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Equivalence between conditional random fields 
and partially Markov models 

E. Azeraf and W. Pieczynski 

Abstract—Hidden Markov models (HMM) have been used successfully in various applications for around sixty years. Moreover, 

conditional random fields (CRFs) are considered an alternative to HMMs and appear in the literature as different and somewhat 

competing models. It has recently been shown that basic linear chain CRFs (LC-CRFs), considered different from HMMs, are in fact 

equivalent to them in the sense that for each LC-CRF there exists an HMM, which can be specified, whose a posteriori distribution is 

identical to the given LC-CRF. In this article, we extend this result to general CRFs. We consider partially Markovian models (PMM), 

which are sequentially defined models extending HMMs, and we show that they are equivalent to CRFs. Equivalence means that the 

posterior distributions of the PMMs are CRFs and, conversely, for each given CRF there exists a PMM – which we specify – whose 

posterior distribution is the given CRF. The first assertion is well known and the proof of the second constitutes the main contribution 

of this article. The advantage of presenting a CRF in its PMM form is that the latter is sequential, whereas its original former is not. 

This property is essential in certain sequential processing, such as filtering or forecasting. 

Index Terms— Conditional random fields, Filtering, Hidden Markov models, Pairwise Markov chains, Partially Markov models. 
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1 INTRODUCTION  

ET 𝑍1:𝑁 = (𝑍1, … , 𝑍𝑁)  be a stochastic sequence, with 

𝑍𝑛 = (𝑋𝑛, 𝑌𝑛). Random variables 𝑋1 , … , 𝑋𝑁 take their 

values in a finite set Λ, while 𝑌1, … , 𝑌𝑁  take their values 

either in a discrete or continuous set Ω . Probabilistic 

model is a distribution – or a family of distributions – 

which will be denoted with 𝑝(𝑧1:𝑁) , or 𝑝(𝑥1:𝑁 , 𝑦1:𝑁) . 

More generally, for 1 ≤ 𝑚 < 𝑛 ≤ 𝑁, we will note 𝑧𝑚:𝑛 =

(𝑧𝑚 , … , 𝑧𝑛) , and similarly for 𝑥𝑚:𝑛 , 𝑦𝑚:𝑛 . Conditional 

distributions will be denoted with 𝑝(. |. ). For example, 

we have 𝑝(𝑥𝑛|𝑦1:𝑁) = 𝑃[𝑋𝑛 = 𝑥𝑛|𝑌1:𝑁 = 𝑦1:𝑁] , 

𝑝(𝑥𝑛+1|𝑥1:𝑛) = 𝑃[𝑋𝑛+1 = 𝑥𝑛+1|𝑋1:𝑛 = 𝑥1:𝑛], and so on.   

The aim of the paper is to show the equivalence 

between sequential models called “Partially Markov 

models” (PMMs, [39]) and non-sequential models called 

“Conditional random fields” (CRFs, [21], [47]. The 

interest is that sequential PMMs are easier to manipulate 

than non-sequential CRFs; in particular, they allow new 

observations to be taken into account more easily. This 

contribution shows that apparently less general PMMs 

have actually the same modeling power as CRFs. 

PMMs are defined by the distribution 𝑞(𝑥1:𝑁, 𝑦1:𝑁) 

verifying (1.1), while CRFs considered in this paper are 

defined by the distribution 𝑝(𝑥1:𝑁|𝑦1:𝑁) verifying (1.2).  

 

𝑞(𝑥1:𝑁 , 𝑦1:𝑁) =      (1.1) 

𝑞(𝑥1)𝑞(𝑦1|𝑥1) ∏ 𝑞(𝑥𝑛+1, 𝑦𝑛+1|𝑥𝑛 , 𝑦1:𝑛)𝑁−1
𝑛=1 .   

𝑝(𝑥1:𝑁|𝑦1:𝑁) =      (1.2) 

𝑝(𝑥1|𝑦1:𝑁) ∏ 𝑝(𝑥𝑛+1|𝑥𝑛 , 𝑦1:𝑁)𝑁−1
𝑛=1 ,  

In the whole paper, we adopt the following definitions: 

Definition 1.1 

(i) a distribution 𝑞(𝑥1:𝑁 , 𝑦1:𝑁)  is “equivalent” to a 

distribution 𝑝(𝑥1:𝑁|𝑦1:𝑁) if and only if (iff) 

𝑞(𝑥1:𝑁|𝑦1:𝑁) = 𝑝(𝑥1:𝑁|𝑦1:𝑁);  (1.3) 

(ii) two distributions 𝑟(𝑥1:𝑁 , 𝑦1:𝑁) , 𝑠(𝑥1:𝑁, 𝑦1:𝑁)  are 

equivalent iff 

 𝑟(𝑥1:𝑁|𝑦1:𝑁) = 𝑠(𝑥1:𝑁|𝑦1:𝑁).     (1.4) 

Let us consider the following popular CRFs distribution:  

 𝑝(𝑥1:𝑁|𝑦1:𝑁) = 𝑐𝑒−[∑ 𝜑(𝑥𝑛,𝑥𝑛+1,𝑦1:𝑁)𝑁−1
𝑛=1 +∑ 𝜙(𝑥𝑛,𝑦1:𝑁)𝑁

𝑛=1 , (1.5) 

with 𝑐 constant and 𝜑, 𝜙 real valued functions. Actually, 

such distributions are particular cases of (1.2); indeed, 

they are (1.2) with the conditions 𝑝(𝑥1|𝑦1:𝑁) > 0  for 

𝑝(𝑥1|𝑦1:𝑁) , and  𝑝(𝑥𝑛+1|𝑥𝑛 , 𝑦1:𝑁) > 0  for every 𝑛 = 1 , …, 

𝑁 − 1. 

It is easy to see that the posterior distribution 

𝑞(𝑥1:𝑁|𝑦1:𝑁) of a PMM (1.1) is a CRF (1.2); the converse 

proposition is trickier. The problem we deal with is to 

answer the following questions. Having a CRF 

𝑝(𝑥1:𝑁|𝑦1:𝑁) , does there exist a PMM 𝑞(𝑥1:𝑁 , 𝑦1:𝑁)  such 
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that 𝑞(𝑥1:𝑁|𝑦1:𝑁) = 𝑝(𝑥1:𝑁|𝑦1:𝑁) ? If so, can probabilities 

𝑞(𝑥1)𝑞(𝑦1|𝑥1), 𝑞(𝑥𝑛+1, 𝑦𝑛+1|𝑥𝑛 , 𝑦1:𝑛) in (1.1) be calculated 

from the probabilities 𝑝(𝑥1|𝑦1:𝑁), 𝑝(𝑥𝑛+1|𝑥𝑛 , 𝑦1:𝑁) in (1.2) ? 

Can we specify all the solutions of the problem? We 

answer these questions in the theorem in the next section. 

Let us remark that one immediate practical consequence 

is that if we wish to estimate of 𝑋1:𝑁  from 𝑌1:𝑁  by a 

Bayesian classifier, we can use either CRFs or any 

equivalent PMMs. Indeed, Bayesian estimators only 

depend on the a posteriori distribution 𝑝(𝑥1:𝑁|𝑦1:𝑁).  

