, mainly for the Morawetz type estimates derived in that paper.

Chapter 1 Introduction

This is our main paper in a series of papers, see [START_REF] Klainerman | Construction of GCM spheres in perturbations of Kerr[END_REF], [START_REF] Klainerman | Effective results in uniformization and intrinsic GCM spheres in perturbations of Kerr[END_REF], [START_REF] Giorgi | Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes[END_REF] and [START_REF] Shen | Construction of GCM hypersurfaces in perturbations of Kerr[END_REF], in which we prove the full nonlinear stability of the Kerr family Kerr(a, m) for small angular momentum, i.e. |a|/m 1, in the context of asymptotically flat solutions of the Einstein vacuum equations (EVE), R αβ = 0.

(1.0.1)

We recall that the Kerr family, discovered by R. Kerr [START_REF] Kerr | Gravitational field of a spinning mass as an example of algebraically special metrics[END_REF] in 1963, consists of explicit, stationary, asymptotically flat, solutions of EVE. It is considered by physicists and astrophysicists to be the main mathematical model of a black hole.

Kerr stability conjecture

The discovery of black holes, first as explicit solutions of EVE and later as possible explanations of astrophysical phenomena, has not only revolutionized our understanding of the universe, it also gave mathematicians a monumental task: to test the physical reality of these solutions. This may seem nonsensical since physics tests the reality of its objects by experiments and observations and, as such, needs mathematics to formulate the theory and make quantitative predictions, not to test it. The problem, in this case, is that black holes are by definition non-observable and thus no direct experiments are possible. Astrophysicists ascertain the presence of such objects through indirect observations 1 and numerical experiments, but both are limited in scope to the range of possible observations or the specific initial conditions in which numerical simulations are conducted. One can rigorously check that the Kerr solutions have vanishing Ricci curvature, that is, their mathematical reality is undeniable. But to be real in a physical sense, they have to satisfy certain properties that can be neatly formulated in unambiguous mathematical language. Chief among them2 is the problem of stability, that is, to show that if the precise initial data corresponding to Kerr are perturbed a bit, the basic features of the corresponding solutions do not change much 3 . This leads naturally to the following conjecture.

Conjecture (Stability of Kerr conjecture). Vacuum, asymptotically flat, initial data sets, sufficiently close to Kerr(a, m), |a|/m < 1, initial data, have maximal developments with complete future null infinity and with domain of outer communication 4 which approaches (globally) a nearby Kerr solution.

In this section, we provide a brief introduction to the current state of the art concerning the Kerr stability conjecture. For a more in depth introduction to the problem, we refer the reader to [START_REF] Dafermos | The mathematical analysis of black holes in general relativity[END_REF] or the introduction of [START_REF] Klainerman | Global Non-Linear Stability of Schwarzschild Spacetime under Polarized Perturbations[END_REF].

The Kerr stability problem in the physics literature

The nonlinear stability of the Kerr family has become, ever since its discovery by R. Kerr [START_REF] Kerr | Gravitational field of a spinning mass as an example of algebraically special metrics[END_REF] in 1963, a central topic in general relativity. The first stability results obtained by physicists in the context of the linearized EVE near a fixed member of the Kerr family were mode stability results. The metric perturbation point of view was initiated by Regge-Wheeler [START_REF] Regge | Stability of a Schwarzschild singularity[END_REF] who discovered the master Regge-Wheeler equation for odd-parity perturbations. An alternative approach via the Newman-Penrose (NP) formalism was first undertaken by . This latter type of analysis was later extended to the Kerr family by Teukolsky [START_REF] Teukolsky | Perturbations of a rotating black hole. I. Fundamental equations for gravitational, electromagnetic, and neutrino-field perturbations[END_REF] who made the important discovery that the extreme curvature components, relative to a principal null frame, satisfy decoupled, separable, wave equations. These extreme curvature components also turn out to be gauge invariant in the sense that small perturbations of the frame lead to quadratic errors in their expression. The full extent of what could be done by mode analysis, in both approaches, can be found in Chandrasekhar's book [START_REF] Chandrasekhar | The mathematical theory of black holes[END_REF]. Chandrasekhar also introduced (see [START_REF] Chandrasekhar | On the equations governing the perturbations of the Schwarzschild black hole[END_REF]) a transformation theory relating the two approaches. More precisely, he found a transfor-mation which connects the Teukolsky equations to the Regge-Wheeler one. The full mode stability, i.e. lack of exponentially growing modes, for the Teukolsky equation in Kerr is due to Whiting [START_REF] Whiting | Mode stability of the Kerr black hole[END_REF] (see also [START_REF] Shlapentokh-Rothman | Quantitative Mode Stability for the Wave Equation on the Kerr Spacetime[END_REF] for a stronger quantitive version).

The scalar linear wave equation in Kerr

Mode stability is far from establishing even boundedness of solutions to the linearized equations and falls thus far short of what is needed to understand nonlinear stability. To achieve that and, in addition, to derive realistic decay estimates, one needs an entirely different approach based on a far reaching extension of the classical vectorfield method5 used in the proof of the nonlinear stability of Minkowski [START_REF] Christodoulou | The global nonlinear stability of the Minkowski space[END_REF].

The new method, which has emerged in the last 18 years in connection to the study of boundedness and decay for the scalar wave equation in the Kerr space K(a, m), compensates for the lack of enough Killing and conformal Killing vectorfields on a Schwarzschild or Kerr background by introducing new vectorfields whose deformation tensors have coercive properties in various, not necessarily causal, regions of spacetime. The starting and most demanding part of the new method is the derivation of a global, simultaneous, Energy-Morawetz estimate which degenerates in the trapping region. This task is somewhat easier in Schwarzschild, or for axially symmetric solutions in Kerr, where the trapping region is restricted to a smooth hypersurface. The first such estimates, in Schwarzschild, were proved by Blue and Soffer in [START_REF] Blue | Semilinear wave equations on the Schwarzschild manifold. I. Local decay estimates[END_REF], [START_REF] Blue | Errata for "Global existence and scattering for the nonlinear Schrödinger equation on Schwarzschild manifolds[END_REF] followed by a long sequence of further improvements in [START_REF] Blue | Uniform decay of local energy and the semi-linear wave equation on Schwarzschild space[END_REF], [START_REF] Dafermos | The red-shift effect and radiation decay on black hole spacetimes[END_REF], [START_REF] Marzuola | Strichartz estimates on Schwarzschild black hole backgrounds[END_REF] etc.

In the absence of axial symmetry the derivation of an Energy-Morawetz estimate in K(a, m) for |a/m| 1 requires a more refined analysis involving both the vectorfield method and Fourier or mode decompositions, see Tataru-Tohaneanu [START_REF] Tataru | A Local Energy Estimate on Kerr Black Hole Backgrounds[END_REF] for the first full quantitative decay result (see also for boundedness of solutions). The derivation of such an estimate in the full sub-extremal case |a| < m is even more subtle and was achieved by Dafermos-Rodnianski-Shlapentokh-Rothman [START_REF] Dafermos | Decay for solutions of the wave equation on Kerr exterior spacetimes iii: The full subextremal case |a| < m[END_REF]. A purely physical space proof the Energy-Morawetz estimate for small |a/m|, which extends the classical vectorfield method to include second order operators (in this case the Carter operator [START_REF] Carter | Global structure of the Kerr family of gravitational fields[END_REF]) was pioneered by Andersson-Blue in [START_REF] Andersson | Hidden symmetries and decay for the wave equation on the Kerr spacetime[END_REF]. Their approach has the usual advantages of the classical vectorfield method, i.e it is robust with respect to perturbations, which is the very reason we pursue it in [START_REF] Giorgi | Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes[END_REF].

Once the energy-Morawetz estimate is derived, one can combine it with local estimates near the horizon, based on its red shift properties, as introduced in [START_REF] Dafermos | The red-shift effect and radiation decay on black hole spacetimes[END_REF], and r p weighted estimates, first introduced6 in [START_REF] Dafermos | A new physical-space approach to decay for the wave equation with applications to black hole spacetimes[END_REF], to derive realistic uniform decay properties of the solutions.

Stability of Schwarzschild

The first application of the new vectorfield method to the linearized Einstein equation near Schwarzschild space, due to Dafermos, Holzegel and Rodnianski, appeared in [START_REF] Dafermos | Linear stability of the Schwarzschild solution to gravitational perturbations[END_REF]. The paper makes use of a physical space version of Chandrasekhar's transformation to provide realistic boundedness and decay of solutions of the Teukolsky equations using the new vectorfield method. This method, of estimating the extreme curvature components by passing from Teukolsky to a Regge-Wheeler type equation, to which the vectorfield method can be applied, is important in all future developments in the subject.

The first nonlinear stability result of the Schwarzschild space appears in [START_REF] Klainerman | Global Non-Linear Stability of Schwarzschild Spacetime under Polarized Perturbations[END_REF]. In its simplest version, the result can be stated as follows.

Theorem 1.1.1 (Klainerman-Szeftel [START_REF] Klainerman | Global Non-Linear Stability of Schwarzschild Spacetime under Polarized Perturbations[END_REF]). The future globally hyperbolic development of an axially symmetric, polarized, asymptotically flat initial data set, sufficiently close (in a specified topology) to a Schwarzschild initial data set of mass m 0 > 0, has a complete future null infinity I + and converges in its causal past J -(I + ) to another nearby Schwarzschild solution of mass m ∞ close to m 0 .

The restriction to axial polarized perturbations is the simplest assumption which insures that the final state is itself Schwarzschild and thus avoids the additional complications of the Kerr stability problem which we discuss below. We note that in a just released preprint, the authors in [START_REF] Dafermos | The non-linear stability of the Schwarzschild family of black holes[END_REF] dispense of any symmetry assumptions by properly preparing a co-dimension 3 subset of the initial data such that the final state is still Schwarzschild.

The case of Kerr with small angular momentum

The first breakthrough result on the linear stability of Kerr, for |a|/m 1, is due to to Ma [START_REF] Ma | Uniform energy bound and Morawetz estimate for extreme components of spin fields in the exterior of a slowly rotating Kerr black hole II: linearized gravity[END_REF], see also [START_REF] Dafermos | Boundedness and decay for the Teukolsky equation on Kerr spacetimes I: The case |a| M[END_REF]. Both results extend the method of [START_REF] Dafermos | Linear stability of the Schwarzschild solution to gravitational perturbations[END_REF], mentioned above, by providing estimates to the extreme linearized curvature components via a similar Chandrasekhar transformation which takes the Teukolsky equations to a generalized Regge-Wheeler (gRW) equation. The passage to a tensorial version of gRW equation, in the fully nonlinear setting, plays an essential role in our work, see [START_REF] Giorgi | Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes[END_REF] and the discussion below. The result of [START_REF] Dafermos | Boundedness and decay for the Teukolsky equation on Kerr spacetimes I: The case |a| M[END_REF] was partially extended to the full subextremal range by Y. Shlapentokh-Rothman and R. Teixeira da Costa [START_REF] Shlapentokh-Rothman | Boundedness and decay for the Teukolsky equation on Kerr in the full subextremal range |a| < M : frequency space analysis[END_REF].

The first linear stability results for the full linearized Einstein vacuum equations near Kerr(a, m), for |a|/m 1, appear in [START_REF] Andersson | Stability for linearized gravity on the Kerr spacetime[END_REF] and [START_REF] Häfner | Linear stability of slowly rotating Kerr black holes[END_REF]. The first paper, based on the NP formalism, builds on the results of [START_REF] Ma | Uniform energy bound and Morawetz estimate for extreme components of spin fields in the exterior of a slowly rotating Kerr black hole II: linearized gravity[END_REF] and [START_REF] Dafermos | Boundedness and decay for the Teukolsky equation on Kerr spacetimes I: The case |a| M[END_REF] while the second paper is based on a version of the metric formalism. Though the ultimate relevance of these papers to nonlinear stability remains open they are both remarkable results in so far as they deal with difficulties that looked insurmountable even ten years ago.

Though it does not quite fit in the framework of our discussion, we would like to end this quick survey of results by mentioning the striking achievement of Hintz and Vasy [START_REF] Hintz | The global non-linear stability of the Kerr-de Sitter family of black holes[END_REF] on the nonlinear stability of the stationary part of Kerr-de Sitter with small angular momentum, see [START_REF] Hintz | The global non-linear stability of the Kerr-de Sitter family of black holes[END_REF]. The result does not concern EVE but rather the Einstein vacuum equation with a strictly positive cosmological constant

R αβ + Λg αβ = 0, Λ > 0. (1.1.1)
It is important to note that, despite the fact that, formally, (1.0.1) is the limit7 of (1.1.1) as Λ → 0, the global behavior of the corresponding solutions is radically different 8 .

The main simplification in the case of stationary solutions of (1.1.1) is that the expected decay rates of perturbations near Kerr-de Sitter is exponential, while in the case Λ = 0 the decay is lower degree polynomial 9 , with various components of tensorial quantities decaying at different rates, and the slowest decaying rate 10 being no better than t -1 . Despite this major simplification, the work of Hintz and Vasy is the first general nonlinear stability result in GR where one has to prove asymptotic stability towards a family of solutions, i.e. full quantitative convergence to a final state close, but different from the initial one 11 . It is also fair to say that the work of Hintz-Vasy deals with some of the geometric features of the black hole stability problem without having to worry about the considerable analytic difficulties of the physically relevant Kerr stability problem. On the other hand, as it is apparent in our work here, the geometric and analytic difficulties of the Kerr stability problem are highly entangled and cannot be neatly separated as in the Λ > 0 case. Thus the geometric framework of our work is very different from that of [START_REF] Hintz | The global non-linear stability of the Kerr-de Sitter family of black holes[END_REF].

1.2 Kerr stability for small angular momentum

1.2.

Simplest version of our main theorem

The simplest version of our main theorem can be stated as follows.

Theorem 1.2.1 (Main Theorem, first version). The future globally hyperbolic development of a general, asymptotically flat, initial data set, sufficiently close (in a suitable topology) to a Kerr(a 0 , m 0 ) initial data set, for sufficiently small a 0 /m 0 , has a complete future null infinity I + and converges in its causal past J -(I + ) to another nearby Kerr spacetime Kerr(a ∞ , m ∞ ) with parameters (a ∞ , m ∞ ) close to the initial ones (a 0 , m 0 ). Our proof rests on the following major ingredients.

1. A formalism to derive tensorial versions of the Teukolsky and Regge-Wheeler type equations in the full nonlinear setting.

2. An analytic mechanism to derive estimates for solutions of these.

3. A dynamical mechanism to identify the final values of (a ∞ , m ∞ ).

4. A dynamical mechanism for finding the right gauge conditions in which convergence to the final state takes place.

5. A precisely formulated continuity argument, based on a grand bootstrap scheme, which assigns to all geometric quantities involved in the process specific decay rates, which can be dynamically recovered from the initial conditions by a long series of estimates, and thus ensure convergence to a final Kerr state.

6. The continuity argument is based on the crucial concept of finite, GCM admissible spacetimes M = (ext) M ∪ (int) M ∪ (top) M, see Figure 1.2, whose defining characteristic is its spacelike, GCM boundary Σ * . Note that the boundaries (ext) M ∩ (top) M and (int) M ∩ (top) M are timelike 12 and that (top) M is needed to have the entire space M causal. The regions (ext) M and (int) M are separated by the timelike hypersurface T and the spacelike boundary A is beyond the future horizon H + of the limiting space. Finally the region L 0 , is the initial data layer in which M is prescribed as a solution of the Einstein vacuum equations.

Remark 1.2.2. As in [START_REF] Klainerman | Global Non-Linear Stability of Schwarzschild Spacetime under Polarized Perturbations[END_REF] we construct spacetimes starting from the initial layer L 0 , see Figure 1.2. The initial layers we consider are those which arise from the evolution of asymptotically flat initial data sets 13 , supported on a spacelike hypersurface Σ 0 . Thus the future development of an initial layer L 0 should be interpreted as a future development of the corresponding initial data set, see Definition 3.4.4.

Remark 1.2.3. As mentioned above the region (top) M is only needed as causal completion to (ext) M ∪ (int) M and can be easily determined by a standard local existence result once the geometry of (ext) M ∪ (int) M is controlled. For that reason we will mostly ignore it in this introduction. We also note, as in [START_REF] Klainerman | Global Non-Linear Stability of Schwarzschild Spacetime under Polarized Perturbations[END_REF], that (ext) M is by far the harder region to control, even though (int) M contains the degenerate region of trapped null geodesics.

Here is a short summary of how we deal with these issues. • In [START_REF] Klainerman | Construction of GCM spheres in perturbations of Kerr[END_REF] and [START_REF] Klainerman | Effective results in uniformization and intrinsic GCM spheres in perturbations of Kerr[END_REF] we have provided a framework for dealing with the issue (4), by constructing generalized notions of generally covariant modulated (GCM) spheres 14in the asymptotic region of a general perturbation of Kerr. The paper [START_REF] Klainerman | Effective results in uniformization and intrinsic GCM spheres in perturbations of Kerr[END_REF] also contains a definition of the angular momentum for GCM spheres. These results are needed here in connection to the construction of the essential boundary Σ * , see also 15 [50].

• In part I of [START_REF] Giorgi | Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes[END_REF], see also the older version in [START_REF] Giorgi | A general formalism for the stability of Kerr[END_REF], we deal with issue (1) by developing a geometric formalism of non-integrable horizontal structures, well adapted to perturbations of Kerr, and use it to derive the generalized Regge-Wheeler (gRW) equation in the context of general perturbations of Kerr. In the linear case, complex scalar versions of such equations were first derived in [START_REF] Ma | Uniform energy bound and Morawetz estimate for extreme components of spin fields in the exterior of a slowly rotating Kerr black hole II: linearized gravity[END_REF], see also [START_REF] Dafermos | Boundedness and decay for the Teukolsky equation on Kerr spacetimes I: The case |a| M[END_REF], based on an extension of the physical space Chandrasekhar type transformation introduced in [START_REF] Chandrasekhar | On the equations governing the perturbations of the Schwarzschild black hole[END_REF] and first exploited in [START_REF] Dafermos | Linear stability of the Schwarzschild solution to gravitational perturbations[END_REF], in the context of the linearized Einstein vacuum equations near Schwarzschild space.

• In Part II of [START_REF] Giorgi | Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes[END_REF] we deal with issue (2) by deriving estimates for gRW using an extension of the classical vectorfield method, based on commutation with second order operators. In the context of the standard scalar wave equation in Kerr, such an approach was developed by Andersson and Blue in their important paper [START_REF] Andersson | Hidden symmetries and decay for the wave equation on the Kerr spacetime[END_REF]. We note that the results on decay in [START_REF] Ma | Uniform energy bound and Morawetz estimate for extreme components of spin fields in the exterior of a slowly rotating Kerr black hole II: linearized gravity[END_REF] and [START_REF] Dafermos | Boundedness and decay for the Teukolsky equation on Kerr spacetimes I: The case |a| M[END_REF], on the other hand, depend heavily on mode decompositions for the linearized gRW equations in Kerr, an approach whose generalization to the full nonlinear setting seems to present substantial difficulties. Such decompositions were also essential in the recent remarkable result [START_REF] Shlapentokh-Rothman | Boundedness and decay for the Teukolsky equation on Kerr in the full subextremal range |a| < M : frequency space analysis[END_REF] which derives decay estimates for solutions of the gRW equation in Kerr(a,m) for the full subextremal case |a| < m.

• The nonlinear terms present in the full version of the gRW equation derived in [START_REF] Giorgi | Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes[END_REF], see also [START_REF] Giorgi | A general formalism for the stability of Kerr[END_REF], as well as those generated by commutation with vectorfields and second order Carter operator, are treated in a similar spirit as the treatment of the nonlinear terms in [START_REF] Klainerman | Global Non-Linear Stability of Schwarzschild Spacetime under Polarized Perturbations[END_REF], by showing that they verify a favorable null type structure.

• In the present paper we state a precise version of our main Theorem 1.2.1, define the main objects and provide a roadmap for the entire proof. We also deal, in detail, with the issues (3) and ( 5) as follows:

-We introduce the concept of PG structures (Chapter 2), which allows us to extend, in perturbations of Kerr, the main features embodied by the principal null frames in Kerr.

-We define (Chapter 3) the notion of finite, GCM admissible, spacetimes M, whose defining feature, as mentioned above, is given by their future, spacelike boundary Σ * , see Figure 1.2. This hypersurface is foliated by GCM spheres, as defined in [START_REF] Klainerman | Construction of GCM spheres in perturbations of Kerr[END_REF], [START_REF] Klainerman | Effective results in uniformization and intrinsic GCM spheres in perturbations of Kerr[END_REF], and is used to initialize the basic PG structure and sphere foliations 16 of M.

-We provide a full set of bootstrap assumptions (Chapter 3) on these admissible spacetimes. These are of two types: assumptions on decay, involving derivatives up to order k small for all components of Ricci and curvature coefficients, relative to the adapted frame, and assumptions on boundedness, involving derivatives up to k large = 2k small + 1.

-Relying on the estimates for the extreme components of the curvature, derived in Part II of [START_REF] Giorgi | Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes[END_REF], and the GCM conditions on Σ * we derive here complete decay e. The derivation of decay estimates in the general setting setting is both conceptually and technically more involved than in the polarized case. This is ultimately due to the lack of integrability of the PG structures which are incompatible with nonlocal estimates, such as integration of Hodge type elliptic systems on S-foliations, see Remark 1.2.4 below. To avoid this difficulty in our work we need to construct a secondary integrable structure and a mechanism to go back and forth from the integrable to the non-integrable one.

f. Unlike in [START_REF] Klainerman | Global Non-Linear Stability of Schwarzschild Spacetime under Polarized Perturbations[END_REF], where both the decay and boundedness estimates are based on the same integrable frame, we use here two different 20 types of non-integrable frames: PG frames for decay and PT frames for boundedness.

We refer the reader to the introduction of [START_REF] Giorgi | Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes[END_REF] for a thorough discussion of the items b) and c) and [START_REF] Klainerman | Construction of GCM spheres in perturbations of Kerr[END_REF], [START_REF] Klainerman | Effective results in uniformization and intrinsic GCM spheres in perturbations of Kerr[END_REF] for the item d).

Remark 1.2.4. In connection to point e) above it is important to remark that various types of S-foliations and their adapted null frames play a a fundamental role in many of the major mathematical results in GR, starting with [START_REF] Christodoulou | The global nonlinear stability of the Minkowski space[END_REF] but also [START_REF] Christodoulou | The formation of Black Holes in General Relativity[END_REF], [START_REF] Klainerman | The evolution problem in general relativity[END_REF], [START_REF] Klainerman | The bounded L 2 curvature conjecture[END_REF], [START_REF] Dafermos | Linear stability of the Schwarzschild solution to gravitational perturbations[END_REF], [START_REF] Dafermos | The interior of dynamical vacuum black holes I: The C0stability of the Kerr Cauchy horizon[END_REF], [START_REF] Klainerman | Global Non-Linear Stability of Schwarzschild Spacetime under Polarized Perturbations[END_REF] and others. S-foliations also play an important role in applications to fluids such as pioneered by Christodoulou in [START_REF] Christodoulou | The formation of shocks in 3-dimensional fluids[END_REF]. Our work here is the first where S-foliations are replaced by the more complex geometric structures as mentioned in point e).

In what follows we describe the main conceptual innovations to deal with a) and e) in this paper. We start by describing the geometric properties of our admissible spacetime M in Figure 1.2.

Main geometric structures

As mentioned above, both the results of [START_REF] Christodoulou | The global nonlinear stability of the Minkowski space[END_REF] on the nonlinear stability of the Minkowski space and the result of [START_REF] Klainerman | Global Non-Linear Stability of Schwarzschild Spacetime under Polarized Perturbations[END_REF] on the nonlinear stability of Schwarzschild under polarized perturbations rely on a geometric formalism based on S-foliations, i.e. foliations by topological 2-spheres, and adapted null fames (e 3 , e 4 , H), with e 3 , e 4 forming a null pair and H, the horizontal space of vectors orthogonal to both, tangent to the S-foliation. In both works, this geometric structure was constructed such that it most resembles the situation in the unperturbed case. Thus, for example, in the proof of stability of the Minkowski case [START_REF] Christodoulou | The global nonlinear stability of the Minkowski space[END_REF], all components of the curvature tensor, decomposed relative to the frame, converge to zero -albeit at different rates. The same holds true in [START_REF] Klainerman | Global Non-Linear Stability of Schwarzschild Spacetime under Polarized Perturbations[END_REF], after the ρ components of the curvature is properly normalized by subtracting its Schwarzschild value.

By contrast, the principal null vectors (e 3 , e 4 ) in Kerr, relative to which the curvature tensor takes a simple form, do not lead to integrable horizontal structures, i.e. the horizontal space of vectors H perpendicular to (e 3 , e 4 ) is not integrable in the sense of Frobenius. Thus a geometric formalism based on S-foliations and adapted frames, as developed in [START_REF] Christodoulou | The global nonlinear stability of the Minkowski space[END_REF] and used in many other important works in mathematical GR (see Remark 1.2.4), is no longer appropriate in perturbations of Kerr. The Newman-Penrose (NP), see [START_REF] Newman | An approach to gravitational radiation by a method of spin coefficients[END_REF], circumvents this difficulty by working with principal null pairs (e 3 , e 4 ) and a specified basis 21 (e 1 , e 2 ) for H. It thus reduces all calculations to equations involving the Christoffel symbols of the frame. This un-geometric feature of the formalism makes it difficult to use it in the nonlinear setting of the Kerr stability problem. Indeed complex calculations, such those needed to derive the nonlinear analogue of gRW, mentioned above, depend on higher derivatives of all connection coefficients of the NP frame rather than only those which are geometrically significant. This seriously affects and complicates the structure of non-linear corrections and makes it difficult to avoid artificial gauge type singularities.

General horizontal formalism

In our work we rely instead on a tensorial approach, based on horizontal structures which closely mimics the calculations done in integrable settings while maintaining the important diagonalizable properties of the principal directions. This allows us to maintain, with minimal changes, the geometric formalism of [START_REF] Christodoulou | The global nonlinear stability of the Minkowski space[END_REF] widely used today in mathematical GR.

The formalism, developed in detail in [START_REF] Giorgi | Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes[END_REF], is succinctly reviewed in Section 2.1.1. It is used 22 in Chapter 5 of [START_REF] Giorgi | Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes[END_REF] to derive a tensorial, nonlinear version of the gRW equation of [START_REF] Ma | Uniform energy bound and Morawetz estimate for extreme components of spin fields in the exterior of a slowly rotating Kerr black hole II: linearized gravity[END_REF]. The idea is very simple: we define Ricci coefficients exactly as in [START_REF] Christodoulou | The global nonlinear stability of the Minkowski space[END_REF], relative to an arbitrary basis of vectors (e 1 , e 2 ) of H, where the new scalars (a) trχ, (a) trχ measure the lack of integrability of the horizontal structure. The null curvature components are also defined as in [START_REF] Christodoulou | The global nonlinear stability of the Minkowski space[END_REF],

α ab = R a4b4 , β a = 1 2 R a434 , β a = 1 2 R a334 , α ab = R a3b3 , ρ = 1 4 R 3434 , * ρ = 1 4 * R 3434 .
The null structure and null Bianchi equations can then be derived as in the integrable case. The only new features are the presence of the scalars (a) trχ, (a) trχ in the equations. Finally we note that the equations acquire additional simplicity if we pass to complex notations 23 ,

A := α + i * α, B := β + i * β, P := ρ + i * ρ, B := β + i * β, A := α + i * α, X := χ + i * χ, X := χ + i * χ, H := η + i * η, H := η + i * η, Z := ζ + i * ζ, Ξ := ξ + i * ξ, Ξ := ξ + i * ξ.
Note that, in particular, trX = tr χ -i (a) trχ, trX = tr χ -i (a) trχ.

Principal geodesic structures

The geometric formalism based on these non-integrable frames, though perfectly adapted to calculations, is insufficient to derive estimates, which often involves the integration of Hodge type elliptic systems on S-foliations. It is for this reason that we develop here a more complex formalism which combines S-foliations with non-integrable frames. This approach requires in fact two pairs of frames, the non-integrable one which most resemble the principal frame of Kerr, and a secondary one which is adapted to the S-foliation. To estimate various quantities we need to constantly pass from one frame to the other. This is done according to the general change of frames formula

λ -1 e 4 = e 4 + f b e b + 1 4 |f | 2 e 3 , e a = δ b a + 1 2 f a f b e b + 1 2 f a e 4 + 1 2 f a + 1 8 |f | 2 f a e 3 , λe 3 = 1 + 1 2 f • f + 1 16 |f | 2 |f | 2 e 3 + f b + 1 4 |f | 2 f b e b + 1 4 |f | 2 e 4 ,
(1.3.1) 23 The dual here is taken with respect to the fully antisymmetric horizontal 1 tensor ∈ ab .

where f, f are arbitrary 1 forms and λ is an arbitrary real scalar, see Lemma 2.2.1.

The transformation formulas (1.3.1) provide the most general way of passing between two different null frames. They play an essential role all through our work, most prominently in the construction of GCM surfaces in [START_REF] Klainerman | Construction of GCM spheres in perturbations of Kerr[END_REF], [START_REF] Klainerman | Effective results in uniformization and intrinsic GCM spheres in perturbations of Kerr[END_REF].

At the heart of this dual geometric formalism lies the following crucial definition, see Definition 2.3.1.

Definition 1.3.1 (PG structure). An outgoing principal geodesic (PG) structure consists of a null pair (e 3 , e 4 ) and the induced horizontal structure H, together with a scalar function r such that

1. e 4 is a null outgoing geodesic vectorfield, i.e. D 4 e 4 = 0, 2. r is an affine parameter, i.e. e 4 (r) = 1, 3. the gradient of r, given by N = g αβ ∂ β r∂ α , is perpendicular to H.

A similar concept of incoming PG structure is defined by interchanging the roles of e 3 , e 4

Initialization of PG structures

Such structures are initialized in our work on the boundary Σ * , see Figure 1.2. This leads to the following definitions, see details in Section 2.5. The following is precisely Proposition 2.5.3 in the main text.

Proposition 1.3.4. Given a PG data set Σ, r, (H, e 3 , e 4 ), f as in Definition 1.3.3, there exists a unique PG structure r , (H , e 3 , e 4 ) defined in a neighborhood of Σ such that the following hold true 1. The function r is prescribed on Σ by r = r.

2. Along Σ, the restriction of the spacetime PG null frame (H , e 3 , e 4 ) and the given null frame (H, e 3 , e 4 ) on Σ are related by the transformation formulas (1.3.1) with transition coefficients (f, f , λ), where (e 1 , e 2 ) is a fixed, arbitrary, orthonormal basis of H, where f is part of the PG-data set, and where f and λ are given by

λ = 1, f = - (ν(r) -b Σ ) 1 -1 4 b Σ |f | 2 f.

GCM initial data sets

The hypersurface Σ * in Figure 1.2 is not only a framed hypersurface. It also verifies crucial general covariant modulated (GCM) conditions. Given the importance of these conditions we describe below the main ingredients needed in their definitions. We concentrate first on the boundary S * of Σ * , see Figure 1.2, on which various quantities are initialized and transported along Σ * .

1.4.1 Last sphere S * of Σ *

To define the geometry of S * we need the effective uniformization results derived in [START_REF] Klainerman | Effective results in uniformization and intrinsic GCM spheres in perturbations of Kerr[END_REF], which we review in Section 5.1.1. Based on these results, we endow S * with coordinates (θ, ϕ) such that the following conditions are verified.

i. The induced metric g on S * takes the form g = e 2φ r 2 (dθ) 2 + sin 2 θ(dϕ) 2 .

(1.4.1)

ii. The functions J (0) := cos θ, J (-) := sin θ sin ϕ, J (+) := sin θ cos ϕ, (1.4.2)

verify the balanced conditions S * J (p) = 0, p = 0, +, -.

(1.4.3)

Recall that Σ * is assumed to be a framed hypersurface in the sense of Definition 1.3.2 and thus endowed with a frame (e 3 , e 4 , H) and function r on it such that H(r) = 0.

Definition 1.4.1. We define the parameters (m, a) of S * by the formulas

2m r = 1 + 1 16π S * tr χtr χ, (1.4.4) 
and a := r 3 8πm S * J (0) curl β.

(1.4.5)

(1.4.4) is the usual Hawking mass of S * while (1.4.5) was introduced in [START_REF] Klainerman | Effective results in uniformization and intrinsic GCM spheres in perturbations of Kerr[END_REF].

GCM conditions for Σ *

The coordinates (θ, ϕ) on S * and the = 1 basis J (p) are extended to Σ * by setting ν(θ) = ν(ϕ) = 0, ν(J (p) ) = 0, p = 0, +, -,

where ν = e 3 + b * e 4 is tangent to Σ * and normal to the r-foliation on Σ * . We also extend the parameters (a, m) to be constant along Σ * .

We are now ready to define the crucial concept of a GCM hypersurface.

Definition 1.4.2 (GCM hypersurface). Consider a framed hypersurface Σ * with end sphere S * , coordinates (θ, ϕ), and functions J (0) , J (+) and J (-) defined as in (1.4.1)- (1.4.6). Σ * is called a GCM hypersurface if in addition the following conditions 24 are verified.

1. On any sphere S of the r-foliation of Σ * , the following holds tr χ = 2 r ,

tr χ = - 2(1 -2m r ) r + C 0 + p=0,+,- C p J (p) , µ = 2m r 3 + M 0 + p=0,+,- M p J (p) , S J (p) div η = 0, S J (p) div ξ = 0, p = 0, +, -, b * = -1 - 2m r , (1.4.7) 
where C 0 , C p , M 0 , M p are scalar functions on Σ * constant along the leaves of the foliation, and b * denotes the average of b * on the spheres foliating Σ * .

2. In addition, we have on the last sphere S * of Σ *

tr χ = - 2(1 -2m r ) r , S * J (p) div β = 0, p = 0, +, -, (1.4.8) 
as well as S * J (+) curl β = 0, S * J (-) curl β = 0.

(1.4.9)

Remark 1.4.3. Given the five degrees of freedom of the transition parameters (f, f , λ) in the general change of frame formula (1.3.1) we expect to be able to impose five GCM conditions on a sphere S ⊂ Σ * . Since the frame of Σ * is tangent to its S-foliation we implicitly have (a) trχ = (a) trχ = 0. It would be natural to impose Schwarzschildian values for tr χ, tr χ and µ, to account for the remaining three degrees of freedom. This would lead however to a differential system in (f, f , λ) which is not solvable, due to the presence of a kernel and a co-kernel at the level of = 1 modes. We are thus obliged to relax these conditions by imposing, in the case of tr χ and µ, Schwarzschildian values only for the ≥ 2 modes, see (1.4.7). The remaining degrees of freedom allow us to prescribe also the = 1 modes of div ξ and div η, as in (1.4.7). These conditions on the = 1 modes correspond in fact at the level of (f, f , λ) to ODEs for the = 1 modes of div f and div f along 25 Σ * . As a consequence, we can freely prescribe these = 1 modes on S * , which allows us to obtain (1.4.8) on S * . Using the additional freedom of rigid rotations for frames on S * we can also insure that (1.4.9) holds. The remaining condition on b * is related to the freedom to choose the hypersurface Σ * .

GCM admissible spacetimes

We are now ready to define our GCM admissible spacetime, concept of fundamental importance in our proof. As can be seen in Figure 1.2, M = (ext) M ∪ (int) M ∪ (top) M. Each of the domains (ext) M, (int) M and (top) M are endowed with a PG structure, all ultimately induced by Σ * . The crucial structure is that of (ext) M. Once it is fixed, those of (int) M and (top) M can be easily derived.

The GCM-PG data set on Σ *

To initialize the PG structure of (ext) M, according to Proposition 1.3.4, we assume not only that Σ * , in Figure 1.2, is a GCM hypersurface, as in Definition 1.4.2, but also that it is endowed with a 1-form f which makes it into a GCM-PG data set Σ * , r, (e 3 , e 4 , H), f . In addition Σ * is specified by a function u such that u = c * -r, for some constant c * to be specified.

Here are therefore the main features of the boundary Σ * :

-Σ * , r, (e 3 , e 4 , H), f is a GCM-PG data set, in the sense of Definitions 1.3.3 and 1.4.2, with r decreasing from its value r * on S * .

-the parameters a, m are defined by (1.4.4) and (1.4.5),

-the transition parameter f is given by f = a r dϕ on S * and transported to Σ * by ∇ ν (rf ) = 0.

-Along Σ * we have u = c * -r with c * = 1 + r(S 1 ) where S 1 = Σ * ∩ B 1 , see Figure

-The function r verifies a dominance condition on S * , see (3.2.2),

r * ∼ u 1+δ dec * , (1.5.1) 
where u * and r * denote respectively the value of u and r on S * .

1.5. [START_REF] Andersson | Hidden symmetries and decay for the wave equation on the Kerr spacetime[END_REF] The PG structures and S foliations of (ext) M, (int) M

-The outgoing PG structure on (ext) M is fixed from the GCM-PG data set of Σ * , with the help of Proposition 1.3.4. (ext) M is also endowed with the S(u, r) foliation where u is extended from Σ * by setting e 4 (u) = 0. The hypersurfaces of constant u are timelike 26 . Note also that u = u * is the hypersurface separating (ext) M from (top) M while u = u 1 is the boundary B 1 .

