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This work aims at developing an intuitive and accessible introduction to the interesting and important area of combinatorics, focusing on permutations and combinations with and without repetition. In particular, we consider the problem of determining the number of these types of arrangements. After presenting related basic concepts including sets, tuples and the Cartesian product, this work addresses basic counting principles respectively to the four basic types of arrangements. A case example related to non-negative integers is also included.

Introduction

Counting constitutes one of the activities frequently performed by humans. This ability is important not only for several daily situations, but also for being a particularly important mathematical concept widely employed in the physical sciences.

Another mathematical area that goes hand-in-hand with counting is Combinatorics (e.g. [START_REF] Hein | Discrete Mathematics[END_REF][START_REF] Van Lint | A course in combinatorics[END_REF][START_REF] Knuth | The Art of Computing[END_REF][START_REF] Tucker | Applied combinatorics[END_REF]). Being a part of Discrete Mathematics (e.g. [START_REF] Hein | Discrete Mathematics[END_REF][START_REF] Biggs | Discrete mathematics[END_REF][START_REF] Rosen | Discrete mathematics and its applications[END_REF][START_REF] Ince | An introduction to discrete mathematics, formal system specification, and Z[END_REF]), this interesting area is mainly focused on combining discrete elements under varying assumptions. In addition to its intrinsic theoretical importance, combinatorics is also extensively applied in several areas including Computational Complexity (e.g. [START_REF] Papadimitriou | Computational Complexity[END_REF][START_REF] Knuth | The Art of Computing[END_REF][START_REF] Arora | Computational complexity: A modern approach[END_REF][START_REF] Cormen | Introduction to algorithms[END_REF]), Probability and Statistics (e.g. [START_REF] Bertsekas | Introduction to Probability[END_REF][START_REF] Degroot | Probability and Statistics[END_REF][START_REF] Kreyszig | Advanced Engineering Mathematics[END_REF][START_REF] Gray | Probability, random processes, and ergodic properties[END_REF][START_REF] Da | Statistical modeling[END_REF]), Group Theory (e.g. [START_REF] Mansfield | Background to Set and Group Theory[END_REF][START_REF] Milne | Group theory (v3.13[END_REF][START_REF] Ace-Sánchez | An Introduction to Group Theory[END_REF][START_REF] Shillito | Group theory[END_REF][START_REF] Da | Group theory: A primer. Researchgate[END_REF]), Computational Biology (e.g. [START_REF] Flajolet | Analytic combinatorics[END_REF][START_REF] Fertin | Combinatorics of genome rearrangements[END_REF][START_REF] Jørgensen | Ecosystems emerging: toward an ecology of complex systems in a complex future[END_REF]), Artificial Intelligence (e.g. [START_REF] Kanal | Search in artificial intelligence[END_REF][START_REF] Moshkov | Combinatorial machine learning: a rough set approach[END_REF]), Complex Systems (e.g. [START_REF] Pilgrim | Combinations of complex dynamical systems[END_REF][START_REF] Jørgensen | Ecosystems emerging: toward an ecology of complex systems in a complex future[END_REF]), Optimization (e.g. [START_REF] Wolsey | Integer and combinatorial optimization[END_REF][START_REF] Cook | Combinatorial optimisation[END_REF][START_REF] Papadimitriou | Combinatorial optimization: algorithms and complexity[END_REF]), and Modeling (e.g. [START_REF] Da | Modeling: The human approach to science[END_REF]).

The present work is aimed at developing a concise introduction to some of the main subjects of Combinatorics, especially permutations and combinations. Special efforts have been invested in presenting these concepts in a progressive and logical manner, so as to become more accessible.

We start by presenting some basic related concepts including sets, tuples, and the Cartesian product, and then follow by describing a basic method for counting permutations, which is subsequently applied to determine the number of permutations without and with repetition, as well as of combinations without repetitions. The case involving combinations with repetition is more elaborate, so that only the result is presented and illustrated. The presented concepts and methods are then illustrated respectively to studying the combinatorics of non-negative integer numbers.

