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Nonequilibrium phase transitions are notably difficult to analyze because their mechanisms depend on the
system’s dynamics in a complex way due to the lack of time-reversal symmetry. To complicate matters, the
system’s steady-state distribution is unknown in general. Here, the phase diagram of the active Model B is
computed with a deep neural network implementation of the geometric minimum action method (gMAM). This
approach unveils the unconventional reaction paths and nucleation mechanism by which the system switches
between the homogeneous and inhomogeneous phases in the binodal region. Our main findings are: (i) the
mean time to escape the phase-separated state is (exponentially) extensive in the system size L, but it increases
non-monotonically with L; (ii) the mean time to escape the homogeneous state is always finite, in line with the
recent work of Cates and Nardini [1]; (iii) at fixed L, the active term increases the stability of the homogeneous
phase, eventually destroying the phase separation in the binodal for large but finite systems. Our results are
particularly relevant for active matter systems in which the number of constituents hardly goes beyond 107 and
where finite-size effects matter.

Introduction– Activated processes are ubiquitous in nature
but intrinsically difficult to probe in simulations since they re-
quire the sampling of rare events [2–5]. When a first-order
phase transition occurs, a nucleation event is usually required
for the system to reach its stable phase [1, 6–8]. In equilibrium
systems, we can exploit the property of time-reversal symme-
try (TRS) and the knowledge of their equilibrium distribution
to derive a free energy from which we can infer both the ther-
modynamic stability of each phase, and the reaction paths that
are followed by the system during activation [9–11]. In con-
trast, the breakdown of TRS in nonequilibrium systems means
that we no longer have access to their free energy, and the
mechanism of activated processes must be understood from
their dynamics rather than their unknown steady-state distri-
bution [12–19]. Mapping their phase diagram therefore poses
a persistent challenge.

In this letter, we consider this problem in the context of
the active Model B, a natural nonequilibrium extension of the
Cahn-Hilliard dynamics with a nonlinear growth term [20, 21]
that breaks TRS. This generic model has attracted a lot of at-
tention in the last decade [22–25], and can be used, for in-
stance, as an effective description of the dynamics of active
particles that are known to undergo a motility-induced phase
separation (MIPS) [26–28]. Here, we map the phase dia-
gram of the active Model B and calculate the pathways by
which first-order phase transitions occur in this system. Our
results indicate that these transitions involve nucleation events
that are markedly different from their equilibrium counter-
part, and are shaped by the interplay between the noise and
nongradient terms in the stochastic dynamics of the system.
In large but finite systems, we also show that the active
term can decrease the probability to observe the nucleation
of the phase-separated state and help the reverse transition
from the phase-separated phase to the homogeneous state.
To obtain these results, we compute reaction paths using an
implementation of the geometric Minimum Action Method

(gMAM) [29–31] that relies on Physics-Informed Neural Net-
works (PINNs) [32, 33]; this neural implementation, referred
to as deep gMAM [34], is interesting in its own right as it
is transferable to study first-order phase transitions in other
nonequilibrium systems. Here we also cross-check some of
the results of the deep gMAM algorithm using the traditional
gMAM method as benchmark.

Problem setting– The active Model B (AMB) describes the
stochastic dynamics of a conserved scalar field ϕ(x, t), typi-
cally interpreted as the local (relative) density of particles or
the local composition of a mixture, and can be written as the
divergence of a noisy flux [1, 22, 23, 35]

∂tϕ = ∇ · (M∇µ+ ξ), (1)

µ([ϕ], x) =
δF [ϕ]

δϕ(x)
+ λ|∇ϕ(x)|2, (2)

where F [ϕ] is a Ginzburg-Landau free energy, M is the
mobility operator, and ξ is a spatio-temporal white-noise,
i.e. a Gaussian process with mean zero and covariance
⟨ξ(x, t)ξ(x′, t′)⟩ = 2ϵMδ(x− x′)δ(t− t′) with ϵ controlling
the amplitude of the fluctuations. We will investigate Eq. (1)
in d = 1 and d = 2 dimensions, assuming periodic boundary
condition of the domain Ω = [0, L]d with lateral size L. For
simplicity, we will focus on the situations where M = 1 and
F [ϕ] =

∫
Ω
[ 12ν(∇ϕ)2 + f(ϕ)]dx, where ν > 0 and f(ϕ) is

a double-well potential. With this choice of free energy there
exists a region in the phase diagram where a homogeneous
state, denoted ϕH , will coexist with a phase-separated state (or
inhomogeneous state), denoted ϕI , see Fig. 1(a). These states
correspond to the two (locally) stable fixed points of the noise-
less version of Eq. (1), i.e. the solution to ∇ · (M∇µ) = 0
with a prescribed value of the spatial average ϕ0 of ϕ in the
domain.

When λ = 0 the chemical potential µ is the functional
derivative of a free energy F [ϕ], and the dynamics is in de-
tailed balance with respect to the Gibbs-Boltzmann measure,
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and the stationary probability of observing a configuration
ϕ(x) is thus given by Ps[ϕ] ∝ exp(−F [ϕ]/ϵ). In this case,
the relative stability of the phases associated with ϕH and ϕI

can be inferred from the values of F [ϕH ] and F [ϕI ], and tran-
sitions between these states involve a reaction path that goes
through a saddle point configuration on F [ϕ].

In contrast, when λ ̸= 0, TRS is broken because µ does
not satisfy the Schwarz condition on its functional deriva-
tive [25, 36, 37], and the stationary distribution of the system
is no longer available. As a consequence, the functional F [ϕ]
brings no information on the relative stability of the phases
associated with ϕH and ϕI . Rather, a characterization of the
relative stability of these phases must rely on the dynamics.