CRFs found huge deal of applications, and continue 

to be widely used as attested by hundreds journal papers 

appearing each year. Examples include image 

segmentation [11], [4], [23], named entity recognition [32], 

or still part-of-speech tagging [15]. Let us also cite [29] as 
review article and [19], [47] as books, among others. 

PMMs have been little studied so far; we can cite [22] 

where they were used to estimate non-stationary data 

hidden with long memory noise. This opens up new 

possibilities, as it means that sequential PMMs can be 

used in place of non-sequential CRFs without losing 

CRFs modelling power. 

The equivalence between CRFs and PMMs makes it 

possible to show the equivalence between "hidden" CRFs 

(HCRFs, [41], [42]) and “triplet” PMMs (called triplet 

partially Markov chains in [39]). HCRFs consist of adding 

a latent variable 𝑈1:𝑁 , and considering the triplet 

(𝑋1:𝑁 , 𝑈1:𝑁 , 𝑌1:𝑁) . By setting 𝑉1:𝑁 = (𝑋1:𝑁 , 𝑈1:𝑁) , HCRF is 

given assuming that (𝑉1:𝑁 , 𝑌1:𝑁) is a CRF. HCRFs are more 

general than CRFs because in HCRF (𝑋1:𝑁 , 𝑈1:𝑁 , 𝑌1:𝑁) the 

couple (𝑋1:𝑁 , 𝑈1:𝑁) is Markov (conditionally on 𝑌1:𝑁), and 

𝑋1:𝑁 may be Markovian or may not be Markovian. HCRFs 

are applicable in all situations CRFs are, and there is an 

abundant literature showing their interest. In particular, 

they have been applied to telephone classification [17], 

[45], detection of cell division [36], human action 

recognition [51], [52], human facial expression 

recognition [44], gesture recognition [48], fault diagnosis 

[49], CET image segmentation [50], and many others. A 

similar idea has been proposed for PMMs in [39], leading 

to “triplet” PMMs (TPMMs). TPMMs have been applied 

to non-stationary Markov chains hidden with long 

memory noise in [22]. According to the theorem, we can 

state that HCRFs and TPPMs are equivalent. This opens 

up enormous possibilities of applications of TPPMs in 

situations where HCRFs have performed well and where 

the sequential nature of TPMMs is of interest 

Once the equivalence between PMMs and CRFs has 

been established, we propose in section III the following 

contribution, which is related to particular PMMs called 

"pairwise Markov chains" (PMCs, [38]). The distribution 

of PMCs is given by  

𝑞(𝑥1:𝑁 , 𝑦1:𝑁) =      (1.6) 

𝑞(𝑥1)𝑞(𝑦1|𝑥1) ∏ 𝑞(𝑥𝑛+1, 𝑦𝑛+1|𝑥𝑛 , 𝑦𝑛)𝑁−1
𝑛=1 ,  

which simply means that the stochastic sequence 𝑍1:𝑁 of 

pairs 𝑍𝑛 = (𝑋𝑛 , 𝑌𝑛) is Markovian. PMCs extend the classic 

hidden Markov models (HMMs), which are still widely 

used [5], [43], [9], [13], among others. The distribution of 

HMMs is written as  

𝑞(𝑥1:𝑁 , 𝑦1:𝑁) =      (1.7) 

𝑞(𝑥1)𝑞(𝑦1|𝑥1) ∏ 𝑞(𝑥𝑛+1|𝑥𝑛)𝑞(𝑦𝑛+1|𝑥𝑛+1)𝑁−1
𝑛=1 . 

As  

𝑞(𝑥𝑛+1, 𝑦𝑛+1|𝑥𝑛 , 𝑦𝑛) =     (1.8) 

𝑞(𝑥𝑛+1|𝑥𝑛 , 𝑦𝑛)𝑞(𝑦𝑛+1|𝑥𝑛, 𝑦𝑛 , 𝑥𝑛+1),  

(1.6) and (1.7) mean that HMMs are PMCs in which 

𝑞(𝑥𝑛+1|𝑥𝑛 , 𝑦𝑛) = 𝑞(𝑥𝑛+1|𝑥𝑛)  and 𝑞(𝑦𝑛+1|𝑥𝑛 , 𝑦𝑛, 𝑥𝑛+1, ) =

𝑞(𝑦𝑛+1|𝑥𝑛+1) . This shows that PMCs are clearly more 

general than HMMs and, indeed, the interest of the 

former over the latter is highlighted in various articles. In 

particular, they have been applied to image segmentation 

[1], [2], [16], [38], sound classification [24], fuzzy 

segmentation [24], or multiple target tracking [30], [31], 

[37]. An extension to apply Bayesian variational Bayesian 

methods is proposed in [34], and some theoretical studies 

can be found in [20], [25], [26], [27]. Since PMCs are 

applicable under the same conditions as HMMs while 

being more general, it is interesting to ask which family 

of CRFs is equivalent to PMCs. Our contribution consists 

in characterizing the family of CRFs equivalent to PMCs. 

More precisely, we show that a CRF 𝑝(𝑥1:𝑁|𝑦1:𝑁)  is 

equivalent to a PMC 𝑞(𝑥1:𝑁 , 𝑦1:𝑁)  iff 𝑝(𝑥𝑛+1|𝑥𝑛 , 𝑦1:𝑁) =

𝑝(𝑥𝑛+1|𝑥𝑛, 𝑦𝑛+1:𝑁)  for every 𝑛 = 1 , …, 𝑁 − 1 . 

Subsequently, we give some examples showing that some 

classic CRFs are equivalent to PMCs. In particular, 

applying this result to the simple CRF whose distribution 

is defined with 

𝑝(𝑥1:𝑁|𝑦1:𝑁) =      (1.9) 

𝜅(𝑦1:𝑁)𝑒𝑥𝑝[∑ 𝑉𝑛(𝑥𝑛 , 𝑥𝑛+1)𝑁−1
𝑛=1 + ∑ 𝑈𝑛(𝑥𝑛 , 𝑦𝑛)𝑁

𝑛=1 ], 

where 𝜅(𝑦1:𝑁) is the normalizing constant, we find again 

the fact that it is equivalent to classic HMM (1.8), which 

has been recently established in a direct way in [3]. 

Subsequently, another case studied shows that the classic 

Minimum Entropy Markov Models (MEMMs [33]) are 

equivalent to particular PMCs.  

Dependence graphs of HMMs, PMCs, and PMMs are 

presented in Figure. 



This article is organized as follows. In the next 

section, we show the equivalence, in the sense of 

definition 1.1, between PMMs (1.1) and CRFs (1.2). In 

Section III, we specify the CRFs equivalent to PMCs. We 

also specify the family of CRFs equivalent to triplet 

Markov chains (TMCs [40]). We present conclusions and 

perspectives in Section IV. 
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Figure. Dependence graphs. (a): hidden Markov model (HMM); (b) 
pairwise Markov chain (PMC); (c) partially Markov model (PMM). 

