the subject of our study. It is the 109 

region’s leading tourist destination thanks to its beautiful sandy beaches on the east coast 110 

(Figure 1).  111 

Jerba is part of the Mediterranean Gulf of Gabès and is characterized by a microtidal regime, 112 

with the most frequent tidal range on the coast being about 0.2 m for neap tides and 1.1 m for 113 

spring tides. Geographically, the region is characterized by low-lying land with an average 114 

topography of 20m and a gentle slope between 0° and 2.29°. The low topography extends into 115 

the submarine zone, with an extensive shallow continental shelf with a -10m isobath averaging 116 

3km from the shore. The low-lying shoreline of the eastern parts of Jerba is characterized by 117 

very fine sediments and sandy beaches, which are most affected by changes in shoreline 118 

configuration. These characteristics make the island highly vulnerable to coastal erosion. 119 



 120 

Fig. 1. Jerba Island, south-east Tunisia, selected as the study area 121 

3. Material and methods 122 

The first step of our approach was to analyze the geographical and geomorphological context 123 

of the study area through environmental analysis. In 2018, several field surveys were carried 124 

out at different times, which allowed us to observe the different signs of coastal erosion and 125 

visualize the morphological changes along the shoreline. This analysis identified the land-water 126 

boundary for its usefulness and reliability. 127 

Secondly, this study aims to assess the methodological contribution of these approaches to 128 

(semi-)automatic shoreline extraction. Thus, a comparative study between four (semi-129 

)automatic methods of band ratioing (BR) and supervised classification, namely, pixel-based 130 

image classification (PBIA), object-based image analysis (OBIA), an integrated CNN-OBIA 131 

approach and manual digitization. 132 
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Fig. 2. Flow chart of the comparative study between different classification methods and machine learning algorithms 

using multi-resolution, multisensor images. 

 



3.1.Data Acquisition 142 

The determination of shorelines using satellite images from a wide range of satellites, 143 

including Landsat (Wicaksono and Wicaksono, 2019)  and Sentinel (Abdelhady et al., 2022), 144 

is becoming increasingly common due to improvements in image resolution, acquisition rates 145 

and availability. A Landsat Thematic Mapper (TM) image with a resolution of 30m was used 146 

for the year 1989. This was downloaded for free in GeoTIFF format from the United States 147 

Geological Survey (USGS) Earth Explorer portal (http://www.earthexplorer.usgs.org). Two 148 

high-resolution Sentinel-2 images with a MultiSpectral Instrument (MSI) sensor and 2A 149 

processing level were downloaded via the CNES Theia platform (free access; Muscate - 150 

Distribution Workshop) with 13 spectral bands of different spatial resolutions ranging from 10 151 

to 60 m. Bands B2, B3, B4 and B8 have a resolution of 10 m. Bands B5, B6, B7 and B8 have 152 

a resolution of 20 m, while bands B1, B9 and B10 have a spatial resolution of 60 m. 153 

The Sentinel-2 mission provides an alternative source of optical remote sensing that is 154 

globally covered and freely accessible (Wang et al., 2018). High spatial resolution (10 m) data 155 

from the Sentinel-2 satellite is mainly used for mapping coastal areas. For the present work, 156 

images with the ‘flat reflectance’ band were selected. In this case, the Sentinel images are 157 

corrected for slope effects, and all the satellite images used had zero cloud cover. 158 

Table 1. Satellite images used 159 

Acquisition date Acquisition 

time 

Satellite and 

sensor 

Resolution 

(m) 

Bands used(μm)  

 

07 January 1989 09:19:53 Landsat-5 TM 30*30 

 

B1: 0,45 - 0,52 

(Blue) 

B2: 0,52 - 0,6 

(Green)   

B3: 0,63 - 0,69 

(Red)  

B5: 1,55 - 1,75 

(Mid-Infrared)  

 

   

   

   

   

08 December 2015 10:20:05 

 

Sentinel-2A MSI  

10*10 

B2=Blue 

B3=Green 

B4=Red 

B8=Near-infrared 

10 January 2023 10:11:24 Sentinel-2A MSI  

  160 

 161 



3.2. Preprocessing 162 

The preprocessing of the Landsat-5 TM scene begins with radiometric correction, where the 163 

pixel values refer to the same physical units. As a preprocessing tool, QGIS 3.10 provides the 164 

Semi-Automatic Classification plugin, which ensures a one-step attenuation of atmospheric 165 

effects, compensation for differences in shooting conditions and sensor calibration. The next 166 

step is geometric correction, which uses ground control points (GCPs). Using a global 167 

positioning system (GPS), more than 30 well-distributed bitter points were carefully identified 168 

in situ at permanent landmarks. 169 

The flat reflectance bands of the Sentinel-2 images were already corrected and then further 170 

corrected for terrain slope. Using European Space Agency’s Sentinel Applications Platform 171 

software (SNAP), a subset of four bands (B2/B3/B4/B8) was created.  172 

3.3.Shoreline detection and extraction using machine learning methods (random 173 

forest algorithm) 174 

The principle of supervised classification with ML methods is to assign a class to each point 175 

selected from a set of possible classes. The data set (pixel or object) must be grouped into 176 

several subsets to create classes. This grouping is done based on similarity criteria. A 177 

comparative study (Figure 2) assessed the suitability of supervised image classification 178 

methods, namely PBIA and OBIA, as well as ML and DL algorithms for shoreline detection 179 

and extraction. 180 

3.3.1. Sampling process  181 

It is necessary to have a good knowledge of land use to instruct the treatment system. For 182 

this, we need ground-truth data. Ground truth is a guaranteed set of exact data on observed land 183 

use obtained through close observations in the field. Furthermore, the selection of samples is 184 

always based on very high-resolution Google Earth images with the same dates as the satellite 185 

images. 186 

 On this basis, certain regions of interest (ROI) were defined to highlight the land-water 187 

boundary. The classes are as follows: for the Sentinel image: (1) water, (2) land, (3) urban and 188 