Phase transitions and quasipotential– We will resort to
Freidlin-Wentzell large-deviation theory (LDT) to calculate
the rates of the transitions from ϕH to ϕI and vice-versa, as
well as their most likely paths [12], in the limit as ϵ → 0
(i.e. when the system is either in ϕH or in ϕIwith probabil-
ity one, and proper phases can be defined). Denoting by kI,H
the rate to go from ϕI to ϕH , it is asymptotically given by
kI,H ≍ exp (−VϕI

(ϕH)/ϵ), where VϕI
(ϕH) is the so-called

quasipotential of ϕH relative to ϕI that plays a role similar to a
potential barrier in Arrhenius’ law; a similar expression holds
for kH,I , the rate to go from ϕH to ϕI . The relative stability
of the two phases can then be assessed by the difference of the
logarithm of ratio of these escape rates

ϵ log kI,H − ϵ log kH,I ≍ −VϕI
(ϕH) + VϕH

(ϕI), (3)

which is positive when ϕH is the preferred phase, and neg-
ative when ϕI is. Note that the values of the quasipotential
VϕI

(ϕH) and VϕH
(ϕI) depend on the control parameters in

the system, such as λ and ϕ0, and so the sign of their differ-
ence can switch: when this happens, it is the signature of a
first-order phase transition. This offers us a route to analyze
these transitions, as advocated in [38], by computing these
quasipotentials for various values of λ and ϕ0, using the fact
that they are the minima of the action functional ST [ϕ] defined
as

ST [ϕ] =

∫ T

0

∫

Ω

|∇−1(∂tϕ−∇2µ)|2dxdt (4)

where Ω denotes the domain. The action (4) must be mini-
mized with respect to both T and ϕ, subject to ϕ(t = 0, x) =
ϕH and ϕ(t = T, x) = ϕI to get VϕH

(ϕI), and ϕ(t = 0, x) =
ϕI and ϕ(t = T, x) = ϕH to get VϕI

(ϕH).
Deep gMAM– To minimize (4) we use the PINN scheme

introduced in [34]. In a nutshell, this approach amounts to
approximating the field ϕ(x, t) within a rich parametric class,
such as a deep neural network, and viewing (4) as an objec-
tive (or loss, in the terminology of machine learning) for the
parameters in the representation. The boundary conditions in
space and time are accounted for by adding suitable pieces
to (4), and the parameter optimization is performed using a
standard stochastic gradient descent (SGD) algorithm such as
ADAM on this compounded loss. This require evaluating the
loss, which is done using space-time collocation points that
are drawn randomly at each step of SGD (which amounts to

FIG. 1. (a) Three remarkable configurations in dimension d = 1.
The solid line is the inhomogeneous state ϕI (stable). The dashed
line indicates the (unstable) critical state ϕc,1. The grey line is a con-
figuration of the field on the nonequilibrium reaction path from ϕI

to the homogeneous state ϕH (not shown). Parameters: ϕ0 = 0.65,
λ = 2, and L = 120. (b) Phase diagram of active Model B in param-
eter space (λ, ϕ0) in d = 1 dimension. Panel (b) shows the binodal
(black line) and the spinodal (red line) that were already computed
in [22]. In finite size systems, the bistable region does not fully span
between the spinodal and the binodal but stops at the blue line (here
plotted for L = 60). The states ϕH and ϕI are both stable in the
shaded region. Panel (c) focuses on the bistable region. The purple
dashed line pinpoints the first-order (f.-o.) transition between ϕH and
ϕI . On this line, one has VϕH (ϕI) = VϕI (ϕH). In region H, above
the f.-o. transition, ϕH is thermodynamically preferred, while below
the f.-o. transition, in regions I1, I2, I3, the inhomogeneous state
ϕI is preferred. The index q in Iq refers to the number of bumps that
appear along the reaction path from ϕI to ϕH . Note that the region
I3 may display asymmetric paths with an action slightly smaller than
their symmetric versions.

performing online learning). The deep gMAM algorithm is
simple to implement, does not require any gridding of space or
time, and gives an analytical approximation of ϕ(t, x) every-
where in the spatio-temporal domain. Here the results of the
deep gMAM algorithm in d = 1 were cross-checked against
those obtained using a classical implementation of gMAM,
which requires discretizing the field in space and time, and is
somewhat more delicate to implement. For more details on
both the deep and the classic gMAM algorithms, in particu-
lar how to handle the optimization on T by reparameterizing
the solution using arc-length instead of physical time, see the
Supplemental Material (SM).

Phase diagram in 1d– We focus first on the one-
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dimensional system, whose dynamics reads

∂tϕ = −∂2
x[∂

2
xϕ+ ϕ− ϕ3 − λ(∂xϕ)

2] + ∂xξ, (5)

with ⟨ξ(x, t)ξ(x′, t′)⟩ = 2ϵδ(t− t′)δ(x−x′). Space has been
rescaled such that all lengths are given in units of

√
ν. We

consider a system of size L and we take periodic boundary
conditions. The relevant parameters are thus L, the total mass
ϕ0 ≡ L−1

∫ L

0
ϕ dx, and the activity level λ. The constant den-

sity solution of Eq. (5) is the homogeneous state ϕH , and since
the mass ϕ0 is conserved, we have ϕH = ϕ0. In the following,
using the fact Eq. (5) is invariant under (λ, ϕ) → (−λ,−ϕ),
we restrain the study to the region ϕ0 > 0. The homogeneous
state ϕH is always a stable fixed point of the noiseless dynam-
ics for ϕ0 > ϕλ

sp+ , where ϕλ
sp+ = 1/

√
3 is the frontier of the

spinodal in the space (λ, ϕ0) for ϕ0 > 0. We are interested
in the region where ϕH competes with the inhomogeneous
state ϕI . In the infinite system size limit, this region lies be-
tween the spinodal ϕλ

sp+ (red line in Fig. 1(b)) and the binodal
curve ϕλ

bi+ (black line in Fig. 1(b-c)) that yields the bulk den-
sities of each phase when the system undergoes a phase sep-
aration. The binodal curve ϕλ

bi+ has been obtained in a series
of works [22, 27], in which it was also shown that the (active)
term λ(∂xϕ)

2, though seemingly being dynamically relevant
only close to interfaces where strong gradients exist, has in
fact a deep and non-local impact on the bulk of each phase.
However, the stationary measure associated to the stochastic
dynamics is still unknown. In particular, in the binodal region,
where both the homogeneous state and the phase-separated
state are metastable, the thermodynamically preferred phase
is not necessarily the phase-separated state. We will denote
by ϕλ

f.o. the transition density indicating the change of ther-
modynamic stability of the two competing phases. Naturally
we have ϕλ

sp+ ≤ ϕλ
f.o. ≤ ϕλ

bi+ . The gMAM algorithm will
eventually allow for inferring ϕλ

f.o., by providing insights on
the nucleation paths between the two states.