Sets and Tuples

In this section we revise the concepts of sets and tuples.

Sets are mathematical structures containing basic elements, which are listed irrespectively to their order. Examples of sets include:

A = {a, b, d, c} = {c, a, b, d} = {c, d, b, a} = . . . B = {1, 2, 3, 4, 5} = {1, 3, 5, 2, 4} = . . . C = {a, 2, b, 3, f, +} = {2, a, 3, b, +, f } = . . .
Observe that the characters '{' and '}' are used to delimit sets. The number of elements in a set is typically referred to as being its cardinality.

Tuples, which will be taken as being analogous to vectors in the present work, are mathematical structures containing basic elements in a specific order. Examples of tuples include:

x = (a, b, d, c) ̸ = (c, a, b, d) ̸ = (c, d, b, a) ̸ = . . . y = (1, 2, 3, 4, 5) ̸ = (1, 3, 5, 2, 4) ̸ = . . . z = (a, 2, b, 3, f, +) ̸ = (2, a, 3, b, +, f ) ̸ = . . . 1
Observe that the characters '(' and ')' are employed to delimit tuples. The number of elements in a tuple is often said to correspond to its size.

A tuple containing only 2 elements is said to be an ordered par.

The Cartesian Product

The Cartesian product between two sets X = {x 1 x 2 . . . x N } and Y = {y 1 y 2 . . . y N } is the following set of ordered pairs:

C (X, Y ) = {(x 1 ,
. . . ,(x 2 , y 1 ); (x 2 , y 2 ); . . . ; (x 2 , y N ); . . . , . . . , (x N , y 1 ); (x N , y 2 ); . . . ; (x N , y N )} . [START_REF] Hein | Discrete Mathematics[END_REF] Observe that, in general, the Cartesian product is not symmetric (or 'commutative'), in the sense that:

C (X, Y ) ̸ = C (Y, X) (2) 
However, the Cartesian product will be commutative in the particular case in which X = Y .

As well shall soon see, the Cartesian product an example of arrangement corresponding to permutation with repetitions considering two positions (length p = 2).

Types of Arrangements

Given a set S containing n elements, they can be arranged in several manners. In this work, we focus on the four prototypical cases illustrated in Figure 1.

More specifically, we have two main groups, related to permutations and combinations. The former type of arrangements, encompassing cases (a) and (b) in the figure, is characterized by the fact that the order of the elements matter, so that the arrangements are respectively represented as tuples. The second main type, including cases (c) and (d) in the figure, corresponds to situations in which the order of the elements does not matter. The arrangements are therefore represented as sets.

Both these main types of arrangements can be further subdivided into being without repetition of elements, which is the case of situations (a) and (c) in Figure 1, and with repetition of elements, as in cases (b) and (d) in that same figure.

These four types of arrangements constitute the main subject of the present work, with emphasis on determining the total number of possible arrangements in each situation. The number of entries in the permutations and combinations is henceforth referred to as the respective length p. 

Counting Permutations

Figure 2 depicts the basic principle that can be used to count the number of permutations where the order matters.

Figure 2: The basic principle which can be used for counting permutations with repetition, here illustrated for n = 4 elements and permutations with length p = 2. Each of the four elements in the first permutation position can be followed any of the same four elements (in aquamarine), therefore leading to a total of n 2 = 16 possible permutations with repetition.

Here, we have four elements from which permutations with length p = 2 are to be obtained, allowing repetition of elements. Each of the n elements in the first position can be paired with precisely n elements in the second column, so that the total number of respective permutations can be determined as:

N R P = n 2 = 4 2 = 16 (3) 
As a simple example, this permutation counting principle can be readily applied to determined the total number of ordered pairs in the Cartesian product of a set with n elements.