(4) vegetation; for the Landsat image: (1) water, (2) land, (3) vegetation and (4) other. The 189 

water class represents shallow coastal waters. The land class represents a beach consisting of 190 



homogeneous sandy material. The boundary between this class and the water is maintained as 191 

the target fault to be extracted, the shoreline. 192 

The sampling step is essential for supervised classification, either for OBIA or PBIA. Indeed, 193 

good classification requires representative and suitable samples (Sabat-Tomala et al., 2020). A 194 

training sample is necessary for training and developing classification models. The sampling 195 

technique consists of taking the number of classes in each sample, making it possible to deal 196 

with class imbalance (Sertel et al., 2022). The validation step of the model was done using 197 

ground-truth points (validation samples) collected in situ using the GPS. This step is crucial for 198 

assessing the accuracy of the assisted classification and capturing the accuracy metrics (see the 199 

accuracy assessment section 4.1.4.1).  200 

The training and validation samples (about 850 samples) must be selected in areas highly 201 

representative of the objects on Landsat-5 for 1989 and Sentinel-2 images for 2015 and 2023; 202 

these areas should be highly reflective to compensate for possible confusion (Puissant et al., 203 

2014). It was also necessary to select these samples separately to avoid overlap between the 204 

two sets in the same areas (Figure 3). In the remote sensing literature and statistics, a certain 205 

number of representative samples of the objects to be classified is needed to avoid over- or 206 

under-learning certain objects. For all classifications, 80% of the samples were used to train 207 

and tune the ML algorithms, while 20% of the validation samples were used as a test set. 208 

 209 

Fig. 3. Illustration of the distribution of validation and training samples on a Sentinel-2 image 210 

3.3.2. Object-Based Image Analysis (OBIA) 211 



OBIA is based on image objects consisting of pixels with homogeneous information 212 

(Hossain and Chen, 2019). This method provides spatial information as well as spectral, textural 213 

and contextual features as a basis for classification. It subdivides the image into homogeneous 214 

regions called image objects or segments (Benz et al., 2004). The OBIA approach comprises 215 

three main stages: image segmentation, classification and validation. 216 

3.3.2.1. Segmentation   217 

Segmentation is the most crucial process in OBIA (Deliry et al., 2021). Its principle is to 218 

automatically divide images into thousands of non-overlapping superpixels (Yang et al., 2020). 219 

The result is well-defined regions or features of an object that can be distinguished. In the field 220 

of remote sensing, there are several segmentation algorithms. Our study compares two 221 

segmentation algorithms that were applied to segment coastal land cover types in order to 222 

extract water/land boundaries: mean shift segmentation (MSS) and multi-resolution 223 

segmentation (MRS). 224 

Meanshift image segmentation (MSS) 225 

The main idea behind this algorithm is to divide the image into highly correlated segments. 226 

The Orfeo Tool Box (OTB), an open-source software package, was used to apply MSS. Three 227 

parameters need to be determined: spatial radius (sr) used to determine the neighborhood 228 

boundaries, range radius (rr) for defining the width in spectral space, and minimum region size 229 

(mrs) to be maintained after clustering (Varo-Martínez and Navarro-Cerrillo, 2021). In our case, 230 

13 trials were conducted. The parameters were set after cross-validation based on the 231 

segmentation models that achieved the highest overall accuracy (OA). 232 

Multi-resolution image segmentation (MRS) 233 

The MRS is one of the most widely used segmentation algorithms in the literature and was 234 

chosen for its proven accuracy in wetland classification (Hossain and Chen, 2019; Merchant, 235 

2020; Yan et al., 2021). The main objective of this algorithm is to reduce average pixel 236 

heterogeneity as much as possible (Incekara et al., 2018). The MRS was implemented using the 237 

eCognition© Definiens Developer software. In order to obtain the expected results, three 238 

parameters had to be chosen empirically to demonstrate the morphology of the objects: scale 239 

parameter (Sc), representing the weighting between a colour factor (or spectral factor) and a 240 

shape factor, designated by the weight w shape/w colour; shape (Sp), defined as the maximum 241 



heterogeneity allowed within the objects; and compactness (Cp), making the object more or 242 

less regular, denoted by the weight w compt/w smooth.  243 

Parameters were determined based on trial and error as well as the visual interpretation. In 244 

addition, the near-infrared (NIR) band of the Sentinel images and the mid-infrared (MIR) band 245 

of the Landsat image were more weighted (value of 10) than the other RGB bands (value of 1), 246 

as this region of the electromagnetic spectrum is known to enhance the detection of the 247 

land/water interface due to the inherent optical properties of water (Valderrama-Landeros and 248 

Flores-de-Santiago, 2019). 249 

3.3.2.2. Classification 250 

Classification is divided into two stages: training and prediction, and was done using 251 

eCognition software and an RF classifier (see Random Forest Classifier section) 252 

3.3.3. Pixel-Based Image Analysis (PBIA) 253 

The concept of the traditional PBIA method is based on the spectral information of satellite 254 

images. It involves assigning a thematic class to each pixel (Guo et al., 2021) by assessing the 255 

degree of similarity of a pixel’s spectrum to reference spectra for surface features 256 

(Shayeganpour et al., 2021). PBIA was applied to detect the shoreline using the open-source 257 

software OTB. 258 

The method consists of three steps. The first is classification using the RF algorithm, 259 

followed by validation and vectorization (see Random Forest classifier section). This approach 260 

produces raster maps with a ‘salt and pepper’ appearance (Mollick et al., 2023). Using Mapla’s 261 

