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The marriageable singles sequence represents the number of noncrossing partitions of the finite set {1, . . . , n} in which some pair of singleton blocks can be joined while remaining noncrossing. The lonely singles sequence represents the number of all the other noncrossing partitions of the finite set {1, . . . , n} and is the difference between the Catalan numbers sequence and the marriageable singles sequence. The 14 first terms of these sequences are given, as well as some of their properties. These sequences appear when one wants to count the number of ways to cross simultaneously certain road intersections.

Examples 5. The set [4] has 5 marriageable singles partitions which are

Introduction

The number of noncrossing partitions of the finite set {1, . . . , n} (with n any positive integer) is very well known to be the Catalan number C n . See, for example, Stanley [2, entry 159, p. 43] and Roman [4, pp. 51-60] for a quick introduction to Catalan numbers and noncrossing partitions. Noncrossing partitions have been hugely studied, since at least Becker [START_REF] Becker | Planar rhyme schemes[END_REF], where they are called planar rhyme schemes but their systematic study began with Kreweras [START_REF] Kreweras | Sur les partitions non croisées d'un cycle[END_REF] and Poupard [START_REF] Poupard | Étude et dénombrement parallèles des partitions non-croisées d'un cycle et des découpages d'un polygone convexe[END_REF]. Simion [START_REF] Simion | Noncrossing partitions[END_REF] presents a summary of related results available in 2000 and some further work can be found in McCammond [START_REF] Mccammond | Noncrossing partitions in surprising locations[END_REF], Callan [START_REF] Callan | Sets, lists and noncrossing partitions[END_REF] and Kim [START_REF] Kim | New Interpretations for Noncrossing Partitions of Classical Types[END_REF].

The study of combinatorial properties of crossroads led us to determine the number of noncrossing partitions such that no pair of singleton blocks {i} and {j} (with i = j) can be merged into the pair {i, j} while the partition remains noncrossing. These noncrossing partitions appear when one wants to determine the number of possible manners to cross simultaneously a road intersection in which entries and exits are alternated, with the constraint that U-turns are prohibited. For a quick introduction to road intersection crossing management for intelligent vehicles, see Rouyer et al. [START_REF] Rouyer | A road intersection control in urban intelligent transportation systems[END_REF] and Bai et al. [START_REF] Bai | A general framework for intersection traffic control with backpressure routing[END_REF].

In what follows and the next section, we give definitions and quick examples. We then proove some properties of both marriageable singles and lonely singles sequences. At the end, we give the first values of those sequences and formulate several conjectures concerning them.

Definition 1. For all n ∈ N, [n] denotes the n-set {1, . . . , n}. In particular, [0] = ∅. Definitions 2. Let n be a non-negative integer and let

π = {A 1 , . . . , A k } be a partition of [n] (i.e., ∪ k i=1 A i = [n] and ∀ 1 ≤ i < j ≤ k, A i ∩ A j = ∅ and ∀ 1 ≤ i ≤ k, A i = ∅), this partition π is said to be a • crossing partition if ∃ 1 ≤ i ≤ k, ∃ 1 ≤ j ≤ k, i = j, ∃ a < b ∈ A i , ∃ c < d ∈ A j , a < c < b < d, • noncrossing partition if ∀ 1 ≤ i < j ≤ k, ∀ a < b ∈ A i , ∀ c < d ∈ A j , a < b < c < d, or c < d < a < b, or a < c < d < b, or c < a < b < d.
Definitions 3. A noncrossing partition π of [n] is called marriageable singles partition if there exists a pair of singleton blocks {i} and {j} in π that can be joined while remaining noncrossing.

More precisely, let π = { A 1 , . . . , A k } be a noncrossing partition of [n] with at least two singleton blocks A 1 = {i} and A 2 = {j}. Then π is a marriageable singles partition iif

π ′ = { {i, j}, A 3 , . . . , A k } is a noncrossing partition of [n].
Conversely, a noncrossing partition of [n] is called lonely singles partition if it is not a marriageable singles partition.

