
HAL Id: hal-04280550
https://hal.science/hal-04280550v1

Submitted on 13 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Sharing a Perspective on the lambda Calculus
Beniamino Accattoli

To cite this version:
Beniamino Accattoli. Sharing a Perspective on the lambda Calculus. Onward! 2023 - ACM SIG-
PLAN International Symposium on New Ideas, New Paradigms, and Reflections on Programming
and Software, Oct 2023, Cascais, Portugal. pp.179-190, �10.1145/3622758.3622884�. �hal-04280550�

https://hal.science/hal-04280550v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Sharing a Perspective on the 𝜆-Calculus
Beniamino Accattoli

beniamino.accattoli@inria.fr
Inria & Lix, École Polytechnique

Palaiseau, France

Abstract
The 𝜆-calculus models the core of functional programming
languages. This essay discusses a gap between the theory of
the 𝜆-calculus and functional languages, namely the fact that
the former does not give a status to sharing, the essential
ingredient for efficiency in the lattter.

The essay provides an overview of the perspective of the
author, who has been and still is studying sharing from var-
ious angles. In particular, it explains how sharing impacts
the equational and denotational semantics of the 𝜆-calculus,
breaking some expected properties, and demanding the de-
velopment of new, richer semantics of the 𝜆-calculus.

CCS Concepts: • Theory of computation→ Lambda cal-
culus.

Keywords: Lambda calculus, functional languages, sharing
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Foreword. This essay addresses students and researchers
with a background in functional programming languages or
in the theory of 𝜆-calculus. The aim is to communicate a few
important ideas about sharing in these areas while avoiding
diving into complex technical depth. Another aim is to reach
both theoreticians interested in denotational models and
implementors interested in abstract machines, who often be-
long to separate communities and use different terminologies.
Lastly, the essay is not meant to be an exhaustive overview
of sharing, neither at the level of concepts or bibliographic
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references. It instead focusses on the insights emerging from
the work developed by the author in the last decade.

1 Introduction
Functional languages are a family of powerful programming
languages enhancing modularity and reducing bugs, while
being based on solid mathematical grounds. Besides being
used to develop software, these languages play a crucial
role in the theory of proof assistants such as Coq, Agda, or
Isabelle, which are increasingly applied to the verification of
software and mathematics.

The core of functional languages is mathematically mod-
eled by the 𝜆-calculus. The starting point of this essay is
the observation that there is too much of a gap between the
theory of 𝜆-calculus and the study of functional languages.

Historically, such a remark is not novel. In 1993, Abramsky
and Ong pointed out an evaluation gap [3], stressing that
functional languages are based onweak evaluationwithin the
𝜆-calculus, that is, they do not evaluate function bodies (more
precisely, they evaluate them only if the function receives
its arguments), while the theory of the 𝜆-calculus used to be
based on strong evaluation, which does allow one to evaluate
function bodies (that is, strong evaluation also evaluates
the body of functions that are defined but never applied to
arguments). Their work has been hugely influential, and
30 years later the theoretical study of the weak evaluation
has considerably developed. Additionally, strong evaluation
is now applied more often, namely in the theory of proof
assistants based on dependent types, such as Coq or Agda.
The gap we refer to, however, is of a different nature. It

does concern evaluation, but not what is evaluated, rather
how it is evaluated, thus it concerns both the weak and the
strong settings. The 𝜆-calculus does not capture two essential
aspects of functional languages, namely the efficiency and
the many programming features of an actual language. The
features gap is somewhat intrinsic to the idea of reducing a
rich programming language to a barebone mathematical set-
ting such as the 𝜆-calculus, and we shall pay no attention to
it here. The aim of this essay is to explain how the efficiency
gap, often considered a theoretically negligible aspect, leads
to a considerably richer theory when taken seriously, and a
theory that is far from being solid and fully developed.

An Analogy. The problem can actually be explained via
an evocative analogy. Let us think of a programming lan-
guage as of a complex piece of craftsmanship such as a luxury
car, which has to be both powerful and comfortable for the
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programmer. The engine of a programming language is how
functions, procedures, and methods are defined, how they
can be called and composed, and how such mechanisms
are implemented. This engine is what is modeled by the 𝜆-
calculus. Except that, for the sake of theoretical clarity, the
𝜆-calculus is a basic form of engine, like a steam engine. In
the programming landscape, languages such as OCaml or
Haskell can be compared to Tesla cars that are nowadays of-
ten on the news: a minoritarian approach, spreading quickly,
and based on next-generation technology (the functional
aspect). For Theory to catch up to Practice, and possibly im-
prove it, two main tasks need to be addressed: upgrading the
theoretical engine of reference from steam to electric (the
efficiency gap), and moving from having an efficient engine
and producing a luxury car (the features gap).

Sharing. Let us translate the analogy into more accurate
scientific terms. Most theoretical studies in 𝜆-calculus still
focus on its call-by-name version introduced almost a cen-
tury ago by Church. This framework is unsuitable to modern
applications, as it does not model sharing, the mandatory
ingredient for efficiency. In practice, one needs to consider
Plotkin’s call-by-value 𝜆-calculus [54] or Wadsworth’s call-
by-need 𝜆-calculus [56], that do model sharing—these shall
here be called 𝜆-calculi with sharing and constitute the elec-
tric engine mentioned above. Unfortunately, their founda-
tions are much less developed, because they are richer and
more challenging settings, and cannot be treated as variants
of the call-by-name 𝜆-calculus. Notably, adopting the same
technical notion of meaningful program used by Barendregt
in his famous book on the (call-by-name) 𝜆-calculus [25],
leads to an inconsistent theory in call-by-value, see Accattoli
and Guerrieri [18].

