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Hidden Markov models (HMM) have been used successfully in various applications for around sixty years. Moreover, conditional random fields (CRFs) are considered an alternative to HMMs and appear in the literature as different and somewhat competing models. It has recently been shown that basic linear chain CRFs (LC-CRFs), considered different from HMMs, are in fact equivalent to them in the sense that for each LC-CRF there exists an HMM, which can be specified, whose a posteriori distribution is identical to the given LC-CRF. In this article, we extend this result to general CRFs. We consider partially Markovian models (PMM), which are sequentially defined models extending HMMs, and we show that they are equivalent to CRFs. Equivalence means that the posterior distributions of the PMMs are CRFs and, conversely, for each given CRF there exists a PMM -which we specify -whose posterior distribution is the given CRF. The first assertion is well known and the proof of the second constitutes the main contribution of this article. The advantage of presenting a CRF in its PMM form is that the latter is sequential, whereas its original former is not. This property is essential in certain sequential processing, such as filtering or forecasting.

INTRODUCTION

ET 𝑍 1:𝑁 = (𝑍 1 , … , 𝑍 𝑁 ) be a stochastic sequence, with 𝑍 𝑛 = (𝑋 𝑛 , 𝑌 𝑛 ). Random variables 𝑋 1 , … , 𝑋 𝑁 take their values in a finite set Λ, while 𝑌 1 , … , 𝑌 𝑁 take their values either in a discrete or continuous set Ω. Probabilistic model is a distribution -or a family of distributionswhich will be denoted with 𝑝(𝑧 1:𝑁 ) , or 𝑝(𝑥 1:𝑁 , 𝑦 1:𝑁 ) . More generally, for 1 ≤ 𝑚 < 𝑛 ≤ 𝑁, we will note 𝑧 𝑚:𝑛 = (𝑧 𝑚 , … , 𝑧 𝑛 ) , and similarly for 𝑥 𝑚:𝑛 , 𝑦 𝑚:𝑛 . Conditional distributions will be denoted with 𝑝(. |. ). For example, we have 𝑝(𝑥 𝑛 |𝑦 1:𝑁 ) = 𝑃[𝑋 𝑛 = 𝑥 𝑛 |𝑌 1:𝑁 = 𝑦 1:𝑁 ] , 𝑝(𝑥 𝑛+1 |𝑥 1:𝑛 ) = 𝑃[𝑋 𝑛+1 = 𝑥 𝑛+1 |𝑋 1:𝑛 = 𝑥 1:𝑛 ], and so on.

The aim of the paper is to show the equivalence between sequential models called "Partially Markov models" (PMMs, [START_REF] Pieczynski | Triplet partially Markov chains and tree[END_REF]) and non-sequential models called "Conditional random fields" (CRFs, [START_REF] Lafferty | Conditional random fields: probabilistic models for segmenting and labeling sequence data[END_REF], [START_REF] Sutton | An Introduction to Conditional Random Fields[END_REF]. The interest is that sequential PMMs are easier to manipulate than non-sequential CRFs; in particular, they allow new observations to be taken into account more easily. This contribution shows that apparently less general PMMs have actually the same modeling power as CRFs. PMMs are defined by the distribution 𝑞(𝑥 1:𝑁 , 𝑦 1:𝑁 ) verifying (1.1), while CRFs considered in this paper are defined by the distribution 𝑝(𝑥 1:𝑁 |𝑦 1:𝑁 ) verifying (1.2). , (1.5) with 𝑐 constant and 𝜑, 𝜙 real valued functions. Actually, such distributions are particular cases of (1.2); indeed, they are (1.2) with the conditions 𝑝(𝑥 1 |𝑦 1:𝑁 ) > 0 for 𝑝(𝑥 1 |𝑦 1:𝑁 ), and 𝑝(𝑥 𝑛+1 |𝑥 𝑛 , 𝑦 1:𝑁 ) > 0 for every 𝑛 = 1, …, 𝑁 -1.

𝑞(𝑥

It is easy to see that the posterior distribution 𝑞(𝑥 1:𝑁 |𝑦 1:𝑁 ) of a PMM (1.1) is a CRF (1.2); the converse proposition is trickier. The problem we deal with is to answer the following questions. Having a CRF 𝑝(𝑥 1:𝑁 |𝑦 1:𝑁 ) , does there exist a PMM 𝑞(𝑥 1:𝑁 , 𝑦 1:𝑁 ) such CRFs found huge deal of applications, and continue to be widely used as attested by hundreds journal papers appearing each year. Examples include image segmentation [START_REF] Chen | DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[END_REF], [START_REF] Batatia | A deep learning method with CRF for instance segmentation of metal-organic frameworks in scanning electron microscopy images[END_REF], [START_REF] Lapuyade-Lahorgue | Segmentation of multicorrelated images with copula models and conditionally random fields[END_REF], named entity recognition [32], or still part-of-speech tagging [START_REF] Gahbiche-Braham | Joint segmentation and POS tagging for Arabic using a CRF-based classifier[END_REF]. Let us also cite [START_REF] Liliana | A Review on conditional random Fields as a sequential classifier in machine learning[END_REF] as review article and [START_REF] Klinger | Conditional Random Fields for Named Entity Recognition[END_REF], [START_REF] Sutton | An Introduction to Conditional Random Fields[END_REF] as books, among others. PMMs have been little studied so far; we can cite [START_REF] Lanchantin | Unsupervised segmentation of triplet Markov chains hidden with long-memory noise[END_REF] where they were used to estimate non-stationary data hidden with long memory noise. This opens up new possibilities, as it means that sequential PMMs can be used in place of non-sequential CRFs without losing CRFs modelling power.