Let M n and L n be the number of marriageable singles and lonely singles partitions of [n] respectively. The marriageable singles and lonely singles sequences are (M n ) n≥0 and (L n ) n≥0 respectively. Remark 4. A partition that contains at most one singleton block is clearly a lonely singles partition. In an equivalent way, a marriageable singles partition contains at least two singleton blocks.

The first seven have no pair of singleton blocks and are clearly not marriageable singles partitions. The last two have only one pair of singleton blocks, but after merging it, they both give { {1, 3}, {2, 4} } which is a crossing partition. Lemma 6. Let C n (for n ≥ 0) denote the number of noncrossing partitions of [n]. Then, we have

C n = L n + M n .
Proof. As the set of noncrossing partitions is the disjoint union of the sets of lonely singles and marriageable singles partitions, the result follows immediately.

Remark 7. It is well known that C n = 1 n+1 2n n
is the nth Catalan number. The sequence (C n ) is referenced as A000108 in the On-Line Encyclopedia of Integer Sequences [START_REF] Sloane | The On-Line Encyclopedia of Integer Sequences[END_REF]. Remark 8. The unique partition of [0] = ∅ is the empty partition ∅. This partition is noncrossing (the first Catalan number is C 0 = 1) and it is a lonely singles partition.

Standard road intersection

Noncrossing complete matchings of 2n points lying on a line and noncrossing complete set of chords are two of the many standard combinatorial objects counted by the Catalan numbers. Noncrossing complete matchings and noncrossing complete set of chords are in natural bijection with the noncrossing partitions, as explained by Stanley [2, entries 59 and 61, p. 28].

We introduce here some notions on road intersections corresponding to noncrossing sets of chords. Definition 9. A road intersection with n entries and n exits alternated is called a standard road intersection of size n.

Let E 1 , . . . , E n denote the entries and X 1 , . . . , X n denote the exits of a standard road intersection of size n. These entries and exits are numbered clockwise (Figure 1 gives such a representation of a standard road intersection of size n = 4).

E 1 X 1 E 2 X 2 E 3 X 3 E 4 X 4 Figure 1: A Standard Road Intersection of size n = 4.
We represent graphically a way to cross simultaneously a standard road intersection by a bipartite graph (see Figures 2 and3 for two examples with n = 4). In these graphs, black vertices represent entries and white vertices represent exits. Each edge represents the crossing of the intersection by a vehicle going from an entry to an exit.

Each entry can be connected to each exit, unless restrictions are indicated.

Definition 10. For a given standard road intersection, any edge starting from one entry E i and ending to one exit X j is a lane. E i X j denotes such a lane.

Definition 11. For a given standard road intersection, any lane of the type E i X i , i.e., any edge starting from one entry E i and ending to exit X i is a U-turn. Definition 15. For a given standard road intersection, an MSL is said to be absolute when it does not contain two U-turns E i X i and E j X j (with i = j) that can be changed into two lanes E i X j and E j X i to give another MSL.

Lemma 16. For a given standard road intersection of size n, the set of MSL is in one-toone correspondence with the set of noncrossing partitions of [n]. The number of MSL of a standard road intersection of size n is equal to the Catalan number C n . Proof. As a MSL can be seen as a set of n nonintersecting chords joining 2n points, this result is very well known. See Stanley [2, entry 59, p. 28].

E 1 X 1 E 2 X 2 E 3 X 3 E 4 X 4
{ {1, 2, 3}, {4} }. E 1 X 1 E 2 X 2 E 3 X 3 E 4 X 4
E 1 X 1 E 2 X 2 E 3 X 3 E 4 X 4
The following three corollaries are just reinterpretations of the lonely singles and marriageable singles definitions in the language of road intersections.

Corollary 17. M n is the number of nonabsolute MSL of a standard road intersection of size n.

Corollary 18. L n is the number of absolute MSL of a standard road intersection of size n.

Corollary 19. L n is the number of MSL for a restricted standard road intersection of size n.

3 Properties Proposition 20. Both sequences (L n ) and (M n ) are increasing: L n < L n+1 for all n ≥ 2 and M n < M n+1 for all n ≥ 3.