2. EQUIVALENCE BETWEEN PMMS AND CRFS  

In this paragraph, we show that for each CRF (1.2) there 

exists an equivalent PMM (1.1). More precisely, we 

specify how to compute all distributions 𝑞(𝑥1), 𝑞(𝑦1|𝑦1), 

𝑞(𝑥2, 𝑦2|𝑥1, 𝑦1), 𝑞(𝑥3, 𝑦3|𝑥1, 𝑦1:2),…, 𝑞(𝑥𝑁 , 𝑦𝑁|𝑥𝑁−1, 𝑦1:𝑁−1), 

defining all equivalent PMMs (1.1), from 𝑝(𝑥1|𝑦1:𝑁) , 

𝑝(𝑥2|𝑥1, 𝑦1:𝑁), …, 𝑝(𝑥𝑁|𝑥𝑁−1, 𝑦1:𝑁) defining the CRF (1.2) 

under consideration.        

We will use the following Lemma 1. 

Lemma 1. Let 𝑊1:𝑁 = (𝑊1, … , 𝑊𝑁)  be random sequence, 

taking its values in a finite set 𝛥. Then 

(i) 𝑊1:𝑁  is a Markov chain iff there exist 𝑁 − 1 functions 

𝜑1, … , 𝜑𝑁−1 from 𝛥2 to ℝ+ such that 

𝑝(𝑤1, … , 𝑤𝑁) = 𝐾𝜑1(𝑤1, 𝑤2) … 𝜑𝑁−1(𝑤𝑁−1, 𝑤𝑁),  (2.1) 

with 𝐾 constant;  

(ii) for HMM defined with 𝜑1 , …, 𝜑𝑁−1  verifying (2.1), 

𝑝(𝑤1) , and 𝑝(𝑤𝑛+1|𝑤𝑛)  for 𝑛 = 2 , …, 𝑁 − 1 , are given 

with 

𝑝(𝑤1) =
𝛽1(𝑤1) 

∑ 𝛽1(𝑤1)𝑤1

 ; 

𝑝(𝑤𝑛+1|𝑤𝑛) =
𝜑𝑛(𝑤𝑛,𝑤𝑛+1)𝛽𝑛+1(𝑤𝑛+1) 

𝛽𝑛(𝑤𝑛)
,  (2.2) 

where 𝛽1(𝑤1), …, 𝛽𝑁(𝑤𝑁) verify the backward recursion 

𝛽𝑁(𝑤𝑁) = 1, 

𝛽𝑛(𝑤𝑛) = ∑ 𝜑𝑛(𝑤𝑛, 𝑤𝑛+1)𝛽𝑛+1(𝑤𝑛+1)𝑤𝑛+1
.  (2.3) 

Proof. 1. Let 𝑊1:𝑁  be Markov : 𝑝(𝑤1, … , 𝑤𝑁) =

𝑝(𝑤1)𝑝(𝑤2| 𝑤1)𝑝(𝑤3| 𝑤2) … 𝑝(𝑤𝑁| 𝑤𝑁−1). Then (2.1) is 

verified by 𝜑1(𝑤1, 𝑤2) = 𝑝(𝑤1)𝑝(𝑤2| 𝑤1), 𝜑2(𝑤2, 𝑤3) =

𝑝(𝑤3| 𝑤2), …, 𝜑𝑁−1(𝑤𝑁−1, 𝑤𝑁) = 𝑝(𝑤𝑁| 𝑤𝑁−1). 

2. Conversely, let 𝑝(𝑤1, … , 𝑤𝑁)  verifies (2.1). This 

implies that for each 𝑛 = 1, …, 𝑁 − 1 we have 

𝑝(𝑤𝑛+1|𝑤1 , … , 𝑤𝑛) =
𝑝(𝑤1,…,𝑤𝑛,𝑤𝑛+1)

𝑝(𝑤1,…,𝑤𝑛)
=   (2.4) 

∑ 𝜑1(𝑤1,𝑤2) …𝜑𝑛(𝑤𝑛 ,𝑤𝑛+1)𝜑𝑛+1(𝑤𝑛+1,𝑤𝑛+2)…𝜑𝑁−1(𝑤𝑁−1,𝑤𝑁)(𝑤𝑛+2,…,𝑤𝑁,)

∑ 𝜑1(𝑤1,𝑤2) …𝜑𝑛(𝑤𝑛 ,𝑤𝑛+1)𝜑𝑛+1(𝑤𝑛+1,𝑤𝑛+2)…𝜑𝑁−1(𝑤𝑁−1,𝑤𝑁)(𝑤𝑛+1,…,𝑤𝑁,)

=  

𝜑𝑛(𝑤𝑛,𝑤𝑛+1) ∑ 𝜑𝑛+1(𝑤𝑛+1,𝑤𝑛+2)…𝜑𝑁−1(𝑤𝑁−1,𝑤𝑁)(𝑤𝑛+2,…,𝑤𝑁,)

∑ 𝜑𝑛(𝑤𝑛 ,𝑤𝑛+1)𝜑𝑛+1(𝑤𝑛+1,𝑤𝑛+2)…𝜑𝑁−1(𝑤𝑁−1,𝑤𝑁)(𝑤𝑛+1,𝑤𝑛+2,…,𝑤𝑁,)

=  

𝑝(𝑤𝑛+1| 𝑤𝑛),  

which shows that 𝑝(𝑤1, … , 𝑤𝑁) is Markov. 

Besides, let us set, for 𝑛 = 1, …, 𝑁 − 1: 
 𝛽𝑛(𝑤𝑛) = ∑ 𝜑𝑛(𝑤𝑛, 𝑤𝑛+1) … 𝜑𝑁−1(𝑤𝑁−1, 𝑤𝑁)(,𝑤𝑛+1,…,𝑤𝑁)  

On the one hand, we see that 𝛽𝑛(𝑤𝑛) =
∑ 𝜑𝑛(𝑤𝑛 , 𝑤𝑛+1)𝛽𝑛+1(𝑤𝑛+1)𝑤𝑛+1

. On the other hand, 

according to (2.4) we have 𝑝(𝑤𝑛+1|𝑤𝑛) =
𝜑𝑛(𝑤𝑛,𝑤𝑛+1)𝛽𝑛+1(𝑤𝑛+1) 

𝛽𝑛(𝑤𝑛)
. As 𝑝(𝑤1) =

𝛽1(𝑤1) 

∑ 𝛽1(𝑤1)𝑤1

, (2.2) and 

(2.3) are verified, which ends the proof.  

Proposition 2.1  Let 𝑋1:𝑁 = (𝑋1, … , 𝑋𝑁) , 𝑌1:𝑁 =

(𝑌1, … , 𝑌𝑁) be two stochastic sequences taking their values in 

finite sets 𝛬, 𝛺, respectively. 