----------------  E.
The equivalence between CRFs and PMMs makes it possible to show the equivalence between "hidden" CRFs (HCRFs, [START_REF] Quattoni | Conditional random fields for object recognition[END_REF], [START_REF] Quattoni | Hidden conditional random fields[END_REF]) and "triplet" PMMs (called triplet partially Markov chains in [START_REF] Pieczynski | Triplet partially Markov chains and tree[END_REF]). HCRFs consist of adding a latent variable 𝑈 1:𝑁 , and considering the triplet (𝑋 1:𝑁 , 𝑈 1:𝑁 , 𝑌 1:𝑁 ) . By setting 𝑉 1:𝑁 = (𝑋 1:𝑁 , 𝑈 1:𝑁 ) , HCRF is given assuming that (𝑉 1:𝑁 , 𝑌 1:𝑁 ) is a CRF. HCRFs are more general than CRFs because in HCRF (𝑋 1:𝑁 , 𝑈 1:𝑁 , 𝑌 1:𝑁 ) the couple (𝑋 1:𝑁 , 𝑈 1:𝑁 ) is Markov (conditionally on 𝑌 1:𝑁 ), and 𝑋 1:𝑁 may be Markovian or may not be Markovian. HCRFs are applicable in all situations CRFs are, and there is an abundant literature showing their interest. In particular, they have been applied to telephone classification [START_REF] Gunawardana | Hidden conditional random fields for phone classification[END_REF], [START_REF] Sung | Hidden conditional random fields for phone recognition[END_REF], detection of cell division [START_REF] Ong | Detecting cell division of Pseudomonas aeruginosa bacteria from bright-field microscopy images with hidden conditional random fields[END_REF], human action recognition [START_REF] Vrigkas | Robust incremental hidden conditional random fields for human action recognition[END_REF], [START_REF] Wang | Hidden part models for human action recognition: probabilistic versus max margin[END_REF], human facial expression recognition [START_REF] Siddiqi | Human facial expression recognition using stepwise linear discriminant analysis and hidden conditional random fields[END_REF], gesture recognition [START_REF] Sy | Hidden conditional random fields for gesture recognition[END_REF], fault diagnosis [START_REF] Tang | Wireless sensor-networks conditions monitoring and fault diagnosis using neighborhood hidden conditional random field[END_REF], CET image segmentation [START_REF] Trullo | Segmentation of organs at risk in thoracic CT images using a SharpMask architecture and conditional random fields[END_REF], and many others. A similar idea has been proposed for PMMs in [START_REF] Pieczynski | Triplet partially Markov chains and tree[END_REF], leading to "triplet" PMMs (TPMMs). TPMMs have been applied to non-stationary Markov chains hidden with long memory noise in [START_REF] Lanchantin | Unsupervised segmentation of triplet Markov chains hidden with long-memory noise[END_REF]. According to the theorem, we can state that HCRFs and TPPMs are equivalent. This opens up enormous possibilities of applications of TPPMs in situations where HCRFs have performed well and where the sequential nature of TPMMs is of interest Once the equivalence between PMMs and CRFs has been established, we propose in section III the following contribution, which is related to particular PMMs called "pairwise Markov chains" (PMCs, [START_REF] Pieczynski | Pairwise Markov chains[END_REF]). The distribution of PMCs is given by 𝑞(𝑥 1:𝑁 , 𝑦 ) . This shows that PMCs are clearly more general than HMMs and, indeed, the interest of the former over the latter is highlighted in various articles. In particular, they have been applied to image segmentation [START_REF] Ameur | Color images segmentation using pairwise Markov chain[END_REF], [START_REF] Atiampo | Unsupervised image segmentation with pairwise Markov chains based on nonparametric estimation of copula using orthogonal polynomials[END_REF], [START_REF] Gangloff | Deep parameterizations of pairwise and triplet Markov models for unsupervised classification of sequential data[END_REF], [START_REF] Pieczynski | Pairwise Markov chains[END_REF], sound classification [START_REF] Le Cam | Fuzzy pairwise Markov chain to segment correlated noisy data[END_REF], fuzzy segmentation [START_REF] Le Cam | Fuzzy pairwise Markov chain to segment correlated noisy data[END_REF], or multiple target tracking [START_REF] Liu | Particle probability hypothesis density filter based on pairwise Markov chains[END_REF], [START_REF] Mahler | The pairwise-Markov Bernoulli filter[END_REF], [START_REF] Petetin | Bayesian multi-object filtering for pairwise Markov chains[END_REF]. An extension to apply Bayesian variational Bayesian methods is proposed in [START_REF] Morales | Variational bayesian inference for pairwise Markov models[END_REF], and some theoretical studies can be found in [START_REF] Kuljus | Pairwise Markov models and hybrid segmentation approach[END_REF], [START_REF] Lember | Exponential forgetting of smoothing distributions for pairwise Markov models[END_REF], [START_REF] Lember | Regenerativity of Viterbi process for pairwise Markov models[END_REF], [START_REF] Lember | Local Viterbi property in decoding[END_REF]. Since PMCs are applicable under the same conditions as HMMs while being more general, it is interesting to ask which family of CRFs is equivalent to PMCs. Our contribution consists in characterizing the family of CRFs equivalent to PMCs. More precisely, we show that a CRF 𝑝(𝑥 

𝑝(𝑥 1:𝑁 |𝑦 1:𝑁 ) = (1.9) 𝜅(𝑦 1:𝑁 )𝑒𝑥𝑝[∑ 𝑉 𝑛 (𝑥 𝑛 , 𝑥 𝑛+1 ) 𝑁-1 𝑛=1 + ∑ 𝑈 𝑛 (𝑥 𝑛 , 𝑦 𝑛 ) 𝑁 𝑛=1
],

where 𝜅(𝑦 1:𝑁 ) is the normalizing constant, we find again the fact that it is equivalent to classic HMM (1.8), which has been recently established in a direct way in [START_REF] Azeraf | Equivalence between LC-CRF and HMM, and discriminative computing of HMM-based MPM and MAP[END_REF]. Subsequently, another case studied shows that the classic Minimum Entropy Markov Models (MEMMs [START_REF] Mccallum | Maximum Entropy Markov Models for information extraction and segmentation[END_REF]) are equivalent to particular PMCs. Dependence graphs of HMMs, PMCs, and PMMs are presented in Figure.

This article is organized as follows. In the next section, we show the equivalence, in the sense of definition 1.1, between PMMs (1.1) and CRFs (1.2). In Section III, we specify the CRFs equivalent to PMCs. We also specify the family of CRFs equivalent to triplet Markov chains (TMCs [START_REF] Pieczynski | Triplet Markov chains in hidden signal restoration[END_REF]). We present conclusions and perspectives in Section IV. 
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EQUIVALENCE BETWEEN PMMS AND CRFS

In this paragraph, we show that for each CRF (1.2) there exists an equivalent PMM (1.1). More precisely, we specify how to compute all distributions 𝑞(𝑥 1 ), 𝑞(𝑦 Remark 2.1 CRFs and PMMs are equivalent; however, they are parameterized differently and can therefore give different results in real applications. Indeed, in real applications, one has to estimate the parameters in a preliminary step. Since the parameters are different in CRFs and PMMs, the estimators used are different and may be more or less suitable for the intended application. Thus, even in real-life situations where the sequential nature of PMMs is not of importance, there is no reason to prefer one family of models to the other. Therefore, even in situations where the sequential nature of PMMs is not important and where CRFs -or HCRFs, see remark 2.2 below -give excellent results, it is still worth applying PMMs -or TPMMs -for comparison.

Remark 2.2

As mentioned in Introduction, equivalence between CRFs and PMMs implies equivalence between "hidden" CRFs (HCRFs, [START_REF] Quattoni | Conditional random fields for object recognition[END_REF], [START_REF] Quattoni | Hidden conditional random fields[END_REF]) and "triplet" PMMs (TPMMs, [START_REF] Pieczynski | Triplet partially Markov chains and tree[END_REF]). Indeed, HCRFs (or TPMMs) (𝑋 1:𝑁 , 𝑈 1:𝑁 , 𝑌 1:𝑁 ) also are CRFs (or PMMs) (𝑉 1:𝑁 , 𝑌 1:𝑁 ), with 𝑉 1:𝑁 = (𝑋 1:𝑁 , 𝑈 1:𝑁 ).

CRFS EQUIVALENT TO PMCS

Consider the "pairwise Markov chains" given by (1.7). As PMCs are an extension of HMMs, they are applicable in the same situations and are likely to improve the results provided by HMMs. As we shall see, some CRFs presented as alternative to HMMs are equivalent to PMCs. This is the case for Maximum Entropy Markov Models (MEMMs) [START_REF] Mccallum | Maximum Entropy Markov Models for information extraction and segmentation[END_REF].

Proposition 3.1 below, which we can consider as a corollary of the theorem, characterizes the family of CRFs equivalent to the family of PMCs. . We note that in such a PMM 𝑌 1 , …, 𝑌 𝑁 are independent and equidistributed, which may seem somewhat unusual. However, this has no bearing on the problem of finding 𝑋 1:𝑁 from 𝑌 1:𝑁 with Bayesian classifiers; indeed, they are independent from 𝑝(𝑥 1:𝑁 , 𝑦 1:𝑁 ). We have

𝑞(𝑥 1:𝑁 , 𝑦 1:𝑁 ) = 𝑞(𝑥 1 , 𝑦 1 ) ∏ 𝑞(𝑥 𝑛+1 , 𝑦 𝑛+1 |𝑥 𝑛 , 𝑦 1:𝑛 ) = 𝑁-1 𝑛=1 c 𝑁 𝑞(𝑥 1 |𝑦 1 ) ∏ 𝑞(𝑥 𝑛+1 |𝑥 𝑛 , 𝑦 1:𝑛+1 ) 𝑁-1 𝑛=1 (3.2) 
According to the Theorem, 𝑞(𝑥 𝑛+1 |𝑥 𝑛 , 𝑦 1:𝑛+1 ) are computable by the following backward recursion:

-𝛽 𝑁 (𝑥 𝑁 ) = 1, 𝑞(𝑥 𝑁 |𝑥 𝑁-1 , 𝑦 1:𝑁 ) = 𝑝(𝑥 𝑁 |𝑥 𝑁-1 , 𝑦 1:𝑁 );

-𝛽 𝑛 (𝑥 𝑛 ) = c ∑ 𝑞(𝑥 𝑛+1 |𝑥 𝑛 , 𝑦 1:𝑛 )𝛽 𝑛+1 (𝑥 𝑛+1 ) 𝑥 𝑛+1 = c 𝑁-𝑛 ; -𝑞(𝑥 𝑛 |𝑥 𝑛-1 , 𝑦 1:𝑛 ) = c 𝑛-𝑁 [∑ 1 𝑝(𝑥 𝑛 |𝑥 𝑛-1 ,𝑦 1:𝑁 ) 𝑦 𝑛+1:𝑁 ] -1 ; -𝑞(𝑥 1 |𝑦 1 ) = [∑ 𝑞(𝑦 2:𝑁 |𝑥 1 ,𝑦 1 ) 𝑝(𝑥 1 |𝑦 1:𝑁 ) 𝑦 2:𝑁 ] -1 .
Knowing that the classifiers only depend on 𝑝(𝑥 1:𝑁 |𝑦 1:𝑁 ), this shows that any "generative" classifier defined from a PMM can be calculated in a discriminative way, by replacing in the calculations 𝑞(𝑦 2 |𝑥 1 , 𝑦 1 ) , …, 𝑞(𝑦 𝑁 |𝑥 𝑁-1 , 𝑦 1:𝑁-1 ) by 𝑐 = .

We remark that 𝑞(𝑥 𝑛+1 |𝑥 𝑛 , 𝑦 𝑛 , 𝑦 𝑛+1 ) = 𝑞(𝑥 𝑛+1 |𝑥 𝑛 , 𝑦 𝑛+1 ).

As in example 3. , so that 𝑝(𝑥 𝑛+1 , 𝑦 1:𝑛+1 ) can be computed from 𝑝(𝑥 𝑛 , 𝑦 1:𝑛 ) with complexity #Λ , and hence 𝑝(𝑥 𝑛+1 |𝑦 1:𝑛+1 ) is computable from 𝑝(𝑥 𝑛 |𝑦 1:𝑛 ) with complexity 2(#Λ) , independent from 𝑛. Remark 3.2 Consider a HCRF (𝑋 1:𝑁 , 𝑈 1:𝑁 , 𝑌 1:𝑁 ) such that the CRF (𝑉 1:𝑁 , 𝑌 1:𝑁 ) -where 𝑉 1:𝑁 = (𝑋 1:𝑁 , 𝑈 1:𝑁 ) -verifies (3.1). It is then equivalent to PMCs (𝑉 1:𝑁 , 𝑌 1:𝑁 ) = (𝑋 1:𝑁 , 𝑈 1:𝑁 , 𝑌 1:𝑁 ), models know as "triplet Markov chains" (TMCs) [START_REF] Pieczynski | Triplet Markov chains in hidden signal restoration[END_REF]. Here the situation is the opposite to those mentioned in examples 2.1 and 2.2: authors have applied TMCs in different situations, while there was no obvious reason for CRF specialists to be interested in their equivalent CRFs verifying (3.1). More precisely, TMCs have found applications in the modelling of nonstationary time series of normalized vegetation indices [START_REF] Ben Abbes | A non-stationary NDVI time series modelling using triplet Markov chain[END_REF], the segmentation of 3D magnetic resonance brain imaging [START_REF] Brick | Triplet Markov chain for 3D MRI brain segmentation using a probabilistic atlas[END_REF], the modelling of consumer loan repayment behavior [START_REF] Chen | Modeling repayment behavior of consumer loan in portfolio across business cycle: A triplet Markov model approach[END_REF], the activity classification [START_REF] Li | An adaptive and on-line IMU-based locomotion activity classification method using a triplet Markov model[END_REF], or non-stationary sequences or images segmentation [START_REF] Boudaren | Phasic triplet Markov chains[END_REF], [START_REF] Fernandes | Non-stationary data segmentation with hidden evidential semi-Markov chains[END_REF], or [START_REF] Gangloff | Deep parameterizations of pairwise and triplet Markov models for unsupervised classification of sequential data[END_REF] where the third process is continuous. Let us also cite recent TMCs using variational Bayesian inference [START_REF] Morales | Variational bayesian inference for pairwise Markov models[END_REF], [START_REF] Morales | A probabilistic semi-supervised approach with triplet Markov chains[END_REF]. As TMCs are particular TPMMs, they are equivalent to a subfamily of CRFs. This means that in situations where the sequential nature of TMCs is not required, the results obtained with a TMC are likely to be improved with a more general CRF.

CONCLUSIONS AND PERSPECTIVES

We studied the relationships between CRFs and different HMM extensions. The main contribution is the proof of equivalence, within the meaning of definition 1.1, between CRFs [START_REF] Lafferty | Conditional random fields: probabilistic models for segmenting and labeling sequence data[END_REF] and PMMs [START_REF] Pieczynski | Triplet partially Markov chains and tree[END_REF]. More precisely, for each CRF (1.2), we have given all PMMs (1.1) whose posterior distribution is the given CRF.

In summary, we have the following four equivalences: (iv) Hidden CRFs (HCRFs [START_REF] Quattoni | Conditional random fields for object recognition[END_REF], [START_REF] Quattoni | Hidden conditional random fields[END_REF]) are equivalent to Triplet PMMs (TPMMs [START_REF] Pieczynski | Triplet partially Markov chains and tree[END_REF]). Point (i) was recently established in [START_REF] Azeraf | Equivalence between LC-CRF and HMM, and discriminative computing of HMM-based MPM and MAP[END_REF] (see also [START_REF] Heigold | Equivalence of Generative and Log-Linear Models[END_REF], where a similar result is established under stronger assumptions), points (ii) to (iv) are contributions of the article. The potential application interest of these results is that the HMM, PMC, PMM and TPMM are sequential -within the meaning of remark 3.1 -, while the CRFs are not. This means that in situations where sequential processing is attractive, it is possible to use HMM, PMC, PMM or TPMM instead of equivalent CRFs without losing modeling power. In cases where the sequential nature of treatments is not essential, no family is a priori more interesting than the other; indeed, both families have identical modeling power. However, because their parameters are different, the parameter estimates are different and, therefore, the final yields may be different. In such situations, it would be interesting to test both models, because even if the effectiveness of a model from one family is satisfactory, it can be improved by a model from the other family.

Definition 1 . 1 (

 11 1:𝑁 , 𝑦 1:𝑁 ) = (1.1) 𝑞(𝑥 1 )𝑞(𝑦 1 |𝑥 1 ) ∏ 𝑞(𝑥 𝑛+1 , 𝑦 𝑛+1 |𝑥 𝑛 , 𝑦 1:𝑛 ) paper, we adopt the following definitions: i) a distribution 𝑞(𝑥 1:𝑁 , 𝑦 1:𝑁 ) is "equivalent" to a distribution 𝑝(𝑥 1:𝑁 |𝑦 1:𝑁 ) if and only if (iff) 𝑞(𝑥 1:𝑁 |𝑦 1:𝑁 ) = 𝑝(𝑥 1:𝑁 |𝑦 1:𝑁 ); (1.3) (ii) two distributions 𝑟(𝑥 1:𝑁 , 𝑦 1:𝑁 ) , 𝑠(𝑥 1:𝑁 , 𝑦 1:𝑁 ) are equivalent iff 𝑟(𝑥 1:𝑁 |𝑦 1:𝑁 ) = 𝑠(𝑥 1:𝑁 |𝑦 1:𝑁 ). (1.4) Let us consider the following popular CRFs distribution: 𝑝(𝑥 1:𝑁 |𝑦 1:𝑁 ) = 𝑐𝑒 -[∑ 𝜑(𝑥 𝑛 ,𝑥 𝑛+1 ,𝑦 1:𝑁 )

Figure .