First, let us recall that for large but finite systems, the phase-
separated state cannot be the preferred phase if ϕ0 is taken too
close to the binodal density ϕλ

bi+ . For instance, in equilibrium,
(i.e. λ = 0) the binodal densities are ϕλ=0

bi± = ±1 but a free
energy argument that compares interfaces and bulk contribu-
tions shows that ϕλ=0

f.o. converges to 1 as ϕλ=0
f.o. ∼ 1−(1/L)1/2.

More than that, due to finite-size effects, the phase-separated
state may not exist at all when there is not enough space
in the domain to nucleate the phase separation. Hence, one
should keep in mind that in a finite system, say of size L,
bistability can only be observed below some threshold den-
sity ϕλ=0

m+
L

≤ ϕλ=0
bi+ , represented as the blue curve in Fig. 1.

Nonetheless, we have ϕλ
m±

L

→ ϕλ
bi± as L → ∞. To pinpoint

the first-order phase transition (FOPT), we run the gMAM al-
gorithm for ϕ0 ∈ [ϕλ

sp, ϕ
λ
m+

L

] and λ ∈ [−10, 10]. Solving

VϕH
(ϕI) = VϕI

(ϕH) identifies the FOPT line ϕλ
f.o., the pur-

ple dashed line in Fig. 1(c), which splits the diagram into two
regions: for ϕ0 < ϕλ

f.o. the thermodynamically stable state
is the inhomogeneous one, ϕI , while for ϕ0 > ϕλ

f.o. the ho-
mogeneous state ϕH = ϕ0 is preferred. Interestingly, we also
find that the binodal and the FOPT have a reentrance direction
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FIG. 2. (a) Minimum action path joining ϕI (at s = 0) to ϕH (at
s = 1) for λ = 2, ϕ0 = 0.65 and L = 44.7 in d = 1 dimension.
The vertical lines pinpoint the states where the norm of the flow is
minimal (and almost zero), corresponding to the states close to the
critical points. The corresponding critical points are displayed in
panel (b). The state at the dashed line lies in the basin of attraction of
the inhomogeneous state, while the state at the solid line lies on the
separatrix between the ϕI and ϕH . The action from the dashed line
to the solid line is strictly positive, while the action from the solid
line to ϕH is zero. (b) Pair of critical states displaying two bumps,
for same parameters as panel (a). If L = L⋆

2, these two states merge
in a saddle-node bifurcation. (c) Threshold lengths L⋆

q(λ) indicating
the apparition of critical states with a given number q of bumps as a
function of the system activity λ. Above the critical q-line, pairs of
critical states with q bumps are dynamically accessible.

along λ that does not exist in the system of infinite size (see
Fig. 1(c)).

Reaction paths in 1d– We consider first the reaction path
starting from the homogeneous state ϕH and reaching ϕI , and
we compute VϕH

(ϕI) for different values of λ and system size
L. Interestingly this path is very close to the heteroclinic or-
bit joining ϕH to ϕI , and going through the critical (saddle)
state ϕc,1(x) that displays one density bump (see Fig. 1(a))
and possesses only one unstable direction. This behavior is
very similar to the equilibrium nucleation scenario occurring
in the Cahn-Hilliard dynamics, as already noted in [1]: to es-
cape ϕH , the system only needs to nucleate a finite size droplet
of the opposite phase. The cost for the action associated to
this event is always finite, and the value of the action does not
differ much from the one computed using the time-reversed
relaxational path (a few percent difference, not shown).

In contrast, the transition from ϕI to ϕH is more complex,
and its analysis had never been explored so far. For ϕ0 > 0,
as λ increases, the reaction path no longer follows the time-
reverse relaxation path that goes through the saddle ϕc,1, but
rather passes close to critical points with a large number of
unstable directions, see Fig. 2(a) and 2(b), as it may some-
times be observed in nonequilibrium systems [34, 38]. In ad-
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dition, nothing prevents the reaction paths to cross the sepa-
ratrix at non-critical points, a feature that cannot be observed
in equilibrium, where reaction paths necessarily go through
saddles of the potential. The critical points of higher Morse
index can be obtained by solving the noiseless and station-
ary version of Eq. (5). Since the system is one-dimensional
with periodic boundary conditions, the critical point solves
∂2
xϕc = −ϕc+ϕ3

c+λ(∂xϕc)
2+µ0, with µ0 a constant, subject

to the constraints of periodicity and L−1
∫ L

0
ϕc(x)dx = ϕ0. A

Newton mapping similar to the one introduced in [22] enables
us to compute precisely the critical points using a symplectic
scheme (see SM). For given λ and ϕ0, pairs of critical points
with q bumps (q ∈ N∗) appear at critical values of the system
size denoted L⋆

q , reported in Fig. 2(c). The saddle-node bifur-
cation at L⋆

q occurs when the system size L is large enough
to fit an additional bump on the density profile. At precisely
the bifurcation length L⋆

q , one degenerate critical state ϕ⋆
c,q

becomes accessible to the dynamics. As L > L⋆
q , the degen-

eracy is lifted and two distinct critical states of q bumps ap-
pear. Any of the states ϕc,q can be decomposed into q identical
bumps of size L/q. Notably, the state with bumps of largest
amplitude strictly lies in the basin of attraction of ϕI , while
the other state lies on the separatrix between ϕI and ϕH . We
display an example of such a pair of critical states for q = 2
in Fig. 2(b). For all q ≥ 2, the critical states are of Morse
index q ≥ 2. The case q = 1 is special as it corresponds to the
apparition of the inhomogeneous metastable state ϕI , jointly
with the critical state of Morse index 1, ϕc,1(x). A sketch of
the structure of the deterministic flow between critical points
is given in the SM. In summary, while the path from ϕH to ϕI

indeed resembles the equilibrium one, the path from ϕI to ϕH

displays spatial microstructures which are not present in equi-
librium. Notably, the number q of bumps along the instanton
changes with parameters L, ϕ0 and λ, which is indicated by
the Iq-labeled regions in Fig. 1.