Let 𝑞(𝑥1:𝑁 , 𝑦1:𝑁) be a PMM of form (1.1). Then 𝑞(𝑥1:𝑁|𝑦1:𝑁) 

is a of form (1.2), with   

 𝑞(𝑥𝑛+1|𝑥𝑛 , 𝑦1:𝑁) =
𝑞(𝑥𝑛+1, 𝑦𝑛+1|𝑥𝑛 , 𝑦1:𝑛)𝛽𝑛+1(𝑥𝑛+1) 

𝛽𝑛(𝑥𝑛)
,(2.5) 

where 𝛽𝑛(𝑥𝑛) are defined with 

𝛽𝑛(𝑥𝑛) = 𝑞(𝑦𝑛+1:𝑁|𝑥𝑛 , 𝑦1:𝑛),    (2.6) 

and can be computed recursively with 

𝛽𝑁(𝑥𝑁) = 1;  

𝛽𝑛(𝑥𝑛) = ∑ 𝑞(𝑥𝑛+1, 𝑦𝑛+1|𝑥𝑛 , 𝑦1:𝑛)𝛽𝑛+1(𝑥𝑛+1)𝑥𝑛+1
  (2.7) 



Proof. The proof is immediate applying Lemma 1 to 

𝑋1:𝑁 = 𝑊1:𝑁 , 𝜑1(𝑥1, 𝑥2) = 𝑞(𝑥1, 𝑦1)𝑞(𝑥2, 𝑦2|𝑥1, 𝑦1:2) , 

𝜑2(𝑥2, 𝑥3) = 𝑞(𝑥3, 𝑦3|𝑥2, 𝑦1:2) , …, 𝜑𝑁−1(𝑥𝑁−1, 𝑥𝑁) =
𝑞(𝑥𝑁 , 𝑦𝑁|𝑥𝑁−1, 𝑦1:𝑁)  

The theorem below specify the reverse proposition, 

which is more difficult to prove and is the core 

contribution of the paper. 

For a given PMM 𝑞(𝑥1:𝑁 , 𝑦1:𝑁) , let us consider the 

“backward” probabilities 

𝛽𝑁(𝑥𝑁) = 1, and     (2.8) 

𝛽𝑛(𝑥𝑛) = 𝑞(𝑦𝑛+1:𝑁|𝑥𝑛 , 𝑦1:𝑛) for 𝑛 =  𝑁 − 1, …, 1. 

Similarly to what is true in classic HMMs, they verify 

(2.7), rewritten as 

𝛽𝑁(𝑥𝑁) = 1, and     (2.9) 

𝛽𝑛(𝑥𝑛) =      (2.10) 

∑ 𝑞(𝑦𝑛+1|𝑥𝑛 , 𝑦1:𝑛)𝑞(𝑥𝑛+1|𝑥𝑛 , 𝑦1:𝑛+1)𝛽𝑛+1(𝑥𝑛+1)𝑥𝑛+1
.  

We specify the converse proposition in Theorem below:  

Theorem. Let  

𝑝(𝑥1:𝑁|𝑦1:𝑁) =     (2.11) 

𝑝(𝑥1|𝑦1:𝑁)𝑝(𝑥2|𝑥1, 𝑦1:𝑁) …  𝑝(𝑥𝑁|𝑥𝑁−1, 𝑦1:𝑁).  

be a CRF. Then the PMM  

𝑞(𝑥1:𝑁 , 𝑦1:𝑁) =     (2.12) 

𝑞(𝑦1)𝑞(𝑥1|𝑦1) ∏ 𝑞(𝑦𝑛+1|𝑥𝑛 , 𝑦1:𝑛)𝑞(𝑥𝑛+1|𝑥𝑛 , 𝑦1:𝑛+1)𝑁−1
𝑛=1   

is equivalent to  𝑝(𝑥1:𝑁|𝑦1:𝑁) if and only if 

(i) sequence  

𝑞(𝑦1), 𝑞(𝑦2|𝑥1, 𝑦1), …, 𝑞(𝑦𝑁|𝑥𝑁−1, 𝑦1:𝑁−1) (2.13) 

 is arbitrary;  

(ii) for given sequence (2.13), 

 𝑞(𝑥1|𝑦1),  𝑞(𝑥2|𝑥1, 𝑦1:2), …, 𝑞(𝑥𝑁|𝑥𝑁−1, 𝑦1:𝑁)  

is defined from 𝑝(𝑥1:𝑁|𝑦1:𝑁) and (2.13) with  

the following backward recursion: 

𝑞(𝑥𝑁|𝑥𝑁−1, 𝑦1:𝑁) = 𝑝(𝑥𝑁|𝑥𝑁−1, 𝑦1:𝑁);  (2.14) 

for 𝑛 = 𝑁 − 1, …, 2:  

𝑞(𝑥𝑛|𝑥𝑛−1, 𝑦1:𝑛) = [∑
𝛽𝑛(𝑥𝑛) 

𝑝(𝑥𝑛|𝑥𝑛−1,𝑦1:𝑁)𝑦𝑛+1:𝑁
]

−1

,  (2.15)  

where 𝛽𝑛(𝑥𝑛)  is computed from 𝑞(𝑦𝑛+1|𝑥𝑛 , 𝑦1:𝑛) , 

𝑞(𝑥𝑛+1|𝑥𝑛 , 𝑦1:𝑛+1), and 𝛽𝑛+1(𝑥𝑛+1) with (2.7); 

𝑞(𝑥1|𝑦1) = [∑
𝑞(𝑦2:𝑁|𝑥1,𝑦1) 

𝑝(𝑥1|𝑦1:𝑁)𝑦2:𝑁
]

−1

.  (2.16) 

Proof. Let 𝑝(𝑥1:𝑁|𝑦1:𝑁) be a given CRF (2.11), and 𝑞(𝑦1), 

𝑞(𝑦2|𝑥1, 𝑦1), …, 𝑞(𝑦𝑁|𝑥𝑁−1, 𝑦1:𝑁−1) arbitrary sequence. 

We search a PMM 𝑞(𝑥1:𝑁 , 𝑦1:𝑁)  (2.12) verifying 

𝑞(𝑥1:𝑁| 𝑦1:𝑁) = 𝑝(𝑥1:𝑁| 𝑦1:𝑁). This equality is equivalent 

to  

𝑞(𝑥𝑁|𝑥𝑁−1, 𝑦1:𝑁) = 𝑝(𝑥𝑁|𝑥𝑁−1, 𝑦1:𝑁),  

𝑞(𝑥𝑁−1|𝑥𝑁−2, 𝑦1:𝑁) = 𝑝(𝑥𝑁−1|𝑥𝑁−2, 𝑦1:𝑁),  

…,      (2.17) 

𝑞(𝑥2|𝑥1, 𝑦1:𝑁) = 𝑝(𝑥2|𝑥1, 𝑦1:𝑁),  

𝑞(𝑥1|𝑦1:𝑁) = 𝑝(𝑥1|𝑦1:𝑁). 

Let's number the equations (2.17) as follows: equation 

(1) for the one in the first line, equation (2) for the one 

in the second line, …,  equation (N-1) for the last 

equation. To show that all the equations are true with 

𝑞(𝑥𝑁|𝑥𝑁−1, 𝑦1:𝑁) , …,  𝑞(𝑥1|𝑦1:𝑁)  verifying (2.15), we 

show that the first equation in (2.17) is true, and we 

show that if the first 𝑁 − 𝑛 equations (for 1 ≤ 𝑛 ≤ 𝑁 −

1 ) are true with 𝑞(𝑥𝑁|𝑥𝑁−1, 𝑦1:𝑁) , …,  𝑞(𝑥1|𝑦1:𝑁) 

verifying (2.15), then the (𝑁 − 𝑛 − 1)th equation also 

is.  