2 A Bit of Context
In the theory of programming languages, the functional—
or higher-order—approach studies a notion of program for
which the inputs and the outputs are not simply numbers,
strings, or compound data types, but may be programs them-
selves. Moreover, this paradigm sees programs as functions
and provides flexible ways to define them, in particular allow-
ing one to define nested functions (that is, functions defined
inside the definition of other functions, which can refer to
the variables of the enclosing functions), which is usually
not possible in non-functional languages.
Such an approach is as old as computer science, being

based on Church’s 𝜆-calculus, which is one of the early
attempts—together with Turing’s machines, and Gödel’s par-
tial recursive functions—at formalizing computations, based
solely on the concept of (nested) functions.
For a long time, higher-order features were only consid-

ered in programming languages coming from the academic
world, such as LISP, 𝜆-prolog, Haskell, or OCaml. The situ-
ation has however changed. Firstly, the use of Haskell and

OCaml has spread out of academia. For instance, OCaml is
used in theweb version of FacebookMessenger (see this link1)
or by financial companies such as Jane Street Capital for de-
veloping their high-frequency trading software. Secondly,
mainstream languages have also been extended with higher-
order features: starting from Java 8 (2014), indeed, Java has
𝜆-expressions, that support higher-order computations, and
languages such as Python or Scala made higher-order a key
ingredient of their design.

Theory vs Practice. The study of the 𝜆-calculus is often
too detached from the real world. Most theoretical studies
address the call-by-name (shortened to CbN) 𝜆-calculus be-
cause it is the simplest framework to test new approaches
and it has well-established links with other areas of math-
ematics like universal algebra or topology. However, it is
never used in real-life applications, because of its intrinsic
inefficiency.

The frameworks used for modeling functional languages
and proof assistants are rather the call-by-value (shortened
to CbV) and call-by-need (CbNeed) 𝜆-calculi. For instance,
OCaml is based on CbV, Haskell on CbNeed, and Coq uses
both mechanisms. These calculi model more efficient higher-
order computations but are based on much less developed
theories. Even if these calculi are at the cores of practical
tools, further extensions with pattern matching, inductive
datatypes, recursion, effects, etc., must be considered to close
the gap with such tools. Therefore, rather than being the
skeleton of practical tools, they rather provide a refined
engine still far from a real language.

Semantics of 𝜆-Calculi. Higher-order languages orig-
inated as mathematical objects and they have often gone
hand in hand with the development of their mathematical
foundations. Such a formal study can be done from different
points of view. To properly explain the current understand-
ing of 𝜆-calculi with sharing, let us briefly overview these
points of view.

1. Operational: the operational viewpoint defines the pro-
gram evaluation process and studies its rewriting prop-
erties such as confluence and normalization. It also
concerns the study of evaluation strategies and of
their properties such as standardization or factoriza-
tion. One might also include in this approach the study
of decompositions of the evaluation process such as
abstract machines, and refinements of the study of ter-
mination into cost and complexity analyses.

2. Denotational: a denotational model is given by a family
of mathematical objects—such as relations, domains,
or games—into which 𝜆-terms are mapped, in such a
way that the evaluation process on terms corresponds

1https://reasonml.github.io/blog/2017/09/08/messenger-50-reason.html
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to equality on objects, which are then invariants of eval-
uation. The requirements for such models are usually
formulated in the language of category theory.

3. Equational: this form of semantics is the study of the
many possible notions of program equivalence between
terms—also called equational theories—such as contex-
tual equivalence, notions of bisimilarities, or the iden-
tifications induced by denotational models. The prop-
erties of interest are consistency and the entailments
between different equivalences, as well as the ease in
establishing the equivalence in concrete cases. Equa-
tional semantics can be studied operationally (usu-
ally via notions of bisimulations) or denotationally (by
characterizing the equational theory of denotational
models). Equational semantics thus falls somewhere
between the two previous semantics, and it is often
entangled with them.

4. Logical: according to the Curry-Howard correspondence
between 𝜆-calculi and proof systems, terms of 𝜆-calculi
can be seen as proofs in fragments, extensions, or re-
finements of intuitionistic logic, with logical formulas
playing the role of types for programs. The logical
semantics is finer than the denotational one because
there is a logical process mimicking program evalua-
tion, called cut-elimination, rather than collapsing it
on equality as in models.

3 Introducing First-Class Sharing
In the ordinary 𝜆-calculus, a program can duplicate or erase
a whole sub-program in a single macro computational step,
called 𝛽-reduction. Let us set some basic notions:

𝜆-Terms 𝑡, 𝑠 ::= 𝑥 | 𝜆𝑥 .𝑡 | 𝑡𝑠
𝛽-reduction (𝜆𝑥.𝑡)𝑠 →𝛽 𝑡{𝑥�𝑠}

Abstractions 𝜆𝑥.𝑡 bind 𝑥 in 𝑡 , and terms are identified up to
𝛼-renaming of bound variables. The notation 𝑡{𝑥�𝑠} indi-
cates the (meta-level and capture-avoiding) substitution of
𝑠 for 𝑥 in 𝑡 . Duplication and erasure of a sub-program by
𝛽-reduction are for instance given by the following examples:

Duplication Erasure
(𝜆𝑥 .𝑥𝑥)𝑡 →𝛽 𝑡𝑡 (𝜆𝑥 .𝑦)𝑡 →𝛽 𝑦

In the theory of the 𝜆-calculus developed until the 1990s—
typically the one in Barendregt’s book [25], which is the clas-
sical reference about the 𝜆-calculus—the 𝛽-reduction rule can
be applied anywhere in a term, that is, whenever a term𝑢 has
a sub-term of shape (𝜆𝑥 .𝑡)𝑠 , which is called a 𝛽-redex, then
the sub-term can be rewritten according to the 𝛽-rule. This is
nowadays referred to as the strong 𝜆-calculus. In the already
mentioned weak 𝜆-calculus, instead, 𝛽-reduction cannot take
place in abstractions. In the strong 𝜆-calculus, a normal form
is a term without 𝛽 redexes, while in the weak 𝜆-calculus it
is a term having no 𝛽-redexes outside of abstractions. For
instance, 𝜆𝑧.((𝜆𝑥.𝑡)𝑠) is a normal form in the weak setting
but not in the strong one, where it 𝛽-reduces to 𝜆𝑧.(𝑡{𝑥�𝑠}).