Permutations with Repetition

The simplest combinatorics case addressed in the present work corresponds to permutations with repetition in which n = p. An example of this type of combination considering S = {a, b}, implying n = 2, is as follows: The determination of the number of permutations in this case can be readily obtained by using the basic counting principle described in Section 5: given n elements to be arranged into p = n positions, we will have n choices for taking the first element, followed by n choices for the second elements, and so on. Therefore, we have:

P = {(
N R P = n n (4) 
The case in which p < n follows directly with the only difference that we stop at the p-th position, therefore implying:

N R P = n p (5) 
Figure 3 illustrates the principle of choosing a specific permutation with length p = 4, with repetition, from a set S = {a, b, c, d, e, f, g}, so that n = 7.

As an example, let S = {a, b, c} and p = 2. The possible permutations are: 

P = {(a,
The total number of possibilities therefore is N C = 6. Figure 4: Choice of a permutation not allowing for repeated elements. Each chosen element is removed from S, so that the number of possible choices is progressively reduced by 1. The total number of permutations in the particular case illustrated in this figure can be found to be N P = (7)(6)(5)(4) = 840. Observe that permutation without repetition therefore requires that p ≤ n.

The total number of permutations without repeated elements can therefore be expressed as:

N N P = n! (n -p)! (8) 
which requires p ≤ n.

Recall that 0! = 1.

In the case illustrated in Figure 4, it follows that:

N N P = 7! (7 -4)! = 7! 3! = 840 (9)
8 Combinations with Repetition

The situation involving combinations with repetition is more elaborated than three other cases considered in this work, because the number of permutations with repeated elements is not the same.

Given n and p¡ the number of respective combinations with repetition can be calculated (e.g. [START_REF] Van Lint | A course in combinatorics[END_REF][START_REF] Tucker | Applied combinatorics[END_REF]) as:

N R C = n + p -1 p ( 10 
)
As an example, in case n = 7 and p = 4, we would have:

N R C = 7 + 4 -1 4 = 10 4 = 10! 4! 6! = 210 ( 11 
)
which necessarily is a value smaller than the number of permutations with repetition for n = 7 and p = 4, which corresponds to N P = 7 4 = 2401.

Combinations without Repetition

Combinations are characterized by the order of the elements not being taken into account. The determination of a specific combination without repetition is analogous to the procedure illustrate in Figure 4, with the difference that the chosen elements are now organized as a set instead of a tuple.

Given that we have already determined the number of permutations without repetition for a specific S and p, an interesting approach to determining the number of respective combinations would be to start with that number and then remove the permutations that lead to identical combinations. Fortunately, this can be done in the following easy way.

Any of the permutations without repetition will necessarily contain the same number p of distinct elements. Thus, all we need to now many permutations containing these p elements exist. This can be immediately done by using the equation for permutations without repetition considering p positions. We know from Section 7 that there are p! possible such permutations.

As an example, consider the permutation (b, c, e, a) in Figure 4. We know that p = 4 and the four elements {a, b, c, e} are respectively involved. So, the permutations containing these four elements can be obtained by considering the situation illustrated in Figure 5. Now, as we now that each of the permutations appear p! times, all we need to do to determine the overall number of combinations without repetition is to divide the respective total number of permutations without repetition given in Equation 9 by p!, which yields:

N N C = N N P p! = n! p! (n -p)! (12) 
Observe that this equation requires that p ≤ n, with N N C = 1 being obtained when p = q as could be expected.

As an examples, if n = 7 and p = 4, we have:

N N C = 7! 4! 3! = 35 (13) 
possible combinations without repetition. Interestingly, the quantity in Equation 12 corresponds to the binomial coefficient, i.e.:

N N C = n! p! (n -p)! = n p ( 14 
)
10 Case-Example: Non-Negative Integers

The set of non-negative integer numbers consists of {0, 1, 2, 3, . . .}. The total number of possible non-negative integers with p digits can therefore be obtained by considering the permutations with repetition of the n = 10 basic digits S = {0, 1, 2, 3 . . . , 9}, which leads to:

N R P = 10 p
Therefore, in the case of p = 3, we have:

N R P = 10 3 = 1000 possible non-negative integer values, ranging from 0 to 999.