The roles of ϕ0, λ and L– Even with the ability to compute
the critical states, it remains a hard task to gain analytical in-
sights on the complete reaction paths. Our extensive numeri-
cal computations eventually show several non-trivial features,
gathered in Fig. 3. First, for fixed ϕ0 and λ, we notice that the
action VϕI

(ϕH) non-monotonically increases as the system
size L increases, a behavior that is triggered by the apparition
of new bumps along the reaction path. Second, the scaling of
the action remains extensive in the system size: we find that
VϕI

(ϕH) ∝ c(ϕ0, λ)L asymptotically. Our study suggests
that c is a decreasing function of ϕ0 and λ: for given system
size L, increasing ϕ0 or λ drives the system in the homoge-
neous phase, see Fig. 1. Third, above some critical value of
λ, we find that the reaction path from ϕI to ϕH goes through
the critical states with the highest number of unstable direc-
tions. More precisely, when the critical states with q bumps fit
into the system, then, either (i) the reaction path goes through
the critical states ϕc,q(x) (and displays also q bumps), or (ii)
the reaction path displays q + 1 bumps, does not converge
to ϕc,q(x) and crosses the separatrix elsewhere. Situation (i)
corresponds to the parts of the curves in Fig. 3 where the ac-
tion is locally increasing, while situation (ii) corresponds to
the locally decreasing parts of the curves on the same plot.

1024×101

100

6×10 1

2×100

3×100

6×101

FIG. 3. Minimum action VϕI (ϕH) as a function of the system size
L (top panel), for paths starting at ϕI and reaching ϕH . Here λ = 2
and ϕ0 = 0.65. The action non-monotonically increases because in-
creasing the system size L allows for qualitatively different reaction
paths. The successive portions of the curve correspond to different
types of paths displaying an increasing number of bumps, see bottom
panels. The vertical dashed lines indicate the L⋆

q , the critical lengths
where pairs of critical states with q bumps appear. The values L⋆

q

are also given in Fig. 2(c). The yellow dots indicate where branches
cross each other. The (∗) symbol indicates a branch on which the
path is no longer axisymmetric (see SM).

In other words, Fig. 3 shows that the reaction paths can dis-
play q bumps before the corresponding critical states ϕc,q(x)
emerges. The fact that the reaction paths go through the high-
est Morse index states is not observed for values of λ < 0
(when ϕ0 > 0). To gain insights on the selected reaction
paths, we have performed a spectrum analysis of the operator
acting on the perturbations around ϕI (see SM). The analy-
sis confirms that ϕI possesses stable direction only, and two
marginally stable directions (Goldstone modes) correspond-
ing to the mass conservation and to space translation invari-
ance (due to the periodic boundary condition). Interestingly,
the eigenvectors may display an oscillating profile reminis-
cent of the states along the instanton. However, the less stable
eigenvector (corresponding to the less negative eigenvalue)
does not correlate to the number of bumps selected along the
instanton, as one could have expected.

Finally, our numerical results seem to indicate that more
than one reaction path can be accessible. The yellow dots in
Fig. 3 pinpoint the crossing of the branches where reaction
paths display q and q + 1 bumps. There is thus a region close
to these points where the action S[ϕ] is multivalued, and con-
vergence seems to depend on the path initialization.

Phase transitions in 2d– The reaction paths can also be cal-
culated in dimension d = 2 using the deep gMAM algorithm.
We found that the path from ϕH to ϕI (not shown) follows
what is predicted by classical nucleation theory [1]. Also,
as expected, the path from ϕI to ϕH for λ = 0 follows the
reverse relaxation path since the dynamics is in equilibrium
(not shown). As with d = 1, the action path from ϕI to ϕH
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FIG. 4. Successive states along the Minimum Action Path joining ϕI

(top left) to ϕH (bottom right) in a 2d system with periodic boundary
conditions. Similarly to the 1d path, the instanton in 2d also displays
a microstructure. Parameters: L = 44.7, λ = 2, ϕ0 = 0.65. The
path has been obtained with the deep gMAM algorithm, whose de-
tails are given in the SM.

is however more complicated, displaying microstructure pat-
terns, now with radial symmetry. There is some evidence that
the instantons do not go through multi-spike profiles that are
found (numerically) to be the critical states of the AMB (see
SM and Ref. [39]), since the action values for such instantons
are always larger than the one of the radially symmetric path.
We emphasize that in d = 2 the critical states in Cahn-Hilliard
are much more difficult to characterize [39] than in d = 1 [40],
and this question remains open for the active Model B. All in
all, a comparison to the Arrhenius law for λ = 0 shows that
the active term significantly reduces the action needed to es-
cape the inhomogeneous state.

Conclusion– We have computed the phase diagram of the
AMB in d = 1, identified the various nucleation scenarii

in the binodal, and showed that the instanton phenomenol-
ogy is similar in d = 2. By computing the reaction paths,
we were able to identify the regions were the homogeneous
state is thermodynamically preferred. The fact that the action
VϕI

(ϕH) remains extensive in the system size, while VϕH
(ϕI)

remains finite, confirms that eventually, the system should
phase-separate as L → ∞, when lying in the binodal region.
Our results are consistent with the ones of Cates and Nar-
dini [1], who show that nucleation from homogeneous state
in AMB for d ≥ 2 is qualitatively similar to classical nucle-
ation theory in equilibrium. Our numerical results were ob-
tained using deep gMAM [34] and cross-checked in d = 1 by
running the classical gMAM [30]. While the latter algorithm
is more accurate, the discretization scheme adopted for the
Cahn-Hilliard equation is very hard to treat in d ≥ 2, where
the stability conditions of the scheme are very constraining.
The deep gMAM suffers less from the increase of dimension-
ality. These features make the method proposed here relevant
for numerous active matter systems which may undergo phase
separation.
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I. COMPUTING THE CRITICAL STATES

To compute the critical states we must calculate the fixed points of the noiseless equation:

∂tφ = −∂2
x[ν∂2

xφ+ φ− φ3 − λ(∂xφ)2]. (1)

Since space can be rescaled, here we work on a domain of size L = 1 where ν can vary (in the main text, we rather chose to
work with ν = 1 and varying L). Using stationarity and the periodic boundary conditions, a critical points φc must satisfy

ν∂2
xφc + φc − φ3

c − λ(∂xφc)
2 − µ0 = 0, (2)

with µ0 a constant, and φc subject to constraints of periodicity and
∫ 1

0
φc(x)dx = φ0. The Newton mapping rephrases the

stationary equation into an equation of motion, see e.g. [1]. With the correspondence x↔ t and φc ↔ z, one gets

νz̈(t) = −z(t) + z3(t) + λ(ż(t))2 + µ0, (3)

where the ż ≡ dz/dt.
It turns out that this system is integrable, whether λ = 0 or not. Indeed, one can set v(z(t)) ≡ ż, such that z̈ = dv

dz
dz
dt = dv

dz v,
which enables us to write




ż = v
d

dz
(v2)− 2λ

ν
v2 =

2(µ0 − z + z3)