 . Figure. Dependence graphs. (a): hidden Markov model (HMM); (b) pairwise Markov chain (PMC); (c) partially Markov model (PMM).

Proof. 1 ,

 1 Since 𝑟(𝑣, 𝑤) = 𝑟(𝑤|𝑣)𝑞(𝑣) = 𝑟(𝑣|𝑤)𝑝(𝑤) , we have 𝑟(which gives (2.22) and completes the proof. 

1 =Example 3 . 1

 131 𝑛+1 |𝑥 𝑛 , 𝑦 1:𝑁 ) = 𝑞(𝑦 𝑛+1 |𝑥 𝑛 , 𝑦 𝑛 )𝑞(𝑥 𝑛+1 |𝑥 𝑛 , 𝑦 𝑛+1 )𝛽 𝑛+1 (𝑥 𝑛+1 ) 𝛽 𝑛 (𝑥 𝑛 ) = 𝑞(𝑥 𝑛+1 |𝑥 𝑛 , 𝑦 𝑛+1:𝑁 ). Thus 𝑝(𝑥 𝑛+1 |𝑥 𝑛 , 𝑦 1:𝑁 ) = 𝑝(𝑥 𝑛+1 |𝑥 𝑛 , 𝑦 𝑛+1:𝑁 ) , which is (3.1); 2. Let 𝑝(𝑥 1:𝑁 |𝑦 1:𝑁 ) be a CRF (1.2) verifying (3.1). We have 𝑞(𝑥 𝑁 |𝑥 𝑁-1 , 𝑦 1:𝑁 ) = 𝑝(𝑥 𝑁 |𝑥 𝑁-1 , 𝑦 1:𝑁 ). Conversely, let us show that 𝑞(𝑥 𝑛+1 |𝑥 𝑛 , 𝑦 1:𝑛+1 ) = 𝑞(𝑥 𝑛+1 |𝑥 𝑛 , 𝑦 𝑛+1 ) implies 𝑞(𝑥 𝑛 |𝑥 𝑛-1 , 𝑦 1:𝑛 ) = 𝑞(𝑥 𝑛 |𝑥 𝑛-1 , 𝑦 𝑛 ) . We look for a PMC in which 𝑞(𝑦 𝑛+1:𝑁 |𝑥 𝑛 , 𝑦 1:𝑛 ) = 𝑞(𝑦 𝑛+1:𝑁 |𝑥 𝑛 , 𝑦 𝑛 ). Then (2.15) gives 𝑞(𝑥 𝑛 |𝑥 𝑛-1 , 𝑦 1:𝑛 ) = [∑ 𝑞(𝑦 𝑛+1:𝑁 |𝑥 𝑛 ,𝑦 1:𝑛 ) 𝑝(𝑥 𝑛 |𝑥 𝑛-1 ,𝑦 1𝑛+1:𝑁 |𝑥 𝑛 ,𝑦 𝑛 ) 𝑝(𝑥 𝑛 |𝑥 𝑛-1 ,𝑦 𝑛:𝑁 ) 𝑦 𝑛+1:𝑁 ] -𝑝(𝑥 𝑛 |𝑥 𝑛-1 ,𝑦 𝑛:𝑁 ) ∑ 𝑞(𝑦 𝑛+1:𝑁 |𝑥 𝑛 ,𝑦 𝑛 ) 𝑦 𝑛+1:𝑁 = 𝑝(𝑥 𝑛 |𝑥 𝑛-1 , 𝑦 𝑛:𝑁 ) , which completes the proof. Let 𝑝(𝑥 1:𝑁 |𝑦 1:𝑁 ) be a CRF defined with 𝑝(𝑥 1 |𝑦 1:𝑁 ), 𝑝(𝑥 2 |𝑥 1 , 𝑦 1:𝑁 ), …, 𝑝(𝑥 𝑁 |𝑥 𝑁-1 , 𝑦 1:𝑁 ). What is the simplest equivalent PMM 𝑞(𝑥 1:𝑁 , 𝑦 1:𝑁 ) ? Since 𝑞(𝑦 1 ) , 𝑞(𝑦 2 |𝑥 1 , 𝑦 1 ) , …, 𝑞(𝑦 𝑁 |𝑥 𝑁-1 , 𝑦 1:𝑁-1 ) are arbitrary, let us take them all equal to the constant 𝑐 = 1 #Λ

Example 3 . 2 3 )

 323 PMMs the results related to Maximum a posteriori (MAP) and Maximum posterior mode (MPM) classifiers presented in the framework of HMMs in [3]. In classic HMM 𝑞(𝑥 1:𝑁 , 𝑦 1:𝑁 ) we have 𝑞(𝑥 𝑛+1 , 𝑦 𝑛+1 |𝑥 𝑛 , 𝑦 𝑛 ) = 𝑞(𝑥 𝑛+1 |𝑥 𝑛 )𝑞(𝑦 𝑛+1 |𝑥 𝑛+1 ). Then 𝑞(𝑦 𝑛+1 |𝑥 𝑛 , 𝑦 𝑛 ) = ∑ 𝑞(𝑥 𝑛+1 |𝑥 𝑛 )𝑞(𝑦 𝑛+1 |𝑥 𝑛+1 ) 𝑞(𝑥 𝑛+1 |𝑥 𝑛 , 𝑦 𝑛 , 𝑦 𝑛+1 ) = 𝑞(𝑥 𝑛+1 |𝑥 𝑛 )𝑞(𝑦 𝑛+1 |𝑥 𝑛+1 ) ∑ 𝑞(𝑥 𝑛+1 |𝑥 𝑛 )𝑞(𝑦 𝑛+1 |𝑥 𝑛+1 ) 𝑥 𝑛+1

  (i) Simple CRFs (1.10) are equivalent to HMMs (1.8); (ii) CRFs satisfying (3.1) are equivalent to pairwise Markov chains (1.7); (iii) General CRFs (1.2) are equivalent to PMMs (1.1);

  If so, can probabilities 𝑞(𝑥 1 )𝑞(𝑦 1 |𝑥 1 ), 𝑞(𝑥 𝑛+1 , 𝑦 𝑛+1 |𝑥 𝑛 , 𝑦 1:𝑛 ) in (1.1) be calculated from the probabilities 𝑝(𝑥 1 |𝑦 1:𝑁 ), 𝑝(𝑥 𝑛+1 |𝑥 𝑛 , 𝑦 1:𝑁 ) in (1.2) ? Can we specify all the solutions of the problem? We answer these questions in the theorem in the next section. Let us remark that one immediate practical consequence is that if we wish to estimate of 𝑋 1:𝑁 from 𝑌 1:𝑁 by a Bayesian classifier, we can use either CRFs or any equivalent PMMs. Indeed, Bayesian estimators only depend on the a posteriori distribution 𝑝(𝑥 1:𝑁 |𝑦 1:𝑁 ).

Azeraf is with Watson Department, IBM France. E-mail elie.azeraf@gmail.com  W. Pieczynski is with Samovar Telecom Sudparis Institut Polytechnique de Paris, Palaiseau, France. E-mail: wojciech.pieczynski@telecom-sudparis.eu L that 𝑞(𝑥 1:𝑁 |𝑦 1:𝑁 ) = 𝑝(𝑥 1:𝑁 |𝑦 1:𝑁 ) ?