The number of non-negative integers without repetition of digits can be obtained as:

N N P = 10! (10 -p)!
In the case of p = 3, it follows that:

N N P = 10! (10 -3)! = 720
The number of non-negative integers with repetition of digits and without taking into account their order can be calculated as:

N R C = 10 + p -1 p
For p = 3, it follows that:

N R C = 10 + 3 -1 3 = 12 3 = 12! 3! 9! = 220
The total number of non-negative integers without repetitions, no mattering the order of the digits, corresponds to:

N N C = 10! p! (10 -p)!
For p = 3, we have that:

N N C = 10! 3! 7! = 120
Observe that:

N R P = 1000 > N N P = 720 > N R C = 220 > N N C = 120 (15) 
which suggests that the diversity of non-negative integer values, at least for p = 3, is more a consequence of the order of the digits than of their repetition.

Figure 6 shows the total number of arrangements in each of the four cases above consider p = 1, 2, . . . , 10 = n. The limited maximum value of p is a consequence of the consideration in our study of combinations without repetition.

The tendency observed in Equation 15 has been maintained for every considered p. In addition, it is interesting to observe that the number of arrangements for two cases without repetition are non-monotonic, in the sense that this number decreases after some value of p.

Concluding Remarks

The concept of permutation and combination play a central role in the important area of Combinatorics. In the present work, a hopefully accessible introduction to these concepts has been developed, addressing also the frequent problem of counting the number of permutations and combinations with and without repetition of elements.

We started by reviewing and discussing the important difference between the concepts of sets and tuples. Then, as a simple introductory example to combinatorics, we presented the concept of Cartesian product, followed by the presentation of a basic principle for counting permutations with repetitions. This principle was then employed to calculate the number of permutations without and with repetitions, as well as of combinations without repetition. A case example considering the non-negative numbers with p digits has also been included as an application of the presented concepts and methods.

The area of combinatorics is not only important as it is interesting. It is hoped that this work may have motivated the reader to prove further into this area.
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 1 Figure 1: The four basic manners in which a set. S with n elements can be arranged: (a) with repetition, order mattering; (b) without repetition, order mattering; (c) with repetition, order not mattering; and (d) without repetition, order not mattering. Cases (a) and (b) are said to be permutations, while the situations in (c) and (d) are called combinations.

  a, a) ; (a, b) ; (b, a) ; (b, b)} yielding a total of N P = 4 permutations.

.

  a) ; (a, b) ; (a, c) ; (b, a) ; (b, b) ; (b, c) ; (c, a) ; (c, b) ; (c, c)} so that N P = 3 2 = 9. It often happens that we are interested in determining the permutations of n symbols appearing singly. As an example, let S = {a, b, c} and p = 2. We then have: C = {(a, b) ; (a, c) ; (b, a) ; (b, c) ; (c, a) ; (c, b)}

Figure 3 :

 3 Figure 3: The choice of a specific permutation with length p = 4, with repetition, from a respective set S. Because repetition is allowed, each new permutation element can be chosen from the same n = 7 available possibilities. The total possible number of permutations in the particular case of the illustrated example is N P = 7 4 = 2401.
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 5 Figure 5: The determination of the number of permutations without repetition involving all the p = 4 specific elements {a, b, c, e}. The total number of these permutations therefore is (4)(3)(2)(1) = 4! = 24 = p!.

Figure 6 :

 6 Figure 6: The number of the four types of arrangements of the digits of non-negative integer values for p = 1, 2, . . . , 10. Being particularly large, these numbers are better represented in terms of their logarithmic values. It is interesting to observe that the cases without repetition are non-monotonic.
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