Values and Sharing. TheCbV andCbNeed variants avoid
the inefficient repetition of work—typical of CbN—by limit-
ing what can be duplicated, namely, only values, a restricted
form of sub-program.

Values 𝑣 ::= 𝑥 | 𝜆𝑥.𝑡
CbV 𝛽-reduction (𝜆𝑥 .𝑡)𝑣 →𝛽𝑣 𝑡{𝑥�𝑣}

The CbV restriction forces sub-programs to be duplicated
and erased only after they are evaluated. This restriction
results in sharing of computations. The definition of CbNeed
is omitted here, as it is a bit more technical, but we shall
explain the intuition behind it in Sect. 7. Roughly, CbNeed
also only duplicates values, but can instead erase any term.

Let us give an example of how the value restriction realizes
sharing. Let I := 𝜆𝑥.𝑥 be the identity 𝜆-term and consider
the following two evaluation paths of (𝜆𝑦.𝑦𝑦) (I𝑧), where
the horizontal arrows reduce the redexes highlighted in dark
gray (which are all occurrences of I𝑧) while the vertical
arrows reduce the redexes highlighted in light gray:

(𝜆𝑦.𝑦𝑦) ( I𝑧 ) (𝜆𝑦.𝑦𝑦)𝑧

I𝑧 ( I𝑧 ) 𝑧𝑧𝑧 ( I𝑧 )

𝛽

𝛽
𝛽

𝛽 𝛽

(1)

The top-right path (reducing the dark gray redex first) is a
CbV evaluation. A sharing of computations is obtained via
the value restriction which forces to reduce the (dark grey)
redex before duplicating it, because I𝑧 is not a value. The
left-bottom path is a CbN evaluation, which is longer than
the CbV one, because it reduces each of the two copies of the
redex I𝑧 produced by the light gray redex. If one assumes
that efficiency can be measured by comparing the number of
𝛽-steps2, then CbV is more efficient than CbN (in this case).

A Confusing Point. A strongly misleading point is that
Plotkin’s presentation of the CbV 𝜆-calculus does not make
sharing explicit via a term constructor (while it is usually
explicit in the presentations of CbNeed due to Launchbury
[41], Ariola and Felleisen [23], Maraist et al. [48], and Ses-
toft [55]). Under the assumptions used to model functional
programming—namely, closed terms (that is, without free
variables) and weak evaluation—sharing can indeed be swept
under the rug. It turns out, however, that both semantical
studies and proof assistants need to go beyond those as-
sumptions by considering open terms (that is, terms with
free variables; for instance 𝑥 (𝜆𝑦.𝑦𝑧) is open because 𝑥 and
𝑧 are free). Then, the theory of CbV for the simplified case
is no longer adequate and some representation of sharing
becomes unavoidable, as discussed at length by Accattoli
and Guerrieri [16].

2For CbV and CbN one can indeed compare the number of 𝛽-steps, but this
is not true for general 𝛽-reduction sequences. Behind it lies the theory of
reasonable time for the 𝜆-calculus, see [7] for an introduction.
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CbN Sharing vs CbV and CbNeed Sharing. Sharing is
an overloadedword for many different aspects of the efficient
evaluation of 𝜆-terms. A form of sharing—namely sub-term
sharing, discussed below—is also used in abstract machines
for the CbN 𝜆-calculus. There are two aspects, however, that
set the by-value and by-need settings apart. Firstly, they also
share computations, not just sub-terms (as diagram (1) above
hints at, and as we shall better explain below). Secondly, they
give a first-class status to sharing: not only it is used in the
abstract machines, it is also part of the syntax (in Accattoli
and Guerrieri’s setting for CbV [16, 18]) and it does not
vanish at the end of evaluation (as instead happens in CbN),
ending up in the results. Therefore, we refer to the by-value
and by-need settings together as 𝜆-calculi with sharing.

Adding Sharing. Adopting a first-class treatment of shar-
ing is delicate because it does not amount to simply adding
something, as it would be the case with, say, pairs or continu-
ations. It does indeed require a modification of the evaluation
mechanism itself, and it is made up of four basic steps.

1. Syntax: first of all, the syntax is extended with a con-
structor such as let 𝑥 = 𝑠 in 𝑡 . In fact, let expressions
are often more compactly represented as explicit sub-
stitutions (shortened to ESs) 𝑡 [𝑥�𝑠], also to abandon
the widespread convention that 𝑠 evaluates before 𝑡
in let 𝑥 = 𝑠 in 𝑡 , which depends on the choice of an
evaluation strategy rather than on the representation
of sharing.

Terms with sharing
𝑡, 𝑠 ::= 𝑥 | 𝜆𝑥.𝑡 | 𝑡𝑠 | 𝑡 [𝑥�𝑠]

2. Decomposing 𝛽 : next, one modifies 𝛽-reduction as to
turn (𝜆𝑥.𝑡)𝑠 into 𝑡 [𝑥�𝑠] which is an annotation de-
laying the substitution 𝑡{𝑥�𝑠}, thus keeping 𝑠 shared
instead of duplicating it.

3. Rewriting ESs: the next natural step is to introduce
rewriting rules for 𝑡 [𝑥�𝑠]. There are many possible
such sets of rules. In the simplest case, one has a small-
step CbN rule:

𝑡 [𝑥�𝑠] →sub 𝑡{𝑥�𝑠}
Usually, however, one has a set of micro-step rules
making one copy of 𝑠 at a time, rather than all at once,
and—in CbV and CbNeed—only values can be substi-
tuted (that is, 𝑠 has to be a value in rule →sub above,
and in its micro-step variants). In this essay, we prefer
to avoid spelling out a set of rewriting rules for ESs, in
order to keep the discussion high-level and informal,
at the price of being vague, but also because sharing
and its operational semantics admit various presenta-
tions (many using terms, but also via graphs, abstract
machines, etc), and we do not want the reader to be
misled by the details of a fixed presentation.