Classification Map Regularization tool, smoothing was performed to transform ‘isolated’ pixels 262 

into the majority of surrounding pixels. The result of the classification was then converted from 263 

raster to vector format using the Polygonize Raster to Vector tool in QGIS. It consists of 264 

obtaining class boundaries to extract the shoreline. The extracted boundary was a raw vector 265 

layered with high-frequency noise. 266 

Random Forest Classifier  267 

The various approaches involved the evaluation of PBIA and OBIA based on an RF-268 

supervised ML classifier. This type of model has several advantages, including the non-269 

parametric nature of the algorithm, high classification accuracy and the ability to identify 270 

important variables and predict missing values (Jhonnerie et al., 2015).  271 



Given the performance and automatic aspect of the method, which requires only a few 272 

parameters to be set, quantifying the importance of the variables is one of the most crucial 273 

aspects of the model applied (Ramesh and Singh, 2020). Two parameters were examined: the 274 

maximum number of trees in the forest (Ntree) and the minimum number of samples in each 275 

node (Mtry). Published literature has highlighted that the RF classifier is more sensitive to the 276 

Mtry parameter than the Ntree parameter (Gonçalves et al., 2020). The RF parameters were 277 

configured with Ntree and Mtry set values after cross-validation. We therefore tested different 278 

scenarios using the spectral bands (B1/B2/B3/B5) for the Landsat-5 TM image (1989) and 279 

(B2/B3/B4/B8) for the Sentinel-2 images (2015/2023). The iteration parameters that performed 280 

best in terms of OA were finally used to produce the final classification images. From the 281 

various Mtry values tested, the values of 30 and 50 were selected for PBIA-RF and OBIA-RF, 282 

respectively. Next, class prediction of the objects was performed using the vector classifier tool 283 

of the OTB software for the OBIA approach, and the image classifier tool for PBIA approche. 284 

3.4.Shoreline detection and extraction using a deep learning model (CNN) 285 

The convolutional neural network (CNN; Fukushima, 1988) is a highly responsive 286 

supervised DL algorithm. CNN is a powerful recognition algorithm widely used in pattern 287 

recognition and image processing that has the ability to learn autonomously and perform 288 

information extraction efficiently, quickly and reproducibly. However, the CNN-based method 289 

is more complex than other methods and requires purer images (Zhang et al., 2016; Zhu et al., 290 

2017). Its architecture consists of convolutional, pooling and fully connected layers. 291 

We used the new combination of CNN with the OBIA using the MRS approach developed 292 

by Bengoufa et al., (2021b) for rocky shoreline extraction and Bengoufa et al., (2023) for the 293 

extraction of shoreline biological indicators. We adapted this approach for the extraction of 294 

water/land boundaries. The aim is to implement a shoreline extraction method that integrates 295 

the benefits of CNN model output, namely CNN probability, with the robustness of the OBIA 296 

approach.  297 

As well, for the classification process, our CNN architecture was fed with 2 × 2 sample patch 298 

sizes. Given this small size, the number of hidden layers was 1, with a convolution kernel size 299 

of 1 × 1. A max-pooling layer with a kernel size of 1× 1 was used after the first convolution 300 

layer. Max-pooling's role is to merge features that are semantically similar (Bengoufa et al., 301 

2021a). This is a non-linear top-down sampling technique that uses the maximum value of each 302 

cluster in the previous layer to reduce the loss of information in subsequent convolution layers. 303 



In addition, the use of patch sizes of 50 and 5,000 training steps resulted in excellent 304 

performance. The learning rate parameter was set to 0.0006 after trial-and-error tests. Then 305 

different feature maps were generated. 306 

The MRS was used for image segmentation. A class hierarchy was applied for all classes 307 

according to a linear cohesion function (x, y), with a maximum value equal to one (1) and a 308 

minimum equal to zero (0). The resulting objects from this segmentation were trained and 309 

classified based on a combination of neighbourhood, spatial features and similarity in the CNN 310 

probability (CNN application output), which can bring advantages in automatic data extraction 311 

and high-precision prediction. The resulting polygons (objects) were converted to polyline 312 

format to select and extract the target shoreline. 313 

3.5.Detection and extraction of the shoreline using the band ratioing method 314 

Boussetta et al., (2022a) used the BR method to automatically extract the sandy shoreline of 315 

Jerba Island and obtained good results. To evaluate the accuracy of the machine and DL 316 

methods used here, we compare their results with those of the BR method.  317 

For the BR method, the ratio between the visible NIR and MIR was calculated, 318 

corresponding to band 5/band 2 (MIR/green) in the case of Landsat TM (1989) and band 8/band 319 

2 (NIR/green) in the case of Sentinel-2 images (2015–2023), as the NIR and MIR wavelengths 320 

are strongly absorbed by water and reflected by soil (Alesheikh et al., 2007; Cui and Li, 2011). 321 

This initial BR processing was followed by three steps: reclassification and vectorization using 322 

tools from the IDRISI Selva system and smoothing, performed using ArcGIS software 323 

(Boussetta et al., 2022a).  324 

3.6.Sensitivity and accuracy assessment  325 

3.6.1. Qualitative assessment  326 

The qualitative evaluation of our methods was based on the visual adoption of classification 327 

maps. This assessment allowed us to gain an in-depth understanding of the process. It includes 328 

both the why and the how and allows us to delve deeper into topics of interest and explore 329 

subtleties. 330 

3.6.2. Quantitative assessment  331 

3.6.2.1. Confusion matrices and metrics  332 

A confusion matrix was calculated to assess classification quality and detect confusion 333 

between well- and poorly-classified pixels. The main indices calculated from the generated 334 



matrix are the kappa index developed by Cohen (Cohen, 1960), which provides global measures 335 

of quality, and the OA index, which reflects classification performance. A visual assessment of 336 

the classification was combined with this numerical calculation to identify the sources of error. 337 