As  

𝑞(𝑥𝑁 , 𝑦𝑁|𝑥𝑁−1, 𝑦1:𝑁−1) = 

𝑞(𝑦𝑁|𝑥𝑁−1, 𝑦1:𝑁−1)𝑞(𝑥𝑁|𝑥𝑁−1, 𝑦1:𝑁),  

we see that the first equality in (2.17) is verified for 

𝑞(𝑥𝑁|𝑥𝑁−1, 𝑦1:𝑁) = 𝑝(𝑥𝑁|𝑥𝑁−1, 𝑦1:𝑁)  and for any 

𝑞(𝑦𝑁|𝑥𝑁−1, 𝑦1:𝑁−1).  

Let us assume that 𝑞(𝑥𝑁|𝑥𝑁−1, 𝑦1:𝑁) , …, 

𝑞(𝑥𝑛+1|𝑥𝑛 , 𝑦1:𝑛+1)  verify (2.16), and verify (2.17) for 

𝑁 − 𝑛  first equations. Let us search all 

𝑞(𝑥𝑛, 𝑦𝑛|𝑥𝑛−1, 𝑦1:𝑛−1)  such that (2.16) is verified for 

(N − 𝑛 − 1) th equation 𝑞(𝑥𝑛|𝑥𝑛−1, 𝑦1:𝑁) =

𝑝(𝑥𝑛|𝑥𝑛−1, 𝑦1:𝑁).  

We have 

𝑞(𝑥𝑛|𝑥𝑛−1, 𝑦1:𝑁) = 𝑞(𝑥𝑛|𝑥𝑛−1, 𝑦1:𝑛, 𝑦𝑛+1:𝑁) =   

𝑞(𝑥𝑛 , 𝑦𝑛+1:𝑁|𝑥𝑛−1, 𝑦1:𝑛) 

𝑞(𝑦𝑛+1:𝑁|𝑥𝑛−1, 𝑦1:𝑛,)
=    (2.18) 

𝑞(𝑥𝑛|𝑥𝑛−1, 𝑦1:𝑛)𝑞(𝑦𝑛+1:𝑁|𝑥𝑛−1, 𝑥𝑛 , 𝑦1:𝑛) 

𝑞(𝑦𝑛+1:𝑁|𝑥𝑛−1, 𝑦1:𝑛)
. 

As 𝑞 is a PMM, we can write 

𝑞(𝑦𝑛+1:𝑁|𝑥𝑛−1, 𝑥𝑛 , 𝑦1:𝑛) = 𝑞(𝑦𝑛+1:𝑁|𝑥𝑛 , 𝑦1:𝑛),  (2.19) 

so that  finally we have 

𝑞(𝑥𝑛|𝑥𝑛−1, 𝑦1:𝑁) =
𝑞(𝑥𝑛|𝑥𝑛−1, 𝑦1:𝑛)𝑞(𝑦𝑛+1:𝑁|𝑥𝑛 , 𝑦1:𝑛) 

𝑞(𝑦𝑛+1:𝑁|𝑥𝑛−1, 𝑦1:𝑛)
(2.20) 

Then the question is: knowing that 𝑞(𝑦𝑛+1:𝑁|𝑥𝑛 , 𝑦1:𝑛) in 

(2.20) is given (recall that it is equal to 𝛽𝑛(𝑥𝑛), given 

with recursion (2.7) from 𝑞(𝑥𝑁|𝑥𝑁−1, 𝑦1:𝑁) , …, 



𝑞(𝑥𝑛+1|𝑥𝑛 , 𝑦1:𝑛+1)  and 𝑞(𝑦𝑁|𝑥𝑁−1, 𝑦1:𝑁−1) , …, 

𝑞(𝑦𝑛+1|𝑥𝑛, 𝑦1:𝑛) , the latter sequence being arbitrary but 

fixed in the proof), can we find 𝑞(𝑥𝑛|𝑥𝑛−1, 𝑦1:𝑛) such 

that (2.20) holds with 𝑞(𝑥𝑛|𝑥𝑛−1, 𝑦1:𝑁) =

𝑝(𝑥𝑛|𝑥𝑛−1, 𝑦1:𝑁) ? Consider 𝑟(. )  distributions on Λ 

conditional on (𝑥𝑛−1, 𝑦1:𝑛), and let us set 𝑣 = 𝑥𝑛 , 𝑤 =

𝑦𝑛+1:𝑁. The question above is equivalent to: can we find 

𝑟(𝑣) such that 

𝑟(𝑣|𝑤) =
𝑟(𝑣)𝑟(𝑤|𝑣)

𝑟(𝑤)
 ?   (2.21) 

In other words, we have 𝑟(𝑣|𝑤) and 𝑟(𝑤|𝑣), and we 

search 𝑟(𝑣)  verifying (2.21). According to Lemma 2 

below, the solution is  

𝑟(𝑣) = [∑
𝑟(𝑤|𝑣) 

𝑟(𝑣|𝑤)𝑤 ]
−1

.    (2.22)  

Since 𝑞(𝑦𝑛+1:𝑁|𝑥𝑛 , 𝑦1:𝑛) = 𝛽𝑛(𝑥𝑛), (2.22) is equivalent to 

(2.15). Finally, (2.16) is obtained applying Lemma 2 to 

𝑟(. ) distributions on Λ conditional on  𝑦1 , and setting 

𝑣 = 𝑥1, 𝑤 = 𝑦2:𝑁, which completes the proof. 

Lemma 2. Let 𝑉, 𝑊 be two discrete finite random variables 

taking their values in 𝛬 . Let 𝑟(𝑤|𝑣) , 𝑟(𝑣|𝑤)  be two 

conditional distributions. Then 𝑟(𝑣) is given by (2.22). 

Proof. Since 𝑟(𝑣, 𝑤) = 𝑟(𝑤|𝑣)𝑞(𝑣) = 𝑟(𝑣|𝑤)𝑝(𝑤) , we    

have 𝑟(𝑤) =
𝑟(𝑤|𝑣) 

𝑟(𝑣|𝑤)
𝑟(𝑣) , and hence ∑ 𝑟(𝑤)𝑤 =

𝑟(𝑣) ∑
𝑟(𝑤|𝑣) 

𝑟(𝑣|𝑤)𝑤 = 1 , which gives (2.22) and completes 

the proof.      

Remark 2.1 CRFs and PMMs are equivalent; however, 

they are parameterized differently and can therefore give 

different results in real applications. Indeed, in real 

applications, one has to estimate the parameters in a 

preliminary step. Since the parameters are different in 

CRFs and PMMs, the estimators used are different and 

may be more or less suitable for the intended application. 