- (ext) M terminates at the inner boundary T = (int) M ∩ (ext) M. (int) M is endowed with an ingoing PG structure initialized at T , defined starting by renormalizing e 3 on T and extending it geodesically in (int) M. We can also extend r from T in (int) M by setting e 3 (r) = -1. We define u in (int) M such that it coincides with u on T and e 3 (u) = 0. The corresponding hypersurfaces are timelike.

-Note that (int) M ∪ (ext) M in Figure 1.2 is not a causal region. This is ultimately due to the fact that the functions u, u are not null but time-like. Thus, see Remark 1.2.3, the region (top) M is needed as a completion of (int) M ∪ (ext) M to a causal region.

-The black hole parameters (a, m) are extended everywhere in M to be constant. We also define an ingoing PG structure on (top) M suitably initialized from the outgoing PG structure of (ext) M on {u = u * }.

Remark 1.5.1. it is important to note that (ext) M comes equipped not only with the PG frame (e 3 , e 4 , H) but also with the secondary, integrable, frame (e 3 , e 4 , H ) adapted to the spheres S(u, r), i.e. H is tangent to the S spheres. We also have precise formulas 27 to pass form one frame to the other whenever needed.

GCM admissible spacetimes

We are now ready to define our central concept which, in addition to the geometric specifications made above for Σ * , (ext) M, (int) M and (top) M, contains information about decay and boundedness of the linearized 28 Ricci and curvature coefficients. As in [START_REF] Klainerman | Global Non-Linear Stability of Schwarzschild Spacetime under Polarized Perturbations[END_REF], we divide these into the sets we denote by Γ g , Γ b . For example, Γ g includes in particular } trX, } trX, X, Z, as well as the curvature components 29 rA, rB, rP . The set Γ b contains in particular the Ricci coefficient X, H, q ω and the slow decaying curvature components A and rB. We refer the reader to Definition 2.6.7 for the precise definition of Γ b and Γ g . Definition 1.5.2. A finite space M = (ext) M ∪ (int) M ∪ (top) M as in Figure 1.2 is called a GCM admissible spacetime with parameters (a, m) if the following hold true.

1. The boundary Σ * is endowed with the PG-GCM data set described in Section 1.5.1. (ext) M, (int) M, (top) M are endowed with the PG data sets and S foliations described in Section 1.5.2.

The domains

3. The linearized 30 Ricci and curvature coefficients verify bootstrap assumptions (BA) , in (ext) M, (int) M and (top) M, measured in terms of a small parameter with 0 , with 0 the size of the original perturbation. The bootstrap assumptions are expressed in terms of:

-uniform decay norms denoted here by N (Dec) k small , for a maximum of k small derivatives, -r p -weighted supremum norms denoted by N (Sup) k large for a maximum of k large derivatives, -the number k small is sufficiently large and k large = 2k small + 1.

Thus (BA) can be expressed in the form N (Sup)

k large + N (Dec)
k small ≤ .

(1.5.2)

Remark 1.5.3. The bootstrap assumptions for decay N

k small ≤ imply in particular the following decay rates 31 in (ext) M.

|Γ g | ≤ r -2 u -1 2 -δ dec , |∇ 3 Γ g | ≤ r -2 u -1-δ dec , |Γ b | ≤ r -1 u -1-δ dec .
In addition each derivatives ∇, ∇ 4 improve the decay in r while each additional ∇ 3 derivative keeps the decay unchanged. We express this schematically in the form

|d ≤k Γ g | ≤ r -2 u -1 2 -δ dec , |d ≤k-1 ∇ 3 Γ g | ≤ r -2 u -1-δ dec , |d ≤k Γ b | ≤ r -1 u -1-δ dec ,
where d = (∇ 3 , r∇ 4 , r∇) and d ≤k refers to derivatives up to order k ≤ k small .

Principal temporal frames

As mentioned earlier, the PG structures are adequate for deriving decay estimates but deficient in terms of loss of derivatives and thus inadequate for deriving boundedness estimates for the top derivatives of the Ricci coefficients. Indeed the ∇ 4 equations for 30 Obtained for scalars by subtracting their Kerr values, expressed in term of the scalar functions (r, θ). The case of 1-forms is slightly more subtle. 31 Here δ dec is a small positive constant.

trX, X and Ξ in Proposition 2.3.4 contain angular derivatives 32 of other Ricci coefficients.

Similarly, the same situation occurs for ingoing PG structures where the ∇ 3 equations for trX, X, and Ξ are manifestly losing derivatives. Thus, in order to derive boundedness estimates for the top derivatives of the Ricci coefficients, we are forced to introduce new frames which we call principal temporal (PT). These frames are used only in Chapter 9 where they play an essential role.

1.6.1 Outgoing PT structures Definition 1.6.1. An outgoing PT structure {(e 3 , e 4 , H), r, θ, J} on M consists of a null pair (e 3 , e 4 ), the induced horizontal structure H, functions (r, θ), and a horizontal 1-form J such that the following hold true:

1. e 4 is geodesic.

2. We have e 4 (r) = 1, e 4 (θ) = 0, ∇ 4 (qJ) = 0, q = r + ai cos θ.

(1.6.1)

3.

We have H = -aq |q| 2 J.

(1.6.2)

An extended outgoing PT structure possesses, in addition, a scalar function u verifying e 4 (u) = 0.

Definition 1.6.2. An outgoing PT initial data set consists of a hypersurface Σ transversal to e 4 together with a null pair (e 3 , e 4 ), the induced horizontal structure H, scalar functions (r, θ), and a horizontal 1-form J, all defined on Σ.

The following is precisely Lemma 2.8.3 in the main text.

Lemma 1.6.3. Any outgoing PT initial data set, as in Definition 1.6.2, can be locally extended to an outgoing PT structure.

1.6.2 Ingoing PT structures Definition 1.6.4. An ingoing PT structure {(e 3 , e 4 , H), r, θ, J} on M consists of a null pair (e 3 , e 4 ), the induced horizontal structure H, functions (r, θ), and a horizontal 1-form J such that the following hold true:

1. e 3 is geodesic.

2. We have e 3 (r) = -1, e 3 (θ) = 0, ∇ 3 (qJ) = 0, q = r + ai cos θ.

(1.6.3)

3.

We have

H = aq |q| 2 J.
(1.6.4)

An extended ingoing PT structure possesses, in addition, a function u verifying e 3 (u) = 0.

Definition 1.6.5. An ingoing PT initial data set consists of a hypersurface Σ transversal to e 3 together with a null pair (e 3 , e 4 ), the induced horizontal structure H, scalar functions (r, θ), and a horizontal 1-form J, all defined on Σ.

Lemma 1.6.6. Any ingoing PT initial data set, as in Definition 1.6.5, can be locally extended to an ingoing PT structure.

Outline of the proof of the main theorem

The detailed version of the main Theorem is found in Section 3.4.3. We sketch below the main steps in our proof. We refer the reader to sections 3.7.1 and 3.7.2 for more details. We also give an outline of the main conclusions of the Theorem.

Control of the initial data

The main results on the initial data is stated in Theorem M0 and proved in Section 8.3, based on the initial data and bootstrap assumptions in the initial layer L 0 . The result provides estimates for the main linearized quantities restricted to the past boundary B 1 ∪ B 1 of our GCM admissible spacetime, see Figure 1.2. It is important to note that B 1 , B 1 are not causal, but rather timelike, with B 1 asymptotically null. They are thus not to be regarded as fixed hypersurfaces where the initial data is prescribed. In fact they change throughout the continuation argument at the heart of the proof, while remaining constrained to the boundary layer L 0 . As in [START_REF] Klainerman | Global Non-Linear Stability of Schwarzschild Spacetime under Polarized Perturbations[END_REF] the proof of Theorem M0 is quite subtle due to the fact that the spheres of the foliation induced by (ext) M differ substantially from spheres of the initial data layer (ext) L 0 along the outgoing direction. This anomalous behavior reflects the difference between the center of mass frames of the final and initial Kerr states and is as such an important feature of our result.

Theorems M1-M5

Given a GCM admissible spacetime, Theorems M1-M5, stated in Section 3.7.1, improve the decay estimates for k ≤ k small of the bootstrap assumptions (BA) (see Definition 1.5.2), i.e. derive estimates in which is replaced 33 by 0 .

Theorem M1. Improved decay estimates for q and A. This is our main result concerning the improved decay estimates for A. This is achieved as follows:

-In Part I of [START_REF] Giorgi | Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes[END_REF] we derive a tensorial nonlinear version of the gRW equation. This is a tensorial wave equation for a 2-tensor q, derived from A by a Chandrasekhar transformation of the form q = ∇ 2 3 A + C 1 ∇ 3 A + C 2 A, for specific scalar functions C 1 , C 2 . Unlike in the Schwarzschild case, the wave equation for q still contains linear terms in A. Thus, in reality, we have to deal with a coupled wave-transport system for the variables (q, A). The linear theory for such systems, in a fixed Kerr background, was derived in [START_REF] Ma | Uniform energy bound and Morawetz estimate for extreme components of spin fields in the exterior of a slowly rotating Kerr black hole II: linearized gravity[END_REF], see also [START_REF] Dafermos | Boundedness and decay for the Teukolsky equation on Kerr spacetimes I: The case |a| M[END_REF]. The first physical space version of the Chandrasekhar transformation has appeared in [START_REF] Dafermos | Linear stability of the Schwarzschild solution to gravitational perturbations[END_REF], in linear perturbations of Schwarzschild. An adapted nonlinear version of the transformation plays an important role in [START_REF] Klainerman | Global Non-Linear Stability of Schwarzschild Spacetime under Polarized Perturbations[END_REF].

-It is important to note that, as in [START_REF] Klainerman | Global Non-Linear Stability of Schwarzschild Spacetime under Polarized Perturbations[END_REF], the construction of q and the estimates for (q, A) mentioned below, need to be done in a global frame for M in which the component H has better decay in (ext) M than the same component in the PG frame of (ext) M. Simple transformation formulas allow us to transfer results obtained in the global frame to results in the original PG frames and vice-versa.

-In [START_REF] Giorgi | Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes[END_REF], Part II, we derive boundedness and decay estimates for the coupled system mentioned above. The most demanding part is the derivation of a Morawetz type estimate for q, a step which requires a nonlinear adaptation of the Anderson-Blue [START_REF] Andersson | Hidden symmetries and decay for the wave equation on the Kerr spacetime[END_REF] extension of the vectorfield method, mentioned earlier. The papers [START_REF] Ma | Uniform energy bound and Morawetz estimate for extreme components of spin fields in the exterior of a slowly rotating Kerr black hole II: linearized gravity[END_REF], [START_REF] Dafermos | Boundedness and decay for the Teukolsky equation on Kerr spacetimes I: The case |a| M[END_REF] derive the corresponding estimate, in a fixed Kerr, by appealing to a mode decomposition, method which seems difficult to extend to realistic perturbations of Kerr.

Theorem M2. Improved estimates 34 for A on Σ * . This is our main result concerning the improved decay estimates for A. This is achieved as follows:

-At a linear level, A can be treated in a similar manner as A, i.e. we can pass from the Teukolsky equation for A to a gRW equations for a 2 tensor q derived from A by a similar second order transformation formula as for A, with e 3 replaced by e 4 .

The difficulty is that the nonlinear terms in the gRW equation are not so easy to control in view of their low decay in powers of r.

-We rely on a different global frame of M for which the component H has better decay in (ext) M than the same component in the PG frame of (ext) M. Even with that property, the structure of the error terms turns out to be more subtle than that of the error terms of the gRW equation for q, see the relevant discussion in the introduction to [START_REF] Giorgi | Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes[END_REF]. In particular, after taking full advantage of the very special structure of the error term, we can only derive r p weighted estimates for the couple (A, q) in the range δ < p < 1 -δ, rather than δ < p < 2 -δ consistent with linear theory.

-To compensate for the r p weighted loss mentioned above we take higher L / T derivatives of (q, A) and show that their fluxes have better decay. Using this observation, we obtain suitable decay for the flux of (L / 2 T q, L / 2 T A) along Σ * . Relying on this result, and some version of Teukolsky-Starobinsky providing an identity between q and A, we recover the desired decay estimate for A on Σ * stated in Theorem M2.

We refer the reader to the introduction of [START_REF] Giorgi | Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes[END_REF] for more details.

Theorem M3. Improved estimates for (Γ g , Γ b ) on Σ * . Theorem M3, proved in Chapter 5 of this work, makes use of the improved estimates for α, α, and q of Theorems M1 and M2, to derive improved estimates for all other Ricci and curvature components restricted to Σ * . Together with Theorem M4, this is the most subtle part of the entire proof in that it depends crucially on the properties of Σ * , mentioned above, and the difficult estimates of α, α, and uses in fact almost all other elements of our overall scheme. Here are some of the key ideas in the proof.

-To derive decay estimates for all other quantities along Σ * it is natural to make use of the transport equations along ν = e 3 + b * e 4 induced on Σ * by the null structure and null Bianchi equations.

-Integrating these transport equations starting from B 1 ∩Σ * , where we have smallness information in terms of 0 , is prohibitive since such an integration loses all decay with respect to the u factor. To integrate in the opposite direction, starting from S * , we need initial conditions on S * . This is, in a nut-shell, the very reason our GCM conditions were introduced.

-Using the propagation equations along Σ * , the GCM conditions, in particular those on the final sphere S * , the Hodge type equations on the S spheres and the information already derived for α, α, q, one can derive improved estimates for all linearized Ricci and curvature coefficients (Γ g , Γ b ) on Σ * .

Theorem M4. Improved estimates for Γ g , Γ b in (ext) M. Theorem M4, proved in Chapter 6 of this work, extends the estimates proved of Theorem M3 on Σ * to the entire region (ext) M. There are two type of difficulties. The first, type already encountered in [START_REF] Klainerman | Global Non-Linear Stability of Schwarzschild Spacetime under Polarized Perturbations[END_REF], is to derive sufficient decay for Γ g quantities in the regions near the black hole where r is just bounded. The second type of difficulties, are due to the lack of integrability of the PG structure of (ext) M. Here are some of the key ideas in the proof. For a more comprehensive discussion of this step we refer to Section 6.4.3.

-Ideally one would use the null structure and Bianchi equations in the e 4 direction to transport information from Σ * to (ext) M. Unfortunately, as it turns out, many of these equations are strongly overshooting in r. As in [START_REF] Klainerman | Global Non-Linear Stability of Schwarzschild Spacetime under Polarized Perturbations[END_REF] we devise new renormalized quantities which verify useful transport equations which can be integrated from Σ * in the e 4 direction.

-In [START_REF] Klainerman | Global Non-Linear Stability of Schwarzschild Spacetime under Polarized Perturbations[END_REF] we were able to combine these transport equations with elliptic Hodge systems on the leaves of the S-foliation to derive estimates for the remaining quantities. This becomes a problem in our case due to the lack of integrability of the PG structure.

What we do instead is to go back and forth between the PG frame and the integrable frame associated to the S(u, r) spheres, and perform our elliptic estimates on these S-spheres.

-The process generates additional derivatives in the direction of the vectorfield T, analogous to the time translation of Kerr, which turns out to be almost Killing. Fortunately the equations obtained by commutations with T are no longer overshooting and thus can be integrated directly from Σ * .

-We combine all these ingredients, making use of the fact that in (ext) M the defining function r is also sufficiently large, to derive estimates for all elements of (Γ g , Γ b ) in (ext) M.

Theorem M5. Improved estimates for Γ g , Γ b in (int) M ∪ (top) M. This step, proved in Chapter 7, is significantly easier than Theorem M4 due to the fact that (int) M is bounded in r and (top) M is a local existence region. We first control the foliation of (int) M and (top) M from the one of (ext) M respectively on T and {u = u * }, and then propagate this control, using transport equations along e 3 , respectively to (int) M and (top) M thanks to the equations of the corresponding ingoing PG structures.

Extension of GCM admissible spacetimes

We end the proof by invoking a continuity argument as in [START_REF] Klainerman | Global Non-Linear Stability of Schwarzschild Spacetime under Polarized Perturbations[END_REF], see Section 3.7.2. The argument requires a definition of a set U(u * ) of GCM admissible spacetimes verifying the bootstrap assumptions BA such that and the values (r * , u * ) of (r, u) on S * verify

= 2 3 0 , r * = δ * -1 0 u 1+δ dec * , (1.7.1) 
where δ * > 0 is a small constant satisfying δ * .

Theorem M6. The set U(u * ) is not empty. More precisely, we show that there exists δ 0 > 0 small enough such that, for sufficiently small constants 0 > 0 and > 0 satisfying the constraint in (1.7.1),

[1, 1 + δ 0 ] ⊂ U(u * ).

Once the estimates assumed by (BA) have been improved we extend M and its foliation to a larger GCM admissible spacetime M. This is achieved as follows.

Theorem M7. Extension argument. We show that any GCM admissible spacetime in U(u * ) for some 0 < u * < +∞ has a GCM admissible extension in in U(u * ) for some u * > u * , initialized by Theorem M0, which verifies the improved decay bootstrap assumptions.

The main steps in the extension are, as in [START_REF] Klainerman | Global Non-Linear Stability of Schwarzschild Spacetime under Polarized Perturbations[END_REF]:

-First extend M and its foliation to a strictly larger space M .

-To make sure that the extended spacetime is GCM admissible, one has to construct a new GCM hypersurface Σ * in M \ M and use it to define a new extended GCM admissible spacetime M. It is at this stage that we have to prove the existence of GCM spheres in M \ M. More precisely, using the bounds on the Ricci and curvature coefficients on M , defined by the extended foliation, we have to construct GCM spheres in M \ M.

-The GCM spheres mentioned above are used as building blocks for the new spacelike hypersurface Σ * . The construction of Σ * , similar to that in [START_REF] Klainerman | Global Non-Linear Stability of Schwarzschild Spacetime under Polarized Perturbations[END_REF], is explicitly done in our context in [START_REF] Shen | Construction of GCM hypersurfaces in perturbations of Kerr[END_REF]. Once this is done we can also a construct a new GCM-PG data set on Σ * and use it construct thus the desired GCM admissible extension M.

-One needs to check that relative to the new structure we improve the original bootstrap assumption for decay, i.e. N (Dec) k small 0 .

Theorem M8. Estimates for the top order derivatives. The new admissible spacetime M is strictly larger than M and verifies N -The proof for the first part of the induction argument is provided in Chapter 9 where, using the PT frame, we derive boundedness estimates for the top derivatives of the Ricci coefficients in terms of bounds for the top derivatives of the curvature coefficients.

-The proof for the second part of the induction argument where we derive boundedness estimates for the top derivatives of the Curvature coefficients is provided in Part III of [START_REF] Giorgi | Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes[END_REF] by deriving energy-Morawetz type estimates for q P and making use of the Bianchi identities for all other curvature coefficients. The r p weighted estimates in (ext) M are derived taking advantage of the Maxwell like character of the Bianchi equations.

-The future null infinity I + of the limiting space M ∞ is complete. The other future boundary of M ∞ is given by the spacelike hypersurface A, which can be shown to belong to the complement of J -(I + ). In particular this establishes the existence of the event horizon H + .

-The spheres S(u, r) converge to round spheres, i.e. lim r→∞ r 2 K(u, r) = 1, where K is the Gauss curvature of S.

-The quantities a ∞ , m ∞ can be determined by taking limits of well defined quasi-local quantities which we define below.

Limits of quasi-local quantities on I +

The quasi-local quantities appearing below are defined relative to the integrable frame of (ext) M ∞ , i.e. the frame (e 3 , e 4 , H ) with H tangent to the spheres S(u, r). The first quantity is the well known Hawking mass. The second quantity was first defined in [START_REF] Klainerman | Effective results in uniformization and intrinsic GCM spheres in perturbations of Kerr[END_REF].

Definition 1.7.1. We define the following quasi-local quantities on a given sphere S = S(u, r) ⊂ (ext) M ∞ and its integrable frame (e 3 , e 4 , H ).

1. We define the Hawking mass of S to be m H (u, r) = |S(u, r)| 1/2 4π 1/2 1 + 1 16π S(u,r) tr χ tr χ .

(1.7.2)

where tr χ , tr χ are calculated with respect to the integrable frame of (ext) M ∞ .

2. We define the quasi-local angular momentum of S to be the triplet j =1,p (u, r) := r 5 |S(u, r)| S(u,r) (curl β )J (p) , p = -, 0, +.

(1.7.3)

where β , curl β are defined with respect to the integrable frame of (ext) M and the triplet J (p) is defined by 35 J 0 = cos θ, J + = sin θ cos ϕ, J -= sin θ sin ϕ Proposition 1.7.2. The following statements hold true 35 Here θ and ϕ are such that e 4 (θ) = e 4 (ϕ) = 0 initialized at I + to be standard spherical coordinates.

1. The Hawking mass has a limit as r → ∞, called the Bondi mass

M B (u) = lim r→∞ m H (u, r).
2. The Bondi mass has a limit as u → ∞

lim u→∞ M B (u) = m ∞ .
3. The quasi-local angular momentum j =1,p (u, r) of S has a limit as r → ∞ J =1,p (u) = lim r→∞ j =1,p (u, r).

4. The triplet J =1,p (u) has a limit as u → ∞ and

lim u→∞ J =1,0 (u) = 2a ∞ m ∞ , lim u→∞ J =1,± (u) = 0,
which defines a ∞ .

We also note that other definitions of angular momentum have been proposed in the literature, see [START_REF] Szabados | Quasi-Local Energy-Momentum and Angular Momentum in General Relativity[END_REF] for a comprehensive review, and [START_REF] Rizzi | Angular Momentum in General Relativity: A new Definition[END_REF] and [START_REF] Chen | Quasilocal angular momentum and center of mass in general relativity[END_REF] for other interesting proposals.

Comments on the full subextremal case

Though our result is restricted to small angular momentum, there are reasons to hope that a full stability result, for the full subextremal case, is conceivable in the near future.

To start with, the only important limitation in our work to small values of |a|/m comes from the proof of the Morawetz type estimates for the gRW wave equations in part II of [START_REF] Giorgi | Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes[END_REF]. On the other hand, progress on the Morawetz estimates for gRW in Kerr, in the full subextremal range, has been made recently by R. Shlapentokh-Rothman and R. Teixeira da Costa in [START_REF] Shlapentokh-Rothman | Boundedness and decay for the Teukolsky equation on Kerr in the full subextremal range |a| < M : frequency space analysis[END_REF]. Their work rests however on mode decompositions, which rely strongly on the specific structure of Kerr. Thus the only remaining obstacle, while important, seems to be more of a technical nature rather than conceptual.

Organization of the paper

In Chapter 2 we provide a full descriptions of the main geometric structures needed in our work. Chapter 3 contains the precise version of our main theorem, its main conclusions, as well as a full strategy of its proof, divided in the nine supporting intermediate results, Theorems M0-M8. In Chapters 4 to 8, we then give complete proofs of Theorems, M0 and M3-M7. Finally, we provide in Chapter 9 a proof of Theorem M8 by assuming the curvature estimates derived in Part III of [START_REF] Giorgi | Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes[END_REF].
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Chapter 2

Preliminaries 2.1 A general formalism

We review the general formalism introduced in [START_REF] Giorgi | Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes[END_REF], see also the earlier version [START_REF] Giorgi | A general formalism for the stability of Kerr[END_REF].

Null pairs and horizontal structures

Consider a fixed null pair e 3 , e 4 , i.e. g(e 3 , e 3 ) = g(e 4 , e 4 ) = 0, g(e 3 , e 4 ) = -2, and denote by O(M) the vectorspace of horizontal vectorfields X on M, i.e. g(e 3 , X) = g(e 4 , X) = 0. Given a fixed orientation on M, with corresponding volume form ∈, we define the induced volume form on O(M) by, ∈ (X, Y ) := 1 2 ∈ (X, Y, e 3 , e 4 ).

A null frame on M consists of a choice of horizontal vectorfields e 1 , e 2 , such that 1

g(e a , e b ) = δ ab a, b = 1, 2.

The commutator [X, Y ] of two horizontal vectorfields may fail however to be horizontal. We say that the pair (e 3 , e 4 ) is integrable if O(M) forms an integrable distribution, i.e. X, Y ∈ O(M) implies that [X, Y ] ∈ O(M). As known the principal null pair in Kerr fails to be integrable. Given an arbitrary vectorfield X we denote by (h) X its horizontal Accordingly we decompose χ, χ as follows, a) trχ, a) trχ.

χ ab = χ ab + 1 2 δ ab tr χ + 1 2 ∈ ab ( 
χ ab = χ ab + 1 2 δ ab tr χ + 1 2 ∈ ab ( 
We define the horizontal covariant operator ∇ as follows. Given X, Y ∈ O(M)

∇ X Y := (h) (D X Y ) = D X Y - 1 2 χ(X, Y )e 4 - 1 2 
χ(X, Y )e 3 .

(2.1.2)

Note that, a) trχ e 4 + (a) trχ e 3 ) ∈ (X, Y ).

∇ X Y -∇ Y X = [X, Y ] - 1 2 ( ( 
In particular, [X, Y ] ⊥ = 1 2 ( (a) trχ e 4 + (a) trχ e 3 ) ∈ (X, Y ).

(

Also, for all X, Y, Z ∈ O(M),

Zg(X, Y ) = g(∇ Z X, Y ) + g(X, ∇ Z Y ).

Remark. In the integrable case, ∇ coincides with the Levi-Civita connection of the metric induced on the integral surfaces of O(M). Given X horizontal, D 4 X and D 3 X are in general not horizontal. We define ∇ 4 X and ∇ 3 X to be the horizontal projections of the former. More precisely,

∇ 4 X := (h) (D 4 X) = D 4 X - 1 2
g(X, D 4 e 3 )e 4 -1 2 g(X, D 4 e 4 )e 3 ,

∇ 3 X := (h) (D 3 X) = D 3 X - 1 2
g(X, D 3 e 3 )e 3 -1 2 g(X, D 3 e 4 )e 3 .

The definition can be easily extended to arbitrary O k (M) tensor-fields U ∇ 4 U (X 1 , . . . , X k ) = e 4 (U (X 1 , . . . , X k ))i U (X 1 , . . . , ∇ 4 X i , . . . X k ), ∇ 3 U (X 1 , . . . , X k ) = e 3 (U (X 1 , . . . , X k ))i U (X 1 , . . . , ∇ 3 X i , . . . X k ). For a given horizontal 1-form ξ, we define the frame independent operators

Ricci and curvature coefficients

div ξ = δ ab ∇ b ξ a , curl ξ =∈ ab ∇ a ξ b , (∇ ⊗ξ) ba = ∇ b ξ a + ∇ a ξ b -δ ab (div ξ).
We also define the usual curvature components, see [START_REF] Christodoulou | The global nonlinear stability of the Minkowski space[END_REF],

α ab = R a4b4 , β a = 1 2 R a434 , ρ = 1 4 R 3434 ,
where * R denotes the Hodge dual of R.

Commutation formulas

Lemma 2.1.2. Let U A = U a 1 ...a k be a general k-horizontal tensorfield.

1. We have

[∇ 3 , ∇ b ]U A = -χ bc ∇ c U A + (η b -ζ b )∇ 3 U A + k i=1 χ a i b η c -χ bc η a i U a 1 ... c ...a k + Err 3bA [U ], Err 3bA [U ] = k i=1 χ a i c ξ c -χ bc ξ a i -∈ a i c * β b U a 1 ... c ...a k + ξ b ∇ 4 U A .
(2.1.8)

2. We have

[∇ 4 , ∇ b ]U A = -χ bc ∇ c U A + (η b + ζ b )∇ 4 U A + k i=1 χ a i b η c -χ bc η a i U a 1 ...c...a k + Err 4bA [U ], Err 4bA [U ] = k i=1 χ a i c ξ c -χ bc ξ a i + ∈ a i c * β b U a 1 ... c ...a k + ξ b ∇ 3 U A .
(2.1.9)

3. We have

[∇ 4 , ∇ 3 ]U A = 2(η b -η b )∇ b U A + 2 k i=1 η a i η b -η a i η b -∈ a i b * ρ)U a 1 ... b ...a k + 2ω∇ 3 U A -2ω∇ 4 U A + Err 43A , Err 43A = 2 k i=1 ξ a i ξ b -ξ a i ξ b )U a 1 ... b ...a k .
(2.1.10)

Proof. See section 2.2.7 in [START_REF] Giorgi | Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes[END_REF].

Null structure and Bianchi equations

The null structure equations are given in the following proposition of [START_REF] Giorgi | Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes[END_REF], see also [START_REF] Christodoulou | The global nonlinear stability of the Minkowski space[END_REF] for the integrable case3 .

Proposition 2.1.3. We have (a) trχ = -tr χ (a) trχ + 2curl ξ -2ω (a) trχ + 2ξ ∧ (-η + η + 2ζ),

∇ 3 tr χ = -| χ| 2 - 1 2 tr χ 2 -(a) trχ 2 + 2div ξ -2ωtr χ + 2ξ • (η + η -2ζ), ∇ 3 
∇ 3 χ = -tr χ χ + ∇ ⊗ξ -2ω χ + ξ ⊗(η + η -2ζ) -α, ∇ 3 tr χ = -χ • χ - 1 2 tr χtr χ + 1 2 (a) trχ (a) trχ + 2div η + 2ωtr χ + 2 ξ • ξ + |η| 2 + 2ρ, ∇ 3 (a) trχ = -χ ∧ χ - 1 2 ( (a 
) trχtr χ + tr χ (a) trχ) + 2curl η + 2ω (a) trχ + 2ξ ∧ ξ -2 * ρ, 

∇ 3 χ = - 1 
+ χ • ξ + 1 2 tr χ ξ + 1 2 (a) trχ * ξ + 2ωξ -β, ∇ 4 ζ -2∇ω = χ • (-ζ + η) + 1 2 tr χ(-ζ + η) + 1 2 (a) trχ(- * ζ + * η) + 2ω(ζ + η) -χ • ξ - 1 2 tr χ ξ - 1 2 (a) trχ * ξ -2ωξ -β, ∇ 3 η -∇ 4 ξ = -χ • (η -η) - 1 2 tr χ(η -η) + 1 2 (a) trχ( * η - * η) -4ωξ + β, ∇ 4 η -∇ 3 ξ = -χ • (η -η) - 1 2 tr χ(η -η) + 1 2 (a) trχ( * η - * η) -4ωξ -β, ∇ 3 ω + ∇ 4 ω = ρ + 4ωω + ξ • ξ + (η -η) • ζ -η • η.
We also have the Codazzi equations

div χ + ζ • χ = 1 2 ∇tr χ + 1 2 tr χζ - 1 2 * ∇ (a) trχ - 1 2 (a) trχ * ζ -(a) trχ * η -(a) trχ * ξ -β, div χ -ζ • χ = 1 2 ∇tr χ - 1 2 tr χζ - 1 2 * ∇ (a) trχ + 1 2 (a) trχ * ζ -(a) trχ * η -(a) trχ * ξ + β, curl ζ = - 1 2 χ ∧ χ + 1 4
tr χ (a) trχ -tr χ (a) trχ + ω (a) trχ -ω (a) trχ + * ρ.

The null Bianchi equations are given below, see [START_REF] Giorgi | Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes[END_REF], and [START_REF] Christodoulou | The global nonlinear stability of the Minkowski space[END_REF] for the integrable case. 

∇ 4 ρ -div β = - 3 2 (tr χρ + (a) trχ * ρ) + (2η + ζ) • β -2ξ • β - 1 2 χ • α, ∇ 4 * ρ + curl β = - 3 2 (tr χ * ρ -(a) trχρ) -(2η + ζ) • * β -2ξ • * β + 1 2 χ • * α, ∇ 3 ρ + div β = - 3 2 (tr χρ -(a) trχ * ρ) -(2η -ζ) • β + 2ξ • β - 1 2 χ • α, ∇ 3 * ρ + curl β = - 3 2 (tr χ * ρ + (a) trχρ) -(2η -ζ) • * β -2ξ • * β - 1 2 χ • * α, ∇ 4 β + ∇ρ - * ∇ * ρ = -(tr χβ + (a) trχ * β) + 2ω β + 2β • χ -3(ρη - * ρ * η) -α • ξ, ∇ 3 β + div α = -2(tr χ β -(a) trχ * β) -2ωβ -α • (-2ζ + η) -3(ξρ - * ξ * ρ), ∇ 4 α + ∇ ⊗β = - 1 2 tr χα + (a) trχ * α) + 4ωα + (ζ -4η) ⊗β -3(ρ χ - * ρ * χ).

Main equations in complex form

In this section, we review the complex notations introduced in [START_REF] Giorgi | Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes[END_REF] that will allow us to simplify the main equations.

Definition 2.1.5.

A := α + i * α, B := β + i * β, P := ρ + i * ρ, B := β + i * β, A := α + i * α, and

X = χ + i * χ, X = χ + i * χ, H = η + i * η, H = η + i * η, Z = ζ + i * ζ, Ξ = ξ + i * ξ, Ξ = ξ + i * ξ.
In particular, note that trX = tr χ -i (a) trχ, X = χ + i * χ, trX = tr χ -i (a) trχ, X = χ + i * χ.

Remark 2.1.6. A, B, A, B, X, X, H, H, Ξ, Ξ and Z are anti-self dual tensors, i.e. they verify * U = -iU .

Definition 2.1.7. We define derivatives of complex quantities as follows

• For two scalar functions a and b, we define D(a + ib) := (∇ + i * ∇)(a + ib).

• For a 1-form f , we define

D • (f + i * f ) := (∇ + i * ∇) • (f + i * f )
and

D ⊗(f + i * f ) := (∇ + i * ∇) ⊗(f + i * f ).
• For a symmetric traceless 2-form u, we define

D • (u + i * u) := (∇ + i * ∇) • (u + i * u).
These complex notations allow us to rewrite the null structure equations as follows, see section 2.4.3 in [START_REF] Giorgi | Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes[END_REF].

Proposition 2.1.8. The following hold true:

∇ 3 trX + 1 2 (trX) 2 + 2ω trX = D • Ξ + Ξ • H + Ξ • (H -2Z) - 1 2 X • X, ∇ 3 X + (trX) X + 2ω X = 1 2 D ⊗Ξ + 1 2 Ξ ⊗(H + H -2Z) -A, ∇ 3 trX + 1 2 trXtrX -2ωtrX = D • H + H • H + 2P + Ξ • Ξ - 1 2 X • X, ∇ 3 X + 1 2 trX X -2ω X = 1 2 D ⊗H + 1 2 H ⊗H - 1 2 trX X + 1 2 Ξ ⊗Ξ, ∇ 4 trX + 1 2 trXtrX -2ωtrX = D • H + H • H + 2P + Ξ • Ξ - 1 2 X • X, ∇ 4 X + 1 2 trX X -2ω X = 1 2 D ⊗ H + 1 2 H ⊗ H - 1 2 trX X + 1 2 Ξ ⊗Ξ, ∇ 4 trX + 1 2 (trX) 2 + 2ωtrX = D • Ξ + Ξ • H + Ξ • ( H + 2Z) - 1 2 X • X, ∇ 4 X + (trX) X + 2ω X = 1 2 D ⊗Ξ + 1 2 Ξ ⊗( H + H + 2Z) -A.
Also,

∇ 3 Z + 1 2 trX(Z + H) -2ω(Z -H) = -2Dω - 1 2 X • (Z + H) + 1 2 trXΞ + 2ωΞ -B + 1 2 Ξ • X, ∇ 4 Z + 1 2 trX(Z -H) -2ω(Z + H) = 2Dω + 1 2 X • (-Z + H) - 1 2 trXΞ -2ωΞ -B - 1 2 Ξ • X, ∇ 3 H -∇ 4 Ξ = - 1 2 trX( H -H) - 1 2 X • ( H -H) -4ωΞ + B, ∇ 4 H -∇ 3 Ξ = - 1 2 trX(H -H) - 1 2 X • (H -H) -4ωΞ -B, and 
∇ 3 ω + ∇ 4 ω -4ωω -ξ • ξ -(η -η) • ζ + η • η = ρ.
Also,

1 2 D • X + 1 2 X • Z = 1 2 DtrX + 1 2 trXZ -i (trX)(H + Ξ) -B, 1 2 D • X - 1 2 X • Z = 1 2 DtrX - 1 2 trXZ -i (trX)( H + Ξ) + B,
and,

curl ζ = - 1 2 χ ∧ χ + 1 4
tr χ (a) trχ -tr χ (a) trχ + ω (a) trχ -ω (a) trχ + * ρ.

The complex notations allow us to rewrite the Bianchi identities as follows, see section 2.4.3 in [START_REF] Giorgi | Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes[END_REF].

Proposition 2.1.9. We have 4 ,

∇ 3 A - 1 2 D ⊗B = - 1 2 trXA + 4ωA + 1 2 (Z + 4H) ⊗B -3P X, ∇ 4 B - 1 2 D • A = -2trXB -2ωB + 1 2 A • (2Z + H) + 3P Ξ, ∇ 3 B -DP = -trXB + 2ωB + B • X + 3P H + 1 2 A • Ξ, ∇ 4 P - 1 2 D • B = - 3 2 trXP + 1 2 (2 H + Z) • B -Ξ • B - 1 4 X • A, ∇ 3 P + 1 2 D • B = - 3 2 trXP - 1 2 (2H -Z) • B + Ξ • B - 1 4 X • A, ∇ 4 B + DP = -trXB + 2ωB + B • X -3P H - 1 2 A • Ξ, ∇ 3 B + 1 2 D • A = -2trX B -2ω B - 1 2 A • (-2Z + H) -3P Ξ, ∇ 4 A + 1 2 D ⊗B = - 1 2 trXA + 4ωA + 1 2 (Z -4 H) ⊗B -3P X.