4. Evaluation contexts: finally, one needs to establish in
which evaluation contexts the rules can be applied. The

choice of rules and of evaluation contexts defines the
evaluation strategy of the chosen 𝜆-calculus with shar-
ing. A key aspect determined by the evaluation con-
texts is whether evaluation goes under abstraction: if
it does not, then the calculus is weak, as it is usually
the case in functional languages, otherwise it is strong,
which is mainly used in the theory of proof assistants.

Depending on the rules for ES and on the choice of evaluation
contexts, there is in fact a whole family of 𝜆-calculi with
sharing, depending at least on whether the calculus is weak
or strong, the granularity of the rewriting rules is small-step
or micro-step, and whether evaluation is by-name, by-value,
or by-need.

Three Levels of Sharing. With the introduced concepts,
we can already identify three levels or aspects of sharing
(further forms of sharing exist, but we are not aiming at a
comprehensive survey on sharing here):

• Sharing of sub-terms: the ES constructor 𝑡 [𝑥�𝑠] is an
explicit annotation for the sharing of the sub-term 𝑠

in 𝑡 . If evaluation does not touch 𝑠 , but only keeps it
shared (until it is substituted, if ever), then there is no
sharing of computations. Such a sub-term sharing is
what is found in the abstract machines for CbN, and
it is already a powerful tool, as it allows one, in some
cases, to achieve an exponential compression of terms.
For instance, consider the term:

𝑡3 := (𝜆𝑥.𝑦1𝑦1) [𝑦1�𝑦2𝑦2] [𝑦2�𝑦3𝑦3]
If we remove the sharing from 𝑡3 by turning ESs into
meta-level substitutions—an operation noted ·

→

and
usually called (sharing) unfolding—we obtain the term:

𝑡3

→

= (𝜆𝑥.𝑦3𝑦3𝑦3𝑦3𝑦3𝑦3𝑦3𝑦3)
Clearly, generalizing such a process to 𝑛 > 3 shows
that 𝑡𝑛

→

has size exponentially bigger than 𝑡𝑛 . More-
over, in a weak setting (where evaluation does not go
under abstraction, and so the substitutions on 𝑦1 are
never performed) both 𝑡𝑛

→

and 𝑡𝑛 are normal terms,
so that 𝑡𝑛 is a very compact shared representation of
the sharing-free normal form 𝑡𝑛

→

.
• Sharing of computations: sharing is pushed one level
further if one allows evaluation to happen inside 𝑠 in
𝑡 [𝑥�𝑠]. Such an approach induces sharing of evalu-
ation sequences, that is, of computations, which can
then become exponentially shorter in some cases. For
instance, consider (where I is the identity 𝜆-term):
𝑠 := (𝑦1𝑦1) [𝑦1�𝑦2𝑦2] . . . [𝑦𝑛−1�𝑦𝑛𝑦𝑛] [𝑦𝑛�I(𝑧𝑧)]

In 𝑠 , if reduction can enter [𝑦𝑛�I(𝑧𝑧)] then the redex
I(𝑧𝑧) is reduced only once. Otherwise (typically in
CbN), the evaluation of 𝑠 might do up to 2𝑛 copies
of I(𝑧𝑧) (depending on whether the CbN evaluation
strategy evaluates arguments), which then requires
reducing that same redex an exponential number of
times.
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• Sharing of computations by value/need: in CbV and Cb-
Need settings, there is sharing of computations plus
the constraint that only values can be duplicated, that
is, an ES not containing a value shall persist. The con-
straint has an important consequence: on some terms,
sharing cannot be eliminated (even when evaluating
inside abstractions). For instance, in CbV or CbNeed
the term 𝑠 above would reduce to the following one:

(𝑦1𝑦1) [𝑦1�𝑦2𝑦2] . . . [𝑦𝑛−1�𝑦𝑛𝑦𝑛] [𝑦𝑛�𝑧𝑧]
and in this term none of the ESs contains a value, so
that the term is normal, and has ESs in its normal form.

Normal Forms, Unfolding, and Relational Models.
The presence of sharing in normal forms in an important
aspect that might be easily misunderstood. Depending on
the definition of the operational semantics, also CbN might
have ESs in normal forms. The difference is that in CbN
it is always sound to unfold ESs and obtain an ordinary 𝜆-
term without ES. In CbV and CbNeed, instead, unfolding the
sharing can change the semantics, as we now point out.
An important family of models of the 𝜆-calculus is the

relational semantics, which exists for CbN (this model is
folklore, it is used for instance in de Carvalho [31]), CbV
(introduced by Ehrhard [33]), and CbNeed (by Accattoli et al.
[19]), and it is a paradigmatic family of models in that other
families are built on top of it (such as coherence spaces, hyper-
coherences, finiteness spaces) or are strongly related to it
(such as gamemodels). Relational semantics easily model ESs.
In the CbN relational semantics, 𝑡 and its sharing unfolding
𝑡

→

have the same interpretation, for every term 𝑡 . In the CbV
and CbNeed relational semantics, instead, 𝑡 and 𝑡

→

have in
general different interpretations.

Therefore, in CbV and CbNeed sharing has a (denotational
and equational) semantical role that is instead invisible in
CbN.

4 Sharing, Operationally
The operational study of 𝜆-calculi with sharing has been an
active research topic for decades, because it was far from
evident what was the right approach to the third step to
the recipe for adding sharing given in the previous section
(namely, "rewriting ES"). Among the various reasons, one
might mention the hard-to-manage graphical formalisms of
Wadsworth’s original presentation of CbNeed [56], or the
fact that natural choices of micro-step rules can introduce
malicious behavior, breaking key properties of the 𝜆-calculus,
as shown by Melliès [49].