The accuracy percentage ranges from 0 to 1, with values close to 1 corresponding to very good 338 

OA. An index greater than 0.6 is considered good and an index greater than 0.8 is considered 339 

very well.  340 

3.6.2.2. Comparison between extracted and reference shorelines 341 

A reference shoreline was used to accurately assess the different methods used here. All 342 

detected shorelines were imported into ArcMap 10.4. The results of the (semi-)automatic 343 

extraction were then compared with the results of the manual digitization of the shoreline used 344 

as the reference. Manual digitization of the shoreline leverages the judgement and interpretation 345 

of scientists to identify the land-sea boundary, compared to computer-based classification 346 

methods (Matin and Hasan, 2021; Sreekesh et al., 2020).  347 

The digitization of the shorelines was performed manually from the Sentinel-2 and Landsat-348 

5 images, as the separation of land surfaces and water bodies could be easily detected when 349 

visually inspecting the images. After digitizing the shorelines for the years 1989, 2015 and 350 

2023, respectively, these digitized shorelines are used as a reference for calculating the net 351 

shoreline movement (NSM; equation 3) relative to the shoreline extracted from (semi-) 352 

automatic classification techniques. The shoreline change rates along the coastal zone were then 353 

calculated using the DSAS version 5.0 extension developed by the USGS. 354 

𝑁𝑆𝑀 =  𝑡𝑖𝑚𝑒𝑜𝑙𝑑𝑒𝑠𝑡 −  𝑡𝑖𝑚𝑒𝑟𝑒𝑐𝑒𝑛𝑡 (Eq. 3) 355 

In addition, the shoreline change rate expressed by the end point rate (EPR) was calculated 356 

using the extracted shorelines from each method and compared with the EPR obtained using 357 

the digitized shorelines (reference shorelines). This could include assessing the chosen 358 

method’s impact on the final erosion risk assessment. 359 

3.7.Estimation of erosion rate (shoreline change rate) 360 

The extracted shorelines are stored in a personal geodatabase in vector form. First, the buffer 361 

method was used to establish a baseline roughly parallel to the shoreline at an offshore distance 362 

of 200 m from the source. This shoreline was then used to draw 689 perpendicular transects 363 



with a spacing of 30 m. The distance between two shorelines on a transect represents the change 364 

in the shoreline between their corresponding points of intersection. 365 

In order to determine long-term shoreline change statistics over a 34-year period (1989–366 

2023), the EPR method was used with the Digital Shoreline Analysis System (DSAS) in 367 

ArcGIS10.4.1 software. The EPR method (equation 1) is calculated by dividing the distance of 368 

shoreline movement by the time elapsed between the oldest and the most recent shoreline 369 

(Himmelstoss et al., 2018). 370 

𝐸𝑃𝑅 =  𝑁𝑆𝑀/𝑇(Eq. 1) 371 

The erosion rate cannot be estimated without taking into account the total sources of error 372 

(𝑬𝜶), namely the error associated with remote sensing data processing (RMSe), the error of the 373 

automatic shoreline extraction from Landsat and Sentinel data based on the method used (MEe) 374 

and the uncertainty of the EPR calculations (EPRunc), according to the following equation 2: 375 

𝑬𝜶 =  √𝑅𝑀𝑆𝑒² +  𝑀𝐸𝑒² +  𝐸𝑃𝑅𝑢𝑛𝑐²                             (Eq.2) 376 

4. Results 377 

Multisensor analyses using high spatial resolution optical images were used to compare 378 

different methods (BR, ML and DL techniques) for (semi-)automatic shoreline extraction and 379 

erosion risk assessment. The results were evaluated in terms of operator experience (qualitative 380 

and visual assessment) and performance and suitability through statistical analysis (quantitative 381 

assessment). 382 

4.1.Shoreline detection using machine learning algorithms 383 

Here, we present the results of the accuracy evaluation of all the methods used (PBIA-RF, 384 

OBIA-RF, CNN-OBIA and BR), together with the classification outputs for each method. The 385 

parameter fitting was done empirically.  386 

4.1.1. Random Forest classification using PBIA (PBIA-RF) 387 

Five classes were differentiated using the PBIA-RF approach for the Sentinel-2 composite 388 

images: water (1), land (2), urban (3) and vegetation (4; Figure 4), and four classes were 389 

identified on the Landsat-5 image (Figure 5): water (1), land (2), vegetation (3) and other (4). 390 



The classification accuracy was evaluated using the confusion matrix to assess the quality 391 

of the predictions (Šiljeg et al., 2022). The calculated confusion matrix includes commission 392 

errors, i.e., pixels included in other thematic classes after classification, and omission errors, 393 

i.e., thematic pixels lost after classification. The kappa index was equal to 0.87, meaning 87% 394 

of the ground-truth variables were correctly classified. The ground-truth classes correspond to 395 

the classes defined in the matrix column, and the classes of the classification result correspond 396 

to the rows of the matrix. 397 

 398 

Fig. 4. PBIA classification maps using the RF algorithm Sentinel-2 image 08/12/2015 399 

 400 



 401 

Fig. 5. PBIA classification maps using the RF algorithm Landsat-5 image 08/21/1989 402 

 403 

4.1.2. Object Based Image Analysis using RF and CNN 404 

4.1.2.1. MSS segmentation 405 

Several segmentation tests were carried out, and the different parameters generated entirely 406 

different results. Based on visual inspection and the most suitable OA, the parameters of the 407 

MSS segmentation algorithms applied to Sentinel and Landsat images were optimized and set. 408 