ν
,

(4)

whose solution takes the form

v2(z) = e2αz(K +

∫ z

h(z′)e−2αz′dz′), (5)

with α = λ/ν, h(z) = 2(µ0 − z + z3)/ν, and K some constant. For α = 0, eq. (5) simplifies into

v2 = K − 2

ν
V (z), (6)

with V (z) = z2/2− z4/4− µ0z. For α 6= 0, one computes explicitly

e2αz

∫ z

h(z′)e−2αz′dz′ (7)

= −3 + 6αz + 2(3z2 − 1)α2 + 4(µ0 − z + z3)α3

4α4ν
(8)

≡ g(z), (9)

such that we have

v2 = e2αzK + g(z). (10)

Since a conserved quantity exists whether λ = 0 or not, one should resort to a symplectic scheme [2] to find the periodic orbits
that need to be computed with high accuracy. We use the high-order symplectic scheme proposed by Forest and Ruth [3]. For
λ = 0, the equation of motion is simply

νz̈ = −z + z3 + µ0, (11)
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FIG. 1. Sketch of the relaxation flow lines joining different critical points with number of bumps q < 4. A directed link corresponds to an
existing relaxation path between two critical points (the arrow indicates the noiseless flow). Critical states φS,B

c,q appear as pairs in a saddle-
node bifurcation. States φS

c,q lie on the separatrix, states φB
c,q lie in the basin of attraction of φI . The separatrix is a high-dimensional manifold

that cannot be easily represented. The path are obtained with the string method, and the action is computed along each path to check that it is
indeed 0 along a relaxation path.

and for λ 6= 0 we instead solve:

z̈ = αe2αzK +
g′(z)

2
(12)

= αe2αzK − 3 + 6αz + α2(6z2 − 2)

4α3ν
, (13)

where K = −g(z0)e−2αz0 is obtained from (10) considering the initial conditions (z(0), ż(0)) = (z0, 0).
The orbits are closed and z(t) evolves between the maximum and the minimum root of −V ′(X) = X3 − X + µ0. This

notably constrains |µ0| < 2
√

3/9 for V ′(X) to display 3 real roots. Denoting r1, r2, r3 (with r1 < r2 < r3) the roots of V ′(X),
we initialize the dynamics close r3, for instance (z(0), ż(0)) = (r3 − δ, 0), with δ � 1. We run the symplectic scheme and
compute the distance between the position at time 1 and the position at time 0, |z(1) − z(0)| ≡ ξ. The parameter δ is varied
until we obtain ξ < 10−8, which is our criterion to obtain periodic orbits. Note that for given (ν, α, µ0), there may be several
values δ1 < δ2 < · · · < δq each leading to different periodic orbits φc,1, φc,2, . . . , φc,q , that each display a different number
q of bumps. The symplectic scheme is implemented with ∆t = 10−4, such that the number of points on the orbit is 104. For
each acceptable periodic orbit, we compute

∫ 1

0
z(t)dt ≡ z̄q(ν, α, µ0) where the index q indicates the number of periods on the

domain [0, 1]. The equation

φ0 − z̄q(ν, α, µ0) = 0, (14)

where µ0 is the unknown, has always 0, 1 or 2 solutions. When no solution exists, it means that no critical states with a given
number q of bumps are accessible. When two solutions exist for µ0, it means that two periodic orbits of mass φ0 can be found
for given (ν, α). These two orbits correspond to two critical states (see e.g. Fig. 2 in main text), one state sitting on the separatrix
between φI and φH , and the other lying strictly in the basin of attraction of φI (see Fig. 1 in Appendix, and see main text). When
(14) has one solution only, then there is a unique critical orbit of q bumps and mass φ0 accessible. This critical state is denoted
φ?c,q in the main text. Going from zero to two solutions in (14) corresponds to a saddle-node bifurcation. For fixed density φ0,
the manifolds on which the saddle-node bifurcations occur for a given q are displayed in Fig. 2c in the main text.

II. DETAILS ON THE GMAM IMPLEMENTATION

In this section we detail the numerical algorithm based on the classic gMAM [4] that we run to obtain the minimum action
path. Before running the gMAM, we first run the string method detailed in [5]. The starting point of the string method is to
consider a path {ϕi}made ofN successive states interpolating between φH and φI . We set ϕ1 = φH(x) ≡ φ0 and ϕN = φI(x),
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but since φI(x) is not known analytically, it is obtained from the noiseless evolution of φ, starting from any state in the basin
of attraction of φI . To solve the evolution equation of φ(x, t), space is discretized on a 1-d domain with periodic boundary
conditions. We use a semi-implicit and pseudo-spectral scheme: the ∂4

xφ term is treated implicitly in time in Fourier space and
all the other terms are treated explicitly in time in real space.

Now, at each iteration of the string method, we perform two steps: (i) for all i ∈ {1, . . . , N}, the states ϕi along the path
perform a relaxation step using our semi-implicit scheme; (ii) after the relaxation step, a new path with regularly spaced states
replaces the former path. The states along the new path are obtained by interpolation and arclength renormalization. This step
prevents the states to collapse onto φI or φH , as they would do if only the relaxation was implemented. The endpoints of the
string, ϕ1 and ϕN , are left free and keep undergoing pure relaxation evolution to ensure that the two fixed points φI and φH
are indeed dynamically stable. At the end of the string algorithm, one obtains the heteroclinic orbit joining φI to φH and going
through an unstable fixed point of Morse index 1. The heteroclinic orbit (or relaxation path) is then a good candidate for the
instanton (since it is indeed the instanton in equilibrium).