Nowadays, however, the operational semantics of sharing
rests on solid grounds. The long-standing problem of finding
canonical micro-step rules for ESs, indeed, has arguably been
solved, namely via the linear substitution calculus [4, 10]
(shortened to LSC) due to Accattoli and Kesner, merging
ideas by Robin Milner [50] with insights from graphical
languages and linear logic from their previous work [20].

The next paragraph gives some pointers to the literature on
the LSC, for the interested reader.

The LSC. The LSC is today considered the standard of
reference for 𝜆-calculi with sharing because of its unique
rewriting properties [10], its connections with abstract ma-
chines [9], and the theory of reasonable time that it enabled.
In 2014, indeed, Accattoli and Dal Lago showed that the num-
ber of 𝛽-steps (of the leftmost strategy) is a reasonable time
cost model for the strong 𝜆-calculus [13]—the first such one,
solving a long-standing open problem—via a fine study of
sharing in the LSC.

A time or space cost model is reasonable if it is equivalent
to the one of Turing machines, thus preserving the corre-
sponding notion of computational complexity. Before 2014,
only partial results about reasonable time for the 𝜆-calculus
were known. Since [13], Accattoli and co-authors have de-
veloped a solid theory of reasonable cost models. In 2022,
Accattoli, Dal Lago, and Vanoni provided also the first rea-
sonable space cost model accounting for logarithmic space
[14]—solving the other long-standing open problem of the
area—via a fine study of sharing in abstract machines.

The CbV variant of the LSC, the value substitution calculus
(VSC), is the main tool in Accattoli and Guerrieri’s effort in
refining Plotkin’s CbV as to overcome its defects with respect
to open terms and provide a CbV theory of meaningful terms
[16, 18, 22, 27]. They also used it to study abstract machines
and reasonable time for CbV [11, 12, 17].
The LSC has also been used by Accattoli, Kesner, and co-

authors to revisit, simplify, and extend the theory of CbNeed
[9, 21, 24, 38, 39] and generalized as to encompass linear logic
[8].

5 Sharing, Denotationally and Equationally
The denotational and equational semantics of sharing, how-
ever, are far less understood. One of the reasons, is that the
semantics of sharing has mainly been studied in CbN, where
sharing does not appear on normal forms. Another already
mentioned one is the fact that sharing does not have a first-
class status in Plotkin’s presentation of CbV. To better ex-
plain the equational issue, we need to recall a key concept.

Contextual Equivalence. The paradigmatic notion of
equational semantics for 𝜆-calculi is Morris’ contextual equiv-
alence ≃𝐶 [51], stating that two 𝜆-terms 𝑡 and 𝑠 are equiv-
alent if they both terminate or both diverge (with respect
to a fixed notion of termination) when plugged in the same
context, that is, that𝐶 ⟨𝑡⟩⇓ if and only if𝐶 ⟨𝑠⟩⇓ for all contexts
𝐶 . It is the challenging benchmark, or the golden standard,
for denotational models: a model is fully abstract if all con-
textually equivalent terms, and only them, have the same
interpretation in the model.

Contextual equivalence is, however, a notion that is very
difficult to manipulate, because of the quantification over all
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contexts. This is why finding alternative characterizations
(via models or bisimilarities), or sub-equivalences that are
easier to manipulate, is of great importance.

Meaningful Programs. One of the first insights of the
equational and denotational semantics of the 𝜆-calculus has
been the distinction between idle looping programs and pro-
grams that diverge while having a productive behavior, e.g.,
programs producing streams of data. The former are consid-
ered meaningless, have a degenerated representation in mod-
els, and are all contextual equivalent. The latter are instead
considered meaningful and are represented as non-trivial
elements of models, on par with terminating programs. More-
over, meaningful programs are not contextually equivalent
unless they have the same productive behavior, and an equa-
tional theory identifying two of them is usually inconsistent
(that is, it equates all terms). Barendregt [25] has built the
theory of CbN 𝜆-calculus, where meaningful/meaningless
corresponds to the technical notion of solvable/unsolvable,
out of this insight.
In CbV, the situation is different: unsolvable terms are

not all contextually equivalent and equating them as in CbN
leads to inconsistency [18]. Inspired by the LSC, a decade ago
Accattoli and Guerrieri explored variants of Plotkin’s CbV
to circumvent some of its semantical shortcomings [22, 27].
Thanks to these insights, they recently found a finer notion
of meaningful CbV program, namely scrutable terms [18],
the dual notion of which—that is, inscrutable terms—are all
contextually equivalent. This fact shows that the equational
semantics of CbV is finer than the CbN one, despite being
much less developed. It clearly calls for more research on the
equational and denotational semantics of the CbV 𝜆-calculus.

6 Trees vs DAGs, and Switchable
Equivalences

In CbN, programs are syntax trees (with binders). Accord-
ingly, many results in denotational semantics are based on a
notion of "semantical trees" called Böhm trees [25], or some
of their variants such as Lévy-Longo [44] or Nakajima trees
[52]. Roughly, the idea is that semantical trees are potentially
infinite extensions of normal forms taking into account the
idle/productive behavior of diverging terms:

• Terminating terms: their semantical tree is their normal
form;

• Productive diverging terms: their semantical tree is the
infinite tree that they produce by pushing reduction
to the limit;

• Idle diverging terms: their semantical tree is the special
one-node ⊥ semantical tree, which is a degenerate
semantical tree representing lack of meaning.

Different notions of semantical tree (Böhm, Lévy-Longo,
Nakajima) depend on the notion of termination taken as
reference in the definition of semantical trees (those induced

by head reduction, weak head reduction, head reduction plus
𝜂-equivalence, respectively).