Table 6 provides an overview of the results of the various parameter values and tests performed 409 

on Sentinel 2023 images. 410 

The variation of the segmentation parameters of the MSS algorithm is directly correlated 411 

with the type of object detected by visual observation. The smaller the value of the sr and mrs 412 

parameters, the greater the number of segments (objects) generated. On the other hand, the 413 

larger the value of the parameter rr, the greater the loss of information, resulting in blurred 414 

objects of interest. This situation was confusing due to the large amount of data. Therefore, the 415 

parameter values sr, rr and mrs of 10, 0.05 and 20, respectively, were determined to be the best 416 

configuration parameters for the Sentinel-2 image (Table 6). These parameters of the MSS 417 



algorithm gave the best OA of 95%. For the Landsat-5 image, the parameters 10, 0.01 and 5 418 

showed the best OA of 92.7%. 419 

Table 2. Different MSS segmentation parameter values and test results for Sentinel-2023 images 420 

 421 

 422 

 423 

 424 

 425 

 426 

4.1.2.2. MRS segmentation 427 

The configuration tests (Table 7) applied to the multi-resolution segmentation (MRS) 428 

algorithm showed that the larger Sc, the larger the objects; the smaller Sp, the more objects are 429 

generated; and the larger Cp, the more objects are generated. 430 

Therefore, values of 20, 0.1 and 0.5 were selected for Sc, Sp and Cp, respectively, for the 431 

Sentinel images. These configuration parameters were the best in terms of accuracy, achieving 432 

an OA of 96.3%. For the Landsat image, values of 0.9, 0 and 1 were selected for Sc, Sp and Cp, 433 

respectively, resulting in an OA of 94.6%. 434 

Table 3. Results of MRS parameter setting on Landsat-5 images 435 

 436 

 437 

 438 

 439 

Parameters Sr=30,rr=0.07, mrs=20 Sr=10, rr=0.1, mrs=50 Sr=10, rr=0.05, mrs=20 

RF-OA 

(%) 
75 82 95 

Parameters Sc=0.9, Sp=0, Cp=1 Sc=0.9, Sp=0.1, Cp=0.1 Sc=2, Sp=0.1, Cp=0.1 

RF-OA (%) 94.6 87.3 79.2 



4.1.2.3. Classification 440 

Similar to PBIA, four classes were identified for the Sentinel-2 images: water (1), land (2), 441 

urban (3) and vegetation (4; Figure 6), and for Landsat-5 images, four classes were identified: 442 

water (1), land (2), vegetation (3) and other (4; Figure 8). The use of different ML and DL 443 

algorithms (RF and CNN) with different types of segmentation (MSS and MRS) made it 444 

possible to determine the most suitable method for the satellite images used. Pronounced 445 

differences between the different classes could be observed on the classification maps.  446 

Zone (X) of the Sentinel-2 (2023) image is used as a test zone to estimate the limitations and 447 

accuracy of the method (Figure 9). The RF algorithm represented this area (X) as an urban area, 448 

while it was considered dry sand by the CNN algorithm. Verification in the field and against a 449 

very high spatial resolution satellite image led to the visual observation that it was a building 450 

well described by the RF algorithm. The maps clearly showed several errors, including the 451 

misclassification of vegetation cover and urbanization. The CNN algorithm represented a large 452 

amount of vegetation cover (class 3) interspersed with small areas of water (class 1). The RF 453 

algorithm represented it as mainly dominated by an urban area (class 3) interspersed with 454 

vegetation cover, even for the land class (class 2), which was represented inconsistently and 455 

heterogeneously by the CNN, while it was represented evenly and homogeneously by the RF.  456 

The same findings were shown in the Landsat image (Figure 8), where several errors were 457 

seen. In particular, the incorrect classification of land (class 2) into other classes (class 4) and 458 

the amount of vegetation (class 3) were almost absent from CNN. 459 

As a result, the RF-OBIA-MSS algorithm better reflects the reality on the ground. It seems 460 

to have fewer ambiguities in the classifications and fewer errors for the wet sand class, which 461 

is a fundamental class and thus considered an indicator of shoreline detection for sandy beaches. 462 



 463 

Fig. 6. OBIA-RF-MSS classification maps applied to Sentinel-2 (2023) 464 

  465 

 466 

Fig. 7. CNN-OBIA classification maps applied to Sentinel-2 (2023) 467 

 468 



 469 

 470 

 471 

4.1.3. Qualitative assessment 472 

The classifications showed a satisfactory visual representation of the land cover. However, 473 

when comparing the RF-ML algorithm, the PBIA and OBIA approaches resulted in slightly 474 

different profiles. There were clear differences between the approaches to the representation of 475 

the vegetation class and the urban class. Despite these slight differences in representation 476 

between the different image analysis approaches, the water class was well defined overall. 477 

The land class was also well represented. In contrast, differences in the representation of the 478 

vegetation class between the approaches were particularly striking. While the PBIA-RF 479 

approach accurately represented the land class, the OBIA-RF approach produced the most 480 

Fig. 9. Comparison of OBIA classification results applied to the Sentinel-2023 image using the RF (A) and CNN (B) 

algorithms. 

(A) (B) 

X X 

Fig. 8. Comparison of OBIA classification results applied to Landsat 1989 images using RF (A) and CNN (B) algorithms. 