We then run the gMAM algorithm with the string as a starting point. The geometric implementation allows for reaching
reaction paths of infinite duration. We follow a hybrid implementation of the gMAM, using both the Lagrangian formulation [4,
6] and the Hamiltonian formulation to update the Lagrange multiplier [7]. We recall that in the presence of a conserved Gaussian
white noise, the action we consider reads

ST =

∫ T

0

‖∂tφ− FAMB(φ)‖2−1dt, (15)

with the flow of the active Model B given by FAMB(φ) = ∂2
x(−ν∂2

xφ+φ3−φ+λ(∂xφ)2), and where the norm ‖ ·‖−1 is defined
from a scalar product 〈·, ·〉−1 on any spatial domain Ω:

〈u, v〉−1 =

∫

Ω

u(−∆−1v), (16)

with ∆−1 ≡ ∂−2
x the inverse Laplacian. The minimum action method performs a gradient descent on the action ST to obtain

the instantons. Introducing an artificial time τ to evolve the path {φ(t, x)}t∈[0,T ], one solves numerically (see Ref. [6])

∂τφ(t, x; τ) = − δST
δφ(t, x)

. (17)

When φ eventually solves δST

δφ = 0, the Euler-Lagrange equation is satisfied and {φ(t, x)}t∈[0,T ] is the instanton. For conve-
nience, we work with θ, the conjugate field of φ in the Hamiltonian formulation, which solves the Hamilton equations of motion
for the instanton. Here the Hamiltonian explicitly reads

H(φ, θ) =

∫

Ω

[
FAMB(φ)θ +

1

2
(∂xθ)

2

]
dx, (18)

and the instanton solves (in addition to the boundary conditions at t = 0, T )
{
∂tθ = −∂φH(φ, θ)

∂tφ = ∂θH(φ, θ).
(19)

or, explicitly for the second equation,

∂tφ = FAMB(φ)− ∂2
xθ. (20)

The gradient descent (17) amounts to solving

∂τφ = ∂tθ +
δH

δφ
. (21)

Using the explicit formula for θ from (20), namely

θ = −∆−1(∂tφ− FAMB(φ)), (22)

and using

δH

δφ
= 〈δFAMB(φ)

δφ
, ∂tφ− FAMB(φ)〉−1, (23)
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Algorithm 1 : Geometric Minimum Action Method, pseudo-spectral and semi-implicit scheme

1: Inputs: N ∈ N; two stable fixed points φa and φb of the noiseless dynamics; a path {φ̂0
i }i∈I and I = {1, · · · , N}, with φ̂0

0 = φa and
φ̂0
M = φb, such that |φ̂0

i+1 − φ̂0
i | is constant in i; the functions FAMB(φ), γ(φ, θ); ∆τ > 0,

2: Initialization: For every i ∈ I , take θ̂0i = 0; set ∆s = 1/N .
3: for n ≥ 0 do
4: Compute FAMB(φn) in real space.
5: Compute γn = γ(φ̂n, θ̂n).
6: Compute the Fourier transform Fk(FAMB).
7: Compute in Fourier space θ̄ni,k:

θ̄ni,k = k−2Fk(γn φ̂
n
i+1 − φ̂n

i

∆τ
− FAMB(φn))

8: Update φ with the semi-implicit Thomas algorithm, namely, solve φ̄n+1

φ̄n+1
i,k − φ̄n

i,k

∆τ
=k−2(γn

i )2
φ̄n+1
i+1,k + φ̄n+1

i−1,k − 2φ̄n+1
i,k

(∆τ)2
+ k−2γn

i γ
n
i
′φ̄n

i
′ + k−2γn

i Fk[FAMB(φn)]′i

+ Fk

(〈
δFAMB(φ̂n)

δφ̂n
, γn

i φ̂
n
i
′
〉

−1

)
−Fk



[〈

δFAMB(φ̂n)

δφ̂n
, FAMB(φ̂n)

〉

−1

]

i


 .

For the arclength derivative of a function g, we take g′i = (gi+1 − gi)/(∆s) for i ∈ [1, N − 1], and g′M = (gN − gN−1)/(∆s) for the
endpoint.

9: Compute the inverse Fourier transform of (φ̄n+1, θ̄n) = (F−1
k φ̄n

k ,F−1
k θ̄nk ).

10: Interpolate {(φ̄n+1
i , θ̄n+1

i )}i∈I onto a path {(φ̂n+1
i , θ̂n+1

i )}i∈I such that |φ̂n+1
i+1 − φ̂n+1

i | is constant in i, as in the string method.

one obtains

∂τφ =−∆−1∂2
t φ+ ∂t∆

−1FAMB(φ) +

〈
δFAMB(φ)

δφ
, ∂tφ

〉

−1

−
〈
δFAMB(φ)

δφ
, FAMB(φ)

〉

−1

.

(24)

This equation can be solved with a pseudo-spectral method since the operator−∆−1 is diagonal in Fourier space. The relaxation
along t contains a diffusion term that can be treated implicitly by means of a Thomas algorithm [4, 6]. In addition, the flow
FAMB(φ) can further decomposed into the

FAMB(φ) = −ν∆2φ+Kφ, (25)

withKφ = ∂2
x(φ3−φ+λ(∂xφ)2), such that the relaxation of the field in x can also be treated implicitly in τ when diagonalizing

the operator ∆2. Without this decomposition, the Courant–Friedrichs–Lewy condition for the scheme to be stable is extremely
restrictive.

Finally, we use arclength parametrization of the path such that time t is a function of arclength s ∈ [0, 1], and instantons
between fixed points that require t → ∞ can then be computed. In particular, we now have ∂tφ(t) = (dt/ds)−1∂sφ̂(s) ≡
γ(s)φ̂′, and ∂tθ(t) = (dt/ds)−1∂sθ̂(s) ≡ γ(s)θ̂′, where the ′ denotes the derivative w.r.t arclength s. The function γ(s) is also
a Lagrange multiplier enforcing H = 0 along the instanton [4]. The geometric minimization now reads

∂τ φ̂ =−∆−1γ2∂2
s φ̂−∆−1γγ′∂sφ̂+ γ∂s∆

−1FAMB(φ̂)

+

〈
δFAMB(φ̂)

δφ̂
, γ∂sφ

〉

−1

−
〈
δFAMB(φ̂)

δφ̂
, FAMB(φ̂)

〉

−1

.
(26)

Note that γ(s) is numerically computed using [7]:

γ =
|〈∂θH, ∂sφ̂〉|+

√
max(0, 〈∂θH, ∂sφ̂〉2 − 4H|∂sφ̂|2)

2|∂sφ̂|2
. (27)
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The complete algorithm is summarized in Algorithm 1. It is worth mentioning that the equation, already in 1d, is very ill-
conditioned, and forces us to take a fine grid, which in turn leads to very long computation times. Typically, for physical
parameters L = 1, ν = 5× 10−4, α = 2, φ0 = 0.65, one must take Nx = 256 space grid points, Ns = 400 arclength grid, and
∆τ = 10−6 to reach the minimum action path in a typical computation time of ' 3 weeks on a 2.8GHz machine.