From Trees to DAGs. CbV and CbNeed programs can
also be seen as trees, and one can also define notions of CbV
and CbNeed semantical trees. But sub-term sharing is better
represented by sharing sub-trees, thus turning programs into
directed acyclic graphs (DAGs), as we shall do below. The
switch to DAGs can also be modelled without introducing
a graphical formalism, by considering terms with sharing
modulo a set of equivalences. The paradigmatic equivalence
is the following commutation of independent ESs, where in-
dependence is given by the side conditions 𝑥 ∉ fv(𝑢) and
𝑦 ∉ fv(𝑠):

𝑡 [𝑥�𝑠] [𝑦�𝑢] ≡com 𝑡 [𝑦�𝑢] [𝑥�𝑠] if 𝑥 ∉ fv(𝑢)
and 𝑦 ∉ fv(𝑠).

As an example, consider (where𝑤 is a variable):

((𝑥𝑦) (𝑥𝑦)) [𝑥�𝑧𝑧] [𝑦�𝑤𝑤]
≡com

((𝑥𝑦) (𝑥𝑦)) [𝑦�𝑤𝑤] [𝑥�𝑧𝑧].
(2)

The idea of the commutation ≡com is that the position of an
ES in a term does not matter, only the variable bound by the
ES matters.

We can now use ≡com to better explain the tree and DAG
representations of sharing via an informal discussion about
graphical representations of terms.

In a rigid tree representation, occurrences of a same vari-
able are represented with different nodes. A first step in
the representation of sharing is to keep the tree structure
for the internal nodes, while using a single node for all the
occurrences of the same variable. For instance, the two rep-
resentations of (𝑥𝑦) (𝑥𝑦) are:

Rigid Shared variables
@

@ @

𝑥 𝑦 𝑥 𝑦

@

@ @

𝑥 𝑦

We adopt the shared variables representation. Now, one
might be tempted to represent the ES 𝑡 [𝑥�𝑠] as a tree con-
structor as follows:

[𝑥�·]

𝑡 𝑠

Such a representation gives different tree representations for
the two terms in (2), as the root node of the first one would
be labelled with [𝑦�·], while the root node of the second
term would be [𝑥�·]:

184



Sharing a Perspective on the 𝜆-Calculus Onward! ’23, October 25–27, 2023, Cascais, Portugal

[𝑦�·]

@

𝑤

[𝑥�·]

@

𝑧

@

@ @

𝑥 𝑦

[𝑥�·]

@

𝑧

[𝑦�·]

@

𝑤

@

@ @

𝑥 𝑦

This is somewhat problematic, because in CbV and CbNeed,
these two terms are both normal, since their ESs contain
terms that are not values, and they have the same interpre-
tation in the relational model. Thus one might want them
to be represented by the same semantical tree (which, being
normal terms, is just the tree representation of their normal
form).

A better way to represent ESs, as already said, is exploiting
DAGs. The idea is to change the representation of 𝑡 [𝑥�𝑠] as
to plug the representation of 𝑠 under the node representing
𝑥 , and not by adding a root node for the ES. With respect to
the terms in (2), the modified translations maps them both
to the following DAG:

@

@ @

𝑥

@

𝑧

𝑦

@

𝑤

Therefore, the DAGs representation achieves the identifica-
tion of the two semantic forms.
It is natural to want to push the DAGs representation

further and also share application nodes, obtaining the fol-
lowing DAG:

@

@

𝑥

@

𝑧

𝑦

@

𝑤

Such a representation is perfectly fine from the graphical
point of view. It is however preferable to always associate
sharing to variable nodes, as to preserve a tight connection
between graphs and terms. In terms, indeed, sharing is en-
capsulated in the ES construct, which is always associated
to a variable. Such a sharing-on-variable-nodes approach,
represents the previous DAG as follows:

@

𝑥 ′

@

𝑥

@

𝑧

𝑦

@

𝑤

The corresponding term is (𝑥 ′𝑥 ′) [𝑥 ′�𝑥𝑦] [𝑥�𝑧𝑧] [𝑦�𝑤𝑤],
which is neither of the terms in (2).

To connect with a previous section, let us discuss another
way of associating a tree to the terms in (2). The idea is
to unfold the sharing, which causes both terms to become
((𝑧𝑧) (𝑤𝑤)) ((𝑧𝑧) (𝑤𝑤)). The graphical representation then
becomes:

@

@ @

@ @ @ @

𝑧 𝑤

We already mentioned that unfolding is sound for CbN but
not for CbV or CbNeed: in other words, this tree and the
previous DAG have the same CbN semantics (in the CbN
relational model) but not the same CbV or CbNeed semantics
(in the respective relational models). Therefore, it would not
be sound to use this tree as the CbV or CbNeed semantical
tree of the terms in (2).

Beyond such an informal discussion, DAGs formalisms for
𝜆-terms with sharing based on linear logic proof nets can be
found in Accattoli [5, 6].

Switchable Equivalences. Let us now go back to the
equivalence ≡com on terms. Since ≡com is symmetric, it can-
not be oriented as a rewriting rule, and thus its equivalence
classes do not admit canonical representatives. To obtain them,
one needs the DAG representation sketched above. Alterna-
tively, one simply forgets about canonical representatives
and works modulo ≡com in the LSC, which has been con-
ceived exactly for such a task. With DAGs or modulo ≡com,
notions of program equivalence become subtler, and the
techniques developed for the tree-based setting of the CbN
𝜆-calculus are often not adequate.

The equivalence ≡com is particularly interesting because it
is valid in CbV without effects, and in particular it underlies
the parallel aspect of CbV (such as the one used by Blelloch
and Greiner [26] to connect the CbV 𝜆-calculus with paral-
lel random access machines), but it is invalid in CbV with
non-commutative effects (such as forms of state), where a left-
to-right or right-to-left evaluation order has to be adopted.
On the other hand, it is valid in CbNeed (with or without
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effects), since ESs in CbNeed are evaluated on-demand, in-
dependently of their syntactic order. Therefore, ideally, one
might want models and program equivalences for which the
validity of ≡com can be parametrically switched on and off,
without having two whole different theories.