(A) (B) 



accurate representation of this same class along the shoreline. Since the boundary between land 481 

and water is the reference shoreline for shoreline detection, the OBIA-RF approach based on 482 

the MSS algorithm provided the best results. 483 

4.1.4. Quantitative assessment  484 

4.1.4.1. Accuracy of the classification model 485 

The integrated approach based on a CNN and OBIA-DL model revealed the lowest kappa 486 

and global accuracy indices, with values below 0.8 and the lowest OA of 67%. This result is 487 

due to the high level of confusion between the different classes detected. 488 

Since the kappa coefficient was above 0.8 for the classification approaches used (PBIA-RF 489 

and OBIA-RF; Table 8), the confusion matrix values have a high probability of validity. The 490 

PBIA and OBIA approaches both performed satisfactorily, with an OA above 85%. More 491 

specifically, OBIA-RF-MSS had the highest kappa index values of the other classification 492 

methods monitored. OBIA-RF achieved the highest OA of around 95%. 493 

Table 8. Accuracy of different classification methods, kappa index and overall accuracy 494 

 495 

4.1.4.2. Accuracy of shoreline extraction 496 

The comparison between the extracted shoreline and a digitized shoreline (reference) is 497 

presented in Table 9, which shows the NSM, which are the minimum, maximum and average 498 

(mean) distance calculations, namely the i) min, ii) max and iii) mean values. The mean distance 499 

is used as an ‘indicator ‘of the accuracy of the shoreline extraction method.  500 

Using the PBIA approach, the RF algorithm resulted in a shoreline extraction with an 501 

average distance of 15.25 m for the Landsat image and 10 m for the Sentinel images.  502 

Overall, the OBIA-RF-MSS approach generated shorelines with greater accuracy. It 503 

provided the most accurate shoreline extraction with mean distances of 7.8 m, 5.5 m and 6.09 504 

 PBIA-RF OBIA-RF-MSS OBIA-RF-MRS CNN-OBIA 

Image 1989 2015 2023 1989 2015 2023 1989 2015 2023 1989 2015 2023 

Indice 

kappa 

0.88 0.87 0.90 0.93 0.92 0.93 0.71 0.63 0.74 0.67 0.76 0.79 

OA % 90% 89% 92% 92.7% 95% 95% 71% 69% 70% 67% 77% 78% 



m for Landsat-5 and Sentinel-2 images (2015, 2023), respectively. The BR approach produced 505 

shorelines with mean distances of 11.28 m, 7.7 m and 7.6 m for Landsat-5 (1989) and Sentinel-506 

2 (2015, 2023) images, respectively. 507 

The most significant distance values are observed with the combined CNN-OBIA approach, 508 

which has lower accuracy with mean distance values of 18.48 m, 8.14 m and 16 m for satellite 509 

images from 1989, 2015and 2023, respectively. These distances prove that this (semi-510 

)automatic extraction method is completely ineffective in detecting the land/water boundary on 511 

Sentinel-2 and Landsat-5 TM images. 512 

The final results of the methods used show that the OBIA-RF-MSS approach is the best for 513 

shoreline extraction. However, it should be noted that this small-scale detection is due to the 514 

high resolution of the Landsat and Sentinel images. 515 

 516 

 517 

 518 

Table 9. Net shoreline movement (NSM) statistics based on DSAS calculations relative to the reference shoreline 519 

  Landsat-5 1989 Sentinel-2 2015 Sentinel-2 2023 

NSM Ratio PBIA

-RF 

OBIA

-RF-

MSS

* 

OBIA

-RF-

MRS 

CNN-

OBIA 

Rati

o 

PBIA

-RF 

OBIA

-RF-

MSS 

OBIA

-RF-

MRS

** 

CNN-

OBIA 

Ratio PBIA-

RF 

OBIA-

RF-

MSS 

OBIA

-RF-

MRS 

CNN-

OBIA 

MIN 0.1 0.8 0.01 0.8 0.01 0.01 0.02 0.03 0.03 0.02 0.02 0.02 0.03 0.05 0.11 

MAX 59 50.02 53 54 99.78 40 37.42 35.33 40 45 39 38.2 38.11 40 52 

MEAN 11.28 15.25 7.8 10.11 18.48 7.7 10 5.5 8.5 8.14 7.6 10 6.09 8.01 16 

Fig. 10. Extracted shorelines from different methods (a) Landsat TM image 1989 (b) Sentinel-2 image 2015 (c) Sentinel-2 

image 2023 



*Mean Shift Segmentation **Multi-resolution Segmentation 520 

The various methods of BR, PBIA-RF, OBIA-RF-MSS, OBIA-RF-MRS, CNN-OBIA and 521 

digitization show the EPR, or the average rates of shoreline change, for the east coast of Jerba 522 

between 1989 and 2023 (Table 10). The graph (Figure 11) presents an overview of the different 523 

evolution rate values (EPR) results for each method used. Form Table 10 and Figure 11, we can 524 

note that OBIA-MSS with the RF algorithm obtained values closest to those of the EPR of the 525 

digitization method, which is our reference EPR used to evaluate the results. Therefore, OBIA-526 

RF-MSS is more relevant than the other methods. 527 

Table 10. Comparison of different End Point Rate of the shoreline extracted from the used methods  528 

EPR 

(m/year) 

BR PBIA-

RF 

OBIA-

RF-

MSS* 

OBIA-

RF-

MRS 

CNN-

OBIA 

DIGITIZATION  

 

MIN -4.9 -4.62 -4.1 -4.82 -4.8 -4.06 

MAX +41.5 +43.2 +39.97 +43.5 +42.32 +39.32 

MEAN -1.38 -1.36 -0.8 -1.39 -1.8 -0.77 

*Mean Shift Segmentation 529 

 530 

Fig. 11. The rate of change of sandy beaches (a) and sandy spit (b) on the east coast of Jerba Island between 1989 and 531 
2023 532 

4.2.Shoreline change rate: Erosion risk assessment 533 

Analysis of shoreline evolution over the 727 transects and after applying an overall margin 534 

of error for the methods adopted of about ±2.38m for sandy beaches and ±3.16 m for the sandy 535 

spit revealed a clear trend of erosion throughout the entire study area, with the exception of the 536 