Null frame transformations

Consider two null frames (e 4 , e 3 , e 1 , e 2 ) and (e 4 , e 3 , e 1 , e 2 ) on M with H = {e 3 , e 4 } ⊥ and H = {e 3 , e 4 } ⊥ the corresponding horizontal structures. We denote by Γ , Γ the connection coefficients relative to the two frames. We denote by ∇, ∇ ⊗, div , curl , ∇ 3 , ∇ 4 the standard operators corresponding to to H and by ∇ , ∇ ⊗, div , curl , ∇ 3 , ∇ 4 those corresponding to H . The goal is to establish transition formulas between the Ricci and curvature coefficients of the two frames. 

Transformation between two null frames

f a e 4 + 1 2 f a + 1 8 |f | 2 f a e 3 , e 3 = λ -1 1 + 1 2 f • f + 1 16 |f | 2 |f | 2 e 3 + f b + 1 4 |f | 2 f b e b + 1 4 |f | 2 e 4 , (2.2.1) 
where λ, f a = f a , f a = f a are scalar functions, called the transition coefficients of the change of frame. Note, in particular,

e a = e a + 1 2 f a λ -1 e 4 + 1 2 f a e 3 , e 3 = λ -1 e 3 + f a e a - 1 4 |f | 2 λ -1 e 4 .
2. The inverse transformation is given by the formulas

e 4 = λ e 4 + f b e b + 1 4 |f | 2 e 3 , e a = δ b a + 1 2 f a f b e b + 1 2 f a e 4 + 1 2 f a + 1 8 |f | 2 f a e 3 , e 3 = (λ ) -1 1 + 1 2 f • f + 1 16 |f | 2 |f | 2 e 3 + f b + 1 4 |f | 2 f b e b + 1 4 |f | 2 e 4 , (2.2.2) 
where

λ = λ -1 1 + 1 2 f • f + 1 16 |f | 2 |f | 2 , f a = - λ 1 + 1 2 f • f + 1 16 |f | 2 |f | 2 f a + 1 4 |f | 2 f a , f a = -λ -1 f a + 1 4 |f | 2 f a .
(2.2.3)

Moreover f a f b = f b f a , λ |f | 2 = λ|f | 2 , (λ ) -1 |f | 2 = λ -1 |f | 2 . ( 2 

.2.4)

Denoting F = (f, f , λ -1), we also write, for small |F |,

λ = λ -1 1 + 1 2 f • f + O(|F | 3 ), f a = -λf a + O(|F | 3 ), f a = -λ -1 f a + O(|F | 3 ).
(2.2.5)

Proof. For the first part of the lemma, see section 3.1 in [START_REF] Klainerman | Construction of GCM spheres in perturbations of Kerr[END_REF]. To check the second part we make use of (2.2.1) to deduce g(e a , e 4 ) = -f a -

1 4 |f | 2 f a ,
g(e 3 , e 4 ) = -2λ

-1 1 + 1 2 f • f + 1 16 |f | 2 |f | 2 , g(e 3 , e a ) = λ -1 f a + 1 4 |f | 2 f a .
Similarly, using (2.2.2), we deduce g(e 4 , e a ) = λ f a , g(e 4 , e 3 ) = -2λ , g(e a , e 3 ) = -f a .

We infer

-f a - 1 4 |f | 2 f a = g(e a , e 4 ) = λ f a , -2λ -1 1 + 1 2 f • f + 1 16 |f | 2 |f | 2 = g(e 3 , e 4 ) = -2λ , λ -1 f a + 1 4 |f | 2 f a = g(e 3 , e a ) = -f a ,
and hence

λ f a = -f a - 1 4 |f | 2 f a , λ = λ -1 1 + 1 2 f • f + 1 16 |f | 2 |f | 2 , f a = -λ -1 f a + 1 4 |f | 2 f a .
In particular

f a = -λ -1 f a + 1 4 |f | 2 f a = - λ 1 + 1 2 f • f + 1 16 |f | 2 |f | 2 f a + 1 4 |f | 2 f a .
The identities (2.2.4) follow from the relations induced by g(e a , e b ), g(e 3 .e 3 ), g(e 4 , e 4 ). This concludes the proof of the lemma.

Remark 2.2.2. As a consequence of the above lemma both f and f can be regarded as horizontal vectors on both H = {e 3 , e 4 } ⊥ and H = {e 3 , e 4 } ⊥ .

Transformation formulas for Ricci and curvature coefficients

In the proposition below q Γ denotes any linearized Ricci coefficient, see for example Section 2.6.3 for the definition of linearized Ricci coefficients. Later on, the linearized Ricci coefficients are split into the sets Γ b and Γ g , which have different asymptotic behavior, so that q Γ = Γ g ∪ Γ b , see for example Section 2.6.4 for the definition of Γ g and Γ b .

Proposition 2.2.3. Under a general transformation of type (2.2.1), the Ricci coefficients transform as follows:

• The transformation formula for ξ is given by

λ -2 ξ = ξ + 1 2 λ -1 ∇ 4 f + 1 4 (tr χf -(a) trχ * f ) + ωf + Err(ξ, ξ ), Err(ξ, ξ ) = 1 2 f • χ + 1 4 |f | 2 η + 1 2 (f • ζ) f - 1 4 |f | 2 η + λ -2 1 2 (f • ξ ) f + 1 2 (f • f ) ξ + l.o.t. (2.2.6) 
• The transformation formula for ξ is given by

λ 2 ξ = ξ + 1 2 λ∇ 3 f + ω f + 1 4 tr χ f - 1 4 
(a) trχ * f + Err(ξ, ξ ),

Err(ξ, ξ ) = 1 2 f • χ - 1 2 (f • ζ)f + 1 4 |f | 2 η - 1 4 |f | 2 η + l.o.t.
(2.2.7)

• The transformation formulas for χ are given by

λ -1 tr χ = tr χ + div f + f • η + f • ζ + Err(tr χ, tr χ ) Err(tr χ, tr χ ) = f • ξ + 1 4 f • f tr χ - * f (a) trχ + ω(f • f ) -ω|f | 2 - 1 4 |f | 2 tr χ - 1 4 (f • f )λ -1 tr χ + 1 4 (f ∧ f )λ -1 (a) trχ + l.o.t., (2.2.8) 
λ -1 (a) trχ = (a) trχ + curl f + f ∧ η + f ∧ ζ + Err( (a) trχ, (a) trχ ),

Err( (a) trχ, (a) trχ

) = f ∧ ξ + 1 4 f ∧ f tr χ + (f • f ) (a) trχ + ωf ∧ f - 1 4 |f | 2 (a) trχ - 1 4 (f • f )λ -1 (a) trχ + 1 4 λ -1 (f ∧ f )tr χ + l.o.t., (2.2.9) 
λ -1 χ = χ + ∇ ⊗f + f ⊗η + f ⊗ζ + Err( χ, χ ),

Err( χ, χ ) = f ⊗ξ + 1 4 f ⊗ f tr χ - * f (a) trχ + ωf ⊗f -ωf ⊗f - 1 4 |f | 2 (a) trχ + 1 4 (f ⊗f )λ -1 tr χ + 1 4 ( * f ⊗f )λ -1 (a) trχ + 1 2 f ⊗(f • λ -1 χ ) + l.o.t.
(2.2.10)

• The transformation formulas for χ are given by

λtr χ = tr χ + div f + f • η -f • ζ + Err(tr χ, tr χ ), Err(tr χ, tr χ ) = 1 2 (f • f )tr χ + f • ξ -|f | 2 ω + (f • f )ω - 1 4 |f | 2 λ -1 tr χ + l.o.t., (2.2.11 
) a) trχ, (a) trχ ),

λ (a) trχ = (a) trχ + curl f + f ∧ η -ζ ∧ f + Err( (
Err( (a) trχ, (a) trχ ) = 1 2 (f • f ) (a) trχ + f ∧ ξ + (f ∧ f )ω - 1 4 |f | 2 λ -1 (a) trχ + l.o.t.,
(2.2.12)

λ χ = χ + ∇ ⊗f + f ⊗η -f ⊗ζ + Err( χ, χ ), Err( χ, χ ) = 1 2 (f ⊗f )tr χ + f ⊗ξ -(f ⊗f )ω + (f ⊗f )ω - 1 4 |f | 2 λ -1 χ + l.o.t. (2.2.13) 
• The transformation formula for ζ is given by

ζ = ζ -∇ (log λ) - 1 4 tr χf + 1 4 (a) trχ * f + ωf -ωf + 1 4 f tr χ + 1 4 * f (a) trχ + Err(ζ, ζ ), Err(ζ, ζ ) = - 1 2 χ • f + 1 2 (f • ζ)f - 1 2 (f • η)f + 1 4 f (f • η) + 1 4 f (f • ζ) + 1 4 * f (f ∧ η) + 1 4 * f (f ∧ ζ) + 1 4 f div f + 1 4 * f curl f + 1 2 λ -1 f • χ - 1 16 (f • f )f λ -1 tr χ + 1 16 (f ∧ f )f λ -1 (a) trχ - 1 16 * f (f • f )λ -1 (a) trχ + 1 16 * f λ -1 (f ∧ f )tr χ + l.o.t.
(2.2.14)

• The transformation formula for η is given by

η = η + 1 2 λ∇ 3 f + 1 4 f tr χ - 1 4 * f (a) trχ -ω f + Err(η, η ), Err(η, η ) = 1 2 (f • f )η + 1 2 f • χ + 1 2 f (f • ζ) -(f • f )η + 1 2 f (f • η ) + l.o.t.
(2.2.15)

• The transformation formula for η is given by

η = η + 1 2 λ -1 ∇ 4 f + 1 4 tr χf - 1 4 
(a) trχ * f -ωf + Err(η, η ),

Err(η, η ) = 1 2 f • χ + 1 2 (f • η)f - 1 4 (f • ζ)f - 1 4 |f | 2 λ -2 ξ + l.o.t.
(2.2.16)

• The transformation formula for ω is given by

λ -1 ω = ω - 1 2 λ -1 e 4 (log λ) + 1 2 f • (ζ -η) + Err(ω, ω ), Err(ω, ω ) = - 1 4 |f | 2 ω - 1 8 tr χ|f | 2 + 1 2 λ -2 f • ξ + l.o.t.
(2.2.17)

• The transformation formula for ω is given by

λω = ω + 1 2 λe 3 (log λ) - 1 2 f • ζ - 1 2 f • η + Err(ω, ω ), Err(ω, ω ) = f • f ω - 1 4 |f | 2 ω + 1 2 f • ξ + 1 8 (f • f )tr χ + 1 8 (f ∧ f ) (a) trχ - 1 8 |f | 2 tr χ - 1 4 λf • ∇ 3 f + 1 2 (f • f )(f • η ) - 1 4 |f | 2 (f • η ) + l.o.t. (2.2.18) 
where, for the transformation formulas of the Ricci coefficients above, l.o.t. denote expressions of the type l.o.t. = O((f, f ) 3 )Γ + O((f, f ) 2 ) q Γ containing no derivatives of f , f , Γ and q Γ.

Also, the curvature components transform as follows:

• The transformation formula for α, α are given by λ -2 α = α + Err(α, α ),

Err(α, α ) = f ⊗β - * f ⊗ * β + f ⊗f - 1 2 * f ⊗ * f ρ + 3 2 f ⊗ * f * ρ + l.o.t., (2.2.19 
)

λ 2 α = α + Err(α, α ), Err(α, α ) = -f ⊗β - * f ⊗ * β + f ⊗f - 1 2 * f ⊗ * f ρ + 3 2 f ⊗ * f * ρ + l.o.t.
(2.2.20)

• The transformation formula for β, β are given by

λ -1 β = β + 3 2 f ρ + * f * ρ + Err(β, β ), Err(β, β ) = 1 2 α • f + l.o.t., (2.2.21 
)

λβ = β - 3 2 f ρ + * f * ρ + Err(β, β ), Err(β, β ) = - 1 2 α • f + l.o.t.
(2.2.22)

• The transformation formula for ρ and * ρ are given by ρ = ρ + Err(ρ, ρ ),

Err(ρ, ρ ) = f • β -f • β + 3 2 ρ(f • f ) - 3 2 * ρ(f ∧ f ) + l.o.t. (2.2.23) * ρ = * ρ + Err( * ρ, * ρ ), Err( * ρ, * ρ ) = -f • * β -f • * β + 3 2 * ρ(f • f ) + 3 2 ρ(f ∧ f ) + l.o.t. ( 2 

.2.24)

where, for the transformation formulas of the curvature components above, l.o.t. denote expressions of the type l.o.t. = O((f, f ) 3 )(ρ, * ρ) + O((f, f ) 2 )(α, β, α, β)

containing no derivatives of f , f , α, β, (ρ, * ρ), β, and α.

Proof. See Proposition 3.3 in [START_REF] Klainerman | Construction of GCM spheres in perturbations of Kerr[END_REF].

Transport equations for (f, f , λ)

Corollary 2.2.4. Under the assumption ξ = 0, ω = 0, η + ζ = 0, we have the following transport equations for (f, f , λ)

∇ λ -1 e 4 f + 1 2 (tr χf -(a) trχ * f ) + 2ωf = -2ξ -f • χ + E 1 (f, Γ), λ -1 e 4 (log λ) = 2ω + f • (ζ -η) + E 2 (f, Γ), ∇ λ -1 e 4 f + 1 2 (tr χf + (a) trχ * f ) = -2(η + ζ) + 2∇ (log λ) + 2ωf +E 3 (∇ ≤1 f, f , Γ, λ -1 χ ),
where E 1 (f, Γ), E 2 (f, Γ) and E 3 (∇ ≤1 f, f , Γ, λ -1 χ ) are given by

E 1 (f, Γ) = -(f • ζ)f - 1 2 |f | 2 η + 1 2 |f | 2 η + O(f 3 Γ), E 2 (f, Γ) = - 1 2 |f | 2 ω - 1 4 tr χ|f | 2 + O(f 3 Γ + f 2 χ),
and

E 3 (∇ ≤1 f, f , Γ, λ -1 χ ) = 1 4 (f • η)f + 1 2 (f • ζ)f + 1 4 * f (f ∧ η) + 1 4 * f (f ∧ ζ) + 1 4 f div f + 1 4 * f curl f + 1 2 λ -1 f • χ +O (λ -1 tr χ , λ -1 (a) trχ )(f, f ) 3 + (f, f ) 3 Γ .
Proof. See Section A.1.

Corollary 2.2.5. Assume that we have

Ξ = 0, ω = 0, H + Z = 0.
We introduce

F := f + i * f, F := f + i * f .
Then, we have

∇ λ -1 e 4 F + 1 2 trXF + 2ωF = -2Ξ -χ • F + E 1 (f, Γ), λ -1 ∇ 4 (log λ) = 2ω + f • (ζ -η) + E 2 (f, Γ), ∇ λ -1 e 4 F + 1 2 trXF = -2( H + Z) + 2D (log λ) + 2ωF + E 3 (∇ ≤1 f, f , Γ, λ -1 χ ).
Moreover, introducing a complex valued scalar function q satisfying e 4 (q) = 1, we have ∇ λ -1 e 4 (qF ) = -2qωF -2qΞ + E 4 (f, Γ), ∇ λ -1 e 4 q F -2qD (log λ) + qe 3 (r)F = -2q( H + Z) -

2q 2 D 2ω + f • (ζ -η) +e 3 (r) (-2qωF -2qΞ) + 2ω(q -q)F +E 5 (∇ ≤1 f, f , ∇ ≤1 λ, D ≤1 Γ),
where

E 4 (f, Γ) := - 1 2 q trX - 2 q F -q χ • F + qE 1 (f, Γ) + f • ∇(q)F + 1 4
|f | 2 e 3 (q)F and

E 5 (∇ ≤1 f, f , ∇ ≤1 λ, D ≤1 Γ) = - q 2 trX - 2 q F + qE 3 (∇ ≤1 f, f , Γ, λ -1 χ ) -2q 2 D (E 2 (f, Γ)) -2q[∇ λ -1 e 4 , qD ] log λ + f • ∇(q) + 1 4 |f | 2 e 3 (q) F -2qD (log λ) +e 3 (r)E 4 (f, Γ).
Proof. See Section A.2.

Remark 2.2.6. In practice, we will integrate first the transport equations for F , then for λ. Finally, we will integrate the renormalized transport equation for F and we recover one less derivative than for F and log(λ). Note that the renormalization of the transport equation for F is needed in order to avoid a potential log-loss due to the terms D (log λ) and ωF on the RHS.

Principal geodesic structures 2.3.1 Principal outgoing geodesic structures

Definition 2.3.1 (PG structure). An outgoing PG structure consists of a null pair (e 3 , e 4 ) and the induced horizontal structure H = O(M), together with a scalar function r such that:

1. e 4 is a null outgoing geodesic vectorfield, i.e. D 4 e 4 = 0, 2. r is an affine parameter, i.e. e 4 (r) = 1, 3. the gradient of r, given by N = g αβ ∂ β r∂ α , is perpendicular to H. with (e a ) a=1,2 an orthonormal basis of H. Applying the commutator formula to r, and using e 4 (r) = 1, e 1 (r) = e 2 (r) = 0, and (∇ 4 e a )(r) = 0, we infer that η + ζ = 0 as stated.

In view of the above, the following relations hold for PG structure

ξ = 0, ω = 0, η + ζ = 0, e 4 (r) = 1, ∇(r) = 0. (2.3.1) 
The following lemma shows how to initialize a PG structure on a hypersurface of M transversal to e 4 .

Lemma 2.3.3. Consider a hypersurface Σ in M. Let a scalar function r and a null pair (e 4 , e 3 ) be both defined on Σ, with H the corresponding horizontal space. Assume that e 4 is transversal to Σ, and impose the transversality condition e 4 (r) = 1 on Σ.

Under this transversality condition 6 , we assume that7 H(r) = 0. Then, we can extend r and the null frame (e 4 , e 3 ) uniquely to a PG structure.

Proof. Since e 4 is transversal to Σ, we may extend it geodesically, i.e. D e 4 e 4 = 0, to a neighborhood of Σ. We then extend r in a neighborhood of Σ such that e 4 (r) = 1. Since H(r) = 0 on Σ we have H orthogonal to N = g αβ ∂ β r∂ α on Σ. Since e 4 and N are well defined in a neighborhood of Σ, we extend H by choosing it to be orthogonal to both. We then choose e 3 the unique null vector perpendicular to H and such that g(e 3 , e 4 ) = -2.

Thus r and the frame (e 3 , e 4 ) define a PG structure in a neighborhood of Σ coinciding with the given one on Σ.

Null structure and Bianchi identities for an outgoing PG structure

In an outgoing PG structure, Propositions 2.1.8 and 2.1.9 take the following form.

Proposition 2.3.4.

∇ 4 trX + 1 2 (trX) 2 = - 1 2 X • X, ∇ 4 X + (trX) X = -A, ∇ 4 trX + 1 2 trXtrX = -D • Z + Z • Z + 2P - 1 2 X • X, ∇ 4 X + 1 2 trX X = - 1 2 D ⊗Z + 1 2 Z ⊗Z - 1 2 trX X, ∇ 3 trX + 1 2 (trX) 2 + 2ω trX = D • Ξ -Ξ • Z + Ξ • (H -2Z) - 1 2 X • X, ∇ 3 X + (trX) X + 2ω X = 1 2 D ⊗Ξ + 1 2 Ξ ⊗(H -3Z) -A, ∇ 3 trX + 1 2 trXtrX -2ωtrX = D • H + H • H + 2P - 1 2 X • X, ∇ 3 X + 1 2 trX X -2ω X = 1 2 D ⊗H + 1 2 H ⊗H - 1 2 trX X.
Also,

∇ 4 Z + trXZ = -X • Z -B, ∇ 4 H + 1 2 trX(H + Z) = - 1 2 X • (H + Z) -B, ∇ 3 Z + 1 2 trX(Z + H) -2ω(Z -H) = -2Dω - 1 2 X • (Z + H) + 1 2 trXΞ -B + 1 2 Ξ • X, ∇ 3 Z + ∇ 4 Ξ = - 1 2 trX(Z + H) - 1 2 X • (Z + H) -B, and 
∇ 4 ω -(2η + ζ) • ζ = ρ.
Also,

1 2 D • X + 1 2 X • Z = 1 2 DtrX + 1 2 trXZ -i (trX)H -B, 1 2 D • X - 1 2 X • Z = 1 2 DtrX - 1 2 trXZ -i (trX)(-Z + Ξ) + B.
Also,

∇ 3 A - 1 2 D ⊗B = - 1 2 trXA + 4ωA + 1 2 (Z + 4H) ⊗B -3P X, ∇ 4 B - 1 2 D • A = -2trXB + 1 2 A • Z, ∇ 3 B -DP = -trXB + 2ωB + B • X + 3P H + 1 2 A • Ξ, ∇ 4 P - 1 2 D • B = - 3 2 trXP - 1 2 Z • B - 1 4 X • A, ∇ 3 P + 1 2 D • B = - 3 2 trXP - 1 2 (2H -Z) • B + Ξ • B - 1 4 X • A, ∇ 4 B + DP = -trXB + B • X + 3P Z, ∇ 3 B + 1 2 D • A = -2trX B -2ω B - 1 2 A • (-2Z + H) -3P Ξ, ∇ 4 A + 1 2 D ⊗B = - 1 2 trXA + 5 2 Z ⊗B -3P X.
Proof. We are simply making use of the fact that, in an outgoing PG structure, we have ω = ξ = 0, η = -ζ, and hence also Ξ = 0, H = -Z.

Coordinates associated to an outgoing PG structure

Definition 2.3.5. Assume given an outgoing principal geodesic structure {r, (e 3 , e 4 ), H}.

In addition to r, we define scalar functions (u, θ, ϕ) such that Proof. For a scalar function f , we have the commutator formulas

[∇ 4 , D]f = - 1 2 trXDf - 1 2 X • Df, [∇ 4 , ∇ 3 ]f = -(Z + H) • Df -2ω∇ 4 f.
Hence, for a scalar function f such that ∇ 4 f = 1 of ∇ 4 f = 0, we have

∇ 4 Df + 1 2 trXDf = - 1 2 X • Df, e 4 (e 3 (f )) = -(Z + H) • Df -2ω∇ 4 f.
We then apply these transport equations respectively with the choice f = r, f = u and f = cosθ.

Integrable frame adapted to a PG structure

Given a PG structure 8 {r, (e 3 , e 4 , e 1 , e 2 )}, see Definition 2.3.1, and a coordinate u transported by e 4 (u) = 0, we construct in the following lemma a new frame (e 3 , e 4 , e 1 , e 2 ) adapted to the topological spheres S(u, r), i.e. with (e 1 , e 2 ) tangent to S(u, r).

Lemma 2.3.7. Consider a PG structure {r, (e 3 , e 4 , e 1 , e 2 )}, and a coordinate u transported by e 4 (u) = 0, and assume that e 3 (u) > 0, (e 3 (u)) 2 + 4|∇u| 2 e 3 (r) > 0.

Then, there exists a frame transformation of type (2.2.1), taking (e 1 , e 2 , e 3 , e 4 ) into a frame (e 3 , e 4 , e 1 , e 2 ), and verifying the following conditions 1. The horizontal vectors (e 1 , e 2 ) are tangent to S(u, r).

2. We have g(e 3 , e 4 ) = -2.

Moreover, the coefficients (λ, f, f ) of the frame transformation are given by 9 f = -4 e 3 (u) + (e 3 (u)) 2 + 4|∇u| 2 e 3 (r) ∇u,

f = 2e 3 (r)
(e 3 (u)) 2 + 4|∇u| 2 e 3 (r) ∇u,

λ = 1 + 1 2 f • f + 1 16 |f | 2 |f | 2 .
(2.3.3)

Remark 2.3.8. In Kerr, we have, see Section 2.4,

|∇u| 2 = a 2 (sin θ) 2 |q| 2 , e 3 (r) = - ∆ |q| 2 , e 3 (u) = 2(r 2 + a 2 ) |q| 2 ,
and hence e 3 (u) > 0, (e 3 (u)) 2 + 4|∇u| 2 e 3 (r) = 4Σ 2 |q| 4 > 0 as well as

f = - 2|q| 2 r 2 + a 2 + Σ ∇u, f = - ∆ Σ ∇u.
Proof. Recall the frame transformation (2. 

e 3 = λ -1 1 + 1 2 f • f + 1 16 |f | 2 |f | 2 e 3 + f b + 1 4 |f | 2 f b e b + 1 4 |f | 2 e 4 .
In particular, the choice for λ is equivalent to the normalization g(e 3 , e 4 ) = -2. It thus suffices to look for (f, f ) such that (e 1 , e 2 ) is tangent to S(u, r), which is equivalent to e a (r) = e a (u) = 0. Now, recall that e 4 (r) = 1, e 4 (u) = 0, e 1 (r) = e 2 (r) = 0.

9 Note that the formula for λ implies λ > 0. Indeed, using e 3 (u) > 0 and (e 3 (u)) 2 + 4|∇u| 2 e 3 (r) > 0, and the above formulas for λ, f and f , we have ≥ (e 3 (u)) 2 (e 3 (u)) 2 + 4|∇u| 2 e 3 (r) > 0.

Thus, we have e a (r) = e a (u) = 0 if and only if

0 = f a + f a + 1 4 |f | 2 f a e 3 (r), 0 = δ b a + 1 2 f a f b e b (u) + 1 2 f a + 1 8 |f | 2 f a e 3 (u),
which is equivalent to

f = - e 3 (r) 1 + 1 4 |f | 2 e 3 (r) f, 0 = ∇u + 1 2 (f • ∇u)f + 1 2 f + 1 8 |f | 2 f e 3 (u).
Plugging the first equation in the second, we infer

-(f • ∇u)e 3 (r)f + e 3 (u)f + 2 1 + 1 4 |f | 2 e 3 (r) ∇u = 0.
We look for f under the form

f = h∇u
where h is a scalar function to be determined. Plugging in the equation above, we obtain -h 2 |∇u| 2 e 3 (r) + he 3 (u) + 2 1 + 1 4 h 2 |∇u| 2 e 3 (r) ∇u = 0.

Thus, (e 1 , e 2 ) is tangent to S(u, r) if and only if h satisfies

- 1 2
|∇u| 2 e 3 (r)h 2 + e 3 (u)h + 2 = 0.

The discriminant is given by Disc = (e 3 (u)) 2 + 4|∇u| 2 e 3 (r) > 0,

where the strict positivity comes from the assumptions, and the roots are given by h ± = -e 3 (u) ± (e 3 (u)) 2 + 4|∇u| 2 e 3 (r) -|∇u| 2 e 3 (r) .

We choose the root h + , i.e. Definition 2.3.9. We refer to the frame introduced in Lemma 2.3.7 as the associated integrable frame to the PG structure.

Corollary 2.3.10. Let (e 3 , e 4 , e 1 , e 2 ) be a PG frame and denote (e 3 , e 4 , e 1 , e 2 ) the associated integrable frame. Consider the frame transformation of type (2.2.1), taking (e 3 , e 4 , e 1 , e 2 ) into (e 3 , e 4 , e 1 , e 2 ), and let (λ , f , f ) be the corresponding coefficients. Then, we have λ = 1.

Proof. The frame transformation of type (2.2.1), taking (e 3 , e 4 , e 1 , e 2 ) into (e 3 , e 4 , e 1 , e 2 ), is the inverse transformation of the one of Lemma 2.3.7. Thus, the proof follows immediately from the properties of (λ, f, f ) in Lemma 2.3.7 and the identities (2.2.3) relating (λ, f, f ) and (λ , f , f ).

Canonical outgoing PG structure in Kerr

Boyer-Lindquist coordinates

The Kerr metric in standard Boyer-Lindquist coordinates (t, r, θ, φ) is given by

g = - |q| 2 ∆ Σ 2 (dt) 2 + Σ 2 (sin θ) 2 |q| 2 dφ - 2amr Σ 2 dt 2 + |q| 2 ∆ (dr) 2 + |q| 2 (dθ) 2 ,
where

   q = r + ia cos θ, ∆ = r 2 -2mr + a 2 , Σ 2 = (r 2 + a 2 )|q| 2 + 2mra 2 (sin θ) 2 = (r 2 + a 2 ) 2 -a 2 (sin θ) 2 ∆.
We also note that

T = ∂ t , Z = ∂ φ , (2.4.1) 
are both Killing and T is only time-like in the complement of the ergoregion, i.e. in |q| 2 > 2mr. The domain of outer communication is given by,

R = {(θ, r, t, φ) ∈ (0, π) × (r + , ∞) × R × S 1 },
where r

+ := m + √ m 2 -a 2
, the larger root of ∆, corresponds to the event horizon.

Lemma 2.4.1. The following principal null directions are canonical in Kerr.

1. The null pair (e 3 , e 4 ) for which e 4 is geodesic is given by

e 4 = r 2 + a 2 ∆ ∂ t + ∂ r + a ∆ ∂ φ , e 3 = r 2 + a 2 |q| 2 ∂ t - ∆ |q| 2 ∂ r + a |q| 2 ∂ φ . (2.4.2)
2. The null pair (e 3 , e 4 ) for which e 3 is geodesic is given by

e 3 = r 2 + a 2 ∆ ∂ t -∂ r + a ∆ ∂ φ , e 4 = r 2 + a 2 |q| 2 ∂ t + ∆ |q| 2 ∂ r + a |q| 2 ∂ φ .
(2.4.3)

3. In both cases, a principal null frame can be obtained by adding the vectorfields

e 1 = 1 |q| ∂ θ , e 2 = a sin θ |q| ∂ t + 1 |q| sin θ ∂ φ .
Proof. Straightforward verification. 

Canonical complex 1-form J

Definition 2.4.5. We define the following complex 1-form J in Kerr as follows

J := j + i * j, (2.4.4) 
where the real 1-form j is defined by

j 1 = 0, j 2 = sin θ |q| .
(2.4.5)

Hence

J 1 = i sin θ |q| , J 2 = sin θ |q| .
Remark 2.4.6. The relevance of the complex 1-form J is due to its link to the complex 1-forms H, H and Z, see (2.4.12).

Lemma 2.4.7. The following identities hold true in Kerr:

• We have * J = -iJ, J • J = 2(sin θ) 2 |q| 2 .
(2.4.6)

• We have

∇ 4 J + 1 2 trXJ = 0, ∇ 3 J + 1 2 trXJ = 0.
(2.4.7)

• The complex 1-form J verifies

D • J = 4i(r 2 + a 2 ) cos θ |q| 4 , D ⊗J = 0. (2.4.8)
• We have

D(q) = -aJ, D(q) = aJ.
(2.4.9)

Proof. Straightforward computations. Note that (2.4.7) holds true in both the ingoing and outgoing frame. In the outgoing frame it becomes

∇ 4 J = - 1 q J, ∇ 3 J = ∆q |q| 4 J.
To check the third identity it helps to first check the following identities for j = (J)

div j = 0, curl j = 2(r 2 + a 2 ) cos θ |q| 4 , ∇ ⊗j = 0, ∇ a j b = (r 2 + a 2 ) cos θ |q| 4 ∈ ab .
The last identity is a straightforward verification.

Lemma 2.4.8. In Kerr, the Killing vectorfield given by T = ∂ t , in BL coordinates, can be expressed in terms of the outgoing PG frame by 

T = 1 2 e 3 + ∆ |q| 2 e 4 -2a (J) b e b . ( 2 

Canonical outgoing PG structure in Kerr

Consider the canonical principal outgoing null frame in BL coordinates

e 4 = r 2 + a 2 ∆ ∂ t + ∂ r + a ∆ ∂ φ , e 3 = r 2 + a 2 |q| 2 ∂ t - ∆ |q| 2 ∂ r + a |q| 2 ∂ φ , e 1 = 1 |q| ∂ θ , e 2 = a sin θ |q| ∂ t + 1 |q| sin θ ∂ φ .
(2.4.11)

Lemma 2.4.9. The function r together with the principal frame (2.4.11) defines an outgoing PG structure in Kerr. Moreover 1. The complex curvature null components w.r.t. the frame are given by

A = B = B = A = 0, P = - 2m q 3 .
2. The vanishing complex Ricci coefficients in Kerr are

X = X = Ξ = Ξ = ω = 0.
3. The non-vanishing complex Ricci coefficients are10 

trX = 2 q , trX = - 2∆q |q| 4 , H = - aq |q| 2 J, H = aq |q| 2 J, Z = aq |q| 2 J, ω = 1 2 ∂ r ∆ |q| 2 ,
(2.4.12)

with the 1-form J of Definition 2.4.5.

4. We have

(Λ 1 ) 12 = 0, (Λ 2 ) 12 = - r 2 + a 2 |q| 3 cot θ, (Λ 3 ) 12 = - a∆ cos θ |q| 4 , (Λ 4 ) 12 = - a cos θ |q| 2 .
(2.4.13)

Proof. Straightforward computations. See also the material on Kerr in Chapter 3 of [START_REF] Giorgi | Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes[END_REF].

Outgoing PG coordinates in Kerr

Note that relative to the BL coordinates we have

e 4 (r) = 1, e 4 (θ) = 0, e 4 (φ) = a ∆ .
To derive the coordinate system associated to the outgoing PG structure, we need to introduce in addition to (r, θ)

u := t -f (r), f (r) = r 2 + a 2 ∆ , ϕ := φ -h(r), h (r) = a ∆ ,
which satisfies e 4 (u) = 0, e 4 (ϕ) = 0.

Lemma 2.4.10. The coordinate system given by (u, r, θ, ϕ), with

u = t -f (r), f (r) = r 2 + a 2 ∆ , ϕ = φ -h(r), h (r) = a ∆ , e 1 (r) = 0, e 1 (u) = 0, e 1 (θ) = 1 |q| , e 1 (ϕ) = 0, e 2 (r) = 0, e 2 (u) = a sin θ |q| , e 2 (θ) = 0, e 2 (ϕ) = 1 |q| sin θ .
(2.4.14)

2. In the outgoing EF coordinates, the metric takes the form

g = -1 - 2mr |q| 2 (du) 2 -2drdu + 2a(sin θ) 2 drdϕ - 4mra(sin θ) 2 |q| 2 dudϕ + |q| 2 (dθ) 2 + Σ 2 (sin θ) 2 |q| 2 (dϕ) 2 .
3. In the outgoing EF coordinates, the determinant on the metric is given by

det(g) = -|q| 4 (sin θ) 2 .
(2.4.15)

4. In the outgoing EF coordinates, the inverse metric coefficients g αβ are given by

g rr = ∆ |q| 2 , g ru = - r 2 + a 2 |q| 2 , g rθ = 0, g rϕ = - a |q| 2 , g uu = a 2 (sin θ) 2 |q| 2 , g uθ = 0, g uϕ = a |q| 2 , g θθ = 1 |q| 2 , g θϕ = 0, g ϕϕ = 1 |q| 2 (sin θ) 2 .
Proof. Straightforward verification.

Canonical basis of = 1 modes in Kerr

Definition 2.4.11. We define the canonical basis of = 1 modes of Kerr to be the triplet of scalar functions11 J (p) , p ∈ {0, +, -}, J (0) := cos θ, J (-) := sin θ sin ϕ, J (+) := sin θ cos ϕ.

(2.4.16)

Remark 2.4.12. Note that we have e 4 (J (p) ) = 0.

(2.4.17)

Lemma 2.4.13. The following identities hold true.

∆J (0) = - 2(r 2 + a 2 ) |q| 4 J (0) , ∆J (±) = - 2r 2 |q| 4 J (±) .
(2.4.18) 

Also D ⊗DJ (p) = 0. ( 2 
(θ) = 1 |q| , e 1 (ϕ) = 0, e 2 (θ) = 0, e 2 (ϕ) = 1 |q| sin θ .
Next, we focus on (2.4.19). First, note that for a scalar function h, we have

D ⊗Dh = 2∇ ⊗∇h + 2i * (∇ ⊗∇h)
so that it suffices to prove ∇ ⊗∇J (p) = 0. Also, given a scalar function h we have, in view of (Λ 1 ) 12 = 0 and the formula for (Λ 2 ) 12 in (2.4.13),

(∇ ⊗∇h) 11 = e 1 (e 1 h) -e 2 (e 2 h) - r 2 + a 2 |q| 3 cot θe 1 (h), (∇ ⊗∇h) 12 = e 1 (e 2 h) + e 2 (e 1 h) - r 2 + a 2 |q| 3 cot θe 2 (h),
and we obtain ∇ ⊗∇J (p) = 0 by choosing h = J (p) so that (2.4.19) follows.

Lemma 2.4.15. The following identities hold true

e 3 (J (0) ) = 0, e 3 (J (+) ) + 2a |q| 2 J (-) = 0, e 3 (J (-) ) - 2a |q| 2 J (+) = 0. (2.4.20)
Proof. Straightforward calculation.