III. DEEP GMAM METHOD: COMPUTING REACTION PATHS USING NEURAL NETWORKS

Here we detail the deep gMAM algorithm [8]. This method differs from the classical gMAM algorithm in two significant ways.
Firstly, instead of decomposing the path into ad-hoc space-time bases (e.g., pseudo-spectral decomposition, finite differences
method, etc...), the reaction path is parametrized in both space and time by a neural network. Secondly, it directly tackles the
geometric action as the cost functional to minimize, as opposed to finding the zeros of the Euler-Lagrange equation. There
are several advantages to this approach. The remarkable expressivity of neural networks and their ability to overcome the
curse of dimensionality enable the consideration of higher dimensional problems. Furthermore, the method determines its own
parametrization rather than relying on a rigid constant arclength constraint. This method also offers high flexibility, providing
multiple approaches to address the minimization problem and construct ad-hoc surrogate/ansatz for the reaction path. However,
there are some drawbacks. Tuning of the hyperparameters is often necessary, and the precision may be degraded compared to
classical methods, particularly when dealing with ill-conditioned problems.

Below is a detailed description of the algorithm used to obtain the various reaction paths and action values in Figures 1, 3 and
4 in the main text. Let d be the spatial dimension, where d = 1 or d = 2 for Figure 4. We define u : (s,x) ∈ (0, 1)× (0, 1)d 7→
u(s,x) some reaction path such that u(0,x) = a(x) and u(1,x) = b(x), where a, b are two given fields, for instance a = φI
(inhomogeneous state) and b = φH (homogeneous state).

To minimize the AMB geometric action, four important constraints must be taken into account:

1. It is a boundary-value problem;

2. The mass of the solution φ0 must be conserved along the reaction path, namely 〈u〉 ≡
∫

Ω

u(s,x) dx = φ0 for all s ∈ (0, 1);

3. The noise conservation (see the term ∂xξ in Eq.(5)) implies that one must work with respect to the H−1 norm;

4. The periodic boundary conditions must also be satisfied.

As shown below, it is possible to formulate the problem in a way that eliminates three of these constraints, leaving only the noise
conservation constraint. This remaining constraint must be explicitly enforced through penalization.

We need to find the minimizers of the geometric action:

Ag[u] =

∫ 1

0

(||u̇||−1||F (u)||−1 − 〈u̇, F (u)〉−1) ds,

where 〈u, v〉−1 ≡ 〈u,−∆−1v〉, u̇ = du/ds, and F (u) = −∆FaGL(u), with FaGL(u) = ν∆u+ u− u3 − λ|∇u|2, the flow of
the active Ginzburg-Landau dynamics. The problem can be reformulated as:

Ag[u] =

∫ 1

0

(||∇v|| ||∇FaGL|| − 〈∇v,∇FaGL〉) ds

with the constraint

−∆v = u̇.

We now consider a neural network parameterization for u. We use the simplest fully connected architecture given by
Nu(s,x; T ) = ND+1 ◦ ND · · · N1 ◦ N0(s,x), where Nk(y) = σk(Wky + bk) for k = 0, · · · , D + 1. Here, T is the set
of the NN parameters weights/bias {Wk,bk}, σk are the activation functions, and D is often called the depth or number of
hidden layers. In our setting, we use swish activation function with swish(x) = x/(1 + e−x) for all k < D + 1 and a linear
output for the last layer k = D + 1. The matrices Wk have size c × c for all k = 1, · · · , D, W0 has size c × d + 1, and the
last output layer has size 1 × c, where c is the number of neurons per layer, often called capacity. A naive approach would be
to directly substitute u with its neural network representation, denoted as Nu. However, this would necessitate penalizing the
remaining constraints. Instead, we adopt the following ansatz:

U(s,x) =(1− s)a(x) + sb(x)

+ s(1− s) (Nu,per(s,ϕ)− 〈Nu,per〉) ,
(28)
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with

ϕ(x) ≡ (cos 2πx, sin 2πx). (29)

It is easy to check that U(0,x) = a(x), U(1,x) = b(x). Moreover, we have 〈U〉 = (1 − s)〈a〉 + s〈b〉 + 0 = φ0 since
〈a〉 = 〈b〉 = φ0 by hypothesis. Finally, it is periodic on the domain (0, 1)d. In fact, Nu,per depends nonlinearly on ϕ, so that
adding higher harmonics in the input is unnecessary. Note that the input dimension has increased from 1 +d to 1 + 2d. The term
〈Nu,per〉 is numerically approximated on a Gauss-Legendre grid {ωk,xk}:

〈Nu,per〉 ≈
Ng∑

k=1

ωkNu,per(s,ϕ).

The noise constraint imposes the need for another periodic NN to represent the function v, namely we use the ansatz

V(s,x) = Nv,per(s,ϕ),

and minimize the residual ||∆V + U̇ || for all s. Due to the ill-conditioned nature of the problem, it is beneficial to replace both
Nu,per and Nv,per with more expressive neural network terms. Specifically, each of these periodic NNs is replaced by a sum of
K independent NNs with rescaled inputs. For example, the periodic NN for u is given by

Nu,per(s,ϕ) =
K−1∑

k=0

Nk(4k(s,ϕ)),

where each Nk represents an independent neural network. This replacement enables the high-frequency terms to be learned
more quickly (see e.g. [9]). We set K = 4 in practice.

The final cost functional that we aim to minimize is given by

C[U ,V] = Ag[U ] + γv

∫ 1

0

||∆V + U̇ ||2 ds+

γarc

(∫ 1

0

||U̇ ||2 ds−
(∫ 1

0

||U̇ || ds
)2
)
,

where γv and γarc are penalty coefficients. We use a small penalty coefficient γarc � 1 so that constant arclength parametrization
is favored but not strictly enforced. On the other hand, γv must be chosen to be large enough. In practice, we use γv = O(10)
initially and increase it to O(100) towards the end of the simulations.