Rass Rmel sand spit, which experienced a sharp increase with a maximum evolution of about 537 

+39.97 m/year. The results of this study are shown in Figure 12. Positive (+) and negative (-) 538 
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EPR values indicate accretion and erosion, respectively, in a particular region on the island’s 539 

east coast. 540 

5. Discussion  541 

Optical imagery has been found to be more feasible for capturing shoreline positions at 542 

different spatial and temporal scales (Almonacid-Caballer et al., 2016; Hegde and Akshaya, 543 

2015). The methodological approaches developed for shoreline extraction were based on high-544 

resolution open-source optical imagery, namely Landsat-5 TM (30 m) and Sentinel-2 (10 545 

m).The aim was to analyze and assess the land cover and to extract and distinguish the different 546 

classes. 547 

Approaches based on band ratios are widely used in shoreline monitoring and extraction 548 

studies (Tsiakos and Chalkias, 2023b). In the previous technology, green and NIR bands were 549 

used to define threshold values separating water pixels from land pixels (Cham et al., 2020). In 550 

Fig. 12. The rate of change of shorelines extracted from OBIA-RF-MSS recorded with the EPR method in front of the 

Radisson Hotel on the east coast of Jerba (a) and for the sand spit at Rass Rmel (b) 

 

 



the present work, the ratio method based on visible (band 2) and MIR-NIR (bands 5 and 8) 551 

shows good results for shoreline detection. These results are similar to those obtained by Roy 552 

et al., (2018), which showed that the Band ratioing method yields significant results for the 553 

delineation of the shoreline over a 25-year period.      554 

In contrast, this method allows deficient detection of sandy shorelines on satellite imagery. 555 

This simple and fast method does not require user intervention (Boussetta et al., 2022a). 556 

However, this approach has certain limitations and can lead to questionable results when 557 

monitoring applications in a complex environment such as a sandy spit. BR is still a primary 558 

method. With this in mind, the main objective of this work was to develop and compare methods 559 

to define an effective and validated approach for more systematic and detailed monitoring of 560 

coastal dynamics, taking advantage of the latest innovations in remote sensing, DL and shallow 561 

ML.  562 

5.1.Images analysis for shoreline extraction 563 

A comparison of the three approaches to satellite image classification was carried out to 564 

determine the best one. We tested two classification methods, OBIA and PBIA, to detect coastal 565 

land cover types. The OBIA approach provided a more convergent representation of land cover. 566 

This finding is consistent with the results of studies by Mollick et al., (2023), who argued that 567 

the accuracy of OBIA was 27% higher than that of PBIA. Furthermore, comparing the CNN-568 

OBIA approach with the ML algorithm-based OBIA approach indicates that the OBIA-RF 569 

approach performs better than the CNN-OBIA approach and has higher accuracy. These results 570 

differ from those obtained by the studies of Zaabar et al., (2022), who showed that CNN 571 

combined with object-based image analysis (OBIA), tested on Sentinel-2 spectral data, is the 572 

best-performing method for detecting different land-use classes with an OA higher than that of 573 

the OBIA-RF method by 0.9%.  574 

If we compare the results of the method proposed in this article with those of Bengoufa et 575 

al., (2021a), who demonstrated that the OBIA-RF method using the MRS algorithm, applied to 576 

very high-resolution images, performs best for shoreline extraction, this could be explained by 577 

the very high resolution of the Pleiade images (2m) and the medium resolution of the Landsat-578 

5 TM and Sentinel-2 images (30 m and 10 m, respectively). Therefore, we can confirm that 579 

such a result depends on the data used, the classes targeted, the choice of the reference shoreline, 580 

and, above all, the user’s experience. 581 



In OBIA, objects are extracted through segmentation processes that take into account the 582 

spectral, textural and contextual information of similar pixels (Blaschke, 2010). Moreover, 583 

despite the CNN algorithm’s ability to improve classification by selecting input features and 584 

OBIA, it is essential to consider the influence of different parameters on the segmentation 585 

processes. To be sure, the OBIA method should be enhanced by optimizing the segmentation 586 

parameters. Adjusting the parameters of the segmentation algorithms makes OBIA a subjective 587 

task (Belgiu et al., 2014; Belgiu and Drǎguţ, 2014), which was confirmed in this work after a 588 

good 10 adjustment attempts. However, cross-validation of Landsat and Sentinel-2 images 589 

removed this subjectivity. According to the results obtained, OBIA from MSS improved the 590 

classification and finally allowed a better shoreline extraction with a maximum OA value of 591 

0.95 applied to the Sentinel-2 image. 592 

It is important to note that the shorelines produced by all algorithms using the PBIA or OBIA 593 

approaches showed satisfactory results overall, with some interpretation errors in certain 594 

irregularly shaped coastal areas, especially for OBIA combined with CNN with a minimum OA 595 

of 0.77. Contrary to the studies carried out by Bengoufa et al., (2021b) which showed that the 596 

combination of the deep learning model and OBIA are very effective for the extraction of the 597 

rocky shoreline using very high-resolution multispectral images. Also the results obtained with 598 

the CNN algorithm contradict the conclusions of the work of Gomez-de la Pena et al., (2023), 599 

which presented an in-depth research and description of deep learning model configurations 600 

that proved effective for shoreline prediction. 601 

5.2. A method for automatic shoreline extraction: user-friendliness and accuracy  602 

The assessment of the performance of the methods applied to Landsat-5 and Sentinel-2 603 

imagery reveals that shallow learning algorithms outperform DL techniques. OBIA-RF still has 604 

the highest percentages for parameter sensitivity, execution time, processing time and accuracy. 605 