Proof. We build a simple injective map f n from the set LS n of the lonely singles partitions of [n] to the set LS n+1 of the lonely singles partitions of [n + 1] by merging the singleton {n + 1} to the unique element A 1 of a partition π that contains the number 1 (one could equally prefer to use the number n instead of the number 1: the idea is to stick the number n + 1 to one of its two direct neighbours 1 or n):

LS n → LS n+1 f n : π = { A 1 , . . . , A k } → { A 1 ∪ {n + 1}, . . . , A k } where 1 ∈ A 1 and A 1 ∪ • • • ∪ A k = [
n] and A i ∩ A j = ∅ for all i = j. For example,

f 3 ({ {1, 2}, {3} }) = { {1, 2, 4}, {3} } f 4 ({ {1}, {2, 4}, {3} }) = { {1, 5}, {2, 4}, {3} }
The map f n is clearly injective and any lonely singles partition π gives a lonely singles partition f n (π). As L n is the cardinality of LS n and L n+1 is the cardinality of LS n+1 , we obtain L n ≤ L n+1 .

In a similar way, we build a simple injective map g n from the set MS n of the marriageable singles partitions of [n] to the set MS n+1 of the marriageable singles partitions of [n + 1] by adding the singleton {n + 1} to any partition π:

MS n → MS n+1 g n : π → π ∪ { {n + 1} } For example g 4 ({ {1}, {2, 3}, {4} }) = { {1}, {2, 3}, {4}, {5} }
The map g n is clearly injective and any pair of marriageable singletons {i} and {j} of π ∈ MS n remains marriageable as elements of g n (π) ∈ MS n+1 . As M n is the cardinality of MS n and M n+1 is the cardinality of MS n+1 , we obtain M n ≤ M n+1 .

More precisely, we have L n < L n+1 for all n ≥ 2 and M n < M n+1 for all n ≥ 3: it is easy to build a lonely singles and a marriageable singles partitions of [n+1] that are not in the images of the maps f n and g n , e.g. respectively { [n], {n+1} } and { {1}, . . . , {n-1}, {n, n+1} }.

Corollary 21. lim n→+∞ M n = lim n→+∞ L n = +∞ Proof.
It is an an immediate consequence of Proposition 20.

Proposition 22. For all n ≥ 0, we have

C n + 3M n ≤ M n+2 .
Proof. We build four simple injective maps h n , i n , j n and k n with disjoint images included in the set MS n+2 of the marriageable singles partitions of [n + 2].

• The map h n is defined on the set NC n of all noncrossing partitions of [n] by adding both the singletons {n + 1} and {n + 2} to any noncrossing partition π:

NC n → MS n+2 h n : π → π ∪ { {n + 1}, {n + 2} }
The maps i n , j n and k n are defined on the set MS n of the marriageable singles partitions of [n].

• The map i n adds the pair {n + 1, n + 2} to a marriageable singles partition π:

MS n → MS n+2 i n : π → π ∪ { {n + 1, n + 2} }
• The map j n merges the singleton {n + 2} with the unique element A 1 of a marriageable singles partition π that contains the number 1 and adds the singleton {n + 1} to π:

MS n → MS n+2 j n : π = { A 1 , . . . , A k } → { A 1 ∪ {n + 2}, A 2 , . . . , A k , {n + 1} } where 1 ∈ A 1 , A 1 ∪ • • • ∪ A k = [n] and A i ∩ A j = ∅ for all i = j.
• the map k n merges the singleton {n + 1} with the unique element A 1 of a marriageable singles partition π that contains the number n and adds the singleton {n + 2} to π:

MS n → MS n+2 k n : π = { A 1 , . . . , A k } → { A 1 ∪ {n + 1}, A 2 , . . . , A k , {n + 2} } where n ∈ A 1 , A 1 ∪ • • • ∪ A k = [n] and A i ∩ A j = ∅ for all i = j.
For example,

h 4 ({ {1, 2, 3}, {4} }) = { {1, 2, 3}, {4}, {5}, {6} } i 4 ({ {1, 2}, {3}, {4} }) = { {1, 2}, {3}, {4}, {5, 6} } j 4 ({ {1, 2}, {3}, {4} }) = { {1, 2, 6}, {3}, {4}, {5} } k 4 ({ {1, 2}, {3}, {4} }) = { {1, 2}, {3}, {4, 5}, {6} }
We have the immediate following properties:

• h n (π) is a marriageable singles partition of [n + 2] for all noncrossing partition π of [n],
• i n (π), j n (π) and k n (π) are marriageable singles partitions of [n + 2] for all marriageable singles partition π of [n] (the marriageable pairs can change depending on the map selected),

• h n , i n , j n and k n are injective maps; thus, -NC n and h n (NC n ) have the same cardinality C n , -MS n and i n (MS n ) and j n (MS n ) and k n (MS n ) have the same cardinality M n ,

• the sets

h n (NC n ), i n (MS n ), j n (MS n ) and k n (MS n ) are disjoint; thus, h n (NC n ) ⊔ i n (MS n ) ⊔ j n (MS n ) ⊔ k n (MS n ) ⊂ MS n+2 ,
• as M n+2 is the cardinality of MS n+2 , we obtain

C n + 3M n ≤ M n+2 .
Definition 23. For all nonnegative integers n, m and k, let NC n,m,k be the number of noncrossing partitions of [n] in m classes with k singleton blocks.

Proposition 24. For all nonnegative integers n and m with (n, m) = (0, 0), the number of noncrossing partitions of [n] in m classes with no singleton block is

NC n,m,0 = 1 n -m + 1 n m n -m -1 m -1 .
When (n, m) = (1, 1), the number of noncrossing partitions of [n] in m classes with exactly one singleton block is

NC n,m,1 = n m -1 n -m -1 m -2 .
Proof. Poupard [START_REF] Poupard | Étude et dénombrement parallèles des partitions non-croisées d'un cycle et des découpages d'un polygone convexe[END_REF] proved that, when n ≥ 1 and m ≥ 1, the number of noncrossing partitions of [n] in m classes with no singleton block is NC n,m,0 =

1 n-m+1 n m n-m-1
m-1 , and n ≥ 2m. When n = 0 and m ≥ 1 or n ≥ 1 and m = 0 or m ≥ ⌊ n 2 ⌋ + 1, this equality stands and gives a number of such partitions equal to 0.

When n ≥ 1 and m ≥ 1, the set of noncrossing partitions of [n] in m classes with exactly one singleton block is clearly in one-to-one correspondence with the set of couples (π, i), where π is any noncrossing partition of [n -1] in m -1 classes with no singleton block and 1 ≤ i ≤ n. Then, when (n, m) = (1, 1), we obtain that number of noncrossing partitions of [n] in m classes with exactly one singleton block is

NC n,m,1 = n×NC n-1,m-1,0 = n n-m+1 n-1 m-1 n-m-1 m-2 = n m-1 n-m-1 m-2 .
Remark 25. Here are a few details on specific cases:

• The empty partition is the unique noncrossing partition of the empty set [0] in 0 class with no singleton block. Thus, NC 0,0,0 = 1.

• The set [START_REF] Rouyer | A road intersection control in urban intelligent transportation systems[END_REF] has a unique noncrossing partition. This partition has m = 1 class and it is a singleton block. Thus, NC 1,1,1 = 1 and NC 1,m,k = 0 when (m, k) = (1, 1) and, in particular, NC 1,1,0 = 0.

• For all positive integer n, [n] has no noncrossing partition in m = 0 class. Thus, for all nonnegative integer k, NC n,0,k = 0 and in particular NC n,0,0 = 0.

Proposition 26. For all n ≥ 2,

L n ≥ ⌊ n 2 ⌋ m=1 1 n -m + 1 n m n -m -1 m -1 + ⌊ n+1 2 ⌋ m=2 n m -1 n -m -1 m -2 .
Proof. As any noncrossing partition with at most one singleton block is a lonely singles partition, we have

L n ≥ ⌊ n 2 ⌋ m=1 NC n,m,0 + ⌊ n+1 2 ⌋
m=1 NC n,m,1 and the result follows, using Proposition 24.