Lemma 2.4.16. We have

DJ (0) = iJ. (2.4.21)
Proof. We check that

∇J (0) = -(J), * ∇J (0) = (J).
Indeed, recalling the definition of J,

e 1 (J (0) ) = - sin θ |q| = -(J 1 ), e 2 (J (0) ) = 0 = -(J 2 ),
2.4.6 Canonical complex 1-forms J ± Definition 2.4.17. We define the complex 1-forms J ± as follows

J ± = j ± + i * j ± , (2.4.22) 
where the real 1-forms j ± are given by

(j + ) 1 = 1 |q| cos θ cos ϕ, (j + ) 2 = - 1 |q| sin ϕ, (j -) 1 = 1 |q| cos θ sin ϕ, (j -) 2 = 1 |q| cos ϕ.
(2.4.23)

We can now obtain the following analog of Lemma 2.4.16.

Lemma 2.4.18. The complex 1-forms J ± are anti-selfadjoint, i.e. * J ± = -iJ ± , and verify

DJ (+) = J + , DJ (-) = J -. (2.4.24) 
Proof. To prove DJ (±) = J ± we check the following

∇J (±) = (J ± ), * ∇J (±) = (J ± ).
Indeed, in view of Definition 2.4.17 and Definition 2.4.11,

e 1 (J (+) ) = e 1 (sin θ cos ϕ) = 1 |q| cos θ cos ϕ = (j + ) 1 = (J + ) 1 , e 2 (J (+) ) = e 2 (sin θ cos ϕ) = - 1 |q| sin ϕ = (j + ) 2 = (J + ) 2 , e 1 (J (-) ) = e 1 (sin θ sin ϕ) = 1 |q| cos θ sin ϕ = (j -) 1 = (J -) 1 , e 2 (J (-) ) = e 2 (sin θ sin ϕ) = 1 |q| cos ϕ = (j -) 2 = (J -) 2 . Also * ∇J (+) = ( * J + ) = (-iJ + ) = (J + ), * ∇J (-) = ( * J -) = (-iJ -) = (J -).
Thus

DJ (+) = ∇J (+) + i * ∇J (+) = (J + ) + i (J + ) = J + , DJ (-) = ∇J (-) + i * ∇J (-) = (J -) + i (J -) = J -,
as stated.

Lemma 2.4.19. Let Ψ be a complex 1-form in Kerr of the form

Ψ = 1 |q| ψ + i * ψ
where the real 1-form ψ is such that e 4 (ψ 1 ) = e 4 (ψ 2 ) = 0. Then

∇ 4 Ψ + 1 q Ψ = 0.
Also, we have

(∇ 3 Ψ) a = ∆q |q| 4 Ψ a + 1 |q| e 3 ψ a + i * ψ a , a = 1, 2. Proof. Since (Λ 4 ) 12 = -a cos θ |q| 2 and (Λ 3 ) 12 = -a∆ cos θ |q| 4
in view of (2.4.13), we easily check, using also e 4 (ψ 1 ) = e 4 (ψ 2 ) = 0,

∇ 4 ψ = - a cos θ |q| 2 * ψ, ∇ 3 ψ a = - a∆ cos θ |q| 4 * ψ a + e 3 (ψ a ),
and thus

∇ 4 (ψ + i * ψ) = i a cos θ |q| 2 (ψ + i * ψ), ∇ 3 (ψ + i * ψ) a = i a∆ cos θ |q| 4 (ψ + i * ψ) a + e 3 (ψ a + i * ψ a ).
The conclusion then easily follows using e 4 (r) = 1, e 4 (θ) = e 3 (θ) = 0 and e 3 (r) = -∆ |q| 2 to compute e 4 (|q| 2 ) and e 3 (|q| 2 ).

Lemma 2.4.20. The complex 1-forms J ± verify

∇ 4 J ± = - 1 q J ± , ∇ 3 J ± = ∆q |q| 4 J ± ∓ 2a |q| 2 J ∓ , (2.4.25) 
D ⊗J ± = 0, D • J ± = - 4r 2 |q| 4 J (±) ∓ 4ia 2 cos θ |q| 4 J (∓) , (2.4.26) 
J + • J + = 2(cos θ) 2 (cos ϕ) 2 + 2(sin ϕ) 2 |q| 2 , J -• J -= 2(cos θ) 2 (sin ϕ) 2 + 2(cos ϕ) 2 |q| 2 , (2.4.27)
and

(J + ) • (J) = - 1 |q| 2 J (-) , (J -) • (J) = 1 |q| 2 J (+) .
(2.4.28)

Proof. (2.4.25) is an immediate consequence of Lemma 2.4.19 using that e 4 (θ) = e 4 (ϕ) = e 3 (θ) = 0 and e 3 (ϕ) = 2a |q| 2 .

To check (2.4.26), recall from Lemma 2.4.18 that J ± = DJ (±) which yields

D ⊗J ± = D ⊗DJ (±) = 0, D • J ± = D • DJ (±) = 2∆J (±) + 2i(∇ 1 ∇ 2 -∇ 2 ∇ 1 )J (±) = - 4r 2 |q| 4 J (±) + 2i(∇ 1 ∇ 2 -∇ 2 ∇ 1 )J (±) ,
where we used (2.4.18) and (2.4.19). This yields the first identity in (2.4.26), while the second one follows from the above together with the following identity for a scalar function h only depending on (θ, ϕ)

(∇ 1 ∇ 2 -∇ 2 ∇ 1 )h = e 1 (e 2 h) -e 2 (e 1 h) + r 2 + a 2 |q| 3 cot θe 2 (h) = 2a 2 cos θ |q| 4 ∂ ϕ (h) which is then applied to h = J (±) noticing that ∂ ϕ (J (±) ) = ∓J (∓) .
The remaining estimates (2.4.27) and (2.4.28) are straightforward verifications from the definitions.

Additional coordinates system

Recall from (2.4.15) that the determinant of the Kerr metric in the (u, r, θ, ϕ) coordinates is given by det(g) = -|q| 4 (sin θ) 2 which illustrates that the (r, u, θ, ϕ) coordinates system is singular at the axis, i.e. at θ = 0 and θ = π. In this section, we introduce a coordinates system which is regular at the axis (u, r, x 1 , x 2 ),

x 1 := J (+) , x 2 := J (-) . (2.4.29)
We start by showing that the coordinates (x 1 , x 2 ) defined above form a coordinates system of the spheres S(u, r) which is regular at the axis.

Lemma 2.4.21. The metric g induced by g on S(u, r) has the following form in Kerr in the (x 1 , x 2 ) coordinates system

g = |q| 2 1 -(x 2 ) 2 1 -|x| 2 + a 2 (x 2 ) 2 |q| 2 1 + 2mr |q| 2 (dx 1 ) 2 + 2x 1 x 2 1 -|x| 2 - 2a 2 x 1 x 2 |q| 2 1 + 2mr |q| 2 dx 1 dx 2 + 1 -(x 1 ) 2 1 -|x| 2 + a 2 (x 1 ) 2 |q| 2 1 + 2mr |q| 2 (dx 2 ) 2 .
Proof. Straightforward verification.

Remark 2.4.22. The coordinates (x 1 , x 2 ) verify the following properties 3. Since the (θ, ϕ) coordinates system is regular for θ = 0, π, and the (x 1 , x 2 ) coordinates system is regular for θ = π 2 , the spheres S(u, r) are covered by these two coordinates systems (or rather 3 since one needs one (x 1 , x 2 ) coordinates system per hemisphere).

1. We have |(x 1 , x 2 )| ≤ 1, with |(x 1 , x 2 )| =
Remark 2.4.23. Since we have e 4 (θ) = e 4 (ϕ) = 0, (x 1 , x 2 ) satisfy e 4 (x 1 ) = e 4 (x 2 ) = 0.

Using the above coordinates on S(u, r), we consider the coordinates (u, r, x 1 , x 2 ) on Kerr in the following lemma.

Lemma 2.4.24. Let coordinates on S(u, r) be given by (x 1 , x 2 ) = (J (+) , J (-) ). Then, 1. The Kerr metric is given in the (u, r, x 1 , x 2 ) coordinates system by

g = -1 - 2mr |q| 2 (du) 2 -2drdu + 2adr -x 2 dx 1 + x 1 dx 2 - 4mra |q| 2 du -x 2 dx 1 + x 1 dx 2 + g,
where g denotes the induced metric by g on S(u, r), which is given by Lemma 2.4.21 in the (x 1 , x 2 ) coordinates system.

2. In the (u, r, x 1 , x 2 ) coordinates, the determinant of the metric is given by

det(g) = |q| 4 (cos θ) 2 .
(2.4.30)

3. In the (u, r, x 1 , x 2 ) coordinates, the inverse metric coefficients g αβ are given by

g rr = ∆ |q| 2 , g ru = - r 2 + a 2 |q| 2 , g rx 1 = ax 2 |q| 2 , g rx 2 = - ax 1 |q| 2 , g uu = a 2 (sin θ) 2 |q| 2 , g ux 1 = - ax 2 |q| 2 , g ux 2 = ax 1 |q| 2 , g x 1 x 1 = (cos θ cos ϕ) 2 + (sin ϕ) 2 |q| 2 , g x 1 x 2 = ((cos θ) 2 -1) sin ϕ cos ϕ |q| 2 , g x 2 x 2 = (cos θ sin ϕ) 2 + (cos ϕ) 2 |q| 2 .
Proof. Straightforward verification.

Remark 2.4.25. In view of the above lemma, away from the horizon, the outer domain of communication of Kerr can be covered by the following three coordinates systems

• (u, r, θ, ϕ) away from the poles θ = 0 and θ = π, e.g. in π 4 < θ < 3π 4 , • two copies of (u, r, J (+) , J (-) ) away from the equator θ = π 2 , e.g. one copy in 0 ≤ θ < π 3 and another copy in 2π 3 < θ ≤ π.

Asymptotic for the outgoing PG structure in Kerr

We denote by j Sw the following real 1-form

j Sw 1 = 0, j Sw 2 = sin θ r .
Corollary 2.4.26. In Kerr, relative to its canonical outgoing PG frame (see Section 2.4.3), the following identities hold asymptotically for large r:

1. We have,

j = 1 + O(r -2 ) j Sw .
2. We have

∇u = aj = a 1 + O(r -2 ) j Sw , and 
e 3 (r) = -Υ + O r -2 , e 3 (u) = 2 + O r -2 ,
where we have used the notation

Υ := 1 - 2m r .
3. The real components of the non-vanishing Ricci scalars are given by

tr χ = 2 r + O(r -3 ), tr χ = - 2Υ r + O(r -3 ), (a) trχ = 2a cos θ r 2 + O r -4 , (a) trχ = 2aΥ cos θ r 2 + O r -4 .
Also

ω = m r 2 + O(r -3 ).
4. The Ricci coefficient 1-forms are given by

η = -ζ = - a r 2 j Sw + a cos θ r * j Sw 1 + O(r -2 ) , η = a r 2 j Sw - a cos θ r * j Sw 1 + O(r -2 ) ,
and, relative to the frame e 1 , e 2 ,

sin θ(Λ 2 ) 12 = - cos θ r + O(r -3 ), (Λ 3 ) 21 = aΥ cos θ r 2 + O(r -4 ), (Λ 4 ) 21 = a cos θ r 2 + O(r -4 ).
5. The real non-vanishing curvature components are given by

ρ = - 2m r 3 + O(r -5 ), * ρ = 6am cos θ r 4 + O(r -5 ).
Proof. Straightforward verification.

Asymptotic of the associated integrable frame in Kerr

We consider now the associated integrable frame (e 3 , e The following statements hold true for large r.

We have

λ = 1 + O(r -2 ), f 1 = f 1 = 0, and 
f 2 = - a sin θ r + O sin θr -3 , f 2 = - a sin θΥ r + O sin θr -3 . (2.4.31)
2. The connection coefficients (Λ µ ) 12 = g D e µ e 2 , e 1 , µ = 1, 2, 3, 4, verify

(Λ 1 ) 12 = O(sin θr -4 ), sin θ(Λ 2 ) 21 = cos θ r + O(r -3 ), (2.4.32) 
and

(Λ 3 ) 21 = O r -4 , (Λ 4 ) 21 = O r -4 . (2.4.33) 
3. The curvature components are given by α = O(sin 2 θr -5 ),

β 1 = O(sin θr -5 ), β 2 = 3am sin θ r 4 + O(sin θr -5 ), ρ = - 2m r 3 + O(r -5 ), * ρ = 6am cos θ r 4 + O(sin 2 θr -5 ), β = O sin θr -4 , α = O sin 2 θr -5 .
(2.4.34)

4. We have, Also,

div β = O(r -6 ), curl β = 6am cos θ r 5 + O(r -6 ). ( 2 
∇ 3 (f 1 , f 1 ) + 1 2 tr χ(f 1 , f 1 ) = O sin θr -5 , ∇ 3 (f 2 , f 2 ) + 1 2 tr χ(f 2 , f 2 ) = O sin θr -3 , ∇ 4 (f 1 , f 1 ) + 1 2 tr χ(f 1 , f 1 ) = O sin θr -5 , ∇ 4 (f 2 , f 2 ) + 1 2 tr χ(f 2 , f 2 ) = O sin θr -3 .
(2.4.37)

6. The connection coefficients behave as follows

tr χ = 2 r + O(r -3 ), χ = O(r -3 ), tr χ = - 2Υ r + O(r -3 ), χ = O(r -3 ), ζ = O(sin θr -3 ), η = O(sin θr -3 ).
(2.4.38)

Also,

ξ = O sin θr -3 , ξ = O sin θr -3 , ω = O r -3 , ω = m r 2 + O r -3 .
( We end this section with the following proposition.

Proposition 2.4.29. Consider the linearized quantities

} tr χ := tr χ - 2 r , } tr χ := tr χ + 2 1 -2m r r ,
where r denotes the area radius of the spheres S(u, r) in Kerr. We have, for large r,

S(u,r) } tr χ J (p) = O 1 r 2 , p = 0, +, -, S(u,r) } tr χ J (p) = O 1 r 2 , p = 0, +, -,
where J (p) , p = 0, +, -, denote the standard = 1 spherical harmonics, i.e.

J (-) = sin θ sin ϕ, J (0) = cos θ, J (+) = sin θ cos ϕ.

Proof. See Section A.3. ) is a null pair on Σ such that e 4 is transversal to Σ, and H, the horizontal space perpendicular on e 3 , e 4 , is tangent to Σ,

Initialization of PG structures on a hypersurface

3. the function r : Σ → R is a regular function on Σ such that H(r) = 0.
For a given framed hypersurface Σ, r, (H, e 3 , e 4 ) , we denote by ν the vectorfield tangent to Σ, normal to the r-foliation, and normalized by the condition 12 g(ν, e 4 ) = -2. Thus,

ν = e 3 + b Σ e 4 (2.5.1)
with b Σ a given scalar function on Σ.

Initialization of PG structures

In what follows, we consider natural initial data structures on hypersurfaces Σ of M which generate PG structures.

2. a fixed 1-form f on the spheres S of the r-foliation of Σ verifying the condition

b Σ |f | 2 < 4 on Σ, (2.5.2)
where b Σ appears in (2.5.1).

Proposition 2.5.3. Given a PG data set Σ, r, (H, e 3 , e 4 ), f as in Definition 2.5.2, there exists a unique PG structure r , (H , e 3 , e 4 ) defined in a neighborhood of Σ such that the following hold true:

1. The function r is prescribed on Σ by r = r.

2. Along Σ, the restriction of the spacetime null frame (H , e 3 , e 4 ) and the given null frame (H, e 3 , e 4 ) on Σ are related by the transformation formulas, where (e 1 , e 2 ) is a fixed orthonormal basis of H,

e 4 = e 4 + f b e b + 1 4 |f | 2 e 3 , e a = δ b a + 1 2 f a f b e b + 1 2 f a e 4 + 1 2 f a + 1 8 |f | 2 f a e 3 , e 3 = 1 + 1 2 f • f + 1 16 |f | 2 |f | 2 e 3 + f b + 1 4 |f | 2 f b e b + 1 4 |f | 2 e 4 , (2.5.3) 
where f is chosen such that13 

f = - (ν(r) -b Σ ) 1 -1 4 b Σ |f | 2 f.
(2.5.4)

Proof. First, note that in view of (2.5.1), we have on Σ (2.5.5)

e 4 + f b e b + 1 4 |f | 2 e 3 = 1 - 1 4 b Σ |f | 2 e 4 + f b e b + 1 4 |f | 2 ν.
The transversality condition (2.5.5) allows us to specify all derivatives of r on Σ. In particular, we would like to compute e 1 (r) and e 2 (r) on Σ. In view of (2.5.3), we have on Σ

e a (r ) = δ b a + 1 2 f a f b e b (r ) + 1 2 f a e 4 (r ) + 1 2 f a + 1 8 |f | 2 f a e 3 (r ).
Since (e 1 , e 2 ) are tangent to Σ, since r = r on Σ, and since e 1 (r) = e 2 (r) = 0 on Σ, we have on Σ e a (r ) = e a (r) = 0

and hence

e a (r ) = 1 2 f a e 4 (r ) + 1 2 f a + 1 8 |f | 2 f a e 3 (r ) = 1 2 e 4 (r ) + 1 4 |f | 2 e 3 (r ) f a + 1 2 e 3 (r )f a .
Together with the definition (2.5.4) of f , we obtain on Σ

e a (r ) = 1 2 e 3 (r ) - ν(r) -b Σ 1 -1 4 b Σ |f | 2 e 4 (r ) + 1 4 |f | 2 e 3 (r ) f a . (2.5.6) 
In view of (2.5.6), we need to compute e 4 (r ) and e 3 (r ). In view of (2. Also, since ν is tangent to Σ and r = r on Σ, we have

ν(r) = ν(r ) = e 3 (r ) + b Σ e 4 (r ).
We infer from both identities, using also (2.5.2),

e 4 (r ) = 1 -1 4 ν(r)|f | 2 1 -1 4 b Σ |f | 2 , e 3 (r ) = ν(r) -b Σ 1 -1 4 b Σ |f | 2 , on Σ. Together with (2.5.6), we infer on Σ e a (r ) = 1 2 e 3 (r ) - ν(r) -b Σ 1 -1 4 b Σ |f | 2 e 4 (r ) + 1 4 |f | 2 e 3 (r ) f a = 1 2 e 3 (r ) - ν(r) -b Σ 1 -1 4 b Σ |f | 2 f a = 0.
Hence, we have finally obtained e 1 (r ) = 0, e 2 (r ) = 0, on Σ.

(2.5.7)

Finally, on the hypersurface Σ, we are given a scalar function r and a null frame (e 1 , e 2 , e 3 , e 4 ), such that e 4 is transversal to Σ and r satisfies the transversality condition (2.5.5) on Σ. Also, under this transversality condition, (2.5.7) holds. We are thus in position to apply Lemma 2.3.3, according to which there exists a unique PG structure r , (e 1 , e 2 , e 3 , e 4 ) defined in a neighborhood of Σ. This concludes the proof of the proposition.

GCM hypersurfaces

In this section, we introduce the concept of GCM hypersurfaces and GCM-PG data sets which are at the core of the construction of our bootstrap regions in Chapter 3, see Section 3.2.3. The construction starts with framed hypersurfaces Σ * , r, (H, e 3 , e 4 ) which terminate in a boundary S * on which the given function r is constant, i.e. S * is a leaf of the r-foliation of Σ * .

The definition of GCM hypersurfaces below includes in particular conditions on the Ricci coefficients η and ξ, see (2.5.15). Now, a priori, the only well defined Ricci coefficients on Σ * are tr χ, tr χ, χ, χ and ζ. To make sense of all Ricci coefficients on Σ * , including in particular η and ξ, we need to choose transversality conditions on Σ * . We choose them to be compatible with an outgoing geodesic foliation initialized on Σ * , i.e., we choose the following transversality conditions on Σ

* ξ = 0, ω = 0, η = -ζ, on Σ * . (2.5.8)
The GCM hypersurfaces below also involve a basis of = 1 modes J (p) , p = 0, +, -. This basis is defined as follows 1. There exist coordinates (θ, ϕ) on S * such that the induced metric g on S * takes the form (see [START_REF] Klainerman | Effective results in uniformization and intrinsic GCM spheres in perturbations of Kerr[END_REF] for results on effective uniformization and canonical = 1 modes; a short review of the main results on this topic can also be found in Section 5.1.1)

g = e 2φ r 2 (dθ) 2 + sin 2 θ(dϕ) 2 .
(2.5.9)

2. The functions J (p) = 0, p = 0, +, -.

J (0) := cos θ, J ( 
(2.5.11)

3. We choose (e 1 , e 2 ) on S * as follows

e 1 := 1 re φ ∂ θ , e 2 := 1 r sin θe φ ∂ ϕ .
(2.5.12) 4. The above (θ, ϕ) coordinates on S * are extended to Σ * by setting

ν(θ) = ν(ϕ) = 0, (2.5.13)
where ν is the normal to the r-foliation on Σ * defined in (2.5.1).

5. We also extend the J (p) functions to Σ * by setting ν(J (p) ) = 0, p = 0, +, -.

(2.5.14) Definition 2.5.4 (GCM hypersurface). Consider a framed hypersurface with end sphere S * , transversality conditions (2.5.8), coordinates (θ, ϕ) and functions J (0) , J (+) and J (-) defined as in (2.5.9)- (2.5.14). We call such a framed hypersurface a GCM hypersurface if in addition the following GCM conditions are verified.

1. We have on any sphere of the foliation induced by r,

tr χ = 2 r , tr χ = - 2Υ r + C 0 + p=0,+,- C p J (p) , µ = 2m r 3 + M 0 + p=0,+,- M p J (p) , S J (p) div η = 0, S J (p) div ξ = 0, p = 0, +, -, b Σ * = -1 - 2m r , (2.5.15) 
where C 0 , C p , M 0 , M p are scalar functions on Σ * constant along the leaves of the foliation, and b Σ * denotes the average of b Σ * on the spheres foliating Σ * .

2. In addition, we have on the end sphere S * } tr χ = 0, S *

J (p) div β = 0, p = 0, +, -, (2.5.16) 
as well as 

S * J (+) curl β = 0, S * J (-) curl β = 0. ( 2 

Linearization of outgoing PG structures

In this section, we assume given an outgoing principal geodesic structure with associated PG coordinates (u, r, θ, ϕ). To compare various quantities with the corresponding ones in Kerr we also assume given two constants m and |a| < m. With these fixed values we define, as in Kerr, the following functions of (r, θ)

q := r + ia cos θ, ∆ := r 2 + a 2 -2mr, Σ 2 := (r 2 + a 2 )|q| 2 + 2mra 2 (sin θ) 2 .
(2.6.1)

Adapted basis of = 1 modes

Recall that the coordinates (θ, ϕ) verify e 4 (θ) = e 4 (ϕ) = 0. We define14 the basis of = 1 modes J (p) , p ∈ {0, +, -}, adapted to the PG structure according to J (0) := cos θ, J (+) := sin θ cos ϕ, J (-) := sin θ sin ϕ.

(2.6.2)

Clearly, e 4 (J (p) ) = 0.

(2.6.

3)

The = 1 modes of a scalar function on S(u, r) are defined as follows.

Definition 2.6.1. Given a scalar function f on a sphere S = S(u, r), we define the = 1 modes of f to be the triplet of numbers

(f ) =1 := 1 |S| S f J (0) , 1 |S| S f J (+) , 1 |S| S f J (-) .
2.6.2 The auxiliary complex 1-forms J, J ±

To linearize 1-forms, we rely on a complex horizontal 1-form J verifying the following properties

∇ 4 J = - 1 q J, * J = -iJ, J • J = 2(sin θ) 2 |q| 2 .
(2.6.4)

Remark 2.6.2. In Kerr, we have, see Definition 2.4.5,

J 1 = i sin θ |q| , J 2 = sin θ |q| .
In addition to J, we also introduce the complex 1-forms J ± verifying

∇ 4 J ± = - 1 q J ± , * J ± = -iJ ± , (2.6.5) 
and

J + • J + = 2(cos θ) 2 (cos ϕ) 2 + 2(sin ϕ) 2 |q| 2 , J -• J -= 2(cos θ) 2 (sin ϕ) 2 + 2(cos ϕ) 2 |q| 2 .
(2.6.6)

Remark 2.6.3. In Kerr, see Definition 2.4.17, we have J ± = j ± + i * j ± where

(j + ) 1 = 1 |q| cos θ cos ϕ, (j + ) 2 = - 1 |q| sin ϕ, (j -) 1 = 1 |q| cos θ sin ϕ, (j -) 2 = 1 |q| cos ϕ.
The following lemma shows that, upon a suitable choice for J, J ± on a hypersurface Σ transversal to e 4 , it suffices in fact to transport J, J ± using the equations

∇ 4 J = - 1 q J, ∇ 4 J ± = - 1 q J ± .
(2.6.7)

Lemma 2.6.4. Assume J, J ± are initialized on a hypersurface Σ transversal to e 4 such that we have, along Σ, * J = -iJ,

J • J = 2(sin θ) 2 |q| 2 , (2.6.8) * J ± = -iJ ± , J + • J + = 2(cos θ) 2 (cos ϕ) 2 + 2(sin ϕ) 2 |q| 2 , J -• J -= 2(cos θ) 2 (sin ϕ) 2 + 2(cos ϕ) 2 |q| 2 ,
(2.6.9)

and

(J + ) • (J) = - 1 |q| 2 J (-) , (J -) • (J) = 1 |q| 2 J (+) , (2.6.10) 
and extend J, J ± to a neighborhood of Σ according to (2.6.7). Then, the identities (2.6.8), (2.6.9) and (2.6.10) are propagated to a neighborhood of Σ.

Proof. In view of the transport equation along e 4 satisfied by J, we have

∇ 4 ( * J + iJ) + 1 q ( * J + iJ) = 0
and, using also e 4 (q) = e 4 (q) = 1 and e 4 (θ) = 0,

∇ 4 J • J - 2(sin θ) 2 |q| 2 + 1 q + 1 q J • J - 2(sin θ) 2 |q| 2 = 0
from which (2.6.8) is propagated to a neighborhood of Σ as stated. The identities (2.6.9) can be propagated to a neighborhood of Σ in the same manner.

Next, we focus on (2.6.10). We write, setting (J) = j, (J ± ) = j ± ,

∇ 4 j + = ∇ 4 (J + ) = (∇ 4 J + ) = - 1 q J = - 1 |q| 2 qJ + = - 1 |q| 2 (rj + + a cos θ * j + ), ∇ 4 j = ∇ 4 (J) = - 1 |q| 2 qJ = - 1 |q| 2 (rj + a cos θ * j).
We deduce

∇ 4 (j + • j) = - 1 |q| 2 (rj + + a cos θ * j + ) • j - 1 |q| 2 (rj + a cos θ * j) • j + = - 2r |q| 2 j + • j.
Hence, since e 4 (J (-) ) = 0,

∇ 4 j + • j + 1 |q| 2 J (-) = - 2r |q| 2 j + • j - 2r |q| 4 J (-) = - 2r |q| 2 j + • j + 1 |q| 2 J (-) .
We deduce

∇ 4 (J + ) • (J) + 1 |q| 2 J (-) + 2r |q| 4 (J + ) • (J) + 1 |q| 2 J (-) = 0.
Thus, the first identity of (2.6.10) is propagated to a neighborhood of Σ as stated. The second identity of (2.6.10) can be propagated to a neighborhood of Σ in the same manner.

Remark 2.6.5. Note that the relations of Lemma 2.6.4 are verified in Kerr, see Lemma 2.4.20.

Definition of linearized quantities for an outgoing PG structure

Recall that, given an outgoing PG structure with associated coordinates (u, r, θ, ϕ) the following hold true.

1. The following identities hold ξ = 0, ω = 0, e 4 (r) = 1, e 4 (u) = e 4 (θ) = e 4 (ϕ) = 0, e 1 (r) = e 2 (r) = 0.

In addition, we have

H = -Z.
2. The quantities X, X, Ξ, A, B, B, A, vanish in Kerr and therefore are small in perturbations.

We renormalize below all other quantities, not vanishing in Kerr 15 , by subtracting their Kerr(a, m) values for suitably chosen constants 16 (a, m).

Definition 2.6.6. Let J be a complex horizontal 1-form which verifies (2.6.4). We define the following renormalizations, for given constants (a, m),

1. Linearization of Ricci and curvature coefficients.

} trX := trX - 2 q , } trX := trX + 2q∆ |q| 4 , q Z := Z - aq |q| 2 J, q H := H - aq |q| 2 J, q ω := ω - 1 2 ∂ r ∆ |q| 2 , q P := P + 2m q 3 .
(2.6.11)

2. Linearization of derivatives of r, q, u. (2.6.12)

3. Linearization for J and J ± .

D • J := D • J - 4i(r 2 + a 2 ) cos θ |q| 4 , } ∇ 3 J := ∇ 3 J - ∆q |q| 4 J, D • J ± := D • J ± + 4 r 2 J (±) ± 4ia 2 cos θ |q| 4 J (∓) , ∇ 3 J ± := ∇ 3 J ± - ∆q |q| 4 J ± ± 2a |q| 2 J ∓ .
(2.6.13)

4. Linearization for J (p) .

DJ (0) := DJ (0) -iJ, D(J (±) ) := D(J (±) ) -J ± , e 3 (J (+) ) := e 3 (J (+) ) + 2a |q| 2 J (-) , e 3 (J (-) ) := e 3 (J (-) ) - 2a |q| 2 J (+) .
(2.6.14)

15 Since H = -Z, H does not need to be included in Definition 2.6.6. 16 The precise values of these constants will be defined in Section 3.2, see also Definition 2.5.5.

2.6.4 Definition of the notations Γ b and Γ g for error terms Definition 2.6.7. The set of all linearized quantities is of the form Γ g ∪ Γ b with Γ g , Γ b defined as follows.

1. The set Γ g with Γ g = } trX, X, q Z, } trX, r q P , rB, rA .

(2.6.15)

2. The set Γ b = Γ b,1 ∪ Γ b,2 ∪ Γ b,3 ∪ Γ b,4 with Γ b,1 = q H, X, q ω, Ξ, rB, A , Γ b,2 = r -1 ẽ3 (r), | Dq, | Dq, | Du, r -1 ẽ3 (u) , Γ b,3 = D(J (0) ), D(J (±) ), e 3 (J (0) ), e 3 (J (±) ) , Γ b,4 = r D • J, r D ⊗J, r } ∇ 3 J, r D • J ± , r D ⊗J ± , r ∇ 3 J ± .
(2.6.16)

We also define, with the help of the weighted derivatives d = {∇ 3 , r∇ 4 , d / = r∇},

Γ (s) g = d ≤s Γ g , Γ (s) b = d ≤s Γ b .
Remark 2.6.8. The justification for the above decompositions has to do with the expected decay properties of the linearized components of the outgoing PG structure. More precisely, we expect that, see Sections 3.3 and 3.5 for details,

Γ (s) g | min r -2 u -1/2-δ dec , r -1 u -1-δ dec , ∇ 3 Γ (s-1) g | r -2 u -1-δ dec , Γ (s) b r -1 u -1-δ dec ,
(2.6.17)

for a small constant δ dec > 0.

Approximate Killing vectorfield T

Given an outgoing PG structure on M with adapted coordinates (u, r, θ, ϕ), i.e. e 4 (r) = 1 and e 4 (u) = e 4 (θ) = e 4 (ϕ) = 0, we define a vectorfield T as follows.

Definition 2.6.9. The vectorfield T is defined by

T := 1 2 e 3 + ∆ |q| 2 e 4 -2a (J) b e b .
Note that we have The following proposition shows that T is an approximate Killing vectorfield.

T(u) = 1 + 1 2 ẽ3 (u) -2a (J) • | ∇u , T(r) = 1 2 ẽ3 (r), T(cos θ) = 1 2 e 3 (cos θ) -2a (J) • ∇ cos θ , (2.6 
Proposition 2.6.10. We have (T) π 44 = 0, (T) π 4a ∈ Γ g and all other components of (T) π are in Γ b . Moreover g ab (T) π ab = Γ g .

In addition

g(D a T, e 4 ), g(D 4 T, e a ) ∈ Γ g , g(D a T, e 3 ), g(D 3 T, e a ) ∈ Γ b , and

g(D a T, e b ) = - 2amr cos θ |q| 4 ∈ ab +Γ b .
Proof. See Section A. [START_REF] Bardeen | Radiation fields in the Schwarzschild background[END_REF].

| (J)| 2 = (sin θ) 2 |q| 2 .

Ingoing PG structures 2.7.1 Definition of ingoing PG structures

Ingoing PG structures are PG structures where the roles of e 3 and e 4 are reversed compared to outgoing ones. In particular, we have for ingoing PG structures

D 3 e 3 = 0, e 3 (r) = -1, ∇(r) = 0, (2.7.1) 
and hence

ξ = 0, ω = 0, η = ζ. (2.7.2)
Also, in addition to r, we define the ingoing PG coordinates (u, θ, ϕ) such that

e 3 (u) = e 3 (θ) = e 3 (ϕ) = 0. (2.7.3) 
Finally, we introduce horizontal complex 1-forms J, J ± satisfying

∇ 3 J = 1 q J, ∇ 3 J ± = 1 q J ± , (2.7.4) 
and we define the adapted basis of = 1 modes J (p) , p = 0, +, -, by

J (0) = cos θ, J (+) = sin θ cos ϕ, J (-) = sin θ sin ϕ, (2.7.5) 
so that we have in particular e 3 (J (p) ) = 0 for p = 0, +, -.

All the equations of Proposition 

Ingoing PG structures in Kerr

In Kerr, relative to BL coordinates (t, r, θ, φ), the ingoing principal null pair is given by

e 4 = r 2 + a 2 |q| 2 ∂ t + ∆ |q| 2 ∂ r + a |q| 2 ∂ φ , e 3 = r 2 + a 2 ∆ ∂ t -∂ r + a ∆ ∂ φ .
Also, the functions (u, ϕ) are given by

u := t + f (r), f (r) = r 2 + a 2 ∆ , ϕ := φ + h(r), h (r) = a ∆ .
Remark 2.7.1. Note that we have indeed

e 3 (r) = -1, e 3 (u) = e 3 (θ) = e 3 (ϕ) = 0.
J, J ± and J (p) are still defined according respectively to Definition 2.4.5, Definition 2.4.17 and Definition 2.4.11.

Linearization of ingoing PG structures

To linearize 1-forms, we rely on a complex horizontal 1-form J verifying the following properties

∇ 3 J = 1 q J, * J = -iJ, J • J = 2(sin θ) 2 |q| 2 .
(2.7.6) Definition 2.7.2. Let a complex horizontal 1-form J satisfying (2.7.6). We define the following renormalizations, for given constants (a, m),

1. Linearization of Ricci and curvature coefficients.

} trX := trX - 2q∆ |q| 4 , } trX := trX + 2 q , q Z := Z - aq |q| 2 J, | H := H + aq |q| 2 J, q ω := ω + 1 2 ∂ r ∆ |q| 2 , q P := P + 2m q 3 .
(2.7.7)

2. Linearization of derivatives of r, q, u.

| Dq := Dq + aJ, | Dq := Dq -aJ, ẽ4 (r) := e 4 (r) - ∆ |q| 2 , | Du := Du -aJ, ẽ4 (u) := e 4 (u) - 2(r 2 + a 2 ) |q| 2 .
(2.7.8)

3. Linearization for J and J ± .

D • J := D • J - 4i(r 2 + a 2 ) cos θ |q| 4 , } ∇ 4 J := ∇ 4 J + ∆q |q| 4 J, D • J ± := D • J ± + 4 r 2 J (±) ± 4ia 2 cos θ |q| 4 J (∓) , ∇ 4 J ± := ∇ 4 J ± + ∆q |q| 4 J ± ± 2a |q| 2 J ∓ .
(2.7.9)

4. Linearization for J (p) . DJ (0) := DJ (0) -iJ, D(J (±) ) := D(J (±) ) -J ± , e 4 (J (+) ) := e 4 (J (+) ) + 2a |q| 2 J (-) , e 4 (J (-) ) := e 4 (J (-) ) -2a |q| 2 J (+) .

(2.7.10) Definition 2.7.3. The set of all linearized quantities is of the form Γ g ∪ Γ b with Γ g , Γ b defined as follows.

1. The set

Γ g = Γ g,1 ∪ Γ g,2 with Γ g,1 = Ξ, q ω, } trX, X, q Z, | H, } trX, r q P , rB, rA , Γ g,2 = r ẽ4 (r), r ẽ4 (u), re 4 (J (0) ), r e 4 (J (±) ), r 2 } ∇ 4 J, r 2 ∇ 4 J ± .
(2.7.11)

2. The set Γ b = Γ b,1 ∪ Γ b,2 with Γ b,1 = X, rB, A, | Dq, | Dq, | Du , Γ b,2 = D(J (0) ), D(J (±) ), r D • J, r D ⊗J, r D • J ± , r D ⊗J ± .
(2.7.12)

Principal temporal structures

The PG structures we have studied so far are perfectly adequate for deriving decay estimates but are deficient in terms of loss of derivatives and thus inadequate for deriving boundedness estimates for the top derivatives of the Ricci coefficients. Indeed the ∇ 4 equations for trX, X and Ξ in Proposition 2.3.4 contain angular derivatives 18 of other Ricci coefficients. Similarly, the same situation occurs for ingoing PG structures where the ∇ 3 equations for trX, X, and Ξ are manifestly losing derivatives. Thus, in order to derive boundedness estimates for the top derivatives of the Ricci coefficients, we are forced to introduce new frames which we call principal temporal (PT). We first introduce outgoing PT structures, and then ingoing PT structures.