In contrast, the BR method had the lowest percentages and a reasonable value for accuracy 606 

(28%), compared to the other approaches. The latter gives good results and, above all, saves a 607 

great deal of time. However, OBIA-RF brings added value in metric accuracy and extraction 608 

capacity. These results are similar to those obtained by Sreekesh et al., (2020) who claimed that 609 

this method proved robust, with 95-99% consistency in areas presenting complex coastal 610 

geomorphological features (in our case the sandy spit), as well as when using satellite images 611 

of variable spatial resolution (medium- and high-resolution). 612 



613 

 614 

Fig. 13. Qualitative assessment of the performance of shoreline extraction methods 615 

 616 

The shoreline extraction methods were continued by calculating the distances between the 617 

shorelines. The average value was used as a baseline for comparison. This evaluation also 618 

quantitatively shows the quality of each classification compared to another based on shorelines 619 

extracted along the line of each land use feature. In Figures 14 (a) and 14 (b) below, a small 620 

distance from the mean corresponds to a good classification, and vice versa. There is a clear 621 

difference between OBIA and PBIA and between the ML (RF) and DL (CNN) algorithms for 622 

land-water boundary classification. This difference proves that the OBIA-RF approach 623 

classifies our thematic variables better than the other approaches, especially at the wet sand 624 

class level.  625 
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 626 

5.3.Erosion risk assessment  627 

The sandy beaches have been subject to severe shoreline recession over the last three decades 628 

(1989–2023), except for the Rass Rmel spit, which has experienced significant sediment 629 

accretion (+39.97 m/year between 1989–2023). This apparent trend towards erosion and 630 

accretion was well illustrated by the work of Boussetta et al., (2022a), where the DSAS results 631 

are conform to the real-world situation. The results of the retrospective analysis of the shoreline 632 

change, leads us to raise the alarm about the situation of the sandy beaches on the island of 633 

Jerba, given the exacerbation of the phenomenon of erosion. This phenomenon is changing the 634 

hydrological and the sediment transport balances which is causing landslides. This can have 635 

serious consequences for biodiversity, socio-economical security and for the humane safety 636 

living in the immediate vicinity of these environments. This situation is more complex for our 637 

study area, given that the island of Jerba is very frequented as it is an excellent tourist 638 

destination, where most of the socio-economic activities are located close to the shoreline. This 639 

requires immediate awareness by managers and the involved stakeholders, in order to draw up 640 

natural risk prevention plans, especially in the context of the acceleration of sea level rise due 641 

to climate warming and global environmental change. The latter are increasingly felt in island 642 

environments such as our study area, which makes it as naturally very vulnerable (Boussetta et 643 

al., 2022b). 644 

Although the latter method has yielded good results, no study has provided statistics on the 645 

evolution rates of the different approaches. Therefore, this study is the first to provide, compare 646 

and, most importantly, validate the EPR, or the shoreline evolution rates, for the Jerba Island 647 

over a 34-year period. The outputs of this study could be a good tools for coastal management 648 

and risk mitigation.  649 

6. Conclusions 650 

Fig. 14. Average and maximum distance between the extracted shoreline and the one digitized on the Landsat-1989  (a) 

and Sentinel 2015 (b) images 



The analysis of satellite images to determine an appropriate land cover detection method is 651 

vital for extracting relevant information to monitor the evolution of the shoreline. Before 652 

choosing the method of detecting and extracting the reference shoreline, it is important to 653 

eliminate distortions due to the irregular shape of the land. Therefore, the radiometric and 654 

geometric corrections were carried out thoroughly. In order to select the detection methods for 655 

the different classes according to research needs, field visits and visual interpretations were 656 

considered preparatory steps in this work. They allowed us to identify the objects and structures 657 

in the field on the east coast of Jerba. 658 

The comparison of the different classification techniques (BR, PBIA-RF, OBIA-RF and 659 

CNN-OBIA) enabled us to understand their effectiveness and efficiency by comparing their 660 

OA and kappa index statistics. The qualitative and quantitative evaluation and the validation 661 

process using the digitization method produced the best results. The OBIA-RF-MSS 662 

classification proved the most suitable, and the evaluation revealed that the real situation on the 663 

field is clearly the same. 664 

Whether the method is basic or evolved, developing new methodologies in line with the 665 

available data and research objectives is critical. With this in mind, this study focused on 666 

establishing an operational, perfectly reproducible and less subjective shoreline detection 667 

method. 668 

Using multitemporal, multisensory satellite imagery, we were able to determine a shoreline 669 

of 22.8 km, or over 15% of the island’s shoreline, with very high accuracy using the 670 

methodology created in this study. Statistical analysis of the EPR method using the DSAS tool 671 

allowed us to distinguish two types of situations. Some sites are experiencing general erosion 672 

(sandy beaches), and others are experiencing progradation (the Rass Rmel sand spit). These 673 

coastal forms are characterized by one or more eroding sectors: the upstream drifting part (the 674 

tourist area), feeding the downstream drifting part (the Rass Rmel spit) and a prograding part 675 

with occasional hook construction. In many places, erosion has become almost irreversible, and 676 

restoring stability will not be easy. 677 

This work demonstrates the potential of Landsat-5 TM and Sentinel-2 imagery for obtaining 678 

shorelines from classifications on the sandy coasts of Jerba Island, where the indicator is the 679 

land-water boundary. This research is considered the first in its field to be applied to the Jerba 680 

study area, given its importance on a national scale. The final results should prove useful to 681 

coastal managers of island environments, which will increase awareness of the environmental 682 



problems on Jerba’s east coast and facilitate the implementation of plans to combat coastal 683 

erosion. Thanks to increased social awareness and data dissemination, this action will be much 684 

easier. 685 
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