Thus, even in real-life situations where the sequential 

nature of PMMs is not of importance, there is no reason 

to prefer one family of models to the other. Therefore, 

even in situations where the sequential nature of PMMs 

is not important and where CRFs - or HCRFs, see remark 

2.2 below - give excellent results, it is still worth applying 

PMMs - or TPMMs - for comparison.  

Remark 2.2 As mentioned in Introduction, equivalence 

between CRFs and PMMs implies equivalence between 

"hidden" CRFs (HCRFs, [41], [42]) and “triplet” PMMs 

(TPMMs, [39]). Indeed, HCRFs (or TPMMs) 

(𝑋1:𝑁 , 𝑈1:𝑁 , 𝑌1:𝑁) also are CRFs (or PMMs) (𝑉1:𝑁 , 𝑌1:𝑁), with  

𝑉1:𝑁 = (𝑋1:𝑁 , 𝑈1:𝑁). 

   3. CRFS EQUIVALENT TO PMCS  

Consider the "pairwise Markov chains" given by 

(1.7). As PMCs are an extension of HMMs, they are 

applicable in the same situations and are likely to 

improve the results provided by HMMs. As we shall see, 

some CRFs presented as alternative to HMMs are 

equivalent to PMCs. This is the case for Maximum 

Entropy Markov Models (MEMMs) [33].  

Proposition 3.1 below, which we can consider as a 

corollary of the theorem, characterizes the family of CRFs 

equivalent to the family of PMCs.  

Proposition 3.1 A CRF (1.2) is equivalent to a PMC (1.6) if and 
only if for 𝑛 = 1, …, 𝑁 − 1, 

 𝑝(𝑥𝑛+1|𝑥𝑛 , 𝑦1:𝑁) = 𝑝(𝑥𝑛+1|𝑥𝑛 , 𝑦𝑛+1:𝑁).   (3.1) 

Proof. 1. Let 𝑞(𝑥1:𝑁 , 𝑦1:𝑁)  be a PMC verifying 

𝑞(𝑥1:𝑁|𝑦1:𝑁) = 𝑝(𝑥1:𝑁|𝑦1:𝑁) . Thus for 𝑛 = 1, …, 𝑁 − 1, 

𝑞(𝑥𝑛+1|𝑥𝑛 , 𝑦1:𝑁) = 𝑝(𝑥𝑛+1|𝑥𝑛 , 𝑦1:𝑁) . Setting 𝛽𝑛(𝑥𝑛) =

𝑞(𝑦𝑛+1:𝑁|𝑥𝑛 , 𝑦1:𝑛) for 𝑛 = 1, …, 𝑁 − 1, and 𝛽𝑁(𝑥𝑁) = 1, 

we have, according to the classic properties of PMCs,  

𝛽𝑛(𝑥𝑛) =

∑ 𝑞(𝑦𝑛+1|𝑥𝑛 , 𝑦𝑛)𝑞(𝑥𝑛+1|𝑥𝑛 , 𝑦𝑛+1)𝛽𝑛+1(𝑥𝑛+1)𝑥𝑛+1
, and 

𝑞(𝑥𝑛+1|𝑥𝑛 , 𝑦1:𝑁) =  

 
𝑞(𝑦𝑛+1|𝑥𝑛 , 𝑦𝑛)𝑞(𝑥𝑛+1|𝑥𝑛, 𝑦𝑛+1)𝛽𝑛+1(𝑥𝑛+1) 

𝛽𝑛(𝑥𝑛)
= 

𝑞(𝑥𝑛+1|𝑥𝑛 , 𝑦𝑛+1:𝑁).  

Thus 𝑝(𝑥𝑛+1|𝑥𝑛 , 𝑦1:𝑁) = 𝑝(𝑥𝑛+1|𝑥𝑛 , 𝑦𝑛+1:𝑁) , which is 

(3.1); 

2. Let 𝑝(𝑥1:𝑁|𝑦1:𝑁)  be a CRF (1.2) verifying (3.1). We 

have 𝑞(𝑥𝑁|𝑥𝑁−1, 𝑦1:𝑁) = 𝑝(𝑥𝑁|𝑥𝑁−1, 𝑦1:𝑁).  

Conversely, let us show that 𝑞(𝑥𝑛+1|𝑥𝑛 , 𝑦1:𝑛+1) =

𝑞(𝑥𝑛+1|𝑥𝑛 , 𝑦𝑛+1)  implies 𝑞(𝑥𝑛|𝑥𝑛−1, 𝑦1:𝑛) =

𝑞(𝑥𝑛|𝑥𝑛−1, 𝑦𝑛) . We look for a PMC in which 

𝑞(𝑦𝑛+1:𝑁|𝑥𝑛 , 𝑦1:𝑛) = 𝑞(𝑦𝑛+1:𝑁|𝑥𝑛 , 𝑦𝑛).  Then (2.15) gives 

𝑞(𝑥𝑛|𝑥𝑛−1, 𝑦1:𝑛) = [∑
𝑞(𝑦𝑛+1:𝑁|𝑥𝑛 ,𝑦1:𝑛) 

𝑝(𝑥𝑛|𝑥𝑛−1,𝑦1:𝑁)𝑦𝑛+1:𝑁
]

−1

=  

[∑
𝑞(𝑦𝑛+1:𝑁|𝑥𝑛,𝑦𝑛) 

𝑝(𝑥𝑛|𝑥𝑛−1,𝑦𝑛:𝑁)𝑦𝑛+1:𝑁
]

−1

=
𝑝(𝑥𝑛|𝑥𝑛−1,𝑦𝑛:𝑁) 

∑ 𝑞(𝑦𝑛+1:𝑁|𝑥𝑛 ,𝑦𝑛)𝑦𝑛+1:𝑁

=  

𝑝(𝑥𝑛|𝑥𝑛−1, 𝑦𝑛:𝑁) , 

which completes the proof. 

Example 3.1 Let 𝑝(𝑥1:𝑁|𝑦1:𝑁)  be a CRF defined with 

𝑝(𝑥1|𝑦1:𝑁), 𝑝(𝑥2|𝑥1, 𝑦1:𝑁), …, 𝑝(𝑥𝑁|𝑥𝑁−1, 𝑦1:𝑁). What is the 

simplest equivalent PMM 𝑞(𝑥1:𝑁 , 𝑦1:𝑁) ? Since 𝑞(𝑦1) , 

𝑞(𝑦2|𝑥1, 𝑦1) , …, 𝑞(𝑦𝑁|𝑥𝑁−1, 𝑦1:𝑁−1)  are arbitrary, let us 

take them all equal to the constant 𝑐 =
1 

#Λ
 . We note that 

in such a PMM 𝑌1 , …, 𝑌𝑁  are independent and equi-

distributed, which may seem somewhat unusual.  