Outgoing PT structures

Definition 2.8.1. An outgoing PT structure {(e 3 , e 4 , H), r, θ, J} on M consists of a null pair (e 3 , e 4 ), the induced horizontal structure H, functions (r, θ), and a horizontal 1-form J such that the following hold true:

1. e 4 is geodesic.

2.

We have e 4 (r) = 1, e 4 (θ) = 0, ∇ 4 (qJ) = 0, q = r + ai cos θ.

(2.8.1)

3.

We have Proof. Extend first e 4 in a neighborhood of Σ such that D e 4 e 4 = 0. Also, extend e a , a = 1, 2, such that D e 4 e a = 0. Finally, extend e 3 to be the unique null companion of e 4 orthogonal to (e 1 , e 2 ). Thus,

H = - aq |q| 2 J. ( 2 
ξ = 0, ω = 0, η = 0.
We also extend (r, θ) and J so that, e 4 (r) = 1, e 4 (θ) = 0, ∇ 4 (qJ) = 0, q = r + ia cos θ.

Since η = 0, (e 

= e 3 + f b e b + 1 4 |f | 2 e 4 , (2.8.3) 
where f will be chosen later. Since e 4 = e 4 , and since e 4 is geodesic, note first that we have in the frame (e 1 , e 2 , e 3 , e 4 ) ξ = 0, ω = 0.

(2.8.4)

Next, we define the functions (r , θ ) and the horizontal 1-form J , for the horizontal structure H induced by (e 3 , e 4 ), by Also, we compute ∇ 4 (q J ). Since J e a = J ea , e 4 = e 4 , q = q, and ∇ 4 (qJ) = 0, we have where we used the fact that ξ = 0, we infer

r = r, θ = θ, q = r + i cos(θ ) = q, J e a = J ea , a = 1, 2. ( 2 
∇ 4 (q J ) a = e 4 (q J a ) -g(D
∇ 4 (q J ) = 0. (2.8.7)
In view of the above, in order for {(e 3 , e 4 , H ), r , θ , J } to satisfy all the properties of an outgoing PT structure, it remains to obtain the desired identity for η which is related to the choice of f . To this end, we compute19 We now fix f , and hence the frame (e 1 , e 2 , e 3 , e 4 ), as the solution of the following transport equation

∇ 4 f = -2 aq |q | 2 J , f | Σ = 0.
(2.8.9)

In view of the above transformation formula for η , we infer η = -( aq |q | 2 J ), and hence

H = - aq |q | 2 J . (2.8.10)
Thus, {(e 3 , e 4 , H ), r, θ, J } satisfies all the properties of an outgoing PT structure, and, since f = 0 on Σ, coincides with the initial outgoing PT data set on Σ. This ends the proof of Lemma 2.8.3.

Null structure equations in an outgoing PT frame

Proposition 2.8.4. Consider an outgoing PT structure. Then, the equations in the e 4 direction for the Ricci coefficients of the outgoing PT frame take the form

∇ 4 trX + 1 2 (trX) 2 = - 1 2 X • X, ∇ 4 X + (trX) X = -A, ∇ 4 trX + 1 2 trXtrX = -D • aq |q| 2 J + a 2 |q| 2 |J| 2 + 2P - 1 2 X • X, ∇ 4 X + 1 2 trX X = -D ⊗ aq |q| 2 J + a 2 (q) 2 |q| 4 J ⊗J - 1 2 trX X, ∇ 4 Z + 1 2 trXZ = - 1 2 trX aq |q| 2 J - 1 2 X • Z + aq |q| 2 J -B, ∇ 4 Ξ = -∇ 3 aq |q| 2 J - 1 2 trX aq |q| 2 J + H - 1 2 X • aq |q| 2 J + H -B, ∇ 4 H = - 1 2 trX H + aq |q| 2 J - 1 2 X • H + aq |q| 2 J -B, ∇ 4 ω = η + aq |q| 2 J • ζ + η • aq |q| 2 J + ρ. Remark 2.8.5.
The main feature of the PT gauge choice is that treating all equations in Proposition 2.8.4 as transport equations in e 4 does not lose derivatives. Indeed, the RHS of all the equations depend only on Ricci and curvature coefficients, as well as first order derivatives of q and J (in the RHS of the equations for trX, X and Ξ). The point is that first order derivatives of q and J can be controlled at the same level of regularity 20 than the Ricci coefficients of the PT frame.

Proof. These equations follow immediately from plugging the identities Ξ = 0, ω = 0, H = -aq |q| 2 J, satisfied by an outgoing PT frame in the general formulas of Proposition 2.1.8.

Linearized quantities for outgoing PT structures

Given an extended outgoing PT structure {(e 3 , e 4 , H), r, θ, u, J}, the following holds true:

1. We have ξ = ω = 0, e 4 (r) = 1, e 4 (u) = e 4 (θ) = 0, ∇ 4 (rJ) = 0.

In addition, we have

H = - aq |q| 2 J.
2. The quantities X, X, Ξ, A, B, B, A, Dr, e 3 (cos θ), D ⊗J, vanish in Kerr and therefore are small in perturbations.

We renormalize below all other quantities, not vanishing in Kerr 21 , by subtracting their Kerr(a, m) values.

Definition 2.8.6. We consider the following renormalizations, for given constants (a, m),

} trX := trX - 2 q , } trX := trX + 2q∆ |q| 4 , q Z := Z - aq |q| 2 J, q H := H - aq |q| 2 J, q ω := ω - 1 2 ∂ r ∆ |q| 2 , q P := P + 2m q 3 , (2.8.11)
as well as

ẽ3 (r) := e 3 (r) + ∆ |q| 2 , D(cos θ) := D(cos(θ)) -iJ, | Du := Du -aJ, ẽ3 (u) := e 3 (u) - 2(r 2 + a 2 ) |q| 2 ,
(2.8.12)

and

D • J := D • J - 4i(r 2 + a 2 ) cos θ |q| 4 , } ∇ 3 J := ∇ 3 J - ∆q |q| 4 J. (2.8.13)
2.8.4 Transport equations for (f, f , λ)

We will need to compare PG structures with PT structures. To this end, we will control coefficients (f, f , λ) corresponding to the change of frame between PG frames and PT frames. We derive in this section transport equations for (f, f , λ) in the case where the second frame is an outgoing PT frame 22 .

The following is the analog of Corollary 2.2.4.

Corollary 2.8.7. Under the assumption

ξ = 0, ω = 0,
we have the following transport equations for (f, f , λ)

∇ λ -1 e 4 f + 1 2 (tr χf -(a) trχ * f ) + 2ωf = -2ξ -f • χ + E 1 (f, Γ), λ -1 e 4 (log λ) = 2ω + f • (ζ -η) + E 2 (f, Γ), ∇ λ -1 e 4 f = 2(η -η) - 1 2 (tr χf -(a) trχ * f ) + 2ωf -f • χ + E 6 (f, f , Γ),
where

E 1 (f, Γ), E 2 (f, Γ) and E 6 (f, f , Γ) are given by E 1 (f, Γ) = -(f • ζ)f - 1 2 |f | 2 η + 1 2 |f | 2 η + O(f 3 Γ), E 2 (f, Γ) = - 1 2 |f | 2 ω - 1 4 tr χ|f | 2 + O(f 3 Γ + f 2 χ),
and

E 6 (f, f , Γ) = -(f • η)f + 1 2 (f • ζ)f + O((f, f ) 3 Γ).
Proof. The transport equations for f and λ have already been derived in Corollary 2.2.4. We thus focus on the one for f . Assuming that ξ = 0, we have in view of the frame transformation (2.2.1)

2η a = g(D e 4 e 3 , e a ) = g(D λ -1 e 4 (λe 3 ), e a ) = g D λ -1 e 4 e 3 + f b e b - 1 4 |f | 2 λ -1 e 4 , e a = g D λ -1 e 4 e 3 , e a + g D λ -1 e 4 f b e b , e a - 1 2 |f | 2 λ -2 ξ a = g D λ -1 e 4 e 3 , e a + g D λ -1 e 4 f b e b , e a .
We compute the terms on the right-hand side

g D λ -1 e 4 e 3 , e a = g D λ -1 e 4 e 3 , δ b a + 1 2 f a f b e b + 1 2 f a e 4 = δ b a + 1 2 f a f b g D λ -1 e 4 e 3 , e b + 1 2 f a g D λ -1 e 4 e 3 , e 4 = δ b a + 1 2 f a f b g D e 4 +f c ec+ 1 4 |f | 2 e 3 e 3 , e b + 1 2 f a g D e 4 +f b e b + 1 4 |f | 2 e 3 e 3 , e 4 = δ b a + 1 2 f a f b 2η b + f c χ cb + 1 2 |f | 2 ξ b + 1 2 f a -4ω -f • ζ +O((f, f ) 3 Γ) = 2η a + (f • η)f a + f c χ ca + 1 2 |f | 2 ξ a + 1 2 f a -4ω -f • ζ + O((f, f ) 3 Γ) and g D λ -1 e 4 f b e b , e a = λ -1 e 4 (f a ) + f b g D λ -1 e 4 e b , e a = λ -1 e 4 (f a ) -f b g D λ -1 e 4 e a , e b = ∇ λ -1 e 4 f a .
We infer

2η a = g D λ -1 e 4 e 3 , e a + g D λ -1 e 4 f b e b , e a = 2η a + ∇ λ -1 e 4 f a + 1 2 tr χf a - 1 2 (a) trχ * f a -2ωf a + f c χ ca + (f • η)f a - 1 2 f a (f • ζ) +O((f, f ) 3 Γ)
and hence

∇ λ -1 e 4 f = 2(η -η) - 1 2 (tr χf -(a) trχ * f ) + 2ωf -f • χ + E 6 (f, f , Γ)
where

E 6 (f, f , Γ) = -(f • η)f + 1 2 (f • ζ)f + O((f, f ) 3 Γ)
as desired. This concludes the proof of Corollary 2.8.7.

The following is the analog of Corollary 2.2.5.

Corollary 2.8.8. Assume that we have

Ξ = 0, ω = 0, H = - aq |q | 2 J .
We introduce

F := f + i * f, F := f + i * f .
Then, we have

∇ λ -1 e 4 F + 1 2 trXF + 2ωF = -2Ξ -χ • F + E 1 (f, Γ), λ -1 ∇ 4 (log λ) = 2ω + f • (ζ -η) + E 2 (f, Γ), ∇ λ -1 e 4 F = -2 aq |q | 2 J - aq |q| 2 J -2 H + aq |q| 2 J - 1 2 trXF + 2ωF -F • χ + E 6 (f, f , Γ).
Moreover, introducing a complex valued scalar function q satisfying e 4 (q) = 1, we have

∇ λ -1 e 4 (qF ) = -2qωF -2qΞ + E 4 (f, Γ),
where

E 4 (f, Γ) = - 1 2 q trX - 2 q F -q χ • F + qE 1 (f, Γ) + f • ∇(q)F + 1 4 |f | 2 e 3 (q)F.
Proof. The transport equations for F and λ have already been derived in Corollary 2.2.5. We thus focus on the one for F . Since ξ = 0, recall from Corollary 2.8.7 that we have

∇ λ -1 e 4 f = 2(η -η) - 1 2 (tr χf -(a) trχ * f ) + 2ωf -f • χ + E 6 (f, f , Γ).
In view of the definition of F and F , this yields

∇ λ -1 e 4 F = 2( H -H) - 1 2 trXF + 2ωF -F • χ + E 6 (f, f , Γ). Plugging H = -aq |q | 2 J , we obtain ∇ λ -1 e 4 F = -2 aq |q | 2 J - aq |q| 2 J -2 H + aq |q| 2 J - 1 2 trXF + 2ωF -F • χ +E 6 (f, f , Γ)
as desired.

Remark 2.8.9. In practice, we will integrate first the transport equations for F , then the one for λ, and finally the one for F . Note that the transport equation for F in Corollary 2.8.8 is at the same regularity level that the one for F and λ, while the one for F in Corollary 2.2.5 loses one derivative. This is another manifestation of the fact that, unlike the PT frame, the PG frame exhibits a loss of derivative.

Ingoing PT structures

Definition 2.8.10. An ingoing PT structure {(e 3 , e 4 , H), r, θ, J} on M consists of a null pair (e 3 , e 4 ), the induced horizontal structure H, functions (r, θ), and a horizontal 1-form J such that the following hold true:

1. e 3 is geodesic.

2. We have

e 3 (r) = -1, e 3 (θ) = 0, ∇ 3 (qJ) = 0, q = r + ai cos θ.
(2.8.14)

3.

We have

H = aq |q| 2 J.
(2.8.15)

An extended ingoing PT structure possesses, in addition, a function u verifying e 3 (u) = 0.

Definition 2.8.11. An ingoing PT initial data set consists of a hypersurface Σ transversal to e 3 together with a null pair (e 3 , e 4 ), the induced horizontal structure H, scalar functions (r, θ), and a horizontal 1-form J, all defined on Σ.

Lemma 2.8.12. Any ingoing PT initial data set, as in Definition 2.8.11, can be locally extended to an ingoing PT structure.

Proof. Straightforward adaptation of the proof of Lemma 2.8.3.

Null structure equations in an ingoing PT frame

Proposition 2.8.13. Consider an ingoing PT structure. Then, the equations in the e 3 direction for the Ricci coefficients of the ingoing PT frame take the form

∇ 3 trX + 1 2 (trX) 2 = - 1 2 X • X, ∇ 3 X + (trX) X = -A, ∇ 3 trX + 1 2 trXtrX = D • aq |q| 2 J + a 2 |q| 2 |J| 2 + 2P - 1 2 X • X, ∇ 3 X + 1 2 trX X = 1 2 D ⊗ aq |q| 2 J + 1 2 a 2 q 2 |q| 4 J ⊗J - 1 2 trX X, ∇ 3 Z + 1 2 trXZ = - 1 2 trX aq |q| 2 J - 1 2 X • Z + aq |q| 2 J -B, ∇ 3 H = - 1 2 trX H - aq |q| 2 J - 1 2 X • H - aq |q| 2 J + B, ∇ 3 Ξ = ∇ 4 aq |q| 2 J + 1 2 trX aq |q| 2 J -H + 1 2 X • aq |q| 2 J -H -B, ∇ 3 ω = aq |q| 2 J -η • ζ - aq |q| 2 J • η + ρ.
Proof. These equations follow immediately from plugging the identities

Ξ = 0, ω = 0, H = aq |q| 2 J,
satisfied by an ingoing PT frame in the general formulas of Proposition 2.1.8.

Linearized quantities in an ingoing PT frame

Given an extended ingoing PT structure {(e 3 , e 4 , H), r, θ, u, J}, the following hold true:

1. We have

ξ = ω = 0, e 3 (r) = -1, e 3 (u) = e 3 (θ) = 0, ∇ 3 (qJ) = 0.
In addition, we have

H = aq |q| 2 J.
2. The quantities X, X, Ξ, A, B, B, A, Dr, e 4 (cos θ), D ⊗J, vanish in Kerr and therefore are small in perturbations.

We renormalize below all other quantities, not vanishing in Kerr 23 , by subtracting their Kerr(a, m) values.

Definition 2.8.14. We consider the following renormalizations, for given constants (a, m), (2.8.17)

} trX := trX - 2q∆ |q| 4 , } trX := trX + 2 q , q Z := Z - aq |q| 2 J, | H := H + aq |q| 2 J, q ω := ω + 1 2 ∂ r ∆ |q| 2 , q P := P + 2m q 3 , (2.8 
and

D • J := D • J - 4i(r 2 + a 2 ) cos θ |q| 4 , } ∇ 4 J := ∇ 4 J + ∆q |q| 4 J. (2.8.18)
Chapter 3

GCM admissible spacetimes

In this chapter we introduce the crucial notion of general covariant modulated (GCM) admissible spacetimes, define our main norms and state the main results.

Initial data layer

We consider a spacetime region (L 0 , g), sketched below in figure 3.1, where

• The Lorentzian spacetime metric g is close to the metric1 of Kerr(a 0 , m 0 ), |a 0 | < m 0 , in a suitable topology2 .

• L 0 = (ext) L 0 ∪ (int) L 0 .
• The intersection (ext) L 0 ∩ (int) L 0 is non trivial.

(L 0 , g) is called the initial data layer if it satisfies the properties in Sections 3.1.1-3.1.3 below.

Figure 3.1: The initial data layer L 0

Boundaries

The future and past boundaries of L 0 are given by

∂ + L 0 = A 0 ∪ B (3,0) ∪ B (3,0) , ∂ -L 0 = B (0,0) ∪ B (0,0) ,
where 1. The past non-spacelike outgoing boundary of the far region (ext) L 0 is denoted by B (0,0) .

2. The past non-spacelike incoming boundary of the near region (int) L 0 is denoted by B (0,0) .

(ext)

L 0 is unbounded in the future outgoing directions.

4. The future non-spacelike outgoing boundary of the far region (ext) L 0 is denoted by B (3,0) .

5.

The future non-spacelike outgoing boundary of the near region (int) L 0 is denoted by B (3,0) .

6. The future spacelike boundary of the near region (int) L 0 is denoted by A 0 .

Remark 3.1.1. Below, we make use of the following constants:

• the constants m 0 > 0 and |a 0 | < m 0 are the given mass and the angular momentum of the perturbed Kerr solution,

• 0 > 0 is a small constant measuring the size of the perturbation of the initial data,

• δ H > 0 and δ * > 0 are sufficiently small constants,

• r 0 is a sufficiently large constant.

See Section 3.4.1 for the specification of these constants.

Foliations of L 0 and adapted null frames

The spacetime L 0 = (ext) L 0 ∪ (int) L 0 is foliated as follows.

Foliations of (ext) L 0

The far region (ext) L 0 is covered by an outgoing PG structure, i.e. it is foliated by two functions (u L 0 , (ext) r L 0 ) such that

• We have L 0 (u L 0 ) = 0, L 0 ( (ext) r L 0 ) = 1,
where the vectorfield L 0 is null and satisfies D L 0 L 0 = 0.

• We denote by ( (ext) (e 0 ) 3 , (ext) (e 0 ) 4 , (ext) (e 0 ) 1 , (ext) (e 0 ) 2 ) the null frame satisfying on

(ext) L 0 (ext) (e 0 ) 4 = L 0 , (ext) (e 0 ) 1 ( (ext) r L 0 ) = (ext) (e 0 ) 2 ( (ext) r L 0 ) = 0.
• The outgoing future non-spacelike boundary B (3,0) and the past outgoing nonspacelike boundary B (0,0) are given by

B (3,0) = {u L 0 = 3} , B (0,0) = {u L 0 = 0} .
• The foliation by u L 0 of (ext) L 0 terminates at the timelike boundary

(ext) r L 0 = r 0 -1 ,
where r 0 has been introduced in Remark 3.1.1.

Foliations of (int) L 0

The near region (int) L 0 is foliated by two functions (u L 0 , (int) r L 0 ) such that

• We have L 0 (u L 0 ) = 0, L 0 ( (int) r L 0 ) = -1,
where the vectorfield L 0 is null and satisfies D L 0 L 0 = 0.

• We denote by ( (int) (e 0 ) 3 , (int) (e 0 ) 4 , (int) (e 0 ) 1 , (int) (e 0 ) 2 ) the null frame satisfying on

(int) L 0 (int) (e 0 ) 3 = L 0 , (int) (e 0 ) 1 ( (int) r L 0 ) = (int) (e 0 ) 2 ( (int) r L 0 ) = 0.
• The (u L 0 , (int) r) foliation is initialized on (ext) r L 0 = r 0 as it will be made precise below.

• The foliation by u L 0 , of (int) L 0 terminates at the space like boundary

A 0 = (int) r L 0 = m 0 + m 2 0 -a 2 0 (1 -2δ H )
where m 0 , a 0 and δ H have been introduced in Remark 3.1.1.

• The future non-spacelike ingoing boundary B (3,0) and the past incoming non-spacelike boundary B (0,0) are given by

B (3,0) = u L 0 = 3 , B (0,0) = u L 0 = 0 .
• The foliation by u L 0 of (int) L 0 terminates at the time like boundary

(int) r L 0 = r 0 + 1
where r 0 has been introduced in Remark 3.1.1.

Definition of additional scalars and 1-forms in L 0

We introduce the following scalars and 1-forms adapted to the initial data layer L 0 defined above.

1. In (ext) L 0 , we consider coordinates

( (ext) θ L 0 , (ext) ϕ L 0 ) satisfying (ext) (e 0 ) 4 ( (ext) θ L 0 ) = (ext) (e 0 ) 4 ( (ext) ϕ L 0 ) = 0. (3.1.1)
We also consider scalar functions (ext) J (p) , p = 0, +, -defined by

(ext) J (0) = cos (ext) θ L 0 , (ext) J (+) = sin (ext) θ L 0 cos (ext) ϕ L 0 , (ext) J (-) = sin (ext) θ L 0 cos (ext) ϕ L 0 , (3.1.2)
and a complex 1-form (ext) J satisfying

∇ (ext) (e 0 ) 4 (ext) J = 0. (3.1.3) 2. In (int) L 0 , we consider coordinates ( (int) θ L 0 , (int) ϕ L 0 ) satisfying (int) (e 0 ) 3 ( (int) θ L 0 ) = (int) (e 0 ) 3 ( (int) ϕ L 0 ) = 0. (3.1.4)
We also consider scalar functions (int) J (p) , p = 0, +, -defined by

(int) J (0) = cos (ext) θ L 0 , (int) J (+) = sin (int) θ L 0 cos (int) ϕ L 0 , (int) J (-) = sin (int) θ L 0 cos (int) ϕ L 0 , (3.1.5) 
and a complex 1-form (int) J satisfying

∇ (int) (e 0 ) 3 (int) J = 0. (3.1.6)
3.1.4 Initializations of the foliation on (int) L 0

The (u L 0 , (int) r L 0 ) foliation is initialized on (ext) r L 0 = r 0 by setting,

u L 0 = u L 0 , (int) r L 0 = (ext) r L 0 ,
and,

(int) (e 0 ) 4 = λ 0 (ext) (e 0 ) 4 , (int) (e 0 ) 3 = λ -1 0 (ext) (e 0 ) 3 , (int) (e 0 ) b = (ext) (e 0 ) b , b = 1, 2,
where

(ext) λ 0 = r 2 0 -2m 0 r 0 + a 2 0 r 2 0 + a 2 0 (cos( (ext) θ L 0 )) 2 . We also initialize the coordinates ( (int) θ L 0 , (int) ϕ L 0 ) on (ext) r L 0 = r 0 as follows (int) θ L 0 = (ext) θ L 0 , (int) ϕ L 0 = (ext) ϕ L 0 .

GCM admissible spacetimes

We consider a spacetime (M, g), sketched below in figure 3.2, where

• The Lorentzian spacetime metric g is close to Kerr in a suitable topology 3 .

• M = (ext) M ∪ (int) M ∪ (top) M. • T = (ext) M ∩ (int)
M is a time-like hyper-surface. 3 This topology will be specified in our bootstrap assumptions, see Section 3.5 as well as Section 3.3.

• (ext) M ∩ (top) M
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Boundaries

The future and past boundaries of M are given by

∂ + M = A ∪ (top) Σ ∪ Σ * , ∂ -M = B 1 ∪ B 1 ,
where, see figure 3.2,

1. The past boundary B 1 ∪ B 1 is included in the initial data layer4 L 0 .

2. The future spacelike boundary of the far region (ext) M is denoted by Σ * .

3. The future spacelike boundary of the top region (top) M is denoted by (top) Σ.

4. The future spacelike boundary of the near region (int) M is denoted by A.

The time-like hyper

-surface T , separating (ext) M from (int) M, starts at B 1 ∩ B 1 and terminates at (ext) M ∩ (int) M ∩ (top) M.

Principal geodesic structures on M

The spacetime region M = (ext) M ∪ (int) M ∪ (top) M admits the following PG structures.

Principal geodesic structure on (ext) M

The far region (ext) M is endowed with an outgoing PG structure defined by a scalar functions (ext) r and null frame

( (ext) e 3 , (ext) e 4 , (ext) e 1 , (ext) e 2 )
with (ext) e 4 null geodesic outgoing and such that we have on (ext) M, see Section 2.3.1,

(ext) e 4 ( (ext) r) = 1, (ext) e 1 ( (ext) r) = (ext) e 2 ( (ext) r) = 0. Moreover 1.
We introduce in addition a scalar function u satisfying on (ext) M (ext) e 4 (u) = 0.

2. The (u, (ext) r) foliation is initialized on Σ * as it will be made precise below.

3. The outgoing non-spacelike past boundary B 1 corresponds precisely to u = 1.

4. The foliation by u of (ext) M terminates at the timelike boundary

T = (ext) r = r 0 ,
where r 0 has been introduced in Remark 3.1.1.

Principal geodesic structure on (int) M

The near region (int) M is endowed with an ingoing PG structure defined by a scalar function (int) r and null frame

( (int) e 3 , (int) e 4 , (int) e 1 , (int) e 2 )
with (int) e 3 null geodesic ingoing and such that we have on (int) M, see Section 2.7,

(int) e 3 ( (int) r) = -1, (int) e 1 ( (int) r) = (int) e 2 ( (int) r) = 0. Moreover 1.
We introduce in addition a scalar function u satisfying on (int) M (int) e 3 (u) = 0.

2. The (u, (int) r) foliation is initialized on T as it will be made precise below.

3. The ingoing non-spacelike past boundary B 1 corresponds precisely to u = 1.

4. The foliation by u of (int) M terminates at the space like boundary

A = (int) r = m 0 + m 2 0 -a 2 0 (1 -δ H )
where m 0 and δ H have been defined above.

5.

We have u = u * on A ∩ (top) Σ.

Principal geodesic structure on (top) M

The region (top) M is endowed with an ingoing PG structure defined by a scalar function (top) r and a null frame

( (top) e 3 , (top) e 4 , (top) e 1 , (top) e 2 )
where (top) e 3 is null ingoing geodesic and such that we have on

(top) M (top) e 3 ( (top) r) = -1, (top) e 1 ( (top) r) = (top) e 2 ( (top) r) = 0. Moreover 1.
We introduce in addition a scalar function u satisfying on

(top) M (top) e 3 (u) = 0. 2. (int) M ∩ (top) M = u = u * . 3. The function u is continuous across (int) M ∩ (top) M.
4. The function (top) r extends the function (int) r continuously across (int) M ∩ (top) M.

5.

The null vectorfield (top) e 3 is a continuous extension of (int) e 3 across (int) M∩ (top) M.

6. The (u, (top) r) foliation is initialized on {u = u * } as it will be made precise below.

7. The foliation by u of (top) M terminates at the boundary

(top) Σ = u + σ top (top) r = u * ,
where the function σ top may be chosen such that 5 (a) (top) Σ is spacelike, (b) (top) Σ starts at A ∩ {u = u * } and terminates at S * , 5 The particular choice of the function σ top (r) satisfying the desired constraints is irrelevant for the proof. One could for example make the following suitable choice

σ top (r) = m 2 r + c 1 for r ≤ r 0 , σ top (r) = -2(r -r 0 ) -4m log r r 0 - m 2 r + c 2 for r ≥ r 0 + m,
pick the constants c 1 and c 2 such that (top) Σ starts at A ∩ {u = u * } and terminates at S * , and smoothly extend σ top (r) to (r 0 , r 0 + m) so that (top) Σ is everywhere spacelike. See Section D.3, and in particular Proposition D.3.5 and Lemma D.3.9, for explicit computations in Kerr.

(c) denoting by r +,top (u) and r -,top (u) respectively the maximum and the minimum of (top) r along a level hypersurface of u in (top) M(r ≥ r 0 ), there holds

0 ≤ r +,top (u) -r -,top (u) ≤ 4m 0 (3.2.1)
uniformly in u.

The GCM-PG data set on Σ *

To initialize the PG structure of (ext) M on its future spacelike boundary Σ * , we assume given a GCM-PG data set Σ * , r, (e 1 , e 2 , e 3 , e 4 ), f as defined in Definition 2.5.6, i.e.

1. r is a scalar function on Σ * whose level sets are 2-spheres foliating Σ * , (e 1 , e 2 , e 3 , e 4 ) is a null frame defined on Σ * , and f is a 1-form tangent to the spheres of the r-foliation of Σ * .

2. e 4 is transversal 6 to Σ * , (e 1 , e 2 ) are tangent to Σ * , and e 1 (r) = e 2 (r) = 0, so that (e 1 , e 2 ) are tangent to the leaves of the r-foliation.

3.

The sphere S * is the final sphere on Σ * .

4. The frame (e 1 , e 2 , e 3 , e 4 ) satisfies the transversality conditions (2.5.8).

5. We are given on Σ * coordinates (θ, ϕ) and a basis of = 1 modes J (p) , p = 0, +, -, that are defined as follows (a) (θ, ϕ) and J (p) , p = 0, +, -, are initialized on S * as in Section 2.5.3, (b) (θ, ϕ) and J (p) , p = 0, +, -, are propagated to Σ * by ν(θ) = ν(ϕ) = 0, and ν(J (p) ) = 0, p = 0, +, -, where ν = e 3 + b * e 4 denotes the unique vectorfield on Σ * orthogonal to the r-foliation such that g(ν, e 4 ) = -2.

6. The GCM conditions (2.5.15)-(2.5.17) of Definition 2.5.4 are verified.

7. The constants (a, m) are specified according to Definition 2.5.5.

In addition, we assume the following. (c) The 1-form f on Σ * is chosen by

f 1 = 0, f 2 = a sin θ r , on S * , ∇ ν (rf ) = 0 on Σ * , (3.2.3) 
where (e 1 , e 2 ) are specified on S * by (2.5.12).

Definition of (m, a) in M

Given a GCM admissible spacetime M, we define the values (a, m) associated to M to be the constants (a, m) associated to S * according to Definition 2.5.5. Thus each GCM admissible spacetime M is naturally equipped with constants (a, m). Note that these constants depend on M, i.e. two different GCM admissible spacetimes have in general different constants (a, m) associated to them.

Initialization of the PG structures of M

Initialization of the PG structure of (ext) M

The PG structure of (ext) M is initialized on Σ * by the above GCM-PG data set according to Proposition 2.5.3, i.e.

1. Along Σ * , the restriction of the PG frame ( (ext) e 3 , (ext) e 4 , (ext) e 1 , (ext) e 2 ) of (ext) M is prescribed by the transformation formulas

(ext) e 4 = e 4 + f b e b + 1 4 |f | 2 e 3 , (ext) e a = δ b a + 1 2 f a f b e b + 1 2 f a e 4 + 1 2 f a + 1 8 |f | 2 f a e 3 , (ext) e 3 = 1 + 1 2 f • f + 1 16 |f | 2 |f | 2 e 3 + f b + 1 4 |f | 2 f b e b + 1 4 |f | 2 e 4 , (3.2 

.4)

7 A precise condition will be given later in (3.4.5).

where (e 1 , e 2 , e 3 , e 4 ) is the null frame of the GCM-PG data set of Σ * , and the 1-forms f and f are given respectively by (3.2.3) and (2.5.4), i.e.

f 1 = 0, f 2 = a sin θ r , on S * , ∇ ν (rf ) = 0 on Σ * , (3.2.5) 
and

8 f = - (ν(r) -b * ) 1 -1 4 b * |f | 2 f on Σ * , (3.2.6) 
where the scalar functions (r, θ, b * ) on Σ * , the constant a, and the vectorfield ν tangent to Σ * are part of the above GCM-PG data set.

2. The functions (ext) r is prescribed on Σ * by (ext) r = r where r belongs to the GCM-PG data set of Σ * .

The function u is prescribed on Σ

* by u = c * -(ext) r, (3.2.7) 
where c * is a constant that will be fixed in Remark 8.4.2. We then set u * to be the value of u on S * .

Initialization of the PG structure of (int) M

1. The (u, (int) r) foliation is initialized on T such that,

u = u, (int) r = (ext) r. (3.2.8)
In particular S(u, (int) r) coincides on T with S(u, (ext) r).

2. The null frame ( (int) e 3 , (int) e 4 , (int) e 1 , (int) e 2 ) is defined on T by the following renormalization,

(int) e 4 = λ (ext) e 4 , (int) e 3 = λ -1(ext) e 3 , (int) e a = (ext) e a , a = 1, 2, on T (3.2.9)

where

λ = (ext) λ = (ext) ∆ | (ext) q| 2 .
(3.2.10) 8 The fact that f is well defined will follow from our bootstrap assumptions.

Initialization of the PG structure of (top) M

1. The (u, (top) r)-foliation of (top) M is initialized on {u = u * } such that,

u = u + 2 (ext) r r 0 r2 + a 2 r2 -2mr + a 2 dr, (top) r = (ext) r. (3.2.11)
In particular, the 2-spheres S(u, (top) r) coincide on {u = u * } with S(u, (ext) r). 

(top) e 4 = λ (ext) e 4 + f b (ext) e b + 1 4 |f | 2 (ext) e 3 , (top) e a = (ext) e a + 1 2 f a (ext) e 3 , a = 1, 2, (top) e 3 = λ -1(ext) e 3 , (3.2.12) 
where

λ = (ext) λ = (ext) ∆ | (ext) q| 2 , f = (ext) h (ext) e 3 (r) (ext) ∇(u), (3.2.13) 
with the scalar function (ext) h given by9 

(ext) h = - 2 (ext) λ (ext) e 3 (u) . (3.2.14) Remark 3.2.2. The choice (3.2.14) above ensures (top) ∇( (top) r) = 0 on {u = u * }, see Lemma 7.5.2
, which is a necessary condition for the ingoing foliation of (top) M to be a PG structure.

Definition of coordinates (θ, ϕ) in M

We introduce the following (θ, ϕ) coordinates adapted to the PG structures defined above.

1. In (ext) M, we initialize ( (ext) θ, (ext) ϕ) on Σ * by

(ext) θ = θ, (ext) ϕ = ϕ, (3.2.15) 
where (θ, ϕ) is associated to the GCM-PG data set as above, and we propagate it to (ext) M by

(ext) e 4 ( (ext) θ) = (ext) e 4 ( (ext) ϕ) = 0. (3.2.16)
2. In (int) M, we initialize ( (int) θ, (int) ϕ) on T by

(int) θ = (ext) θ, (int) ϕ = (ext) ϕ, (3.2.17) 
and we propagate it to (int) M by

(int) e 3 ( (int) θ) = (int) e 3 ( (int) ϕ) = 0. (3.2.18)
3. In (top) M, we initialize (top) θ on {u = u * } by

(top) θ = (ext) θ. (3.2.19) 
and we propagate it to (top) M by

(top) e 3 ( (top) θ) = 0. (3.2.20)
Remark 3.2.3. Note that we do not need to define a coordinate (top) ϕ. Indeed, the coordinate ϕ, in the various regions of M, plays an auxiliary role in the proof, and is in fact only needed to control coordinates system on M in the limit u * → +∞ where the region (top) M actually disappears.

Main norms

We define our main norms on a given GCM admissible spacetime M. The norms involve in particular the constants (a, m) specified in Section 3.2.4.

Main norms on Σ *

All quantities appearing in this section are defined relative to the GCM frame of Σ * , the scalar function r of Σ * , and the constant m introduced in Section 3.2.3.

We introduce the function u as in (3.2.7), i.e. we have

u = c * -r (3.3.1)
where c * is a fixed constant. Also, recall that we have the following properties for angular derivatives r on Σ *

e 1 (r) = e 2 (r) = 0. (3.3.2)
Finally, recall that the frame (e 1 , e 2 , e 3 , e 4 ) of Σ * satisfies the transversality conditions (2.5.8), to which we add transversality conditions for e 4 (r) and e 4 (u) where Υ = 1 -2m r .

ξ = 0, ω = 0, η = -ζ, e 4 (r) =
} tr χ := tr χ - 2 r , } tr χ := tr χ + 2Υ r , q ω := ω - m r 2 , q ρ := ρ + 2m r 3 , ẽ3 ( 
With these normalizations we define the sets Γ * g , Γ * b as follows. Definition 3.3.3. The set of all linearized quantities on Σ * is of the form Γ * g ∪ Γ * b defined as follows.

1. The set Γ * g contains

Γ * g := } tr χ, χ, ζ, } tr χ, rα, rβ, r q ρ, * ρ . (3.3.5) 2. The set Γ * b contains Γ * b := η, χ, q ω, ξ, rβ, α, r -1 ẽ3 (r) r -1 ẽ3 (u), r -1 q b * . (3.3.6)
To define higher order derivatives norms on Σ * , we use the weighted derivative operators d * tangential to Σ * defined as follows

d * := {∇ ν , d /}. (3.3.7)

Boundedness norms on Σ *

For any k ≥ 0, we introduce the following norms

Main norms in (ext) M

All quantities appearing in this section are defined relative to the outgoing PG structure of (ext) M. As there is no danger of confusion we will drop the prefixes (ext) in what follows.

Definition of complex horizontal 1-form J on (ext) M

Recall that the PG frame of (ext) M satisfies

Ξ = ω = 0, H = -Z,
as well as, e 4 (r) = 1, e 4 (u) = e 4 (θ) = e 4 (ϕ) = 0, e 1 (r) = e 2 (r) = 0.