Proposition 27. For all n ≥ 3,

M n ≥ n-1 i=1 n j=i+1   ⌊ n+i-j-1 2 ⌋ m=0 1 n + i -j -m n + i -j -1 m n + i -j -m -2 m -1 × ⌊ j-i-1 2 ⌋ m=0 1 j -i -m j -i -1 m j -i -m -2 m -1   Proof.
Let π be a marriageable singles partition of [n] with exactly two singleton blocks {i} and {j} (with i < j). The set of such partitions π is clearly in one-to-one correspondence with the set of triplets ({i, j}, π 1 , π 2 ) where 1 ≤ i < j ≤ n and π 1 and π 2 are noncrossing partitions of the sets [n + ij -1] and [ji -1] respectively, with no singleton blocks. Thus,

M n ≥ n-1 i=1 n j=i+1   ⌊ n+i-j-1 2 ⌋ m=0 NC n+i-j-1,m,0 ⌊ j-i-1 2 ⌋ m=0 NC j-i-1,m,0   .
Remark 28. The previous inequality can be improved, considering three or more singleton blocks that can all be joined.

Known values and conjectures

Very few values of the sequences L n and M n are known for the moment. They are given in Table 1. L n and M n are respectively sequences A363448 and A363449 in the Online Encyclopedia of Integer Sequences (OEIS) [START_REF] Sloane | The On-Line Encyclopedia of Integer Sequences[END_REF]. The values of M n have been obtained with the algorithms available in the attached files, provided in pdf and ipynb formats. The complexity of these algorithms is exponential: they need to be improved and to be run with a more powerful computer to obtain values of L n and M n for n ≥ 15. Calculations were performed under Python 3.7.3 using Jupyter Notebook 5.7.6 with a 3.19 GHz i7-8700 processor and 32 GB RAM.

n L n L n /L n-1 M n M n /M n-1 C n M n /L n M n /C n Computing time for M n 0 1 0 1 0 0 0s 1 1 1 0 1 0 0 0s 2 1 1 1 
Conjectures 29. We conjecture the five following propositions:

∀n ∈ N, n ≥ 9 ⇒ M n > L n , (1) 
lim n→+∞ M n L n = +∞, (2) 
lim n→+∞ M n C n = 1, (3) 
lim n→+∞ L n C n = 0, (4) 
lim n→+∞ M n+1 M n = lim n→+∞ L n+1 L n = 4. ( 5 
)
Remark 30. Obviously, conjecture (2) implies conjecture (1). Table 1 shows that Mn Ln grows slowly and conjecture 2 may stand. More clearly, Table 1 shows that Mn Cn seems to grow quite quickly and let think that conjecture 3 stands. As C n = M n + L n , conjectures (2), ( 3) and ( 4) are clearly equivalent. It is well known and easy to prove that lim n→+∞ C n+1 Cn = 4. Table 1 shows that the similar limits given in conjecture (5) look very realistic as well.

Figure 2 :

 2 Figure 2: A bipartite graph associated with the intersection represented in Figure 1, with an example of absolute MSL corresponding to the noncrossing partition { {1, 2, 3}, {4} }.

Figure 3 :

 3 Figure 3: A bipartite graph associated with the intersection represented in Figure 1, with an example of a nonabsolute MSL corresponding to the noncrossing partition { {1, 2}, {3}, {4} }.

Figure 4 :

 4 Figure 4: Simplified graph of Figure 2, showing explicitly the noncrossing lonely singles partition { {1, 2, 3}, {4} }.

Figure 5 :

 5 Figure 5: Simplified graph of Figure 3, showing explicitly the noncrossing marriageable singles partition { {1, 2}, {3}, {4} }.

Figure 6 :

 6 Figure 6: Modification of Figure 3 to obtain an absolute MSL corresponding to the noncrossing partition { {1, 2}, {3, 4} }.

Figure 7 :

 7 Figure 7: Simplified graph of Figure 6, showing explicitly the noncrossing lonely singles partition { {1, 2}, {3, 4} }.

Table 1 :

 1 Values of L n , M n , C n , L n /L n-1 , M n /M n-1 , M n /L nand M n /C n (given with 2 digits), with computing time of M n , for all n ≤ 14.
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