However, this has no bearing on the problem of finding 



𝑋1:𝑁 from 𝑌1:𝑁 with Bayesian classifiers; indeed, they are 

independent from 𝑝(𝑥1:𝑁 , 𝑦1:𝑁). We have 

𝑞(𝑥1:𝑁 , 𝑦1:𝑁) = 𝑞(𝑥1, 𝑦1) ∏ 𝑞(𝑥𝑛+1, 𝑦𝑛+1|𝑥𝑛 , 𝑦1:𝑛) =𝑁−1
𝑛=1   

c𝑁𝑞(𝑥1|𝑦1) ∏ 𝑞(𝑥𝑛+1|𝑥𝑛 , 𝑦1:𝑛+1)𝑁−1
𝑛=1   (3.2) 

According to the Theorem, 𝑞(𝑥𝑛+1|𝑥𝑛 , 𝑦1:𝑛+1)  are 

computable by the following backward recursion: 

- 𝛽𝑁(𝑥𝑁) = 1, 𝑞(𝑥𝑁|𝑥𝑁−1, 𝑦1:𝑁) = 𝑝(𝑥𝑁|𝑥𝑁−1, 𝑦1:𝑁); 

- 𝛽𝑛(𝑥𝑛) = c ∑ 𝑞(𝑥𝑛+1|𝑥𝑛 , 𝑦1:𝑛)𝛽𝑛+1(𝑥𝑛+1)𝑥𝑛+1
= c𝑁−𝑛;  

- 𝑞(𝑥𝑛|𝑥𝑛−1, 𝑦1:𝑛) = c𝑛−𝑁 [∑
1 

𝑝(𝑥𝑛|𝑥𝑛−1,𝑦1:𝑁)𝑦𝑛+1:𝑁
]

−1

; 

- 𝑞(𝑥1|𝑦1) = [∑
𝑞(𝑦2:𝑁|𝑥1,𝑦1) 

𝑝(𝑥1|𝑦1:𝑁)𝑦2:𝑁
]

−1

. 

Knowing that the classifiers only depend on 𝑝(𝑥1:𝑁|𝑦1:𝑁), this 

shows that any “generative” classifier defined from a PMM can 

be calculated in a discriminative way, by replacing in the 

calculations 𝑞(𝑦2|𝑥1, 𝑦1) , …, 𝑞(𝑦𝑁|𝑥𝑁−1, 𝑦1:𝑁−1)  by 𝑐 =
1 

#Λ
, 

which extends to PMMs the results related to Maximum a 

posteriori (MAP) and Maximum posterior mode (MPM) 

classifiers presented in the framework of HMMs in [3]. 

Example 3.2 In classic HMM 𝑞(𝑥1:𝑁 , 𝑦1:𝑁)  we have 

𝑞(𝑥𝑛+1, 𝑦𝑛+1|𝑥𝑛 , 𝑦𝑛) = 𝑞(𝑥𝑛+1|𝑥𝑛)𝑞(𝑦𝑛+1|𝑥𝑛+1). Then 

𝑞(𝑦𝑛+1|𝑥𝑛 , 𝑦𝑛) = ∑ 𝑞(𝑥𝑛+1|𝑥𝑛)𝑞(𝑦𝑛+1|𝑥𝑛+1)𝑥𝑛+1
;     (3.3) 

𝑞(𝑥𝑛+1|𝑥𝑛 , 𝑦𝑛 , 𝑦𝑛+1) =
𝑞(𝑥𝑛+1|𝑥𝑛)𝑞(𝑦𝑛+1|𝑥𝑛+1) 

∑ 𝑞(𝑥𝑛+1|𝑥𝑛)𝑞(𝑦𝑛+1|𝑥𝑛+1)𝑥𝑛+1

 .   (3.4) 

We remark that 𝑞(𝑥𝑛+1|𝑥𝑛 , 𝑦𝑛 , 𝑦𝑛+1) = 𝑞(𝑥𝑛+1|𝑥𝑛 , 𝑦𝑛+1).  

As in example 3.1, replacing 𝑞(𝑦𝑛+1|𝑥𝑛 , 𝑦𝑛)  with 𝑐 =
1 

#Λ
 

will not change 𝑞(𝑥1:𝑁|𝑦1:𝑁), so PMM 𝑟(𝑥1:𝑁 , 𝑦1:𝑁) defined 

with   

𝑟(𝑥1:𝑁 , 𝑦1:𝑁) = 𝑐𝑁𝑞(𝑥1|𝑦1) ∏ 𝑞(𝑥𝑛+1|𝑥𝑛 , 𝑦𝑛+1)𝑁−1
𝑛=1       (3.5) 

is equivalent to the HMM 𝑞(𝑥1:𝑁 , 𝑦1:𝑁) . As above, we 

arrive at a model 𝑟(𝑥1:𝑁 , 𝑦1:𝑁), which may seem odd, in 

which 𝑌1 , …, 𝑌𝑁  are independent and uniformly 

distributed on Λ, with 𝑟(𝑥𝑛+1|𝑥𝑛 , 𝑦𝑛, 𝑦𝑛+1) transitions of a 

classic HMM.  Of course, such a PMM is not an HMM.  

Example 3.3 Let us consider the Maximum Entropy 

Markov Models (MEMMs) 𝑝(𝑥1:𝑁|𝑦1:𝑁)  introduced in 

[33], which can be seen as ancestor of CRFs. They verify  

𝑝(𝑥1:𝑁|𝑦1:𝑁) = 𝑝(𝑥1|𝑦1)𝑝(𝑥2|𝑥1, 𝑦2) … 𝑝(𝑥𝑁|𝑥𝑁−1, 𝑦𝑁) (3.6) 

MEMMs have been proposed as alternative to HMMs. 

MEMMs are neither extensions of HMMS nor particular 

HMMs. Indeed, in some respects the CRF given with 

HMM (simply its posterior distribution 𝑝(𝑥1:𝑁|𝑦1:𝑁)) is 

more general than MEMM: for example, in MEMM 

𝑝(𝑥𝑛|𝑦1:𝑁) = 𝑝(𝑥𝑛|𝑦1:𝑛), whereas in the HMM 𝑝(𝑥𝑛|𝑦1:𝑁) 

depends on all components of 𝑦1:𝑁. In other respects the 

CRF given with HMM is less general then the MEMM. 

For example, in MEMM 𝑝(𝑥𝑛+1|𝑥𝑛 , 𝑦𝑛+1) are of any form, 

while in HMM, according to (1.4), they are proportional 

to the product 𝑝(𝑥𝑛+1|𝑥𝑛)𝑝(𝑦𝑛+1|𝑥𝑛+1), which is therefore 

a particular form.  