To define linearized quantities in (ext) M as in Definition 2.6.6, we need to use the complex horizontal 1-form J introduced in Section 2.6.2. Recall that J is defined in that section up to an initialization on a hypersurface transversal to e 4 . We provide such initialization on the hypersurface Σ * below 10 . Definition 3.3.4 (Definition of J in (ext) M). We define the complex horizontal 1-form J on (ext) M by 11

J 1 = i sin θ |q| , J 2 = sin θ |q| , on S * , ∇ ν (|q|J) = 0 on Σ * , ∇ 4 J = - 1 q J on (ext) M.
(3.3.10)

The complex horizontal 1-form J satisfies the following lemma.

Lemma 3.3.5. The complex horizontal 1-form J of Definition 3.3.4 satisfies on (ext) M the identities (2.6.4), i.e.

∇ 4 J = - 1 q J, * J = -iJ, J • J = 2(sin θ) 2 |q| 2 . (3.3.11)
Remark 3.3.6. Since J satisfies (2.6.4), it can be used to define the linearized quantities in (ext) M as in Definition 2.6.6.

Proof. The first identity holds true by Definition 3.3.4. The two other identities hold true on S * by Definition 3.3.4., and are then immediately transported to Σ * using the fact that ν(|q|J) = 0 and ν(θ) = 0 on Σ * . Finally, they are transported to (ext) M using ∇ 4 J = -q -1 J and Lemma 2.6.4.

Recall 12 the set of quantities Γ g , Γ b , see Definition 2.6.7. Finally, we use the weighted derivative operator

d := {∇ 3 , r∇ 4 , d /}. (3.3.12) J = r |q| (f + i * f ) on Σ * .
Boundedness norms in (ext) M Let δ B > 0 be a small constant to be specified later. For any k ≥ 1, we introduce the following norms

(ext) B k := sup (ext) M r 2 |d ≤k Γ g | + r|d ≤k Γ b | + r 7 2 + δ B 2 |d ≤k A| + |d ≤k B| + r 9 2 +δ dec |d ≤k-1 ∇ 3 A| + r 4 |d ≤k-1 ∇ 3 B| + Σ * |d ≤k q H| 2 1 2
.

(3.3.13)

Decay norms in (ext) M
Let δ dec > 0 be a small constant to be specified later. We define for k ≥ 1,

(ext) D k := sup (ext) M ru 1+δ dec + r 2 u 1 2 +δ dec |d ≤k Γ g | + sup (ext) M ru 1+δ dec |d ≤k Γ b | + sup (ext) M r 4 u 1 2 +δ dec |d ≤k-1 ∇ 3 A| + |d ≤k-1 ∇ 3 B| + sup (ext) M r 2 u 1+δ dec |d ≤k-1 ∇ 3 Γ g | + Σ * u 2+2δ dec |d ≤k q H| 2 1 2 . (3.3.14) 
Remark 3.3.7. The integral bootstrap assumption on Σ * for q H will only be needed in the proof of Proposition 3.6.2 and recovered in Proposition 5.3.1. In fact, other components satisfy an analog integral estimate on Σ * : this is the case of X, Ξ and rB, see Proposition 5.3.1. But q H is the only component for which we need to make this type of bootstrap assumption.

Main norms in (int) M

All quantities appearing in this section are defined relative to the ingoing PG structure of (int) M. As there is no danger of confusion we will drop the prefixes (int) in what follows.

Definition of complex horizontal 1-form J on (int) M

To define linearized quantities in (int) M as in Definition 2.7.2, we need to use the complex horizontal 1-form J introduced in Section 2.7. Recall that J is defined in that section up to an initialization on a hypersurface transversal to e 3 . We provide such initialization on the hypersurface T below. Definition 3.3.8 (Definition of J in (int) M). We define the complex horizontal 1-form J on (int) M by J = (ext) J on T ,

∇ 3 J = 1 q J on (int) M. (3.3.15)
Recall also, see Definition 2.7.3, the set of quantities Γ g , Γ b for ingoing PG structures.

Boundedness norms in (int) M

For any k ≥ 1, we introduce the following norms

(int) B k := sup (int) M |d ≤k Γ g | + |d ≤k Γ b | . (3.3.16)
Decay norms in (int) M

We define for k ≥ 1,

(int) D k := sup (int) M u 1+δ dec |d ≤k Γ g | + |d ≤k Γ b | .
(3.3.17)

Main norms in (top) M

All quantities appearing in this section are defined relative to the ingoing PG structure of (top) M. As there is no danger of confusion we will drop the prefixes (top) in what follows.

Definition of complex horizontal 1-form J on (top) M

To define linearized quantities in (top) M as in Definition 2.7.2, we need to use the complex horizontal 1-form J introduced in Section 2.7. Recall that J is defined in that section up to an initialization on a hypersurface transversal to e 3 . We provide such initialization on the hypersurface {u = u * } below.

Definition 3.3.9 (Definition of J in (top) M). We define the complex horizontal 1-form J on (top) M by

J = (ext) J on {u = u * }, ∇ 3 J = 1 q J on (top) M. (3.3.18)
Remark 3.3.10. We do not introduce the scalar function J (±) and the complex 1-forms J ± in (top) M. Thus, the quantities Γ g , Γ b in (top) M correspond to the ones in Definition 2.7.3 where all linearized quantities based on J (±) and J ± have been removed.

Boundedness norms in (top) M

For any k ≥ 1, we introduce the following norms

(top) B k := sup (top) M r 2 |d ≤k Γ g | + r|d ≤k Γ b | + r 7 2 + δ B 2 |d ≤k A| + |d ≤k B| + r 9 2 +δ dec |d ≤k-1 ∇ 3 A| + r 4 |d ≤k-1 ∇ 3 B| . (3.3.19)

Decay norms in (top) M

To describe the decay norms in (top) M(r ≥ r 0 ), we introduce the scalar function (top) u as follows

(top) u := u -2 r r 0 r2 + a 2 r2 -2mr + a 2 dr. (3.3.20) Remark 3.3.11. Note in view of (3.2.11) that (top) u = u on u = u * .
We define for k ≥ 1,

(top) D k := (top) D ≤r 0 k + (top) D ≥r 0 k , (top) D ≤r 0 k := sup (top) M(r≤r 0 ) u 1+δ dec |d ≤k Γ g | + |d ≤k Γ b | , (top) D ≥r 0 k := sup (top) M(r≥r 0 ) r( (top) u) 1+δ dec + r 2 ( (top) u) 1 2 +δ dec |d ≤k Γ g | + sup (top) M(r≥r 0 ) r( (top) u) 1+δ dec |d ≤k Γ b | + sup (top) M(r≥r 0 ) r 2 ( (top) u) 1+δ dec |d ≤k-1 ∇ 3 Γ g | + sup (top) M(r≥r 0 ) r 4 ( (top) u) 1 2 +δ dec |d ≤k-1 ∇ 3 A| + |d ≤k-1 ∇ 3 B| .
(3.3.21)

Combined norms

We define the following norms M by combining our above norms on Σ * , (ext) M, (int) M and

(top) M N (Sup) k := * B k + (ext) B k + (int) B k + (top) B k , N (Dec) k := * D k + (ext) D k + (int) D k + (top) D k .

Initial layer norm

Recall the notations of Section 3.1 concerning the initial data layer L 0 = L 0 (a 0 , m 0 ). Recall that the constants m 0 > 0 and |a 0 | < m 0 are the mass and angular momentum of the initial Kerr spacetime relative to which our initial perturbation is measured. We define the initial layer norm to be13 

I k := (ext) I k + (int) I k + I k ,
where

(ext) I 0 := sup (ext) L 0 r 2 |Γ g | + r|Γ b | + r 7 2 + δ B 2 |A| + |B| , (int) I 0 := sup (int) L 0 |Γ g | + |Γ b | , I 0 := sup (int) L 0 ∩ (ext) L 0 |f | + |f | + | log(λ -1 0 λ)| , λ 0 = (ext) λ 0 = 1 - 2m 0 (ext) r L 0 , and 
• for (ext) I 0 , (Γ g , Γ b
) is given by Definition 2.6.7 for the outgoing PG structure of (ext) L 0 ,

• for (int) I 0 , (Γ g , Γ b ) is given by Definition 2.7.3 for the ingoing PG structure of (int) L 0 ,

• for I 0 , (f, f , λ) denote the transition coefficients of Lemma 2.2.1 from the frame of the outgoing PG structure of (ext) L 0 to the frame of the ingoing PG structure of (int) L 0 in the region (int) L 0 ∩ (ext) L 0 , with I k the corresponding higher derivative norms obtained by replacing each component by d ≤k of it.

Remark 3.3.12. Note that in the definition of (ext) I k we allow a higher power of r in front α, β and their derivatives than what it is consistent with the results of [START_REF] Christodoulou | The global nonlinear stability of the Minkowski space[END_REF] and [START_REF] Klainerman | The evolution problem in general relativity[END_REF].

The additional r δ B power, for δ B small, is consistent instead with the result of [START_REF] Klainerman | Peeling properties of asymptotic solutions to the Einstein vacuum equations[END_REF]. See also Remark 3.4.3.

Main theorem

Smallness constants

Before stating our main theorem, we first introduce the following constants that will be involved in its statement.

• The constants m 0 > 0 and |a 0 | < m 0 are the mass and the angular momentum of the Kerr solution relative to which our initial perturbation is measured.

• The integer k large which corresponds to the maximum number of derivatives of the solution.

• The size of the initial data layer norm is measured by 0 > 0.

• The size of the bootstrap assumption norms is measured by > 0.

• r 0 > 0 is tied to the definition of T , i.e. T = {r = r 0 }.

• δ H > 0 measures the width of the region |r -m 0 -m 2 0 -a 2 0 | ≤ 2m 0 δ H where the redshift estimate holds.

• δ dec is tied to decay estimates in u, u for Γ and q R.

• δ B is involved in the r-power of the supremum estimates for high derivatives of α and β.

• δ * is involved in the behavior of r on S * , see (3.4.5) below.

In what follows, m 0 and a 0 are fixed constants with 0 ≤ |a 0 | < m 0 , δ H , δ B , and δ dec are fixed, sufficiently small, universal constants, and r 0 and k large are fixed, sufficiently large, universal constants, chosen such that

0 < δ H , δ dec , δ B , δ * min{m 0 -|a 0 |, 1}, δ B > 2δ dec , r 0 max{m 0 , 1}, k large 1 δ dec . (3.4.1)
Then, and 0 are chosen such that where we recall that r * and u * denote respectively the value of r and u on S * .

0 < 0 , min δ H , δ dec , δ B , δ * , 1 r 0 , 1 k large , m 0 -|a 0 |, 1 , (3.4 
Also, we introduce the integer k small which corresponds to the number of derivatives for which the solution satisfies decay estimates. It is related to k large by

k small = 1 2 k large + 1. (3.4.6)
From now on, in the rest of the paper, means bounded by a constant depending only on geometric universal constants (such as Sobolev embeddings, elliptic estimates,...) as well as the constants m 0 , a 0 , δ H , δ dec , δ B , δ * , r 0 , k large but not on and 0 .

Admissible future null complete spacetimes

We introduce in this section the notion of admissible future null complete spacetimes which corresponds formally to the limit as u * → +∞ of the GCM admissible spacetimes of Section 3.2.

Definition 3.4.2. We say that an initial data layer L 0 = L 0 (a 0 , m 0 ), defined as in Section 3.1, is admissible if it lies in the future of an asymptotically flat initial data set, supported on a spacelike hypersurface Σ 0 , of ADM mass m 0 and angular momentum a 0 . For a representation see the lower part of the Figure 3.3.

In addition, we say that L 0 is ( 0 , k)-admissible if it verifies the bound 15

I k ≤ 2 0 ,
with I k defined as in Section 3.3.6.

Remark 3.4.3. The results in [START_REF] Klainerman | The evolution problem in general relativity[END_REF], [START_REF] Klainerman | Peeling properties of asymptotic solutions to the Einstein vacuum equations[END_REF], [START_REF] Caciotta | The non linear perturbation of the Kerr spacetime in an external region and the peeling decay[END_REF] and [START_REF] Shen | Kerr stability in external regions[END_REF] identify large classes of initial data sets on Σ 0 which generate ( 0 , k)-admissible initial data layers.

We define a development of an admissible initial data layer L 0 as follows.

Definition 3.4.4. We say that a spacetime is a future development of an admissible initial data layer L 0 if it is in fact a future development of the initial data set supported on Σ 0 .

Definition 3.4.5. We say that an asymptotically flat Einstein vacuum spacetime M, as in Figure 3.3, is admissible future null complete, if it verifies the following properties.

• It is a future development of an admissible initial data layer set L 0 (a 0 , m 0 ), in the sense of Definition 3.4.4.

• The future null infinity I + of M is complete. The other future boundary of M is given by the spacelike hypersurface A and belongs to the complement of J -(I + ).

• M = (ext) M ∪ (int) M.

• T = (ext) M ∩ (int) M is time-like. 15 One expects in principal the weaker bound I k ≤ 0 . See Remark 3.4.8 for an explanation of the need of the stronger bound I k ≤ 2 0 . • Each S = S(u, r) sphere in (ext) M comes equipped with an adapted, integrable, frame (e 3 , e 4 , H ). The passage from the PG frame to the integrable one is obtained by the transformation formulas (2.2.1) with parameters (f, f , λ) given by (2.3.3).

• The timelike surface T is given by {r = r 0 }, and (int) M comes equipped with an ingoing PG structure and function u initialized on T as in Section 3.2.5.

Definition 3.4.6. Given an admissible future null complete, spacetime M as in Definition 3.4.5, and constants

(a ∞ , m ∞ ), |a ∞ | < m ∞ , we define the norms 17 N (Sup) k large (a ∞ , m ∞ ), N (Dec)
k small (a ∞ , m ∞ ) as in Section 3.3.5, with the constants (a, m), which appear in the definition of the linearized quantities replaced by (a ∞ , m ∞ ).

Statement of the main theorem

We are now ready to give the following precise version of our main theorem. 16 Recall that H(r) = 0, e 4 (r) = 1. 17 Note that M does not contain a region (top) M, so that there are no norms corresponding to (top) M in the definition of

N (Sup) k large (a ∞ , m ∞ ) and N (Dec) k small (a ∞ , m ∞ ).
Main Theorem (Main theorem, version 2). Let L = L(a 0 , m 0 ) be an ( 0 , k large + 10)admissible initial data layer as in Definition 3.4.2, with |a 0 |/m 0 sufficiently small, k large sufficiently large, and 0 > 0 sufficiently small. In particular, we assume 18

I k large +10 ≤ 2 0 . (3.4.7)
Then L = L(a 0 , m 0 ) possesses an admissible future complete development M ∞ as in Definition 3.4.5. Moreover:

1. There exist constants (a ∞ , m ∞ ), |a ∞ | m ∞
, such that the following estimates hold true, relative to the norms N (Sup)

k large = N (Sup) k large (a ∞ , m ∞ ), N (Dec) k small = N (Dec) k small (a ∞ , m ∞ ) defined above, N (Sup) k large + N (Dec) k small + |a ∞ -a 0 | + |m ∞ -m 0 | ≤ C 0 (3.4.8)
where C is a universal constant sufficiently large and k small = 1 2 k large + 1. 2. The space M ∞ is a limit of finite GCM admissible spacetimes 18 One expects in principal the weaker bound I k large +10 ≤ 0 . See Remark 3.4.8 for an explanation of the need of the stronger bound I k large +10 ≤ 2 0 . 19 More precisely they are the limits of the GCM family U(u * ), as in Definition 3.7.1. Note also that (top) M disappears in the limit.

-On (int) M ∞ we have, for any linearized quantity q ψ, | q ψ| 0 u 1+δ dec .

Note that analog statements of the above estimates also hold for d k derivatives with k ≤ k small .

Moreover the following other statements hold true.

1. Let m H (u, r) denote the Hawking mass adapted to the spheres S = S(u, r) of

(ext) M ∞ , i.e. m H (u, r) = |S(u, r)| 4π 1 + 1 16π S(u,r) tr χ tr χ ,
where tr χ , tr χ are calculated with respect to the integrable20 frame (e 1 , e 2 , e 3 , e 4 ) of (ext) M. Then:

-The Bondi mass exists and is given by

M B (u) := lim r→∞ m H (u, r).
-M B (u) has a limit as u → ∞ and

lim u→∞ M B (u) = m ∞ , (3.4.9) 
i.e. m ∞ coincides with the final Bondi mass.

-The Bondi mass law formula (3.8.13) holds true. In particular m ∞ < m 0 .

2. We define the quasi-local angular momentum for a sphere S(u, r) to be the triplet

j =1,p (u, r) := r 5 |S(u, r)| S(u,r) (curl β )J (p) , p = 0, +, -.
with curl β defined relative the the integrable frame of (ext) M. Then -The triplet j =1,p (u, r) has a limit as r → ∞ at fixed u given by

J =1,p (u) = lim r→∞ j =1,p (u, r). (3.4.10)
-The triplet J =1,p (u) has a limit as u → ∞ and

lim u→∞ J =1,0 (u) = 2a ∞ m ∞ , lim u→∞ J =1,± (u) = 0.

3.

(ext) M is covered by three regular coordinates patches:

-in the (u, r, θ, ϕ) coordinates system, we have, for π 4 < θ < 3π 4 , g = g a∞,m∞ + du, dr, rdθ, r sin θdϕ

2 O 0 u 1+δ dec ,
-in the (u, r, x 1 , x 2 ) coordinates system, with x 1 = J (+) and x 2 = J (-) , we have, for 0 ≤ θ < π 3 and for 2π 3 < θ ≤ π,

g = g a∞,m∞ + du, dr, rdx 1 , rdx 2 2 O 0 u 1+δ dec ,
where in each case, g a∞,m∞ denotes the Kerr metric expressed in the corresponding coordinates system of Kerr, see Lemma 2.4.10 and Lemma 2.4.24.

4.

(int) M is covered by three regular coordinates patches:

-in the (u, r, θ, ϕ) coordinates system, we have, for π 4 < θ < 3π 4 , g = g a∞,m∞ + du, dr, rdθ, r sin θdϕ

2 O 0 u 1+δ dec ,
-in the (u, r, x 1 , x 2 ) coordinates system, with x 1 = J (+) and x 2 = J (-) , we have, for 0 ≤ θ < π 3 and for 2π 3 < θ ≤ π, g = g a∞,m∞ + du, dr, rdx 1 , rdx 

Main bootstrap assumptions

Given a GCM admissible spacetime M, as defined in Section 3.2, we assume that the combined norms 21 

k large + |m -m 0 | + |a -a 0 | ≤ , (3.5.1) 
BA-D (Bootstrap Assumptions on decay)

N (Dec) k small ≤ . (3.5.2)
We shall often refer to them in the text as BA . 21 Recall that the norms are defined with respect to linearized quantities which involve the constants (a, m) specified in Section 3.2.4.

Global null frames

3.6.1 The quantities q and q We will need to control complex horizontal symmetric traceless 2-tensors q and q of the form

q = qq 3 (∇ 3 -2ω)(∇ 3 -4ω)A + C 1 (∇ 3 -4ω)A + C 2 A , q = qq 3 (∇ 4 -2ω)(∇ 4 -4ω)A + C 1 (∇ 4 -4ω)A + C 2 A ,
for specific complex scalar functions22 C 1 , C 2 , C 1 and C 2 . The quantities q and q are introduced in chapter 5 of [START_REF] Giorgi | Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes[END_REF], where Regge Wheeler type equations are derived for these quantities. Based on these Regge Wheeler type equations, we derive estimates for q and A in Theorem M1 and for A in Theorem M2, see Section 3.7.1.

As in [START_REF] Klainerman | Global Non-Linear Stability of Schwarzschild Spacetime under Polarized Perturbations[END_REF], the quantity q has to be defined relative to a global frame, smooth in the entire region M, in which 23q H behaves like Γ g . Also, q has to be defined relative to another global frame, smooth in the entire region M, in which | H behaves like24 r -1 Γ g . To achieve this in a way which does not affect the other quantities we proceed in two steps:

1. We construct in Section 3.6.2 a second frame on (ext) M for which q H belongs to Γ g , and in Section 3.6.3 a third frame of (ext) M for which | H belongs to r -1 Γ g .

2.

We use these second and third frame of (ext) M to construct in Section 3.6.4 a first global frame in M for which q H belongs to Γ g , and in Section 3.6.5 a second global frame in M for which | H belongs to r -1 Γ g in (ext) M(u ≤ u * -1).

These global frames are used respectively to analyze the decay properties of q in Theorem M1 and q in Theorem M2, see also discussion in the introduction.

Construction of a second null frame in (ext) M

We denote in this section by (e 1 , e 2 , e 3 , e 4 ) the outgoing PG frame of the region (ext) M, and by (e 1 , e 2 , e 3 , e 4 ) the second frame of (ext) M constructed below. The primed frame of such that

| H ∈ Γ g , (3.6.2) 
where Γ g , Γ b are defined below.

Definition 3.6.1. Let (e 1 , e 2 , e 3 , e 4 ) be the second frame of (ext) M constructed in Proposition 3.6.2 below. With respect to that frame, we introduce the notations Γ g , Γ b as follows:

• the linearized quantities for the frame (e 1 , e 2 , e 3 , e 4 ) are defined in the same way as Definition 2.6.6 for the outgoing PG frame of (ext) M, with respect to the coordinates (r, θ) and the complex 1-form J of the PG structure 25 ,

• in addition, we introduce the following linearized quantities which are trivial for an outgoing PG structure 26

| H := H + aq |q| 2 J, ẽ 4 (r) := e 4 (r) -1, } ∇ 4 J := ∇ 4 J + 1 q J,
• the notation Γ b is the one of Definition 2.6.7, except that q H does not belong to Γ b ,

• the notation Γ g is given by

Γ g = Γ g,1 ∪ Γ g,2 ,
where Γ g,1 is the one of Definition 2.6.7, and where Γ g,2 is given by 27

Γ g,2 := ω , Ξ , | H , q H , ẽ 4 (r), e 4 (u), e 4 (J (0) ), r -1 ∇ (r), } ∇ 4 J . 25 Thus, for example, } trX = trX -2 q , q H = H -aq |q| 2 J, ẽ 3 (r) = e 3 (r) -∆ |q| 2 , D J (0) = D J (0) -iJ, } ∇ 3 J = ∇ 3 J -∆q |q| 4 J,.
.. 26 Except | H which satisfies instead H = -Z. 27 Note that all quantities in Γ g,2 vanish identically in the case of an outgoing PG structure except q H and | H .

Using these notations we can define the decay norms D k exactly as the norms D k in Section 3.3.2. In the proposition below, however, we derive estimates for D k norms for values of k ≤ k small + 129, with the particular choice 129 being sufficiently large to absorb possible losses of derivatives later on in the process of proving our main theorem. This requires an interpolation between the decay norms, for k ≤ k small and the boundedness norms for k ≤ k large . The interpolation leads to a slight loss of decay which affects the small constant δ dec in the definition of the decay norms. Thus, in the statement of the proposition below, the norms D k are defined exactly as D k with δ dec replaced by δ dec = δ dec -2δ 0 . The precise definition of δ 0 is as follows 28 ). In particular, the frame (e 4 , e 3 , e 1 , e 2 ) coincides with the outgoing PG frame (e 4 , e 3 , e 1 , e 2 ) of (ext) M in (ext) M(r ≤ u 

δ 0 := 130 k large -k small , 0 < δ 0 ≤ δ dec 3 . ( 3 
) k f | ru 1 2 +δ dec + u 1+δ dec , |(d ) k-1 ∇ 3 f | ru 1+δ dec .
(3.6.5)

28 Note that we have in view of (3.4.1) and (3.4.6)

δ dec (k large -k small ) ≥ 1 2 δ dec k large -δ dec 1,
and we may thus assume δ dec (k large -k small ) ≥ 390 so that we have indeed δ 0 ≤ δ dec 3 .

5. In addition to the control induced by ξ ∈ Γ g , we have, for k ≤ k small + 129 on H corresponding to the outgoing PG frame (e 4 , e 3 , e 1 , e 2 ) of (ext) M. Also, since Γ b and Γ g satisfy the same estimates in (ext) M(r u 1 2 ), q H displays the correct behavior in such regions. This is why we may choose the frame (e 4 , e 3 , e 1 , e 2 ) to coincide with the outgoing PG frame (e 4 , e 3 , e 1 , e 2 ) of (ext) M in (ext) M(r ≤ u 1 2 ).

(ext) M, |(d ) k ξ | r 3+δ dec , |(d ) k-1 ∇ 3 ξ | r 3 u 1 2 +δ dec . ( 3 

Construction of a third null frame in (ext) M

We denote in this section by (e 1 , e 2 , e 3 , e 4 ) the outgoing PG frame of the region (ext) M, and by (e 1 , e 2 , e 3 , e 4 ) the third frame of (ext) M constructed below. The primed frame of (ext) M is obtained by performing a transformation of the form 

e 4 =
) k f | ru 1 2 +δ dec + u 1+δ dec , |(d ) k-1 ∇ 3 f | ru 1+δ dec .
(3.6.10)

The following identities holds on

(ext) M ξ = 0, ω = 0, | H = 0. (3.6.11) 
Remark 3.6.6. The crucial point of Proposition 3.6.5 is that in the new frame (e 4 , e 3 , e 1 , e 2 ) of (ext) M, we have the identities | H = 0 and ξ = 0.

Construction of a first global null frame

We start with the definition of the region where the frames of (int) M and a conformal renormalization of the second frame of (ext) M (i.e. the one of Proposition 3.6.2) will be matched.

Definition 3.6.7. We define the matching region as the spacetime region

Match := (ext) M ∩ { (ext) r ≤ r 0 + 1} ∪ {u ≥ u * -1} ∪ (int) M ∩ {u ≥ u * -1} . ( 3 
.6.12) Also, we introduce the notations (glo) Γ g , (glo) Γ b .

Definition 3.6.8. Let ( (glo) e 4 , (glo) e 3 , (glo) e 1 , (glo) e 2 ) the global frame of M constructed in Proposition 3.6.9 below, together with the corresponding pair of scalars ( (glo) r, (glo) J (0) ) and the complex 1-form (glo) J. With respect to that frame, we introduce the notations (glo) Γ g , (glo) Γ b as follows, where we drop (glo) after the first item to ease the notations:

• the linearized quantities for the frame ( (glo) e 4 , (glo) e 3 , (glo) e 1 , (glo) e 2 ) are defined in the same way as Definition 2.7.2 for ingoing PG structures, with respect to the scalars ( (glo) r, (glo) J (0) ) and the complex 1-form (glo) J,

• in addition, we introduce the following linearized quantities which are trivial for an ingoing PG structure 29q

H := H - aq |q| 2 J, ẽ3 (r) := e 3 (r) + 1, } ∇ 3 J := ∇ 3 J - 1 q J,
• the notation Γ b is given by

Γ b = Γ b,1 ∪ Γ b,2 ,
where Γ b,1 is the one of Definition 2.7.3, and Γ b,2 is given by30 Γ b,2 := q H, ω, Ξ, r -1 ẽ3 (r), e 3 (J (0) ), r } ∇ 3 J ,

• the notation Γ g is given by

Γ g = Γ g,1 ∪ {r -1 ∇(r)},
where Γ g,1 is the one of Definition 2.7.3.

Here is our main proposition concerning our first global frame.

Proposition 3.6.9. Let δ 0 > 0 be the small constant which satisfies (3.6.3). There exist

• a global null frame ( (glo) e 4 , (glo) e 3 , (glo) e 1 , (glo) e 2 ),

• a pair of scalars ( (glo) r, (glo) J (0) ), and a complex 1-form (glo) J, all defined on M such that:

(a) In (ext) M \ Match, we have

( (glo) e 4 , (glo) e 3 , (glo) e 1 , (glo) e 2 ) = (ext) λ (ext) e 4 , (ext) λ -1(ext) e 3 , (ext) e 1 , (ext) e 2 ,
where ( (ext) e 4 , (ext) e 3 , (ext) e 1 , (ext) e 2 ) denotes the second frame of (ext) M, i.e. the fame of Proposition 3.6.2, and where (ext) λ :=

(ext) ∆ | (ext) q| 2 .
We also have (glo) r = (ext) r, (glo) J (0) = cos( (ext) θ), and (glo) J = (ext) J.

(b) In (int) M \ Match, we have ( (glo) e 4 , (glo) e 3 , (glo) e 1 , (glo) e 2 ) = ( (int) e 4 , (int) e 3 , (int) e 1 , (int) e 2 ), as well as (glo) r = (int) r, (glo) J (0) = cos( (int) θ), and (glo) J = (int) J.

(c) In (top) M, we have

max 0≤k≤k small +125 sup (top) M(r≤r 0 ) u 1+δ dec -2δ 0 d k ( (glo) Γ g , (glo) Γ b ) ,
and

max 0≤k≤k small +125 sup (top) M(r≥r 0 ) r 2 ( (top) u) 1 2 +δ dec -2δ 0 + r( (top) u) 1+δ dec -2δ 0 d k(glo) Γ g +r( (top) u) 1+δ dec -2δ 0 d k(glo) Γ b + r 2 ( (top) u) 1+δ dec -2δ 0 d k-1 ∇(glo) e 3 (glo) Γ g +r 7 2 + δ B 2 d k ( (glo) A, (glo) B) + r 4 ( (top) u) 1 2 +δ dec -2δ 0 d k-1 ∇(glo) e 3 (glo) B + r 9 2 + δ B 2 + r 4 ( (top) u) 1 2 +δ dec -2δ 0 d k-1 ∇(glo) e 3 (glo) A ,
where (glo) Γ g and (glo) Γ b are given by Definition 3.6.8, and where (top) u is given by (3.3.20).

(d) In the matching region, we have

max 0≤k≤k small +125 sup Match∩ (int) M u 1+δ dec -2δ 0 d k ( (glo) Γ g , (glo) Γ b ) ,
and

max 0≤k≤k small +125 sup Match∩ (ext) M r 2 u 1 2 +δ dec -2δ 0 + ru 1+δ dec -2δ 0 d k(glo) Γ g +ru 1+δ dec -2δ 0 d k(glo) Γ b + r 2 u 1+δ dec -2δ 0 d k-1 ∇(glo) e 3 (glo) Γ g +r 7 2 + δ B 2 d k ( (glo) A, (glo) B) + r 4 u 1 2 +δ dec -2δ 0 d k-1 ∇(glo) e 3 (glo) B + r 9 2 + δ B 2 + r 4 u 1 2 +δ dec -2δ 0 d k-1 ∇(glo) e 3 (glo) A ,
where (glo) Γ g and (glo) Γ b are given by Definition 3.6.8.

(e) In the matching region, we have

max 0≤k≤k small +125 sup Match∩ (int) M u 1+δ dec -2δ 0 d k ( (glo) r -(int) r, (glo) J (0) -cos( (int) θ), (glo) J -(int) J) ,
and

max 0≤k≤k small +125 sup Match∩ (ext) M u 1+δ dec -2δ 0 d k ( (glo) r -(ext) r) +r d k ( (glo) J (0) -cos( (ext) θ)) + r 2 d k ( (glo) J -(ext) J) .
Also, we have in

(top) M max 0≤k≤k small +125 sup (top) M(r≤r 0 ) u 1+δ dec -2δ 0 d k ( (glo) r -(top) r, (glo) J (0) -cos( (top) θ), (glo) J -(top) J) ,
and

max 0≤k≤k small +125 sup (top) M(r≥r 0 ) ( (top) u) 1+δ dec -2δ 0 d k ( (glo) r -(top) r) +r d k ( (glo) J (0) -cos( (top) θ)) + r 2 d k ( (glo) J -(top) J) .
(f ) Let (f, f , λ) denote the change of frame coefficients from the frame of (int) M to the global frame, and let (f , f , λ ) denote the change of frame coefficients from the second frame of (ext) M, i.e. the fame of Proposition 3.6.2, to the global frame. Then, in the matching region, we have

max 0≤k≤k small +125 sup Match∩ (int) M u 1+δ dec -2δ 0 d k (f, f , λ -1) ,
and

max 0≤k≤k small +125 sup Match∩ (ext) M ru 1+δ dec -2δ 0 d k f , f , log | (ext) q| 2 (ext) ∆ λ .
Also, let (f , f , λ ) denote the change of frame coefficients from the frame of (top) M to the global frame. Then, in (top) M, we have

max 0≤k≤k small +125 sup (top) M(r≤r 0 ) u 1+δ dec -2δ 0 d k (f , f , λ -1) + max 0≤k≤k small +125 sup (top) M(r≥r 0 ) r( (top) u) 1 2 +δ dec -2δ 0 + ( (top) u) 1+δ dec -2δ 0 d k (f , f , λ -1) 
.

(g) In addition to the control induced by (glo) q H ∈ (glo) Γ b and (glo) ξ ∈ (glo) Γ g , we have, for k ≤ k small + 125, on (ext) M(u ≤ u * -1)

(glo) q H ∈ (glo) Γ g , |d k(glo) ξ| r 3+δ dec -2δ 0 , |d k-1 ∇(glo) e 3 (glo) ξ| r 3 u 1 2 +δ dec -2δ 0 ,
and on (top) M(r ≥ r 0 )

(glo) q H ∈ (glo) Γ g , (glo) Ξ ∈ r -1(glo) Γ g .
Remark 3.6.10. Recall that the global frame on M of Proposition 3.6.9 will be needed to derive decay estimates for the quantity q in Theorem M1 (stated in Section 3.7.1), see also the discussion in Section 1.7.

Construction of a second global null frame

We consider the same matching region (3.6.12) as well as Definition 3.6.8 for the quantities associated to the second global frame of M.

Here is our main proposition concerning our second global frame.

Proposition 3.6.11. Let δ 0 > 0 be the small constant which satisfies (3.6.3). There exist

• a global null frame ( (glo ) e 4 , (glo ) e 3 , (glo ) e 1 , (glo ) e 2 ),

• a pair of scalars ( (glo ) r, (glo ) J (0) ), and a complex 1-form (glo ) J, all defined on M such that:

(a) In (ext) M \ Match, we have

( (glo ) e 4 , (glo ) e 3 , (glo ) e 1 , (glo ) e 2 ) = (ext) λ (ext) e 4 , (ext) λ -1(ext) e 3 , (ext) e 1 , (ext) e 2 ,
where ( (ext) e 4 , (ext) e 3 , (ext) e 1 , (ext) e 2 ) denotes the third frame of (ext) M, i.e. the fame of Proposition 3.6.5, and where (ext) λ :=

(ext) ∆ | (ext) q| 2 .
We also have (glo ) r = (ext) r, (glo ) J (0) = cos( (ext) θ), and (glo ) J = (ext) J.

(b) The second global frame of M satisfies properties (b)-(e) of Proposition 3.6.9.

(c) Let (f, f , λ) denote the change of frame coefficients from the frame of (int) M to the second global frame, and let (f , f , λ ) denote the change of frame coefficients from the third frame of (ext) M, i.e. the frame of Proposition 3.6.5, to the second global frame. Then, in the matching region, we have

max 0≤k≤k small +125 sup Match∩ (int) M u 1+δ dec -2δ 0 d k (f, f , λ -1) ,
and

max 0≤k≤k small +125 sup Match∩ (ext) M ru 1+δ dec -2δ 0 d k f , f , log | (ext) q| 2 (ext) ∆ λ .
Also, let (f , f , λ ) denote the change of frame coefficients from the frame of (top) M to the global frame. Then, in (top) M, we have

max 0≤k≤k small +125 sup (top) M(r≤r 0 ) u 1+δ dec -2δ 0 d k (f , f , λ -1) + max 0≤k≤k small +125 sup (top) M(r≥r 0 ) r( (top) u) 1 2 +δ dec -2δ 0 + ( (top) u) 1+δ dec -2δ 0 d k (f , f , λ -1) . 
(d) In addition to the control induced by (glo) ξ, (glo) | H ∈ (glo) Γ g , we have, for k ≤ k small + 125 on (ext) M, (glo ) ξ = 0, (glo )

| H = 0, in (ext) M ∩ { (ext) r ≥ r 0 + 1} ∩ {u ≤ u * -1} .
Remark 3.6.12. Recall that the global frame on M of Proposition 3.6.11 will be needed to derive decay estimates for the quantity q in Theorem M2 (stated in Section 3.7.1), see also the discussion in Section 1.7.

Proof of the main theorem 3.7.1 Main intermediate results

We are ready to state our main intermediary results.

Theorem M0. Assume that the initial data layer L 0 , as defined in Section 3.1, satisfies

I k large +10 ≤ 0 .
Then under the bootstrap assumptions BA-B and BA-D, the following holds true on the initial data hypersurface

B 1 ∪ B 1 , max 0≤k≤k large-2 sup B 1 r 7 2 +δ B |d k (ext) A| + |d k (ext) B| + r 9 2 +δ B |d k-1 ∇ 3 ( (ext) A)| + sup B 1 r 3 d k (ext) P + 2m q 3 + r 2 |d k (ext) B| + r|d k (ext) A| 0 , max 0≤k≤k large-2 sup B 1 |d k (int) A| + |d k (int) B| + d k (int) P + 2m q 3 +|d k (int) B| + |d k (int) A| 0 ,
and

sup B 1 ∪B 1 |m -m 0 | + |a -a 0 | 0 .
Theorem M1. Assume given a GCM admissible spacetime M as defined in Section 3.2 verifying the bootstrap assumptions BA-B and BA-D for some sufficiently small > 0.