  Proof. 1. Let 𝑊 1:𝑁 be Markov : 𝑝(𝑤 1 , … , 𝑤 𝑁 ) = 𝑝(𝑤 1 )𝑝(𝑤 2 | 𝑤 1 )𝑝(𝑤 3 | 𝑤 2 ) … 𝑝(𝑤 𝑁 | 𝑤 𝑁-1 ). Then (2.1) is verified by 𝜑 1 (𝑤 1 , 𝑤 2 ) = 𝑝(𝑤 1 )𝑝(𝑤 2 | 𝑤 1 ), 𝜑 2 (𝑤 2 , 𝑤 3 ) = 𝑝(𝑤 3 | 𝑤 2 ), …, 𝜑 𝑁-1 (𝑤 𝑁-1 , 𝑤 𝑁 ) = 𝑝(𝑤 𝑁 | 𝑤 𝑁-1 ). Let 𝑋 1:𝑁 = (𝑋 1 , … , 𝑋 𝑁 ) , 𝑌 1:𝑁 = (𝑌 1 , … , 𝑌 𝑁 ) be two stochastic sequences taking their values in finite sets 𝛬, 𝛺, respectively.Proof. The proof is immediate applying Lemma 1 to𝑋 1:𝑁 = 𝑊 1:𝑁 , 𝜑 1 (𝑥 1 , 𝑥 2 ) = 𝑞(𝑥 1 , 𝑦 1 )𝑞(𝑥 2 , 𝑦 2 |𝑥 1 , 𝑦 1:2 ) , 𝜑 2 (𝑥 2 , 𝑥 3 ) = 𝑞(𝑥 3 , 𝑦 3 |𝑥 2 , 𝑦 1:2 ) , …, 𝜑 𝑁-1 (𝑥 𝑁-1 , 𝑥 𝑁 ) = 𝑞(𝑥 𝑁 , 𝑦 𝑁 |𝑥 𝑁-1 , 𝑦 1:𝑁 ) The theorem below specify the reverse proposition, which is more difficult to prove and is the core contribution of the paper.𝛽 𝑛 (𝑥 𝑛 ) = 𝑞(𝑦 𝑛+1:𝑁 |𝑥 𝑛 , 𝑦 1:𝑛 ) for 𝑛 = 𝑁 -1, …, 1. 𝑞(𝑥 𝑁 |𝑥 𝑁-1 , 𝑦 1:𝑁 ) = 𝑝(𝑥 𝑁 |𝑥 𝑁-1 , 𝑦 1:𝑁 );We search a PMM 𝑞(𝑥 1:𝑁 , 𝑦 1:𝑁 ) (2.12) verifying 𝑞(𝑥 1:𝑁 | 𝑦 1:𝑁 ) = 𝑝(𝑥 1:𝑁 | 𝑦 1:𝑁 ). This equality is equivalent to 𝑞(𝑥 𝑁 |𝑥 𝑁-1 , 𝑦 1:𝑁 ) = 𝑝(𝑥 𝑁 |𝑥 𝑁-1 , 𝑦 1:𝑁 ), 𝑞(𝑥 𝑁-1 |𝑥 𝑁-2 , 𝑦 1:𝑁 ) = 𝑝(𝑥 𝑁-1 |𝑥 𝑁-2 , 𝑦 1:𝑁 ), ) for the one in the first line, equation (2) for the one in the second line, …, equation (N-1) for the last equation. To show that all the equations are true with 𝑞(𝑥 𝑁 |𝑥 𝑁-1 , 𝑦 1:𝑁 ) , …, 𝑞(𝑥 1 |𝑦 1:𝑁 ) verifying (2.15), we show that the first equation in (2.17) is true, and we show that if the first 𝑁 -𝑛 equations (for 1 ≤ 𝑛 ≤ 𝑁 -1 ) are true with 𝑞(𝑥 𝑁 |𝑥 𝑁-1 , 𝑦 𝑞(𝑥 𝑛+1 |𝑥 𝑛 , 𝑦 1:𝑛+1 ) and 𝑞(𝑦 𝑁 |𝑥 𝑁-1 , 𝑦 1:𝑁-1 ) , …, 𝑞(𝑦 𝑛+1 |𝑥 𝑛 , 𝑦 1:𝑛 ) , the latter sequence being arbitrary but fixed in the proof), can we find 𝑞(𝑥 𝑛 |𝑥 𝑛-1 , 𝑦 1:𝑛 ) such that (2.20) holds with 𝑞(𝑥 𝑛 |𝑥 𝑛-1 , 𝑦 1:𝑁 ) = 𝑝(𝑥 𝑛 |𝑥 𝑛-1 , 𝑦 1:𝑁 ) ? Consider 𝑟(. ) distributions on Λ conditional on (𝑥 𝑛-1 , 𝑦 1:𝑛 ), and let us set 𝑣 = 𝑥 𝑛 , 𝑤 = 𝑦 𝑛+1:𝑁 . The question above is equivalent to: can we find 𝑟(𝑣) such that