In CbN, the main degree of freedom in the design of mod-
els and program equivalences is the amount of extension-
ality (technically, 𝜂-equivalence) of the model/equivalence.
In particular, there is an axiomatisation of CbN contextual
equivalence, in the sense that it is known that CbN contex-
tual equivalence amounts to 𝛽𝜂-equivalence (more precisely
𝜂-equivalence of semantical trees).

In CbV and CbNeed, the situation is different. In addition
to 𝛽 and 𝜂, there are equivalences such as ≡com and others
that are discussed in the preprint by Accattoli et al. [15].
Therefore, the semantical account of 𝜆-calculi with sharing
has to be flexible, ideally producing conceptual blocks and
techniques that can bemodularly composed in order to model
the 𝜆-calculus with sharing of choice. Moreover, there is no
known axiomatisation of CbV contextual equivalence, nor an
accepted notion of semantical tree or DAG (there are some
recent proposals [15, 46], but they are not fully satisfying).

Unifying Settings. In spite of the mentioned differences
between CbN and CbV, there is a literature about dealing
uniformly with some aspects of CbN and CbV 𝜆-calculi. Such
a literature is rooted in the classical-logic-based view of these
paradigms, seeing them as opposite solutions to the failure of
confluence for cut-elimination in classical logic. The uniform
treatment is thus obtained via classically-inspired systems
such as Levy’s call-by-push-value [43] or Curien and Her-
belin’s 𝜆𝜇�̃�-calculus [29], or via linearly-inspired systems—
because linear logic can represent classical logic—such as
Laurent’s polarized logic [42] or Ehrhard and Guerrieri’s
bang calculus [34]. These frameworks allow one to focus on
the similarities rather than the differences between CbN and
CbV. They uniformly capture the different evaluation orders
in CbN and CbV, that is, their different selection of redexes.
At present, they fail at capturing the equational difference
between CbN and CbV, and they let CbNeed out of their
unification. For that, another, different form of duality has
to be involved, as we now explain.

7 Wise and Silly Duplication and Erasure
A crucial aspect in the construction of a theory of sharing is
the management of duplication and erasure. In this respect,
CbN and CbV are dual. This is not, however, the classical-
logic-related duality between CbN and CbV, as this second
duality can be observed also at the intuitionistic level, where
CbV and CbNeed were originally introduced in the 1970s,
more than a decade before the discovery of the computa-
tional context of classical logic by Griffin [36]. Therefore, it
is somewhat more primitive.

CbN never evaluates arguments of 𝛽-redexes before the
redexes themselves. As a consequence, it never evaluates in
sub-terms that will be erased. This is wise with respect to
erasure, and makes CbN a normalizing strategy, that is, a
strategy that reaches a result whenever one exists. For in-
stance, consider the following diagram, where Ω is the stan-
dard idling looping 𝜆-term (defined as Ω := (𝜆𝑥 .𝑥𝑥) (𝜆𝑥 .𝑥𝑥)
and verifying Ω →𝛽 Ω):

(𝜆𝑧.𝜆𝑦.𝑦) Ω (𝜆𝑧.𝜆𝑦.𝑦) Ω

𝜆𝑦.𝑦

𝛽

𝛽

(3)

The vertical step (in light gray) is CbN, and erases the diver-
gent argument without evaluating it.

A second consequence is that if the argument of the redex
is duplicated then it may be evaluated more than once, as
diagram (1) (page 3) shows. This is silly with respect to
duplication, as it repeats work already done.
CbV, on the other hand, always evaluates arguments of

𝛽-redexes before the redexes themselves. Consequently, ar-
guments are not re-evaluated. This is wise with respect to
duplication, as diagram (1) shows, and it is essentially what
accounts for sharing. But it has a consequence: arguments
are also evaluated when they are going to be erased. For
instance, in diagram (3) above, CbV evaluation performs the
horizontal step (in dark gray) and diverges (as it keeps evalu-
ating Ω) while CbN terminates in one 𝛽-step (simply erasing
Ω). This CbV treatment of erasure is clearly as silly as the
duplicated work of CbN.

CbNeed and its Silly Dual. It is natural to try to combine
the advantages of both CbN and CbV. The strategy that
is wise with respect to both duplications and erasures is
nothing else but CbNeed: it does not evaluate arguments
until they are needed (wise erasure), and, if they are needed
for a second or further time, it re-uses the value previously
calculated, avoiding the silly duplication of work of CbN
(wise duplication). Such a view of CbNeed is used by Accattoli
et al. [19] to develop a multi type system for CbNeed able to
capture exactly the number of CbNeed evaluation steps.

Perhaps surprisingly, there is an interest in the theory of
the dual call-by-silly evaluation strategy—which has how-
ever never been studied—that adopts both silly duplication
and silly erasure, and completes the following diagram of
strategies with its top corner:

𝐶𝑏𝑆𝑖𝑙𝑙𝑦Silly erasure Silly duplication

𝐶𝑏𝑁
Wise erasure

Silly duplication 𝐶𝑏𝑉 Silly erasure
Wise duplication

𝐶𝑏𝑁𝑒𝑒𝑑 Wise erasureWise duplication

DuplicationErasure

Duplication Erasure
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The CbSilly strategy is of no practical interest for program-
ming purposes. It is theoretically interesting, however, be-
cause it provides an unshared, or inefficient version of CbV.
Let us explain what we mean:

• The kind of erasing behavior (wise/silly) determines
the termination behavior—thus it changes the associ-
ated contextual equivalence and the set of meaningful
terms.

• The kind of duplicating behavior (wise = with sharing,
silly = without sharing) only affects the efficiency of
the evaluation process, leaving contextual equivalence
and meaningful terms unchanged.