Then, if 0 > 0 is sufficiently small, there exists δ extra > δ dec such that we have the following estimates in M31 , with respect to the global frame of Proposition 3.6.9, 1. The quantity q verifies the estimates

max 0≤k≤k small +100 sup Σ * ru 1 2 +δextra + u 1+δextra |d k q| + ru 1+δextra |d k-1 ∇ 3 q| 0 .
Moreover, q also satisfies the following estimate

max 0≤k≤k small +100 u 2+2δextra Σ * (≥u) |d k-1 ∇ 3 q| 2 2 0 .
2. The quantity A verifies the estimate, for all k ≤ k small + 100, sup

(ext) M r 2 u 1+δextra + r 3 (2r + u) 1 2 +δextra |d k A| + sup (ext) M r 3 u 1+δextra + r 4 u 1 2 +δextra + r 9 2 +δ dec |d k-1 ∇ 3 A| + sup (ext) M r 4 u 1+δextra + r 9 2 +δ dec |d k-2 ∇ 2 3 A| + sup (int) M r 2 u 1+δextra |d k A| 0 .
Theorem M2. Under the same assumptions as above we have the following decay estimates for α, with respect to the global frame of Proposition 3.6.11,

max 0≤k≤k small +80 Σ * u 2+2δ dec |d k α| 2 2 0 .
Theorem M3. Under the same assumptions as above we have the following decay estimates on Σ * * D k small +60 0 .

Theorem M4. Under the same assumptions as above we have the following decay estimates on (ext) M (ext) D k small +40 0 .

Theorem M5. Under the same assumptions as above we also have the following decay estimates in (int) M and (top)

M (int) D k small +20 + (top) D k small +20 0 .
Note that, as an immediate consequence of Theorem M1 to Theorem M5, we have obtained, under the same assumptions as above, the following improvement of our bootstrap assumptions on decay

N (Dec) k small +20 0 .
(3.7.1)

End of the proof of the main theorem

We end the proof by invoking a continuity argument as in [START_REF] Klainerman | Global Non-Linear Stability of Schwarzschild Spacetime under Polarized Perturbations[END_REF]. The argument is based on Definition 3.7.1 below of the set U(u * ) of GCM admissible spacetimes verifying bootstrap assumptions BA with = 0 be given small constants, and let U(u * ) be the set of all GCM admissible spacetimes M defined in Section 3.2 such that • u * is the value of u on the last sphere S * of Σ * ,

• u * satisfies (see (3.4.5))

r * = δ * -1 0 u 1+δ dec * ,
• relative to the combined norms defined in Section 3.3.5, we have 32 N (Sup)

k large ≤ , N (Dec) 
k small ≤ .

Definition 3.7.2. We define U to be the set of all values of u * ≥ 0 for which the spacetime U(u * ) exists.

The following theorem shows that U is not empty.

Theorem M6. There exists δ 0 > 0 small enough such that for a sufficiently small constant 0 > 0 we have

[1, 1 + δ 0 ] ⊂ U.
In view of Theorem M6, we may define U * as the supremum over all value of u * that belongs to U

U * := sup u * ∈U u * .
Assume by contradiction that U * < +∞.

Then, by the continuity of the flow, U * ∈ U. According to (3.7.1), the bootstrap assumptions on decay (3.5.2) on any spacetime of ℵ(U * ) are improved by

N (Dec) k small +20 0 .
To reach a contradiction, we still need an extension procedure for spacetimes in ℵ(u * ) to larger values of u, as well as to improve our bootstrap assumptions on boundedness (3.5.1). This is done in two steps.

Theorem M7. Any GCM admissible spacetime in ℵ(u * ) for some 0 < u * < +∞ such that Theorem M8. The GCM admissible spacetime exhibited in Theorem M7 satisfies in addition

N (Sup) k large 0
and therefore belongs to ℵ(u * ). In particular u * belongs to U.

In view of Theorem M8, we have reached a contradiction, and hence

U * = +∞
so that the spacetime may be continued forever. This concludes the proof of the main theorem.

List of all null frames used in this work

For the convenience of the reader, we list in this section the various null frames used in this work:

• Null frame adapted to Σ * : this null frame is part of the GCM-PG data set on Σ * introduced in section 3.2.3. It appears both in the statement of Theorem M3 in section 3.7.1 and in its proof in Chapter 5.

• Outgoing PG frame of (ext) M: this null frame is attached to the outgoing PG structure of (ext) M introduced in section 3.2.2. It appears both in the statement of Theorem M4 in section 3.7.1 and in its proof in Chapter 6.

• Ingoing PG frame of (int) M: this null frame is attached to the ingoing PG structure of (int) M introduced in section 3.2.2. It appears both in the statement of Theorem M5 in section 3.7.1 and in its proof in Chapter 7.

• Ingoing PG frame of (top) M: this null frame is attached to the ingoing PG structure of (top) M introduced in section 3.2.2. It appears both in the statement of Theorem M5 in section 3.7.1 and in its proof in Chapter 7.

• First global frame: this global null frame on M is constructed in section 3.6.4, see Proposition 3.6.9. It appears both in the statement of Theorem M1 in section 3.7.1 and in its proof in Part II of [START_REF] Giorgi | Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes[END_REF].

• Second global frame: this global null frame on M is constructed in section 3.6.5, see Proposition 3.6.11. It appears both in the statement of Theorem M2 in section 3.7.1 and in its proof in Part II of [START_REF] Giorgi | Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes[END_REF].

• Other null frames on (ext) M: the second null frame on (ext) M, constructed in section 3.6.2, see Proposition 3.6.2, is an auxiliary frame used in the construction of the first global null frame of section 3.6.4. Also, the third null frame on (ext) M, constructed in section 3.6.3, see Proposition 3.6.5, is an auxiliary frame used in the construction of the second global null frame of section 3.6.5.

Remark 3.7.3. In addition to the above null frames, note that we will introduce other null frames in the proof of Theorem M8 in Chapter 9:

• Three null frames attached respectively to one outgoing and two ingoing PT structures in M, introduced in section 9.1.3 and used throughout the proof of Theorem M8 in Chapter 9.

• An additional global null frame on M, introduced in section 9.6.1, and used for the curvature estimates of Theorem M8 proved in Part III of [START_REF] Giorgi | Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes[END_REF].

Conclusions

We denote by M our global spacetime obtained in the limit u * → +∞. Note that in the limit u * → +∞, the region (top) M disappears33 so that

M = (int) M ∪ (ext) M, (3.8.1) 
where (int) M is covered by an ingoing PG structure, and (ext) M by an outgoing PG structure. In particular, note that

(int) M = {1 ≤ u < +∞} ∪ {r + -δ H ≤ (int) r ≤ r 0 }, (ext) M = {1 ≤ u < +∞} ∪ {r 0 ≤ (ext) r < +∞}, (3.8.2)
where we recall that

r + = m 0 + m 2 0 -a 2 0 . (3.8.3)
Also, as a consequence of Theorem M0, the parameters (m ∞ , a ∞ ) obtained in the limit

u * → +∞ satisfy |m ∞ -m 0 | + |a ∞ -a 0 | 0 . (3.8.4)
This implies in particular m ∞ > 0 and |a ∞ | m ∞ .

The Penrose diagram of M

Complete future null infinity. We first deduce from our estimate that our spacetime M has a complete future null infinity I + . Let us denote by (e 4 , e 3 , e 1 , e 2 ) and (u, r) the null frame and scalar functions associated to our outgoing PG structure of (ext) M. Recall also that the outgoing PG structure of (ext) M comes together with a scalar function θ and a complex 1-form J. The scalar function u of M satisfies, using e 4 (u) = 0,

g(Du, Du) = |∇u| 2 .
Recalling that (see Definition 2.6.6) ∇u = a (J) + | ∇u = a (J) + Γ b , as well as the identity (J)

• (J) = (sin θ) 2
|q| 2 , we infer on (ext) M, using also our control for Γ b induced by the estimates N (Dec) k small 0 of our main theorem,

g(Du, Du) = a 2 (sin θ) 2 |q| 2 + O 0 r 2 u 2+2δ dec .
In particular, the leaves of the u-foliation of (ext) M are asymptotically null as r → +∞, so that the portion of null infinity of M corresponds to the limit r → +∞ along the leaves of the u-foliation of the outgoing PG structure of (ext) M. As these leaves exist for all u ≥ 1 with suitable estimates, it suffices to prove that u is an affine parameter of I + . To this end, recall from our main theorem that the estimates N (Dec) k small 0 hold which implies in particular sup

(ext) M u 1+δ dec r|ξ| + r ω - 1 2 ∂ r ∆ |q| 2 + ẽ3 (u) 0 . (3.8.5)
We infer that lim r→+∞ ξ, ω = 0 for all 1 ≤ u < ∞.

In view of the identity

D 3 e 3 = -2ωe 3 + 2ξ b e b ,
we infer that e 3 is a null geodesic generator of I + . Since we have

e 3 (u) = 2(r 2 + a 2 ) |q| 2 + ẽ3 (u) = 2(r 2 + a 2 ) |q| 2 + O 0 u 1+δ dec = 2 + O 1 r 2 + 0
in view of (3.8.5), u is an affine parameter of I + so that I + is indeed complete.

Existence of a future event horizon. Let us denote by (e 4 , e 3 , e 1 , e 2 ) and (u, r) the null frame and scalar functions associated to our ingoing PG structure of (int) M. Note that the estimates

N (Dec) k small 0 imply sup (int) M u 1+δ dec |e 3 (r) + 1| + e 4 (r) - ∆ ∞ |q| 2 0 ,
where

∆ ∞ = ∆(a ∞ , m ∞ ).
In particular, considering the spacetime region r ≤ r + (1 -δ H /2) of (int) M, and in view of the estimate |m ∞ -m 0 | 0 , we infer, for all r ≤ r + (1

-δ H /2), that ∆ ∞ = ∆(a ∞ , m ∞ ) = r 2 -2m ∞ r + a 2 ∞ = (r -r + (a ∞ , m ∞ ))(r -r -(a ∞ , m ∞ )) = (r -r + )(r -r -) + O(m ∞ -m 0 ) + O(a ∞ -a 0 ) ≤ - δ H 2 r + r + -r -- δ H r + 2 + O( 0 ) -δ H < 0
and hence

e 3 (r) ≤ - 1 2 < 0, e 4 (r) -δ H < 0 on (int) M (r ≤ r + (1 -δ H /2)) .
Consider now γ(s) any future directed null geodesic emanating from a point of the region (int) M(r ≤ r + (1 -δ H /2)). Since γ is a null vector, there exists at any point of γ(s) in (int) M a scalar λ and a 1-form f such that

γ = λ e 4 + f b e b + 1 4 |f | 2 e 3 ,
where λ > 0 (since γ is future directed). Since ∇(r) = 0, we infer

dr ds = D γ r = λ e 4 + f b e b + 1 4 |f | 2 e 3 r = λ e 4 (r) + 1 4 |f | 2 e 3 (r) .
Since e 3 (r) < 0 and e 4 (r) < 0 in (int) M(r ≤ r + (1 -δ H /2)) in view of the above, and since λ > 0 and |f | 2 ≥ 0, we deduce that r decreases along γ(s) so that, in particular, γ(s) cannot reach I + . Thus the past of I + does not contain this region and hence M contains the event horizon H + of a black hole in its interior. Moreover, since any point on the timelike hypersurface T = (int) M ∩ (ext) M is on an outgoing null geodesic in (ext) M of geodesic generator e 4 with e 4 (r) = 1 and defined for all r ≥ r 0 , T is in the past of I + . Hence, since T is one of the boundaries of (int) M, H + is actually located in the interior of the region (int) M.

Asymptotic stationarity of M. Recall that we have introduced a vectorfield T in (ext) M as well as one in (int) M by

T = 1 2 e 3 + ∆ |q| 2 e 4 -2a (J) b e b in (ext) M, T = 1 2 e 4 + ∆ |q| 2 e 3 -2a (J) b e b in (int) M.
Also, see Proposition 2.6.10 , all components of (T) π belong, at least, to Γ b . Thus, making use of the estimate N (Dec) k small 0 of our main theorem, we deduce,

| (T) π| 0 ru 1+δ dec in (ext) M and | (T) π| 0 u 1+δ dec in (int) M.
In particular, T is an asymptotically Killing vectorfield and hence our spacetime M is asymptotically stationary. (f, f , λ) satisfy, see (2.3.3) (6.2.1),

f = -1 + O(r -2 ) + rΓ b ∇u, f = -1 - 2m r + O(r -2 ) + rΓ b ∇u, λ = 1 + O(r -2 ) + r -1 Γ b . (3.8.6)
Then, relying on the frame transformations formulas of Proposition 2.2.3 and the above control of (f, f , λ), we obtain 34 for the frame (e 3 , e 4 , e 1 , e 2 )

tr χ = 2 r + O(r -3 ) + d ≤1 Γ g , χ = O(r -3 ) + d ≤1 Γ g , tr χ = - 2 1 -2m∞ r r + O(r -3 ) + d ≤1 Γ g , χ = O(r -3 ) + d ≤1 Γ b , ζ = O(r -3 ) + d ≤1 Γ g , (3.8.7 
)

ξ = O r -3 + r -1 d ≤1 Γ b , ξ = O r -3 + d ≤1 Γ b , ω = O r -3 + r -1 d ≤1 Γ b , ω = m ∞ r 2 + O r -3 + d ≤1 Γ b , η = O(r -3 ) + d ≤1 Γ g , η = O(r -3 ) + d ≤1 Γ b , (3.8.8) 
and

α = α + O(r -5 ) + r -2 Γ g , β = β + O(r -4 ) + r -2 Γ g , ρ = - 2m ∞ r 3 + O(r -5 ) + r -1 Γ g , * ρ = O(r -4 ) + r -1 Γ g , β = O r -4 + r -1 Γ b , α = O r -5 + Γ b . (3.8.9) 
The spheres at null infinity are round

Recalling that the integrable frame (e 3 , e 4 , e 1 , e 2 ) is such that the horizontal vectors (e 1 , e 2 ) are tangent to S(u, r), the Gauss curvature K of the spheres S(u, r) is given by the Gauss equation

K = -ρ - 1 4 tr χ tr χ + 1 2 χ • χ .
In view of (3.8.7) and (3.8.9), we infer

K - 1 r 2 = O(r -4 ) + r -1 Γ g .
Thus, in view of our estimates in (ext) M for Γ g , we deduce 34 See Lemma 2.4.27 where the corresponding passage from the PG frame to the integrable frame is done in details in the particular case of Kerr. so that lim r→+∞ r 2 K = 1.

K - 1 r 2 1 r 4 + 0 r 3 u 1 2 +δ dec
In particular the spheres at null infinity are round. Also, using Gauss-Bonnet, we have

4π = S K = S 1 r 2 + O 1 r 4 + 0 r 3 u 1 2 +δ dec = |S| r 2 + O |S| r 4 + |S| 0 r 3 u 1 2 +δ dec
and hence

|S| 4π = r 1 + O(r -2 ) + O( 0 r -1 u -1 2 -δ dec ) (3.8.10)
which shows that r is a good approximation of the area radius of the spheres S(u, r).

Limits at null infinity and Bondi mass

Recall the definition of the Hawking mass, associated here to the spheres S(u, r)

m H = |S| 4π 2 1 + 1 16π S tr χ tr χ .
In view of (3.8.10) and (3.8.7), we infer In view of the precise formula for δ ab g(D e a e 4 , e b ) in that lemma, the estimates for f, f in (3.8.6)

m H = m ∞ 1 + O(r -1 ) + O( 0 u -1 2 -δ dec ) . ( 3 
δ ab g(D e a e 4 , e b ) = 1 + O(r -2 ) tr χ + O(r -3 ) + O(r -2 )d ≤1 Γ b .
Next we need to replace tr χ with tr χ . To this end, we make use 35 of the transformation formula for tr χ in Proposition 2.2. Using the above identity with the choice h = 1 and h = tr χ tr χ , we infer, using also (3.8.7), f = O(r -1 ) and the gain in powers of r for ∇ (tr χ tr χ ), 

+tr χ 2ξ • (η + 3ζ ) -| χ | 2 + tr χ 2|η | 2 -χ • χ .
In view of (3.8.7), (3.8.8) and (3.8.9), this yields e 4 (tr

χ tr χ ) = -tr χ 2 tr χ + 4 r ρ - 4 r div ξ + 4 r div η - 2 r χ • χ + O(r -5 ).
Also, since λ = 1 + O(r -2 ) and f = O(r -1 ), we have We deduce from the above

e 4 (m H ) = m H r + 1 8πr |S| 4π S ρ - 1 2 χ • χ + O(r -2 ).
Now, in view of the Gauss equation, and using Gauss-Bonnet and the definition of the Hawking mass, we have

S ρ - 1 2 χ • χ = S -K - 1 4 tr χ tr χ = -4π - 1 4 S tr χ tr χ = - 8πm H |S| 4π
and hence

|e 4 (m H )| r -2 .
(3.8.12)

Since r -2 is integrable, we infer the existence of a limit to m H as r → +∞ along the leaves of the u-foliation of (ext) M

M B (u) = lim r→+∞ m H (u, r) for all 1 ≤ u < +∞,
where M B (u) is the so-called Bondi mass.

Next, using the equation for ∇ 4 χ in Proposition 2.1.3 and that (a) trχ = (a) trχ = 0 in the integrable frame (e 4 , e 

|∇ 4 (r χ )| 1 r 2 .
Since r -2 is integrable, we infer the existence of a limit to r χ as r → +∞ along the leaves of the u-foliation of (ext) M

Θ(u, •) = lim r→+∞ r χ (r, u, •) for all 1 ≤ u < +∞.
On the other hand, in view of N We infer that

|Θ(u, •)| 0 u 1+δ dec for all 1 ≤ u < +∞.

A Bondi mass formula

We use the following computation, see the proof of Lemma 5.4.6,

e 3 (tr χ tr χ ) = -tr χ tr χ 2 + 2tr χ ρ + 2tr χ div ξ + 2tr χ div η +tr χ 2ξ • (η -3ζ ) -| χ | 2 + tr χ 2|η | 2 -χ • χ .
Together with (3.8.7) (3.8.8) (3.8.9) and the estimates N (Dec) k small 0 , we deduce

e 3 (m H ) + r 32π S tr χ | χ | 2 1 r
and hence

e 3 (m H ) + 1 4|S| S |r χ | 2 1 r .
Letting r → +∞ along the leaves of the u-foliation of (ext) M, and using that the spheres at null infinity are round, we infer in view of the definition of M B and Θ

e 3 (M B )(u) = - 1 4 S 2 |Θ| 2 (u, •) for all 1 ≤ u < +∞.
Since

e 3 (u) = e 3 (u) + O(r -1 ) = 2 + ẽ3 (u) + O(r -1 )
and e 3 is orthogonal to the spheres foliating I + , we infer e 3 = (2 + ẽ3 (u))∂ u . Thus, we obtain the following Bondi mass type formula

∂ u M B (u) = - 1 8(1 + 1 2 ẽ3 (u)) S 2 Θ 2 (u, •) for all 1 ≤ u < +∞, (3.8.13) 
with ẽ3 (u) satisfying (3.8.5).

Final Bondi mass

In view of the estimate

|Θ(u, •)| 0 u 1+δ dec for all 1 ≤ u < +∞,
and the control for ẽ3 (u) in (3.8.5), we infer that

|∂ u M B (u)| 2 0 u 2+2δ dec for all 1 ≤ u < +∞.
In particular, since u -2-2δ dec is integrable, the limit along

I + exists M B (+∞) = lim u→+∞ M B (u)
and is the so-called final Bondi mass.

Also, recall (3.8.11)

m H = m ∞ 1 + O(r -1 ) + O( 0 u -1 2 -δ dec ) .
Fixing u and letting r → +∞, we infer on I + , in view of the definition of the Bondi mass,

M B (u) = m ∞ 1 + O( 0 u -1 2 -δ dec ) .
Then, letting u → +∞ along I + , and in view of the definition of the final Bondi mass, we infer

m ∞ = M B (+∞),
i.e. the final mass m ∞ coincides with the final Bondi mass.

The final angular momentum a ∞

We exhibit below a geometric quantity converging to the final angular momentum a ∞ along I + as u → +∞. Relying on the frame transformation formulas of Proposition 2.2.3 and the above control of (f, f , λ) in (3.8.6), we have

curl β = curl β - 3m ∞ r 3 curl (f ) + r -3 Γ g + O(r -6 ).
Using again (3.8.6) for f , this yields

curl β = curl β - 3m ∞ r 3 curl (∇u) + r -3 Γ g + O(r -6 ).
We have

curl (∇u) = ∈ ab ∇ a ∇ b u =∈ ab D a D b u - 1 2 χ ab e 3 (u) - 1 2 χ ab e 4 (u) = - 1 2 (a) trχe 3 (u) - 1 2 (a) trχe 4 (u)
which together with the fact that e 4 (u) = 0 implies

curl β = curl β + 3m ∞ 2r 3 (a) trχe 3 (u) + r -3 Γ g + O(r -6 ).
Recall, in view of Definition 2.6.6 and the definitions of Γ g , Γ b ,

trX = tr χ -i (a) trχ = 2 q + Γ g = 2(r -i cos θ) r 2 + a 2 + Γ g , e 3 (u) = 2(r 2 + a 2 ) |q| 2 + rΓ b . Hence curl β = curl β + 6a ∞ m ∞ cos θ r 5 + r -3 Γ g + O(r -6 ).
For a scalar function h on (ext) M, we introduce, in Section 2.6.1, -) ,

(h) =1 := 1 |S| S J (0) , S J (+) , S J ( 
where

J (0) = cos θ, J (+) = sin θ cos ϕ, J (-) = sin θ sin ϕ.
Now, in view of Lemma 6.2.9, we have on

(ext) M S J (p) J (q) = 4π 3 r 2 δ pq + O 1 + 0 ru -1 2 -δ dec ,
from which we infer

r 5 (curl β ) =1,0 = r 5 (curl β) =1,0 + 2a ∞ m ∞ + r 2 Γ g + O(r -1 ), r 5 (curl β ) =1,± = r 5 (curl β) =1,± + r 2 Γ g + O(r -1 ). (3.8.14)
We next appeal to the first identity (6.3.4) of Proposition 6. 

rJ (±) Σ [D] ren r 4 [B] ren ∓ a r 2 S(u,r) rJ (∓) Σ [D] ren r 4 [B] ren = O 0 r 3 2 u 1 2 +δ dec , where [B] ren := B - 3a 2 q P J - a 4 J • A, [D] ren := D • - a 2 J • ∇ 4 - a 2 J,
are renormalized quantities. Recalling that Σ 2 = (r 2 + a 2 )|q| 2 + 2mra 2 (sin θ) 2 , in (2.6.1), and the estimates for A, B, P and Γ g provided by the main theorem, we deduce

∇ 4 r 3 S D • B + r -3 d ≤1 Γ g J (p) = O 0 r 3 2 u 1 2 +δ dec .
Integrating forward from T , using again N (Dec) k small 0 , we obtain sup

(ext) M u 1 2 +δ dec r 3 S (D • B)J (p) 0 . Since D • B = (∇ -i * ∇) • (β + i * β) = 2div β + 2icurl β, this yields sup (ext) M u 1 2 +δ dec r 5 |(curl β) =1 | 0
and hence, back to (3.8.14),

r 5 (curl β ) =1,0 = 2a ∞ m ∞ + O 1 r + 0 u 1 2 +δ dec , r 5 (curl β ) =1,± = O 1 r + 0 u 1 2 +δ dec . (3.8.15)
To derive a limit for r 5 (curl β ) =1,0 as r → ∞, at constant u, we need to estimate the quantity e 4 (r 5 (curl β ) =1 ). We start with the following Bianchi identity for the integrable frame, in view of Proposition 2.1.3 with (a) trχ = 0,

∇ 4 β + (2tr χ + 2ω )β = div α + α • (2ζ + η ) + 3ρ ξ + 3 * ρ * ξ .
Differentiating with curl , this yields

e 4 (curl β ) -[∇ 4 , curl ]β + 2tr χ curl β = curl div α -2∇ tr χ • * β -curl (ω β ) +curl α • (2ζ + η ) + 3ρ ξ .
By standard commutation formulas (see [START_REF] Giorgi | Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes[END_REF] or [START_REF] Christodoulou | The global nonlinear stability of the Minkowski space[END_REF]) 

[∇ 4 , curl ]β = - 1 2 tr χ curl β -χ • ∇ * β + (η + ζ ) • ∇ 4 * β + ξ • ∇ 3 * β +ξ • χ • β + η • χ • β ,
ξ = 1 2 ∇ 4 f + 1 4 tr χf + O(r -3 ) + r -2 d ≤1 Γ b = 1 2r ∇ 4 (rf ) + O(r -3 ) + r -2 d ≤1 Γ b
where we have kept the explicit form of the a priori problematic term. We now show that ∇ 4 (rf ) behaves better than expected from (3.8.6). In view of the explicit formula for f f = -4 e 3 (u) + (e 3 (u)) 2 + 4|∇u| 2 e 3 (r) ∇u in (2.3.3), we have 36

∇ 4 (rf ) = -4 1 + rΓ b + O(r -2 ) ∇ 4 (r∇u) -2e 4 (e 3 (u))r∇u + O(r -4 ) + r -3 Γ b .
The desired gain comes from the following transport equations in e 4 of Proposition 2.3.6

∇ 4 Du + 1 2 trXDu = - 1 2 X • Du, e 4 (e 3 (u)) = -(Z + H) • Du , from which ∇ 4 (r∇u) = O(r -2 ) + Γ g , e 4 (e 3 (u)) = O(r -2 ) + r -1 Γ b . Therefore ∇ 4 (rf ) = O(r -2 ) + Γ g ,
i.e. ∇ 4 (rf ) behaves indeed better than expected from (3.8.6). Plugging in the above formula for ξ , we obtain the following improvement of (3.8.8) for ξ On the other hand, using the fact that f = Γ b + O(r -1 ) and λ = 1 + O(r -2 ) + r -1 Γ b in view of (3.8.6), we have 36 Note that e 3 (u) = 2 + rΓ b , e 3 (r) = -1

ξ = O(r -3 ) + r -1 Γ g + r -2 d ≤1 Γ b . ( 3 
e 4 (r 3 ) - 3 2 r 3 tr χ = 3r 2 λ e 4 + f • ∇ + 1 4 |f | 2 e 3 r - 3 2 r 3 tr χ = 3r 2 λ - 3 2 r 3 tr χ + O(1) + rΓ b = - 3 2 r 3 tr χ - 2 r + O(1) + rΓ b = r 3 d ≤1 Γ g + O(1) + rΓ b ,
+ rΓ b + O(r -2 ) and ∇u = Γ b + O(r -1 ).
where we used (3.8.7) for tr χ . Using also the control for β in (3.8.9), i.e. β = β + O(r -4 ) + r -2 Γ g , we deduce e 4 (r 3 curl β ) + tr χ r 3 curl β = r 3 curl div α + O r -4 + 0 r - 

e 4 (h) + tr χ h + f • ∇ h + O(r -1 )h.
Since e 4 (J (p) ) = 0 for p = 0, +, -, we infer

e 4 S r 3 curl β J (p) = S e 4 (r 3 curl β ) + tr χ r 3 curl β J (p) + O(r 3 ) d / ≤1 curl β . Since e 4 (r 3 curl β ) = λ e 4 + f • ∇ + 1 4 |f | 2 (r 3 curl β ) = e 4 (r 3 curl β ) + O(r)d ≤1 curl β ,
we deduce Thus, in view of (3.8.19),

e 4 S r 3 curl β J (p) = r 3 S curl div α J (p) + O(r 3 )d ≤1 curl β + O r -2 + 0 r -3 2 .
Together with the control for β = β +O(r -4 )+r -2 Γ g in (3.8.9) and recalling the definition

of d / 2 , d / 1 e 4 S r 3 curl β J (p) = r 3 S d / 1 d / 2 α • (0, J (p) ) + O r -2 + 0 r -3 2 .
Integrating by parts we deduce

e 4 S r 3 curl β J (p) = r 3 S α • d * / 2 d * / 1 (0, J (p) ) + O r -2 + 0 r -3 2 .
Now, according to Proposition 6.2.10, we have

| d * / 2 d * / 1 (0, J (p) )| 0 r 3 u 1 2 +δ dec + 1 r 4 .
Together with the control for α in (3.8.9) we deduce

e 4 S r 3 curl β J (p) = O r -2 + 0 r -3 2 .
Together with the definition of (curl β ) =1 , we finally obtain the following control for e 4 ((curl

β ) =1 ) e 4 ((curl β ) =1 ) = O r -2 + 0 r -3 2 .
Since r -3/2 is integrable, we infer from the above control of e 4 ((curl β ) =1 ) the existence of a limit to (curl β ) =1 as r → +∞ along the leaves of the u-foliation of (ext) M, for all 1 ≤ u < +∞,

J =1,p (u) := lim r→+∞ (curl β ) =1,p (u, r), p = 0, +, -. (3.8.20) 
Fixing u and letting r → +∞ in (3.8.15), we infer on I + , in view of the definition of J =1,p (u),

J =1,0 (u) = 2a ∞ m ∞ + O 0 u 1 2 +δ dec , J =1,± (u) = O 0 u 1 2 +δ dec .
Then, letting u → +∞ along I + , we deduce that J =1,p (u) admit limits, which we denote by J =1,p (+∞), i.e.

J =1,p (+∞) := lim u→+∞ J 1,p (u), p = 0, +, -, and that these limits satisfy

a ∞ = 1 2m ∞ J =1,0 (+∞), J =1,± (+∞) = 0.

Other conclusions

Coordinates systems on (ext) M and (int) M

In view of Proposition 4.1.1, (ext) M is covered by three regular coordinates patches:

• in the (u, r, θ, ϕ) coordinates system, we have, for π 4 < θ < 3π 4 , g = g a∞,m∞ + du, dr, rdθ, r sin θdϕ

2 O 0 u 1+δ dec ,
• in the (u, r, x 1 , x 2 ) coordinates system, with x 1 = J (+) and x 2 = J (-) , we have, for 0 ≤ θ < π 3 and for 2π 3 < θ ≤ π,

g = g a∞,m∞ + du, dr, rdx 1 , rdx 2 2 O 0 u 1+δ dec ,
where in each case, g a∞,m∞ denotes the Kerr metric expressed in the corresponding coordinates system of Kerr, see Lemma 2.4.10 and Lemma 2.4.24.

Also, in view of Proposition 4.1.2, (int) M is covered by three regular coordinates patches:

• in the (u, r, θ, ϕ) coordinates system, we have, for π 4 < θ < 3π 4 , g = g a∞,m∞ + du, dr, rdθ, r sin θdϕ

2 O 0 u 1+δ dec ,
• in the (u, r, x 1 , x 2 ) coordinates system, with x 1 = J (+) and x 2 = J (-) , we have, for 0 ≤ θ < π 3 and for 2π 3 < θ ≤ π, g = g a∞,m∞ + du, dr, rdx 1 , rdx 

Asymptotic of the future event horizon

Let

r ±,∞ := m ∞ ± m 2 ∞ -a 2 ∞ .
We show below that H + is located in the following region of We consider first the lower bound. Let us denote by (e 4 , e 3 , e 1 , e 2 ) and (u, r) the null frame and scalar functions associated to our ingoing PG structure of (int) M. The estimates

(int) M r +,∞ 1 - √ 0 u 1+δ dec ≤ r ≤ r +,∞ 1 + √ 0 u 1+ δ dec
N (Dec) k small 0 imply sup (int) M u 1+δ dec |e 3 (r) + 1| + e 4 (r) - ∆ |q| 2 0 .
In particular, we have for all r ≤ r +,∞ 1 -

√ 0 u 1+δ dec ∆ = r 2 -2m ∞ r + a 2 ∞ = (r -r +,∞ )(r -r -,∞ ) ≤ - √ 0 2u 1+δ dec r +,∞ r +,∞ -r -,∞ - √ 0 2u 1+δ dec - √ 0 u 1+δ dec < 0
and hence

e 3 (r) ≤ - 1 2 < 0, e 4 (r) - √ 0 u 1+δ dec < 0 on (int) M r ≤ r +,∞ 1 - √ 0 u 1+δ dec .
Consider now γ(s) any future directed null geodesic emanating from a point of the region

(int) M r ≤ r +,∞ 1 - √ 0 u 1+δ dec
. γ being a null vector, there exists at any point of γ(s) Since e 3 (r) < 0 and e 4 (r) < 0 in (int) M r ≤ r +,∞ 1 -

in (int) M a
√ 0 u 1+δ dec
in view of the above, and since λ > 0 and |f | 2 ≥ 0, we deduce that r decreases along γ(s) so that γ(s) either stays in

(int) M r ≤ r +,∞ 1 - √ 0 u 1+δ dec
for all s, or exits

M through r = r + (1 -δ H ). Thus, (int) M r ≤ r +,∞ 1 - √ 0 u 1+δ dec
lies strictly inside the black hole and hence,

H + must lie in r ≥ r +,∞ 1 - √ 0 u 1+δ dec
which concludes the lower bound.

Next, we focus on proving the upper bound. We need to show that any 2-sphere

S(u 1 ) := S   u 1 , r = r +,∞   1 + √ 0 u 1+ δ dec 2 1     , 1 ≤ u 1 < +∞, (3.8.22)
is in the past of I + . Since (ext) M lies in the past of I + , is suffices to show that from any point of S(u 1 ) there exists a future directed null geodesic reaching (ext) M in finite time. We will in fact show that the future directed null geodesics from S(u 1 ) with initial speed e 4 reach (ext) M in finite time. Assume, by contradiction, that there exists a null geodesic from S(u 1 ) with initial speed e 4 , denoted by γ, that does not reach (ext) M in finite time. Let e 4 be the geodesic generator of γ. In view of Lemma 2.2.1 on general null frame transformation, and denoting by (e 4 , e 3 , e 1 , e 2 ) the null frame 37 of (int) M, we look for e 4 under the form

e 4 = λ e 4 + f a e a + 1 4 |f | 2 e 3 .
Also, let

F := f + i * f.
Then, the fact that e 4 is geodesic implies the following transport equations along γ for F and λ in view of Corollary 2.2.5

∇ λ -1 e 4 F + 1 2 trXF + 2ωF = -2Ξ -χ • F + E 1 (f, Γ), λ -1 ∇ 4 (log λ) = 2ω + f • (ζ -η) + E 2 (f, Γ),
where E 1 (f, Γ) and E 2 (f, Γ) contain expressions of the type O(Γf 2 ) with no derivatives and Γ denotes the Ricci coefficients w.r.t. the original null frame (e 3 , e 4 , e 1 , e 2 ) of (int) M.

We then proceed as follows 1. First, since e 4 is the initial speed of γ on S(u 1 ), f and λ satisfy f = 0, λ = 1 on γ ∩ S(u 1 ).

2. Then, we initiate a continuity argument by assuming for some

u 1 < u 2 < u 1 + u 1 0 δ dec 2 that we have |f | ≤ √ 0 u 1 2 +δ dec 1 , ∆ |q| 2 ≥ c ∞ √ 0 2u 1+ δ dec 2 1 , 0 < λ < +∞ on γ(u 1 , u 2 ) ∩ (int) M (3.8.23)
37 Recall that we assume by contradiction that γ does not reach (ext) M and hence stays in (int) M.

where γ(u 1 , u 2 ) denotes the portion of γ in u 1 ≤ u ≤ u 2 and where the strictly positive constant c ∞ is given by

c ∞ := r +,∞ (r +,∞ -r -,∞ ) (r +,∞ ) 2 + a 2 ∞ .
3. We have

λ -1 e 4 (u) = e 4 (u) + f • ∇(u) + 1 4 |f | 2 e 3 (u) = 2(r 2 + a 2 ) |q| 2 + ẽ4 (u) + f • ∇(u).
Relying on our control of the ingoing geodesic foliation of (int) M, the above assumption for f and the transport equation for F , we obtain on γ(u

1 , u 2 ) ∩ (int) M sup γ(u 1 ,u 2 )∩ (int) M |f | 0 u 1+δ dec 1 (u 2 -u 1 ) 1- δ dec 2 0 u 1+ δ dec 2 1
which improves our assumption in (3.8.23) on f . .

This yields

λ -1 e 4 log ∆ |q| 2 = λ -1 e 4 (r)∂ r log ∆ |q| 2 -λ -1 e 4 (cos θ)∂ cos θ log(|q| 2 ) = ∂ r ∆ |q| 2 + |q| 2 ∆ O 0 u 1+δ dec 1 + O √ 0 u 1 2 +δ dec 1
.

Thanks to our assumption on the lower bound of ∆ |q| 2 , we infer

λ -1 e 4 log ∆ |q| 2 = ∂ r ∆ |q| 2 (1 + O( √ 0 ))
and since we are in (int) M, r ≥ r 0 and hence

λ -1 e 4 log ∆ |q| 2 ≥ m 0 2r 2 0 .
Integrating from u = u 1 , we deduce

∆ |q| 2 ≥ 1 + O( √ 0 ) c ∞ √ 0 u 1+ δ dec 2 1 exp m 0 2r 2 0 (u -u 1 )
which is an improvement of our assumption in (3.8.23) on ∆ |q| 2 .