							𝛽 1 (𝑤 1 ) ∑ 𝛽 1 (𝑤 1 ) 𝑤 1	;
	For a given PMM 𝑞(𝑥 1:𝑁 , 𝑦 1:𝑁 ) , let us consider the "backward" probabilities 𝛽 𝑁 (𝑥 𝑁 ) = 1, and 𝑟(𝑣|𝑤) = 𝑟(𝑣)𝑟(𝑤|𝑣) ? (2.21) 𝑟(𝑤) In other words, we have 𝑟(𝑣|𝑤) and 𝑟(𝑤|𝑣), and we (2.8) search 𝑟(𝑣) verifying (2.21). According to Lemma 2 Similarly to what is true in classic HMMs, they verify (2.7), rewritten as 𝛽 𝑁 (𝑥 𝑁 ) = 1, and (2.9) 𝛽 𝑛 (𝑥 𝑛 ) = (2.10) ∑ 𝑞(𝑦 𝑛+1 |𝑥 𝑛 , 𝑦 1:𝑛 )𝑞(𝑥 𝑛+1 |𝑥 𝑛 , 𝑦 1:𝑛+1 )𝛽 𝑛+1 (𝑥 𝑛+1 ) 𝑥 𝑛+1 be a CRF. Then the PMM 𝑞(𝑥 1:𝑁 , 𝑦 1:𝑁 ) = (2.12) 𝑞(𝑦 1 )𝑞(𝑥 1 |𝑦 1 ) ∏ 𝑞(𝑦 𝑛+1 |𝑥 𝑛 , 𝑦 1:𝑛 )𝑞(𝑥 𝑛+1 |𝑥 𝑛 , 𝑦 1:𝑛+1 ) 𝑁-1 𝑛=1 below, the solution is 𝑟(𝑣) = [∑ 𝑟(𝑤|𝑣) 𝑟(𝑣|𝑤) 𝑤 ] -1 . (2.22) Since 𝑞(𝑦 𝑛+1:𝑁 |𝑥 𝑛 , 𝑦 1:𝑛 ) = 𝛽 𝑛 (𝑥 𝑛 ), (2.22) is equivalent to (2.15). Finally, (2.16) is obtained applying Lemma 2 to 𝑟(.	𝑝(𝑤 𝑛+1 |𝑤 𝑛 ) = …, where 𝛽 1 (𝑤 1 ), …, 𝛽 𝑁 (𝑤 𝑁 ) verify the backward recursion 𝜑 𝑛 (𝑤 𝑛 ,𝑤 𝑛+1 )𝛽 𝑛+1 (𝑤 𝑛+1 ) , (2.17) (2.2) 𝛽 𝑛 (𝑤 𝑛 ) 𝛽 𝑁 (𝑤 𝑁 ) = 1, 𝛽 𝑛 (𝑤 𝑛 ) = ∑ 𝜑 𝑛 (𝑤 𝑛 , 𝑤 𝑛+1 )𝛽 𝑛+1 (𝑤 𝑛+1 ) 𝑤 𝑛+1 . 𝑞(𝑥 2 |𝑥 1 , 𝑦 1:𝑁 ) = 𝑝(𝑥 2 |𝑥 1 , 𝑦 1:𝑁 ), 𝑞(𝑥 1 |𝑦 1:𝑁 ) = 𝑝(𝑥 1 |𝑦 1:𝑁 ). Let's number the equations (2.17) as follows: equation (2.3) 𝑝(𝑤 1 ,…,𝑤 𝑛 ,𝑤 𝑛+1 ) 𝑝(𝑤 1 ,…,𝑤 𝑛 ) = (2.4) On the one hand, we see that 𝛽 𝑛 (𝑤 𝑛 ) = ∑ 𝜑 𝑛 (𝑤 𝑛 , 𝑤 𝑛+1 )𝛽 𝑛+1 (𝑤 𝑛+1 ) 𝑤 𝑛+1 . On the other hand, according to (2.4) we 𝜑 𝑛 (𝑤 𝑛 ,𝑤 𝑛+1 )𝛽 𝑛+1 (𝑤 𝑛+1 ) 𝛽 𝑛 (𝑤 𝑛 ) . As 𝑝(𝑤 1 ) = 𝛽 1 (𝑤 1 ) ∑ 𝛽 1 (𝑤 1 ) 𝑤 1 𝑝(𝑥 𝑛 |𝑥 𝑛-1 , 𝑦 1:𝑁 ). , (2.2) and (N -𝑛 -1) th equation 𝑞(𝑥 𝑛 |𝑥 𝑛-1 , 𝑦 1:𝑁 ) = have 𝑝(𝑤 𝑛+1 |𝑤 𝑛 ) = (1verified for
							(2.3) are verified, which ends the proof.  We have
							Proposition 2.1 𝑞(𝑥 𝑛 |𝑥 𝑛-1 , 𝑦 1:𝑁 ) = 𝑞(𝑥 𝑛 |𝑥 𝑛-1 , 𝑦 1:𝑛 , 𝑦 𝑛+1:𝑁 ) =
	for 𝑛 = 𝑁 -1, …, 2:					(2.14)	Let 𝑞(𝑥 1:𝑁 , 𝑦 1:𝑁 ) be a PMM of form (1.1). Then 𝑞(𝑥 1:𝑁 |𝑦 1:𝑁 ) is a of form (1.2), with 𝑞(𝑥 𝑛 , 𝑦 𝑛+1:𝑁 |𝑥 𝑛-1 , 𝑦 1:𝑛 ) 𝑞(𝑦 𝑛+1:𝑁 |𝑥 𝑛-1 , 𝑦 1:𝑛 ,) = (2.18) 𝑞(𝑥 𝑛 |𝑥 𝑛-1 , 𝑦 1:𝑛 )𝑞(𝑦 𝑛+1:𝑁 |𝑥 𝑛-1 , 𝑥 𝑛 , 𝑦 1:𝑛 ) 𝑞(𝑦 𝑛+1:𝑁 |𝑥 𝑛-1 , 𝑦 1:𝑛 ) .
	𝑞(𝑥 𝑛 |𝑥 𝑛-1 , 𝑦 1:𝑛 ) = [∑ where 𝛽 𝑛 (𝑥 𝑛 ) is computed from 𝑞(𝑦 𝑛+1 |𝑥 𝑛 , 𝑦 1:𝑛 ) , 𝛽 𝑛 (𝑥 𝑛 ) 𝑦 𝑛+1:𝑁 ] -1 , (2.15) 𝑝(𝑥 𝑛 |𝑥 𝑛-1 ,𝑦 1:𝑁 ) 𝑞(𝑥 𝑛+1 |𝑥 𝑛 , 𝑦 1:𝑛+1 ), and 𝛽 𝑛+1 (𝑥 𝑛+1 ) with (2.7);	𝑞(𝑥 𝑛+1 |𝑥 𝑛 , 𝑦 1:𝑁 ) = where 𝛽 𝑛 (𝑥 𝑛 ) are defined with 𝑞(𝑥 𝑛+1 , 𝑦 𝑛+1 |𝑥 𝑛 , 𝑦 1:𝑛 )𝛽 𝑛+1 (𝑥 𝑛+1 ) 𝛽 𝑛 (𝑥 𝑛 ) As 𝑞 is a PMM, we can write 𝑞(𝑦 𝑛+1:𝑁 |𝑥 𝑛-1 , 𝑥 𝑛 , 𝑦 1:𝑛 ) = 𝑞(𝑦 𝑛+1:𝑁 |𝑥 𝑛 , 𝑦 1:𝑛 ), (2.19) ,(2.5) 𝛽 𝑛 (𝑥 𝑛 ) = 𝑞(𝑦 𝑛+1:𝑁 |𝑥 𝑛 , 𝑦 1:𝑛 ), (2.6) so that finally we have
	𝑞(𝑥 1 |𝑦 1 ) = [∑	𝑦 2:𝑁	𝑞(𝑦 2:𝑁 |𝑥 1 ,𝑦 1 ) 𝑝(𝑥 1 |𝑦 1:𝑁 )	] -1	.	(2.16)	and can be computed recursively with 𝛽 𝑁 (𝑥 𝑁 ) = 1; 𝑞(𝑥 𝑛 |𝑥 𝑛-1 , 𝑦 1:𝑁 ) = 𝑞(𝑥 𝑛 |𝑥 𝑛-1 , 𝑦 1:𝑛 )𝑞(𝑦 𝑛+1:𝑁 |𝑥 𝑛 , 𝑦 1:𝑛 )
							𝛽 𝑛 (𝑥 𝑛 ) = ∑	𝑥 𝑛+1	𝑞(𝑥 𝑛+1 , 𝑦 𝑛+1 |𝑥 𝑛 , 𝑦 1:𝑛 )𝛽 𝑛+1 (𝑥 𝑛+1 )	(2.7)

1 |𝑦 1 ), 𝑞(𝑥 2 , 𝑦 2 |𝑥 1 , 𝑦 1 ), 𝑞(𝑥 3 , 𝑦 3 |𝑥 1 , 𝑦 1:2 ),…, 𝑞(𝑥 𝑁 , 𝑦 𝑁 |𝑥 𝑁-1 , 𝑦 1:𝑁-1 ), defining all equivalent PMMs (1.1), from 𝑝(𝑥 1 |𝑦 1:𝑁 ) , 𝑝(𝑥 2 |𝑥 1 , 𝑦 1:𝑁 ), …, 𝑝(𝑥 𝑁 |𝑥 𝑁-1 , 𝑦 1:𝑁 ) defining the CRF (1.2) under consideration.

We will use the following Lemma 1.

Lemma 1.

Let 𝑊 1:𝑁 = (𝑊 1 , … , 𝑊 𝑁 ) be random sequence, taking its values in a finite set 𝛥. Then (i) 𝑊 1:𝑁 is a Markov chain iff there exist 𝑁 -1 functions 𝜑 1 , … , 𝜑 𝑁-1 from 𝛥 2 to ℝ + such that

𝑝(𝑤 1 , … , 𝑤 𝑁 ) = 𝐾𝜑 1 (𝑤

1 , 𝑤 2 ) … 𝜑 𝑁-1 (𝑤 𝑁-1 , 𝑤 𝑁 ), (2.1) with 𝐾 constant; (ii) for HMM defined with 𝜑 1 , …, 𝜑 𝑁-1 verifying (2.1), 𝑝(𝑤 1 ) , and 𝑝(𝑤 𝑛+1 |𝑤 𝑛 ) for 𝑛 = 2, …, 𝑁 -1 , are given with 𝑝(𝑤 1 ) = 2. Conversely, let 𝑝(𝑤 1 , … , 𝑤 𝑁 ) verifies (2.1). This implies that for each 𝑛 = 1, …, 𝑁 -1 we have