Once the cost functional is written, the minimization follows classical machine learning techniques. We use here Monte-Carlo
batches by sampling uniformly (s,x) ∼ U([0, 1])×U([0, 1]d). We call Ns the number of points for s and Nx for the variable x.
One must then compute the gradients of the cost functional w.r.t. the NNs parameters∇Tu,TvC[U ,V](si, xi), i = 1, · · ·Ns×Nx

and use a gradient descent approach (here, ADAM method [10]). The parameters used for Fig. 4 are c = 15, D = 15, K = 4,
Ns = 40, Nx = 120, Ng = 302 with swish activation function and learning rate η = 10−3 which is decreased to 10−4 at the end
of the simulation. The penalization coefficients are γv = 10, γarc = 10−2 and γv is increased to 100 at the end of the simulation
giving a L2 residual for the Poisson constraint ≈ 10−3. The physical parameters are φ0 = 0.65, L = 44.7ν1/2, and λ = 2ν.
We also illustrate the efficiency of the method by displaying an asymmetric path located above the (*) symbol in Figure 3 of the
main text, it is shown in Fig. 2. Such asymmetric configurations are always observed when the reaction path exhibits an even
number of bumps (here, 2 bumps in Fig. 2). They have lower action values than their symmetric versions suggesting that the
breaking of the symmetry x→ −x facilitates transitions.

IV. COMPUTATION OF AMB CRITICAL POINTS BY NEURAL NETWORKS IN DIMENSION d ≥ 2

The computation of the inhomogeneous state φI is a prerequisite in the previous section. Additionally, it is often of interest to
investigate the reaction paths that connect φI to some critical points, i.e., the ending state b is a chosen critical point that satisfies

∇FaGL(u) = 0. (30)

In two dimensions, the one-dimensional techniques discussed above do not hold anymore, and one must solve Eq. (30) directly.
One expects to have not just one but many solutions as ν → 0. As in the previous section, two constraints are present: the
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FIG. 2. Asymmetric instanton for φ0 = 0.65, L = 50ν1/2 and α = 2 with lower action value ≈ 0.0215 compared to its symmetric
counterpart with action value ≈ 0.0235 (L = 1).

periodic constraint and the mass constraint 〈u〉 = φ0. A convenient NN ansatz that replaces u and satisfies both constraints is
given by

U(x) = f(x)− 〈f〉+Nu(ϕ)− 〈Nu〉+ φ0,

where f is chosen to initialize the gradient descent properly since at the beginning of the descent, Nu is typically small, so that
U ≈ f − 〈f〉+ φ0. One then minimizes the cost functional

C[U ] = ||∇FaGL||2. (31)

We show below that the critical points obtained are spikes [11] constrained by Cn (or product of) discrete rotation symmetries.
In order to compute these critical points, we choose f(x) as a sum of exponentials: f(x) = c0 − c1

∑n
k=1 e−γ||x−xk||2 where

xk are chosen arbitrarily and c0, c1 are constants so that 〈f〉 = φ0. Due to the torus geometry, purely radial solutions cannot

C
1

C
2

C
3

C
5
  C

1
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0.55

0.6

0.65

FIG. 3. Various spikes (critical solutions) obtained by minimizing (31) by deep neural networks and for φ0 = 0.65, L = 44.7ν1/2 and
λ = 2ν. The last one is for L = 100ν1/2.

exist. However, since solutions are exponentially damped away from the inhomogeneities, radial structures are often observed.
An example is the stable inhomogeneous state (see first snapshot of Fig. 4 in the main text). We have checked that this state is
always obtained by direct simulations of the deterministic equation starting from various initial conditions (not shown). At this
stage, it is unclear whether annular-like critical points with Morse index≥ 1 do exist or not. We show a typical scenario in Fig. 4
where one is able to identify a pair of radial solutions but which do not seem to be some zeros of∇FaGL and saturate to a finite
but small value of the residual no matter the NN size and hyperparameter changes.
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FIG. 4. An example of radial solutions which behave as pseudo-critical points for φ0 = 0.65, L = 44.7ν1/2 and λ = 2ν. The inhomogeneous
state is shown for comparison. to be updated.
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FIG. 5. Leading spectrum of A as a function of α ∈ (−2, 5) for ν = 10−4 and φ0 = 0.65. The 29 first eigenvalues are displayed on the left,
the corresponding leading 10 eigenvectors (in color) are displayed on the right. The more the eigenvalue is negative, the more its eigenvector
display bumps. The eigenvectors to the right are computed for α = 5 with eigenvalues (1, 2) : σ = (0, 0), (3, 4) : σ = (−0.33,−0.37),
(5, 6) : σ = (−0.47,−0.60), (7, 8) : σ = (−0.75,−0.94), (9, 10) : σ = (−1.15,−1.38).

V. LINEAR STABILITY ANALYSIS

We discuss here the stability of the inhomogeneous state φI in 1-d as a function of the active term intensity. We consider here
the spectral stability of φI giving the following eigenvalue problem:

Mφ ≡ −A′′φ = σφ (32)

with Aφ = νφ′′ + (1 − 3φ2
I)φ − 2λφ′Iφ

′ and where u′ means du/dx. A first remark is that one can show that there is always
two neutral modes denoted φ1, φ2 for the operatorM. By remarking that neutral modes for A are necessary neutral forM we
observe that Aφ = 0 has the nontrivial solution

φ1 = φ′I .

This is a direct consequence of φI solving ∇FaGL = 0. The other solution can be obtained using e.g. the Wronskian W =
φ1φ

′
2 − φ2φ

′
1 which gives W = Ce2αφI . These neutral modes have a simple interpretation and correspond to Goldstone modes

for the mass conservation and invariance by translation.
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We proceed to calculate the leading spectrum of L as a function of the intensity α of the active term. The results are presented
in Figure 5a, which shows the eigenvalues, and Figure 5b, which displays the corresponding eigenvectors. Our analysis reveals
the emergence of ”microstructures” or ”bumps” at different wavenumbers, localized on the negative plateau of the ground state
φI . As α increases, higher wavenumber modes begin to activate from the background spectrum at specific values of α. We also
note that high wavenumber modes are more stable than small wavenumber modes. There is a well-defined spectral gap visible
in Fig. 5a (blue curve) with corresponding eigenmodes 3 and 4 in Fig. 5b. This spectral gap decreases as α approaches infinity.

Our results help to explain why microstructures are observed in the minimum action paths. Although the inhomogeneous state
is stable, noise excitations would tend to involve some of these modes. However, it is not clear why higher wavenumber bumps
are preferred for the minimum action paths. Direct gMAM computations are necessary to reveal this behavior. Specifically,
for this value of ν, we would expect the one-bump regime to be involved in the minimum action paths, but this is not what is
observed.
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