Since the difference between CbN and CbNeed concerns
duplications, they induce the same contextual equivalence,
but—because of sharing—CbNeed is harder to study. In partic-
ular, as we outlined in a previous paragraph, CbNeed normal
forms are actually DAGs, while CbN normal forms are tree-
shaped. Now, a CbSilly strategy differs from CbV only with
respect to duplication, which therein is silly rather than wise.
Therefore, it would provide a de-sharification of CbV having
tree-shaped normal forms, hopefully providing a simplified
strategy to study CbV contextual equivalence, and possibly
leading to an axiomatisation of CbV contextual equivalence.

Summing up, a fine understanding of 𝜆-calculi with shar-
ing declines into an understanding of how duplication and
erasure are favored or deprecated, and of how these ap-
proaches can be combined.

Linear Logic? Logically, duplication and erasure immedi-
ately hint at Girard’s linear logic [35], which is a framework
where these operations are managed by a dedicated modality.
But linear logic is not enough: it does model CbN and CbV,
but not CbNeed, which is rather connected with affine logic,
as briefly mentioned by Maraist et al. [47]. We thus expect
the CbSilly strategy to also fall outside of linear logic.

8 Cost-(In)Sensitiveness and Full
Abstraction

The equationalmismatch betweenCbV andCbN goes beyond
the fact that they do not have the same notion of meaningless
term, and it crystallizes into the full abstraction problem for
pure CbV.

In the literature, there are fully abstract natural models for
extensions of CbV, for instance for CbV PCF by Honda and
Yoshida [37], Abramsky and McCusker [2], and Koutavas
et al. [40], for CbV PCF with higher-order state by Abram-
sky, Honda, and McCusker [1], and for the CbV quantum
𝜆-calculus by Clairambault and de Visme [28]. There are
however no such models for pure CbV (that is, untyped,
effect-free, no arithmetic nor conditionals), and full abstrac-
tion is not preserved by restrictions nor extensions (PCF has
arithmetic operations and conditionals, which can be seen
as an extension, but it is typed, which is instead a restriction

with respect to pure CbV). Moreover, there are fully abstract
models for pure CbN such as the CbN relational model, see
Manzonetto [45], but their CbV variant is not fully abstract
for pure CbV, see Accattoli et al. [15].
On the positive side, it is known that applicative bisim-

ilarity is fully abstract for pure CbV (see Egidi et al. [32]
and Pitts [53]), but applicative bisimilarity is hard to manip-
ulate, because its definition quantifies over contexts, it only
uses a restricted class of contexts with respect to contextual
equivalence.
Let us now look at this puzzling fact adopting a sharing-

based perspective. In CbV, in fact, it is not so obvious that
contextual equivalence by value, noted ≃𝑣

𝐶
, should be the

standard of reference, at least in the pure setting. The rea-
son is that ≃𝑣

𝐶
is cost-insensitive: it equates terms such as

(𝜆𝑥.𝑦𝑥𝑥)𝑡 and 𝑦𝑡𝑡 , for any 𝑡 , also for terms 𝑡 that are not
values. This is against the very idea of CbV (and of sharing),
of avoiding duplicating 𝑡 before having evaluated it. In richer
CbV settings (with non-determinism, memory locations, or
probabilities), contexts discriminate more, and those terms
are separated, but in the pure case they are not. The cost-
insensitiveness of CbV contextual equivalence ≃𝑣

𝐶
suggests

that ≃𝑣
𝐶
is actually better understood as the equivalence of

the CbSilly strategy mentioned above. Cost-(in)sensitiveness
suggests a possible explanation for the lack of full abstrac-
tion of the CbV relational model, which is that the relational
model is cost-sensitive while ≃𝑣

𝐶
is cost-insensitive. It is likely

that there are also other reasons why such a model is not
fully abstract. We believe, however, that studying the ques-
tion by comparing with CbSilly can help to better understand
the problem.

CbNeedModels. A related point is how to define what is a
denotational model of CbNeed. There is in fact no general no-
tion of model for CbNeed. The question is delicate. As already
mentioned, CbN and CbNeed contextual equivalences coin-
cide, they only differ in the efficiency of evaluation. Roughly,
this means that every model for CbN is a model for CbNeed,
since models represent evaluation as an equality, and so—at
first sight—the difference in efficiency cannot be observed at
the denotational level.
It is however possible to establish a link between the op-

eration of composing the interpretations J𝑡K and J𝑠K of 𝑡 and
𝑠 in the model and the evaluation of 𝑡𝑠 , as done for instance
in CbN for game models by Danos et al. [30] or for the rela-
tional model by de Carvalho [31]. Guided by this intuition,
it would be interesting to develop a categorical notion of
CbNeed model which should not include all models of CbN.
In particular, it should capture the CbNeed relational model
of Accattoli et al. [19], which is not a model of CbN—and
the only known model of CbNeed which is not a model
of CbN—but not the CbN relational model. In other words,
full abstraction cannot be the golden standard for CbNeed
models: a new semantic principle should be isolated, which
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should also allow one to distinguish between models of CbV
and CbSilly (that also share the same notion of contextual
equivalence).

9 Conclusions
This essay attempts to give a non-technical introduction
to sharing in the 𝜆-calculus. It hopefully provides enough
evidence that the theory of the 𝜆-calculus is not as solid
as one might expect when sharing is added to the picture.
The addition indeed raises currently open questions, forcing
the development of new tools and of a new semantic the-
ory of the 𝜆-calculus. What is missing is a solid theoretical
perspective on sharing, a holistic view encompassing opera-
tional, denotational, equational, as well as efficiency-related
aspects, applicable to various evaluation schemes (call-by-
name/value/need/silly, weak/strong evaluation, closed/open
terms), able to modularly survive extensions with effects
and further programming features, and paired with logical
principles typical of Curry-Howard correspondences.
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