𝑝(𝑤 𝑛+1 |𝑤 1 , … , 𝑤 𝑛 ) = ∑ 𝜑 1 (𝑤 1 ,𝑤 2 ) …𝜑 𝑛 (𝑤 𝑛 ,𝑤 𝑛+1 )𝜑 𝑛+1 (𝑤 𝑛+1 ,𝑤 𝑛+2 )…𝜑 𝑁-1 (𝑤 𝑁-1 ,𝑤 𝑁 ) (𝑤 𝑛+2 ,…,𝑤 𝑁 ,) ∑ 𝜑 1 (𝑤 1 ,𝑤 2 ) …𝜑 𝑛 (𝑤 𝑛 ,𝑤 𝑛+1 )𝜑 𝑛+1 (𝑤 𝑛+1 ,𝑤 𝑛+2 )…𝜑 𝑁-1 (𝑤 𝑁-1 ,𝑤 𝑁 ) (𝑤 𝑛+1 ,…,𝑤 𝑁 ,) = 𝜑 𝑛 (𝑤 𝑛 ,𝑤 𝑛+1 ) ∑ 𝜑 𝑛+1 (𝑤 𝑛+1 ,𝑤 𝑛+2 )…𝜑 𝑁-1 (𝑤 𝑁-1 ,𝑤 𝑁 ) (𝑤 𝑛+2 ,…,𝑤 𝑁 ,) ∑ 𝜑 𝑛 (𝑤 𝑛 ,𝑤 𝑛+1 )𝜑 𝑛+1 (𝑤 𝑛+1 ,𝑤 𝑛+2 )…𝜑 𝑁-1 (𝑤 𝑁-1 ,𝑤 𝑁 ) (𝑤 𝑛+1 ,𝑤 𝑛+2 ,…,𝑤 𝑁 ,) = 𝑝(𝑤 𝑛+1 | 𝑤 𝑛 ),

which shows that 𝑝(𝑤 1 , … , 𝑤 𝑁 ) is Markov. Besides, let us set, for 𝑛 = 1, …, 𝑁 -1: 𝛽 𝑛 (𝑤 𝑛 ) = ∑ 𝜑 𝑛 (𝑤 𝑛 , 𝑤 𝑛+1 ) … 𝜑 𝑁-1 (𝑤 𝑁-1 , 𝑤 𝑁 ) (,𝑤 𝑛+1 ,…,𝑤 𝑁 )

.

We specify the converse proposition in Theorem below:

Theorem. Let 𝑝(𝑥 1:𝑁 |𝑦 1:𝑁 ) = (2.

11) 𝑝(𝑥 1 |𝑦 1:𝑁 )𝑝(𝑥 2 |𝑥 1 , 𝑦 1:𝑁 ) … 𝑝(𝑥 𝑁 |𝑥 𝑁-1 , 𝑦 1:𝑁 ). is equivalent to 𝑝(𝑥 1:𝑁 |𝑦 1:𝑁 ) if and only if (i) sequence 𝑞(𝑦 1 ), 𝑞(𝑦 2 |𝑥 1 , 𝑦 1 ), …, 𝑞(𝑦 𝑁 |𝑥 𝑁-1 , 𝑦 1:𝑁-1 ) (2.13) is arbitrary; (ii) for given sequence (2.13), 𝑞(𝑥 1 |𝑦 1 ), 𝑞(𝑥 2 |𝑥 1 , 𝑦 1:2 ), …, 𝑞(𝑥 𝑁 |𝑥 𝑁-1 , 𝑦 1:𝑁 ) is defined from 𝑝(𝑥 1:𝑁 |𝑦 1:𝑁 ) and (2.13) with the following backward recursion: Proof. Let 𝑝(𝑥 1:𝑁 |𝑦 1:𝑁 ) be a given CRF (2.11), and 𝑞(𝑦 1 ), 𝑞(𝑦 2 |𝑥 1 , 𝑦 1 ), …, 𝑞(𝑦 𝑁 |𝑥 𝑁-1 , 𝑦 1:𝑁-1 ) arbitrary sequence. 1:𝑁 ) , …, 𝑞(𝑥 1 |𝑦 1:𝑁 ) verifying (2.15), then the (𝑁 -𝑛 -1)th equation also is. As 𝑞(𝑥 𝑁 , 𝑦 𝑁 |𝑥 𝑁-1 , 𝑦 1:𝑁-1 ) = 𝑞(𝑦 𝑁 |𝑥 𝑁-1 , 𝑦 1:𝑁-1 )𝑞(𝑥 𝑁 |𝑥 𝑁-1 , 𝑦 1:𝑁 ), we see that the first equality in (2.17) is verified for 𝑞(𝑥 𝑁 |𝑥 𝑁-1 , 𝑦 1:𝑁 ) = 𝑝(𝑥 𝑁 |𝑥 𝑁-1 , 𝑦 1:𝑁 ) and for any 𝑞(𝑦 𝑁 |𝑥 𝑁-1 , 𝑦 1:𝑁-1 ). Let us assume that 𝑞(𝑥 𝑁 |𝑥 𝑁-1 , 𝑦 1:𝑁 ) , …, 𝑞(𝑥 𝑛+1 |𝑥 𝑛 , 𝑦 1:𝑛+1 ) verify (2.16), and verify (2.17) for 𝑁 -𝑛 first equations. Let us search all 𝑞(𝑥 𝑛 , 𝑦 𝑛 |𝑥 𝑛-1 , 𝑦 1:𝑛-1 ) such that (2.16) is 𝑞(𝑦 𝑛+1:𝑁 |𝑥 𝑛-1 , 𝑦 1:𝑛 ) (2.20) Then the question is: knowing that 𝑞(𝑦 𝑛+1:𝑁 |𝑥 𝑛 , 𝑦 1:𝑛 ) in (2.20) is given (recall that it is equal to 𝛽 𝑛 (𝑥 𝑛 ), given with recursion (2.7) from 𝑞(𝑥 𝑁 |𝑥 𝑁-1 , 𝑦 1:𝑁 ) , …, ) distributions on Λ conditional on 𝑦 1 , and setting 𝑣 = 𝑥 1 , 𝑤 = 𝑦 2:𝑁 , which completes the proof. Lemma 2. Let 𝑉, 𝑊 be two discrete finite random variables taking their values in 𝛬 . Let 𝑟(𝑤|𝑣) , 𝑟(𝑣|𝑤) be two conditional distributions. Then 𝑟(𝑣) is given by (2.22).

  Proof. 1. Let 𝑞(𝑥 1:𝑁 , 𝑦 1:𝑁 ) be a PMC verifying 𝑞(𝑥 1:𝑁 |𝑦 1:𝑁 ) = 𝑝(𝑥 1:𝑁 |𝑦 1:𝑁 ). Thus for 𝑛 = 1, …, 𝑁 -1, 𝑞(𝑥 𝑛+1 |𝑥 𝑛 , 𝑦 1:𝑁 ) = 𝑝(𝑥 𝑛+1 |𝑥 𝑛 , 𝑦 1:𝑁 ) . Setting 𝛽 𝑛 (𝑥 𝑛 ) = 𝑞(𝑦 𝑛+1:𝑁 |𝑥 𝑛 , 𝑦 1:𝑛 ) for 𝑛 = 1, …, 𝑁 -1, and 𝛽 𝑁 (𝑥 𝑁 ) = 1, we have, according to the classic properties of PMCs, 𝛽 𝑛 (𝑥 𝑛 ) = ∑ 𝑞(𝑦 𝑛+1 |𝑥 𝑛 , 𝑦 𝑛 )𝑞(𝑥 𝑛+1 |𝑥 𝑛 , 𝑦 𝑛+1 )𝛽 𝑛+1 (𝑥 𝑛+1 )

	Proposition 3.1 A CRF (1.2) is equivalent to a PMC (1.6) if and
	only if for 𝑛 = 1, …, 𝑁 -1,	
	𝑝(𝑥 𝑛+1 |𝑥 𝑛 , 𝑦 1:𝑁 ) = 𝑝(𝑥 𝑛+1 |𝑥 𝑛 , 𝑦 𝑛+1:𝑁 ).	(3.1)
	𝑥 𝑛+1	