Moreover, we can notice that MEMM is a CRF verifying 

𝑝(𝑥𝑛+1|𝑥𝑛, 𝑦1:𝑁) = 𝑝(𝑥𝑛+1|𝑥𝑛 , 𝑦𝑛+1). Therefore, according 

to Proposition 2, MEMM is equivalent to a PMC 

𝑞(𝑥1:𝑁 , 𝑦1:𝑁) given with transitions 𝑞(𝑥𝑛+1, 𝑦𝑛+1|𝑥𝑛 , 𝑦𝑛) =

𝑞(𝑦𝑛+1|𝑥𝑛 , 𝑦𝑛)𝑞(𝑥𝑛+1|𝑥𝑛, 𝑦𝑛 , 𝑦𝑛+1) , where 𝑞(𝑦𝑛+1|𝑥𝑛 , 𝑦𝑛) 

are arbitrary. Taking them constant as in example 1, we 

have  

𝑞(𝑥𝑛|𝑥𝑛−1, 𝑦1:𝑛) = 𝑞(𝑥𝑛|𝑥𝑛−1, 𝑦𝑛−1, 𝑦𝑛) =  

[∑
𝑞(𝑦𝑛+1:𝑁|𝑥𝑛,𝑦1:𝑛) 

𝑝(𝑥𝑛|𝑥𝑛−1,𝑦1:𝑁)𝑦𝑛+1:𝑁
]

−1

= [∑
𝑞(𝑦𝑛+1:𝑁|𝑥𝑛,𝑦1:𝑛)  

𝑝(𝑥𝑛|𝑥𝑛−1,𝑦𝑛)𝑦𝑛+1:𝑁
]

−1

=  

[
1  

𝑝(𝑥𝑛|𝑥𝑛−1,𝑦𝑛)
]

−1

= 𝑝(𝑥𝑛|𝑥𝑛−1, 𝑦𝑛),  

and so MEMM is equivalent to PMC given with 

transitions 𝑞(𝑥𝑛+1, 𝑦𝑛+1|𝑥𝑛 , 𝑦𝑛) = c𝑝(𝑥𝑛+1|𝑥𝑛 , 𝑦𝑛+1).  

Remark 3.1 The advantage of PMM over the CRF form 

can be seen in the filtering problem. Let 𝑝(𝑥1:𝑛|𝑦1:𝑛) be a 

CRF, and 𝑞(𝑥1:𝑛 , 𝑦1:𝑛) an equivalent PMM. The is problem 

is to estimate 𝑋𝑛 from 𝑌1:𝑛, which requires the calculation 

𝑝(𝑥𝑛|𝑦1:𝑛) . In filtering, it is interesting to calculate 

𝑝(𝑥1|𝑦1) , 𝑝(𝑥2|𝑦1:2) , …, 𝑝(𝑥𝑛|𝑦1:𝑛) , 𝑝(𝑥𝑛+1|𝑦1:𝑛+1) , … as 

quickly as possible. Let us assume that 𝑝(𝑥𝑛|𝑦1:𝑛) =

𝑞(𝑥𝑛|𝑦1:𝑛) are given, each with its own parametrization.  

When using the equivalent CRF form, there is no direct 

link between 𝑝(𝑥𝑛|𝑦1:𝑛) and 𝑝(𝑥𝑛+1|𝑦1:𝑛+1), so 𝑝(𝑥𝑛|𝑦1:𝑛) 

cannot be used directly and 𝑝(𝑥𝑛+1|𝑦1:𝑛+1) is calculated as 

the marginal distribution of the Markov chain 
𝑝(𝑥1|𝑦1:𝑛+1), 𝑝(𝑥2|𝑦1:𝑛+1),…, 𝑝(𝑥𝑛+1|𝑦1:𝑛+1). This requires 

𝑛 sums over Λ, so its complexity is 𝑛(#Λ), which can be a 

problem when 𝑛  increases. Using the PMM form, we 

have  

𝑝(𝑥𝑛+1, 𝑦1:𝑛+1) = ∑ 𝑝(𝑥𝑛 , 𝑥𝑛+1, 𝑦1:𝑛+1)𝑥𝑛
=  

∑ 𝑝(𝑥𝑛 , 𝑦1:𝑛)𝑝(𝑥𝑛+1, 𝑦𝑛+1|𝑥𝑛, 𝑦1:𝑛)𝑥𝑛
, 

so that 𝑝(𝑥𝑛+1, 𝑦1:𝑛+1) can be computed from 𝑝(𝑥𝑛 , 𝑦1:𝑛) 

with complexity #Λ , and hence 𝑝(𝑥𝑛+1|𝑦1:𝑛+1)  is 

computable from 𝑝(𝑥𝑛|𝑦1:𝑛)  with complexity 2(#Λ) , 

independent from 𝑛.    

Remark 3.2 Consider a HCRF (𝑋1:𝑁 , 𝑈1:𝑁 , 𝑌1:𝑁) such that 

the CRF  (𝑉1:𝑁 , 𝑌1:𝑁)  - where 𝑉1:𝑁 = (𝑋1:𝑁 , 𝑈1:𝑁) - verifies 

(3.1). It is then equivalent to PMCs (𝑉1:𝑁 , 𝑌1:𝑁) =

(𝑋1:𝑁 , 𝑈1:𝑁 , 𝑌1:𝑁),  models know as “triplet Markov chains” 

(TMCs) [40]. Here the situation is the opposite to those 

mentioned in examples 2.1 and 2.2: authors have applied 

TMCs in different situations, while there was no obvious 



reason for CRF specialists to be interested in their 

equivalent CRFs verifying (3.1). More precisely, TMCs 

have found applications in the modelling of non-

stationary time series of normalized vegetation indices [6], 

the segmentation of 3D magnetic resonance brain imaging 

[8], the modelling of consumer loan repayment behavior 

[10], the activity classification [28], or non-stationary 

sequences or images segmentation [7], [14], or [16] where 

the third process is continuous. Let us also cite recent 

TMCs using variational Bayesian inference [34], [35]. As 

TMCs are particular TPMMs, they are equivalent to a sub-

family of CRFs. This means that in situations where the 

sequential nature of TMCs is not required, the results 

obtained with a TMC are likely to be improved with a 

more general CRF.     

4. CONCLUSIONS AND PERSPECTIVES 

 We studied the relationships between CRFs and 

different HMM extensions. The main contribution is the 

proof of equivalence, within the meaning of definition 1.1, 

between CRFs [21] and PMMs [39]. More precisely, for 

each CRF (1.2), we have given all PMMs (1.1) whose 

posterior distribution is the given CRF. 

In summary, we have the following four equivalences: 

(i) Simple CRFs (1.10) are equivalent to HMMs (1.8); 

(ii) CRFs satisfying (3.1) are equivalent to pairwise 

Markov chains (1.7); 

(iii) General CRFs (1.2) are equivalent to PMMs (1.1); 

(iv) Hidden CRFs (HCRFs [41], [42]) are equivalent to 

Triplet PMMs (TPMMs [39]). 

Point (i) was recently established in [3] (see also [18], 

where a similar result is established under stronger 

assumptions), points (ii) to (iv) are contributions of the 

article. 

The potential application interest of these results is that 

the HMM, PMC, PMM and TPMM are sequential – within 

the meaning of remark 3.1 -, while the CRFs are not. This 

means that in situations where sequential processing is 

attractive, it is possible to use HMM, PMC, PMM or 

TPMM instead of equivalent CRFs without losing 

modeling power. In cases where the sequential nature of 

treatments is not essential, no family is a priori more 

interesting than the other; indeed, both families have 

identical modeling power. However, because their 

parameters are different, the parameter estimates are 

different and, therefore, the final yields may be different. 

In such situations, it would be interesting to test both 

models, because even if the effectiveness of a model from 

one family is satisfactory, it can be improved by a model 

from the other family. 

We also noticed that likely in HMMs studied in [3], in 

PMMs Bayesian generative classifiers can be calculated in 

a discriminative manner.  
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