  1, replacing 𝑞(𝑦 𝑛+1 |𝑥 𝑛 , 𝑦 𝑛 ) with 𝑐 = 𝑞(𝑥 1:𝑁 , 𝑦 1:𝑁 ) . As above, we arrive at a model 𝑟(𝑥 1:𝑁 , 𝑦 1:𝑁 ), which may seem odd, in which 𝑌 1 , …, 𝑌 𝑁 are independent and uniformly distributed on Λ, with 𝑟(𝑥 𝑛+1 |𝑥 𝑛 , 𝑦 𝑛 , 𝑦 𝑛+1 ) transitions of a classic HMM. Of course, such a PMM is not an HMM. 𝑥 𝑛 |𝑦 1:𝑁 ) = 𝑝(𝑥 𝑛 |𝑦 1:𝑛 ), whereas in the HMM 𝑝(𝑥 𝑛 |𝑦 1:𝑁 ) depends on all components of 𝑦 1:𝑁 . In other respects the CRF given with HMM is less general then the MEMM. For example, in MEMM 𝑝(𝑥 𝑛+1 |𝑥 𝑛 , 𝑦 𝑛+1 ) are of any form, while in HMM, according to(1.4), they are proportional to the product 𝑝(𝑥 𝑛+1 |𝑥 𝑛 )𝑝(𝑦 𝑛+1 |𝑥 𝑛+1 ), which is therefore a particular form. Moreover, we can notice that MEMM is a CRF verifying 𝑝(𝑥 𝑛+1 |𝑥 𝑛 , 𝑦 1:𝑁 ) = 𝑝(𝑥 𝑛+1 |𝑥 𝑛 , 𝑦 𝑛+1 ). Therefore, according to Proposition 2, MEMM is equivalent to a PMC 𝑞(𝑥 1:𝑁 , 𝑦 1:𝑁 ) given with transitions 𝑞(𝑥 𝑛+1 , 𝑦 𝑛+1 |𝑥 𝑛 , 𝑦 𝑛 ) = 𝑞(𝑦 𝑛+1 |𝑥 𝑛 , 𝑦 𝑛 )𝑞(𝑥 𝑛+1 |𝑥 𝑛 , 𝑦 𝑛 , 𝑦 𝑛+1 ) , where 𝑞(𝑦 𝑛+1 |𝑥 𝑛 , 𝑦 𝑛 ) are arbitrary. Taking them constant as in example 1, we have𝑞(𝑥 𝑛 |𝑥 𝑛-1 , 𝑦 1:𝑛 ) = 𝑞(𝑥 𝑛 |𝑥 𝑛-1 , 𝑦 𝑛-1 , 𝑦 𝑛 ) = 𝑥 𝑛 |𝑥 𝑛-1 , 𝑦 𝑛 ),and so MEMM is equivalent to PMC given with transitions 𝑞(𝑥 𝑛+1 , 𝑦 𝑛+1 |𝑥 𝑛 , 𝑦 𝑛 ) = c𝑝(𝑥 𝑛+1 |𝑥 𝑛 , 𝑦 𝑛+1 ). The advantage of PMM over the CRF form can be seen in the filtering problem. Let 𝑝(𝑥 1:𝑛 |𝑦 1:𝑛 ) be a CRF, and 𝑞(𝑥 1:𝑛 , 𝑦 1:𝑛 ) an equivalent PMM. The is problem is to estimate 𝑋 𝑛 from 𝑌 1:𝑛 , which requires the calculation 𝑝(𝑥 𝑛 |𝑦 1:𝑛 ) . In filtering, it is interesting to calculate 𝑝(𝑥 1 |𝑦 1 ), 𝑝(𝑥 2 |𝑦 1:2 ), …, 𝑝(𝑥 𝑛 |𝑦 1:𝑛 ), 𝑝(𝑥 𝑛+1 |𝑦 1:𝑛+1 ), … as quickly as possible. Let us assume that 𝑝(𝑥 𝑛 |𝑦 1:𝑛 ) = 𝑞(𝑥 𝑛 |𝑦 1:𝑛 ) are given, each with its own parametrization. When using the equivalent CRF form, there is no direct link between 𝑝(𝑥 𝑛 |𝑦 1:𝑛 ) and 𝑝(𝑥 𝑛+1 |𝑦 1:𝑛+1 ), so 𝑝(𝑥 𝑛 |𝑦 1:𝑛 ) cannot be used directly and 𝑝(𝑥 𝑛+1 |𝑦 1:𝑛+1 ) is calculated as the marginal distribution of the Markov chain 𝑝(𝑥 1 |𝑦 1:𝑛+1 ), 𝑝(𝑥 2 |𝑦 1:𝑛+1 ),…, 𝑝(𝑥 𝑛+1 |𝑦 1:𝑛+1 ). This requires 𝑛 sums over Λ, so its complexity is 𝑛(#Λ), which can be a problem when 𝑛 increases. Using the PMM form, we have 𝑝(𝑥 𝑛+1 , 𝑦 1:𝑛+1 ) = ∑ 𝑝(𝑥 𝑛 , 𝑥 𝑛+1 , 𝑦 1:𝑛+1 ) 𝑥 𝑛 , 𝑦 1:𝑛 )𝑝(𝑥 𝑛+1 , 𝑦 𝑛+1 |𝑥 𝑛 , 𝑦 1:𝑛 )

	1 #Λ will not change 𝑞(𝑥 1:𝑁 |𝑦 1:𝑁 ), so PMM 𝑟(𝑥 1:𝑁 , 𝑦 1:𝑁 ) defined with 𝑟(𝑥 1:𝑁 , 𝑦 1:𝑁 ) = 𝑐 𝑁 𝑞(𝑥 1 |𝑦 1 ) ∏ 𝑞(𝑥 𝑛+1 |𝑥 𝑛 , 𝑦 𝑛+1 ) 𝑁-1 𝑛=1 (3.5) is equivalent to the HMM Example 3.3 Let us consider the Maximum Entropy Markov Models (MEMMs) 𝑝(𝑥 1:𝑁 |𝑦 1:𝑁 ) introduced in [33], which can be seen as ancestor of CRFs. They verify 𝑝(𝑥 1:𝑁 |𝑦 1:𝑁 ) = 𝑝(𝑥 1 |𝑦 1 )𝑝(𝑥 2 |𝑥 1 , 𝑦 2 ) … 𝑝(𝑥 𝑁 |𝑥 𝑁-1 , 𝑦 𝑁 ) (3.6) MEMMs have been proposed as alternative to HMMs. MEMMs are neither extensions of HMMS nor particular HMMs. Indeed, in some respects the CRF given with HMM (simply its posterior distribution 𝑝(𝑥 1:𝑁 |𝑦 1:𝑁 )) is more general than MEMM: for example, in MEMM 𝑝([∑ [ 𝑝(𝑥 𝑛 |𝑥 𝑛-1 ,𝑦 𝑛 ) 𝑞(𝑦 𝑛+1:𝑁 |𝑥 𝑛 ,𝑦 1:𝑛 ) 𝑝(𝑥 𝑛 |𝑥 𝑛-1 ,𝑦 1:𝑁 ) 𝑦 𝑛+1:𝑁 1 ] -1 = 𝑝(Remark 3.1 𝑥 𝑛 ∑ 𝑝(𝑥 𝑛	] -1	= [∑	𝑦 𝑛+1:𝑁	𝑞(𝑦 𝑛+1:𝑁 |𝑥 𝑛 ,𝑦 1:𝑛 ) 𝑝(𝑥 𝑛 |𝑥 𝑛-1 ,𝑦 𝑛 ) =	] -1	=

We also noticed that likely in HMMs studied in [3], in PMMs Bayesian generative classifiers can be calculated in a discriminative manner.
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