5. In view of the control of f and of the ingoing geodesic foliation of (int) M, we rewrite the transport equation for λ as

λ -1 ∇ 4 (log λ) = 2ω + f • (ζ -η) + E 2 (f, Γ) = -∂ r ∆ |q| 2 + O   1- δ dec 2 0 u 1+ δ dec 2 1   .
Since we have obtained above the other hand

λ -1 e 4 log ∆ |q| 2 = ∂ r ∆ |q| 2 (1 + O( √ 0 ))
we immediately infer

λ -1 e 4 log λ ∆ |q| 2 2 > 0, λ -1 e 4 log λ ∆ |q| 2 < 0.
Integrating from u = u 1 , this yields

  1 + O( √ 0 ) c ∞ √ 0 u 1+ δ dec 2 1   2 ∆ |q| 2 -2 ≤ λ ≤   1 + O( √ 0 ) c ∞ √ 0 u 1+ δ dec 2 1   1 2 ∆ |q| 2 -1 2 .
Since ∆ |q| 2 has an explicit lower bounded in view of our previous estimate, as well as an explicit upper bound since we are in (int) M, this yields an improvement of our assumptions in (3.8.23) for λ.

6. Since we have improved all our bootstrap assumptions (3.8.23), we infer by a continuity argument the following bound

∆ |q| 2 ≥ 1 + O( √ 0 ) c ∞ √ 0 u 1+ δ dec 2 1 exp m 0 2r 2 0 (u -u 1 ) on γ   u 1 , u 1 + u 1 0 δ dec 2   ∩ (int) M.
Now, in this u interval, we may choose

u 3 := u 1 + 2r 2 0 m 0 1 + δ dec 2 log u 1 0
for which we have ∆ |q| 2 ≥ 1. This is a contradiction since ∆ |q| 2 < 1 in (int) M (and even in M). Thus, we deduce that γ reaches (ext) M before u = u 3 , a contradiction to our assumption on γ. This concludes the proof of (3.8.21).

Structure of the rest of the paper

The rest of this paper is devoted to the proof of Theorem M0-M8. Note that the following results will be proved in separate papers:

• Theorem M1 concerning decay estimates for q and A, and Theorem M2 concerning decay estimates for A are proved in Part II of [START_REF] Giorgi | Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes[END_REF].

• The control of the curvature components in Theorem M8, concerning top order boundedness estimates, is derived in Part III of [START_REF] Giorgi | Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes[END_REF].

In this paper, we prove the remaining results, i.e. Theorem M0 and Theorems M3-M7, as well as 38 Theorem M8. More precisely:

1. We prove first consequences of the bootstrap assumptions, i.e. the control of coordinates systems and of the global frame of Section 3.6, in Chapter 4.

2. Theorem M3 is proved in Chapter 5.

3. Theorem M4 is proved in Chapter 6.

4. Theorem M5 is proved in Chapter 7.

5. Theorems M0, M6 and M7 are proved in Chapter 8.

6. Theorem M8 is proved in Chapter 9 assuming the control of the curvature components in [START_REF] Giorgi | Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes[END_REF].

Remark 3.9.1. Note that Theorem M0 should be proved first but has been postponed to chapter 8 for convenience as its proofs has a similar flavor to the ones of Theorems M6 and M7. In particular, while its proof is in chapter 8, it relies only on the bootstrap assumptions and on the assumptions on the initial data layer.

Chapter 4

First consequences of the bootstrap assumptions

In this chapter, we derive first consequences of our bootstrap assumptions on decay and boundedness. We start with the control of coordinates systems on (ext) M and (int) M in Section 4.1. Then, we prove Proposition 3.6.2 on the construction of a second frame of (ext) M in Section 4.2. Finally, we prove Proposition 3.6.9 on the construction of a global frame on M in section 4.5.

Control of coordinates systems

In this section, we show that the metric in (ext) M and (int) M is close to Kerr in suitable coordinates systems by relying on the bootstrap assumptions. • in the (u, r, θ, ϕ) coordinates system, we have, for π 4 < θ < 3π 4 , g = g a,m + du, dr, rdθ, r sin θdϕ

2 O u 1+δ dec ,
• in the (u, r, x 1 , x 2 ) coordinates system, with x 1 = J (+) and x 2 = J (-) , we have, for 0 ≤ θ < π 3 and for 2π 3 < θ ≤ π,

g = g a,m + du, dr, rdx 1 , rdx 2 2 O u 1+δ dec ,
where in each case, g a,m denotes the Kerr metric expressed in the corresponding coordinates system of Kerr, see Lemma 2.4.10 and Lemma 2.4.24.

Proposition 4.1.2. (int) M is covered by three regular coordinates patches:

• in the (u, r, θ, ϕ) coordinates system, we have, for π 4 < θ < 3π 4 , g = g a,m + du, dr, rdθ, r sin θdϕ

2 O u 1+δ dec ,
• in the (u, r, x 1 , x 2 ) coordinates system, with x 1 = J (+) and x 2 = J (-) , we have, for 0 ≤ θ < π 3 and for 2π 3 < θ ≤ π,

g = g a,m + du, dr, rdx 1 , rdx 2 2 O u 1+δ dec ,
where in each case, g a,m denotes the Kerr metric expressed in the corresponding coordinates system of Kerr, i.e. the analog for ingoing PG structures of Lemma 2.4.10 and Lemma 2.4.24.

The proof of Proposition 4.1.1 and Proposition 4.1.2 being similar, we focus in the rest of this section on the proof of Proposition 4.1.1.

It will be in fact easier to control first the coefficients of the inverse metric. To this end, we rely on the following simple lemma.

Lemma 4.1.3. In a coordinates system (x α ), we have

g αβ = - 1 2 e 4 (x α )e 3 (x β ) - 1 2 e 3 (x α )e 4 (x β ) + ∇(x α ) • ∇(x β ).
Proof. For a scalar function h, we have

Dh = g αβ e α (h)e β = - 1 2 e 4 (h)e 3 - 1 2 e 3 (h)e 4 + ∇(h).
We infer

g(Dx α , Dx β ) = - 1 2 e 4 (x α )e 3 (x β ) - 1 2 e 3 (x α )e 4 (x β ) + ∇(x α ) • ∇(x β ). Since g(Dx α , Dx β ) = g g αµ ∂ x µ , g βν ∂ x ν = g αµ g βν g µν = g αβ ,
we deduce

g αβ = - 1 2 e 4 (x α )e 3 (x β ) - 1 2 e 3 (x α )e 4 (x β ) + ∇(x α ) • ∇(x β )
as stated.

Lemma 4.1.4. We have in (ext) M g rr = -e 3 (r),

g rα = - 1 2 e 3 (x α ) for x α = u, θ, ϕ, x 1 , x 2 ,
and

g αβ = ∇(x α ) • ∇(x β ) for x α , x β = u, θ, ϕ, x 1 , x 2 .
Proof. Recall that (u, r, θ, ϕ) and J (±) verify on (ext) M e 4 (r) = 1, ∇(r) = 0, e 4 (u) = e 4 (θ) = e 4 (ϕ) = e 4 (J (+) ) = e 4 (J (-) ) = 0.

In view of Lemma 4.1.3, we infer

g rr = -e 3 (r), g rα = - 1 2 e 3 (x α ) for x α = u, θ, ϕ, x 1 , x 2 ,
and

g αβ = ∇(x α ) • ∇(x β ) for x α , x β = u, θ, ϕ, x 1 , x 2 ,
as stated.

Corollary 4.1.5. In (ext) M, we have 

g rr = ∆ |q| 2 + rΓ b , g ru = - r 2 + a 2 |q| 2 + rΓ b , g rx 1 = ax 2 |q| 2 + Γ b , g rx 2 = - ax 1 |q| 2 + Γ b , g rθ = (sin θ) -1 Γ b , g rϕ = - a |q| 2 + (sin θ) -2 Γ b , g uu = a 2 (sin θ) 2 |q| 2 + r -1 Γ b , g ux 1 = - ax 2 |q| 2 + r -1 Γ b , g ux 2 = ax 1 |q| 2 + r -1 Γ b , g uθ = r -1 (sin θ) -1 Γ b , g uϕ = a |q| 2 + r -1 (sin θ) -2 Γ b , g x 1 x 1 = (cos θ cos ϕ) 2 + (sin ϕ) 2 |q| 2 + r -1 Γ b , g x 1 x 2 = ((cos θ) 2 -1) sin ϕ cos ϕ |q| 2 + r -1 Γ b , g x 2 x 2 = (cos θ sin ϕ) 2 + (cos ϕ) 2 |q| 2 + r -1 Γ b , g θθ = 1 |q| 2 + r -1 (sin θ) -2 Γ b , g θϕ = r -1 (sin θ) -3 Γ b , g ϕϕ = 1 |q| 2 (sin θ) 2 + r -1 (sin θ) -4 Γ b .
| ∇u = ∇u -a (J), ẽ3 (u) = e 3 (u) - 2(r 2 + a 2 ) |q| 2 ,
and

∇J (0) = ∇J (0) + (J), ∇J (±) = ∇J (±) -(J ± ), e 3 (J (+) ) = e 3 (J (±) ) ± 2a |q| 2 J (∓) .
Also, recall that

ẽ3 (r), ẽ3 (u) ∈ rΓ b , | ∇u ∈ Γ b , e 3 (J (0) ), e 3 (J (±) ) ∈ Γ b , ∇J (p) ∈ Γ b , p = 0, +, -.
We infer

e 3 (r) = - ∆ |q| 2 + rΓ b , e 3 (u) = 2(r 2 + a 2 ) |q| 2 + rΓ b , ∇u = a (J) + Γ b , ∇J (0) = -(J) + Γ b , ∇J (±) = (J ± ) + Γ b , e 3 (J (0) ) = Γ b , e 3 (J (±) ) = ∓ 2a |q| 2 J (∓) + Γ b .
Also, we observe sin θ∇(θ) = -∇(J (0) ), sin θe 3 (θ) = -e 3 (J (0) ), (sin θ) 2 ∇(ϕ) = -J (-) ∇(J (+) ) + J (+) ∇(J (-) ), (sin θ) 2 e 3 (ϕ) = -J (-) e 3 (J (+) ) + J (+) ∇(J (-) ), so that we have in view of the above sin θ∇(θ) = (J) + Γ b ,

(sin θ) 2 ∇(ϕ) = -J (-) (J + ) + J (+) (J -) + Γ b , sin θe 3 (θ) = Γ b , (sin θ) 2 e 3 (ϕ) = 2a(sin θ) 2 |q| 2 + Γ b .
In view of Lemma 4.1.4, the proof of the corollary follows then easily.

We are now ready to prove Proposition 4.1.1.

Proof of Proposition 4.1.1. In view of Corollary 4.1.5 for the inverse metric coefficients in (ext) M, and Lemma 2.4.10 for the inverse metric coefficients of the Kerr metric, we have in the (u, r, θ, ϕ) coordinates system of (ext) M g = g a,m + du, dr, rdθ, r sin θdϕ Similarly, in view of Corollary 4.1.5 for the inverse metric coefficients in (ext) M, and Lemma 2.4.24 for the inverse metric coefficients of the Kerr metric, we have in the (u, r, x 1 , x 2 ) coordinates system of (ext) M g = g a,m + du, dr, rdx 1 , rdx 2 2 (cos θ) -2 rΓ b and the conclusion follows from the control of Γ b and the fact that cos θ > 1 2 in the range 0 ≤ θ < π 3 and cos θ < -1 2 in the range 2π 3 < θ ≤ π. This concludes the proof of the Proposition 4.1.1.

Proof of Proposition 3.6.2

Let (e 4 , e 3 , e 1 , e 2 ) be the outgoing PG frame of (ext) M. We will exhibit another frame (e 4 , e 3 , e 1 , e 2 ) of (ext) M provided by where f is such that

f = 0 on S * , q η = 0 on Σ * , ξ = 0 on (ext) M. (4.2.2)
The desired estimates for the Ricci coefficients and curvature components with respect to the new frame (e 4 , e 3 , e 1 , e 2 ) of (ext) M will be obtained in the region (ext) M(r ≥ u 1 2 ) using:

• the change of frame formulas of Proposition 2.2.3, applied to the change of frame from (e 4 , e 3 , e 1 , e 2 ) to (e 4 , e 3 , e 1 , e 2 ),

• the estimates for f on (ext) M, and the fact that f = 0 and λ = 1 in the null frame transformation (4.2.1),

• the estimates for the Ricci coefficients and curvature components with respect to the outgoing PG frame (e 4 , e 3 , e 1 , e 2 ) of (ext) M provided by the bootstrap assumptions on decay and boundedness. Now, as it turns out, the frame (e 4 , e 3 , e 1 , e 2 ) does not satisfy the desired estimates in the region (ext) M(r ≤ u ). We will thus introduce a third frame (e 4 , e 3 , e 1 , e 2 ) on (ext) M, agreeing with (e 4 , e 3 , e 1 , e 2 ) on (ext) M(r ≤ u 1 2 ), and with (e 4 , e 3 , e 1 , e 2 ) on (ext) M(r ≥ u 1 2 ), and satisfying all desired properties of Proposition 3.6.2. In Steps 1-3 below, we study the properties of (e 4 , e 3 , e 1 , e 2 ). We then introduce the frame (e 4 , e 3 , e 1 , e 2 ) in Step 4, and conclude, in Steps 4-6, the proof of Proposition 3.6.2.

Step 1. We start by deriving an equation for f on (ext) M. In view of the condition ξ = 0 on (ext) M, see (4.2.2), in view of ξ = ω = 0 satisfied by the outgoing PG structure of (ext) M, and in view of Corollary 2.2.5, we have

∇ 4 F + 1 2 trXF = -χ • F + E 1 (f, Γ) on (ext) M, (4.2.3) 
where E 1 (f, Γ) contains expressions of the type O(Γf 2 ) with no derivatives, and where

F := f + i * f.
We also derive an equation for f on Σ * . In view of the change of frame formulas of Proposition 2.2.3 in the particular case where λ = 1 and f = 0, we have on

(ext) M ∇ 3 F = 2H -2H + 2ωF + Err[∇ 3 F ],
where the lower order term Err[∇ 3 F ] contains expressions of the type O(f 2 Γ b ) with no derivatives. Now, we have1 

H = aq |q| 2 J + q H, H = aq |q| 2 J + q H ,
and hence

H -H = q H -q H,
so that, together with the condition q H = 0 on Σ * , see (4.2.2), we infer is tangent to Σ * . We compute in view of the above

∇ 3 F = -2 q H + 2ωF + Err[∇ 3 F ] on Σ * . ( 4 
∇ ν Σ * F = ∇ 3 F + b ∇ 4 F = -2 q H + 2ωF + Err[∇ 3 F ] + b - 1 2 trXF -χ • F + E 1 (f, Γ) .
Using (4.2.1), as well as

e 4 (r) = 1, e 4 (u) = 0, ∇(r) = 0, we have b = - e 3 (u + r) e 4 (u + r) = - e 3 (u + r) e 4 + f • ∇ + 1 4 |f | 2 e 3 (u + r) = - e 3 (u) + e 3 (r) 1 + f • ∇(u) + 1 4 |f | 2 (e 3 (u) + e 3 (r))
.

Recalling the following linearizations

ẽ3 (r) = e 3 (r) + ∆ |q| 2 , | Du = Du -aJ, ẽ3 (u) = e 3 (u) - 2(r 2 + a 2 ) |q| 2 , we deduce b = - 1 + 2mr+a 2 (sin θ) 2 |q| 2 + ẽ3 (r) + ẽ3 (u) 1 + f • ∇(u) + 1 4 |f | 2 (e 3 (u) + e 3 (r))
and hence

∇ ν Σ * F = -2 q H + 2ωF + Err[∇ 3 F ] (4.2.5) - 1 + 2mr+a 2 (sin θ) 2 |q| 2 + ẽ3 (r) + ẽ3 (u) 1 + f • ∇(u) + 1 4 |f | 2 (e 3 (u) + e 3 (r)) - 1 2 trXF -χ • F + E 1 (f, Γ) on Σ * .
Step 2. Next, we estimate f on Σ * . In view of (3.4.1) and (3.4.6), we have

δ dec (k large -k small ) ≥ 1 2 δ dec k large -δ dec 1,
and we may thus assume from now on

δ dec 3 (k large -k small ) ≥ 130.
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δ 0 = 130 k large -k small ≤ δ dec 3 .
Note in particular, from the bootstrap assumptions on decay and boundedness for the outgoing PG frame (e 4 , e 3 , e 1 , e 2 ) of (ext) M that

|d ≤k small +130 Γ g | |d ≤k small Γ g | 1- 130 k large -k small |d ≤k large Γ g | 130 k large -k small min r 2 1 u 1 2 +δ dec 1- 130 k large -k small , r 1 u 1+δ dec 1- 130 k large -k small |d ≤k small +130 Γ b | |d ≤k small Γ b | 1- 130 k large -k small |d ≤k large Γ b | 130 k large -k small r 1 u 1+δ dec 1- 130 k large -k small . Since we have, in view of the definition of δ 0 , 130 k large -k small (1 + δ dec ) = (1 + δ dec ) δ 0 ≤ 2δ 0 , 130 k large -k small 1 2 + δ dec = 1 2 + δ dec δ 0 ≤ δ 0 , we infer sup (ext) M r 2 u 1 2 +δ dec -2δ 0 + ru 1+δ dec -2δ 0 |d ≤k small +130 Γ g | + sup (ext) M ru 1+δ dec -2δ 0 |d ≤k small +130 Γ b | . (4.2.6)
Next, we assume the following local bootstrap assumption for f on Σ *

|d ≤k small +130 f | ≤ √ ru 1 2 +δ dec -2δ 0 on u 1 ≤ u ≤ u * (4.2.7)
where

1 ≤ u 1 < u * .
Since f = 0 on S * in view of (4.2.2), (4.2.7) holds for u 1 close enough to u * , and our goal is to prove that we may in fact choose u 1 = 1 and replace √ with in (4.2.7).

In view of the bootstrap assumptions on boundedness for the Ricci coefficients and curvature components with respect to the outgoing principal frame (e 4 , e 3 , e 1 , e 2 ) of (ext) M, (4.2.5) yields

∇ ν Σ * F = -2 q H + h, |d k h| r -1 (|d ≤k f | + |d ≤k f | 4 ) for k ≤ k large .
To differentiate this transport equation, we introduce the derivation

∇ := ∇ - ∇ (u + r) e 4 (u + r) ∇ 4
so that (∇ ν Σ * , ∇) span all tangential derivatives to Σ * . Note that

∇ = ∇ - ∇(u + r) + 1 2 f e 3 (u + r) e 4 (u + r) + f • ∇(u + r) + 1 4 |f | 2 e 3 (u + r) ∇ 4 = ∇ - ∇(u) + 1 2 f e 3 (u + r) 1 + f • ∇(u) + 1 4 |f | 2 e 3 (u + r) ∇ 4 .
We introduce the following weighted derivatives on Σ * :

d / := r ∇, d = (∇ ν Σ * , d /).
Using commutator identities, using also (4.2.3) and (4.2.4), and in view of (4.2.7), we infer

|∇ ν Σ * d / k F | |d ≤k q H| + √ r 2 u 1 2 +δ dec -2δ 0 for k ≤ k small + 130, u 1 ≤ u ≤ u * .
Since f = 0 on S * in view of (4.2.2), and since ν Σ * is tangent to Σ * , we deduce on Σ * , integrating along the integral curve of

ν Σ * | d / k F | u * u |d ≤k q H| + √ u 1 2 +δ dec -2δ 0 u * u 1 ν Σ * (u )r 2 for k ≤ k small + 130, u 1 ≤ u ≤ u * . Since ν Σ * (u) = e 3 (u) + b e 4 (u) = e 3 (u) - 1 + 2mr+a 2 (sin θ) 2 |q| 2 + ẽ3 (r) + ẽ3 (u) 1 + f • ∇(u) + 1 4 |f | 2 (e 3 (u) + e 3 (r)) e 4 + f b e b + 1 4 |f | 2 e 3 u = 2(r 2 + a 2 ) |q| 2 + ẽ3 (u) - 1 + 2mr+a 2 (sin θ) 2 |q| 2 + ẽ3 (r) + ẽ3 (u) 1 + f • ∇(u) + 1 4 |f | 2 (e 3 (u) + e 3 (r)) f • ∇(u) + 1 4 |f | 2 e 3 (u) 192CHAPTER 4.
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we have

ν Σ * (u) = 2 + O 1 r +
and hence, we have on

Σ * | d / k F | u * u |d ≤k q H| + √ u 1 2 +δ dec -2δ 0 u * u 1 r 2 for k ≤ k small + 130, u 1 ≤ u ≤ u * .
Together with the behavior (3.4.5) of r on Σ * , we infer

| d / k F | u * u |d ≤k q H| + ru 1 2 +δ dec -2δ 0 for k ≤ k small + 130, u 1 ≤ u ≤ u * .
Next, we estimate q H. We have by interpolation

d ≤k small +132 q H L 2 (S) d ≤k small q H 1- 132 k large -k small L 2 (S) d ≤k large q H 132 k large -k small L 2 (S)
, and hence, using δ 0 > 0, we have Σ * (≥u)

|d ≤k small +132
q H| Σ * (≥u)

u 1+δ 0 |d ≤k small +132 q H| 2 1 2 1 u 1 2 +δ dec -2δ 0 Σ * u 2+2δ dec |d ≤k small q H| 2 1 2 - 132 2(k large -k small ) Σ * |d ≤k large q H| 2 132 2(k large -k small )
, where we have used the fact, in view of the definition of δ 0 , that

132 k large -k small (1 + δ dec ) + δ 0 2 = 1 + 2 130 (1 + δ dec ) + 1 2 δ 0 ≤ 2δ 0 and 1 2 + δ dec -2δ 0 ≥ 1 2 + δ dec - 2 3 δ dec = 1 2 + δ dec 3 > 0.
Now, recall from the bootstrap assumptions on decay and boundedness for q H on (ext) M that we have

Σ * u 2+2δ dec |d ≤k small q H| 2 + Σ * |d ≤k large q H| 2 ≤ 2 .
We deduce

Σ * (≥u)
|d ≤k small +132 q H| u 

|d k F | ru 1 2 +δ dec -2δ 0 for k ≤ k small + 130, u 1 ≤ u ≤ u *
and hence, since

F = f + i * f , |d k f | ru 1 2 +δ dec -2δ 0 for k ≤ k small + 130, u 1 ≤ u ≤ u * .
This is an improvement of the bootstrap assumption (4.2.7). Thus, we may choose u 1 = 1, and f satisfies the following estimate

|d k f | ru 1 2 +δ dec -2δ 0 for k ≤ k small + 130 on Σ * .
Together with (4.2.4), as well as the behavior (3.4.5) of r on Σ * , and the control of q H provided by (4.2.6), we infer

|d k-1 ∇ 3 f | |d k-1 q H| + r 2 ru 1+δ dec -2δ 0 for k ≤ k small + 130 on Σ * .
Collecting the two above estimates, we obtain

|d k f | ru 1 2 +δ dec -2δ 0 , |d k-1 ∇ 3 f | ru 1+δ dec -2δ 0 for k ≤ k small + 130 on Σ * . (4.2.8)
Step 3. Next, we estimate f on (ext) M. We assume the following local bootstrap assumption

|d ≤k small +130 f | ≤ √ ru 1 2 +δ dec -2δ 0 on r ≥ r 1 , (4.2.9) 
where r 1 ≥ r 0 . In view of the control of f on Σ * provided by (4.2.8), (4.2.9) holds for r 1 sufficiently large, and our goal is to prove that we may in fact choose r 1 = r 0 and replace √ with in (4.2.9).

From Corollary 2.2.5, we may rewrite (4.2.3) as

∇ 4 (qF ) = E 4 (f, Γ) on (ext) M,
where

E 4 (f, Γ) = - 1 2 q } trXF -q χ • F + qE 1 (f, Γ) + f • ∇(q)F + 1 4 |f | 2 e 3 (q)F.
In view of the estimate (4.2.6) for the Ricci coefficients and curvature components with respect to the outgoing principal frame (e 4 , e 3 , e 1 , e 2 ) of (ext) M, and in view of the form of E 1 (f, Γ), we have

d k E 4 (f, Γ) r -1 u -1 2 |d ≤k f | + |d ≤k f | 2 + |d ≤k f | 4 for k ≤ k small + 130.
Using commutator identities, and in view of (4.2.9), we infer 2

∇ 4 ( d /, L / T ) k (qF ) ≤ r 2 u 1+δ dec -2δ 0 for k ≤ k small + 130, r ≥ r 1 .
Integrating backwards from Σ * where we have (4.2.8), we deduce

|( d /, L / T ) k f | ≤ ru 1 2 +δ dec -2δ 0 for k ≤ k small + 130, r ≥ r 1 .
Together with (4.2.3), we recover the e 4 derivatives and obtain

|d k f | ≤ ru 1 2 +δ dec -2δ 0 for k ≤ k small + 130, r ≥ r 1 .
This is an improvement of the bootstrap assumption (4.2.9). Thus, we may choose r 1 = r 0 , and we have

|d k f | ru 1 2 +δ dec -2δ 0 for k ≤ k small + 130 on (ext) M.
Also, commuting once (4.2.3) with e 3 , using the schematic commutator identity

[∇ 3 , ∇ 4 ] = 2ω ∇ 4 -2ω ∇ 3 + 2(η -η ) • ∇ + ξ ξ , η η , * ρ ,
2 Note that we have

δ dec -2δ 0 ≥ δ dec - 2 3 δ dec ≥ δ dec 3 > 0.
and proceeding as above to integrate backward from Σ * where ∇ 3 f is under control from (4.2.8), we also obtain

|d k-1 ∇ 3 f | ru 1+δ dec -2δ 0 + r 2 u 1 2 +δ dec -2δ 0 for k ≤ k small + 130 on (ext) M.
Collecting the two above estimates, we obtain in the region r ≥ u 

1 2 |d k f | ru 1 2 +δ dec -2δ 0 , for k ≤ k small + 130 on (ext) M(r ≥ u 1 2 ), |d k-1 ∇ 3 f | ru 1+δ dec -2δ 0 for k ≤ k small + 130 on (ext) M(r ≥ u 1 2 ). ( 4 
e 3 = e 3 , (4.2.12) 
where the horizontal 1-form f is defined by

f := ψ u 1 2 r f, (4.2.13) 
with ψ a smooth function on R such that ψ = 1 for s ≤ 1 2 and ψ = 0 for s ≥ 1. Note in particular that (e 4 , e 3 , e 1 , e 2 ) coincides with (e 4 , e 3 , e 1 , e 2 ) in (ext) M(r ≤ u 1 2 ). We estimate f . Note that re 4 log u

1 2 r = -1, r∇ log u 1 2 r = r 2u ∇(u) = ar 2u (J) + r 2u Γ b , e 3 log u 1 2 r = 1 2 e 3 (u) u + e 3 (r) r = r 2 + a 2 u|q| 2 - ∆ r|q| 2 + r 2u Γ b + Γ b .
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1 2 ≤ u 1 2
r ≤ 1 on the support of ψ , we infer, for 0 ≤ k ≤ k large ,

d k ψ u 1 2 r 1, d k-1 e 3 ψ u 1 2 r 1 r .
Together with the estimates (4.2.10) for f on (ext) M(r ≥ u

2 ), the property (4.2.11) for f , and the definition (4.2.13) for f , we infer

f = 0, on (ext) M r ≤ u 1 2
and on {u = u * },

|d k f | ru 1 2 +δ dec -2δ 0 , for k ≤ k small + 130 on (ext) M r ≥ u 1 2 , |d k-1 ∇ 3 f | ru 1+δ dec -2δ 0 for k ≤ k small + 130 on (ext) M r ≥ u 1 2 , (4.2.14)
which are the desired estimates for f .

Step 5. In view of Proposition 2.2.3 applied to our particular case, i.e. a triplet (f , f , λ ) with f = 0 and λ = 1, and the fact that (e 4 , e 3 , e 1 , e 2 ) is an outgoing PG frame, we have

ξ = 1 2 ∇ 4 f + 1 4 (tr χf -(a) trχ * f ) + 1 2 f • χ + 1 4 |f | 2 η + 1 2 (f • ζ) f - 1 4 |f | 2 η + l.o.t., ξ = ξ, η = -ζ + 1 4 (tr χf -(a) trχ * f ) + 1 2 f • χ + |f | 2 4 ξ, η = η + 1 2 ∇ 3 f -ωf - 1 4 |f | 2 ξ, ζ = ζ - 1 4 (tr χf + (a) trχ * f ) -ωf - 1 2 f • χ - 1 2 (f • ξ)f , tr χ = tr χ + f • ξ, (a) trχ = (a) trχ + f ∧ ξ, χ = χ + 1 2 f ⊗ξ, tr χ = tr χ + div f + f • (ζ + η) -ω|f | 2 - |f | 2 4 tr χ + f • ξ , (a) trχ = (a) trχ + curl f + f ∧ (ζ -η) - |f | 2 4 (a) trχ + f ∧ ξ , χ = χ + 1 2 ∇ ⊗f + 1 2 f ⊗(ζ + η) - 1 2 ωf ⊗f - |f | 2 8 χ + f ⊗ξ , ω = ω + 1 2 f • ξ, ω = ζ • f - 1 2 |f | 2 ω - 1 2 f • f • χ - |f | 2 4 ξ • f , and 
α = α + f ⊗β - * f ⊗ * β) + f ⊗f - 1 2 * f ⊗ * f ρ + 3 2 f ⊗ * f * ρ + l.o.t., α = α, β = β + 3 2 f ρ + * f * ρ + l.o.t., β = β + 1 2 α • f + l.o.t., ρ = ρ -f • β + l.o.t., * ρ = * ρ -f ∧ β + l.o.t.,
where the lower order terms denoted by l.o.t. are linear with respect to the Ricci coefficients and curvature components of the outgoing PG structure of (ext) M, and quadratic or higher order in f , and do not contain derivatives of the latter. Also, we have

e 4 (r) = 1 + 1 4 |f | 2 e 3 (r), e 4 (u) = f • ∇(u) + 1 4 |f | 2 e 3 (u), e 4 (J (0) ) = f • ∇(J (0) ) + 1 4 |f | 2 e 3 (J (0) ), ∇ (r) = 1 2 e 3 (r)f , ∇ (u) = ∇(u) + 1 2 e 3 (u)f , ∇ (J (0) ) = ∇(J (0) ) + 1 2 e 3 (J (0) )f , ∇ 4 J = - 1 q J + f • ∇J + 1 4 |f | 2 ∇ 3 J, ∇ a J = ∇ a J + 1 2 f a ∇ 3 J, a = 1, 2,
while the derivatives of r, u, J (0) and J in the e 3 direction are the same as for the PG structure of (ext) M since e 3 = e 3 . Together with the estimates (4.2.14) for f on (ext) M, and the estimates for the PG structure of (ext) M provided by 3 (4.2.6), we immediately infer max

0≤k≤k small +129 sup (ext) M r 2 u 1 2 +δ dec -2δ 0 + ru 1+δ dec -2δ 0 |d k (Γ g \ { q H })| + ru 1+δ dec -2δ 0 |d k Γ b | +r 2 u 1+δ dec -2δ 0 d k-1 ∇ 3 Γ g \ { q H } + r 7 2 + δ B 2 |d k A | + |d k B | + r 9 2 + δ B 2 + r 4 u 1 2 +δ dec -2δ 0 |d k-1 ∇ 3 A | +r 4 u 1 2 +δ dec -2δ 0 |d k-1 ∇ 3 B | , (4.2.15) 
where, according to Definition 3.6.1, Γ g , Γ b are defined as follows:

• the linearized quantities for the frame (e 1 , e 2 , e 3 , e 4 ) are defined in the same way as Definition 2.6.6 for the outgoing PG frame of (ext) M, with respect to the coordinates (r, θ) and the complex 1-form J of the PG structure 4 ,

• in addition, we introduce the following linearized quantities which are trivial for an outgoing PG structure 5

| H = H + aq |q| 2 J, ẽ 4 (r) = e 4 (r) -1, } ∇ 4 J = ∇ 4 J + 1 q J,
• the notation Γ b is the one of Definition 2.6.7, except that q H does not belong to Γ b ,

• the notation Γ g is given by

Γ g = Γ g,1 ∪ Γ g,2 ,
where Γ g,1 is the one of Definition 2.6.7, and where Γ g,2 is given by 6 Γ g,2 = ω , Ξ , | H , q H , ẽ 4 (r), e 4 (u), e 4 (J (0) ), r -1 ∇ (r), } ∇ 4 J . 3 We need additional estimates for ∇ 3 Γ g , α, β, ∇ 3 α and ∇ 3 β compared to (4.2.6). They are easily obtained in the same way, i.e by interpolation between the bootstrap assumptions on decay and boundedness for the outgoing PG frame (e 4 , e 3 , e 1 , e 2 ) of (ext) M. 4 Thus, for example,

} trX = trX -2 q , q H = H -aq |q| 2 J, ẽ 3 (r) = e 3 (r) -∆ |q| 2 , D J (0) = D J (0) -iJ, ∇ 3 J = ∇ 3 J -∆q |q| 4 J,.
.. 5 In fact H satisfies H = -Z. 6 Note that all quantities in Γ g,2 vanish identically in the case of an outgoing PG structure except q H and | H .

Furthermore, recall that ξ = 0, and that ξ = 0 by the construction of f , see (4.2.2). Since we have, by the choice of f , ξ = ξ on (ext) M(r ≤ u ) and ξ = ξ on (ext) M(r ≥ 2u

2 ), we infer

ξ = 0 on (ext) M \ r 2 ≤ u 1 2 ≤ r .
Together with the fact that ξ ∈ Γ g \ { q H } and (4.2.15), this implies in particular, for k ≤ k small + 129,

|d k ξ | r 2 u 1 2 +δ dec -2δ 0 1 r 2 ≤u 1 2 ≤r r 3+2(δ dec -2δ 0 ) , |d k-1 ∇ 3 ξ | r 2 u 1+δ dec -2δ 0 1 r 2 ≤u 1 2 ≤r r 3 u 1 2 +δ dec -2δ 0 ,
and thus, in addition to the estimates for ξ and ∇ 3 ξ provided by (4.2.15), we have max

0≤k≤k small +129 sup (ext) M r 3+2(δ dec -2δ 0 ) |d k ξ | + r 3 u 1 2 +δ dec -2δ 0 |d k-1 ∇ 3 ξ | . (4.2.16)
Finally, since we have, by the choice of f , η = η on (ext) M(r ≤ u

2 ), and since q H ∈ Γ b satisfies (4.2.6), we infer, on (ext) 

M(r ≤ u 1 2 ), max 0≤k≤k small +130 sup (ext) M(r≤u 1 2 ) ru 1+δ dec -2δ 0 |d k q H | . (4.2.17) 
Step 6. Notice that (4.2.17) yields the desired estimate for q H in (ext) M(r ≤ u ). We now focus on estimating q H in the region (ext) M(r ≥ u ). Proceeding as for the other Ricci coefficients would yield for q H the same behavior than q H and hence a loss of r -1 compared to the desired estimate. Instead, we rely on the following null structure equations in Proposition 2.1.8

∇ 4 Z + 1 2 trX (Z -H ) -2ω (Z + H ) = 2D ω + 1 2 X • (-Z + H ) -B - 1 2 trX Ξ -2ω Ξ - 1 2 Ξ • X , ∇ 4 H + 1 2 trX (H -H ) = - 1 2 X • (H -H ) -B + ∇ 3 Ξ -4ω Ξ .
This yields

∇ 4 (H -Z ) + 1 2 trX (H -Z ) + 1 2 X • (H -Z ) = -2D ω + 1 2 (trX -trX )(Z -H ) -2ω (Z + H ) +∇ 3 Ξ -4ω Ξ + 1 2 trX Ξ + 2ω Ξ + 1 2 Ξ • X .
Since we have

H = aq |q| 2 J + q H , Z = aq |q| 2 J + q Z , H = - aq |q| 2 J + | H , we deduce ∇ 4 q H -q Z + 1 2 trX q H -q Z = -∇ 4 a(q -q) |q| 2 J - 1 q a(q -q) |q| 2 J + 1 2 2 q - 2 q 2aq |q| 2 J -2D ω - 1 2 X • (H -Z ) + 1 2 (trX -trX ) q Z -| H -2ω (Z + H ) - 1 2 
} trX a(q -q) |q| 2 J + 1 2 ( } trX -} trX ) 2aq |q| 2 J +∇ 3 Ξ -4ω Ξ + 1 2 trX Ξ + 2ω Ξ + 1 2 Ξ • X .
Also, using e 4 (q) = 1 and ∇ 4 J = -q -1 J, we have

∇ 4 a(q -q) |q| 2 J = ∇ 4 + f • ∇ + |f | 2 4 ∇ 3 a(q -q) |q| 2 J = a(q -q) |q| 2 ∇ 4 J + e 4 a(q -q) |q| 2 J + f • ∇ + |f | 2 4 ∇ 3 a(q -q) |q| 2 J = - 1 q a(q -q) |q| 2 J + a - 1 q 2 + 1 q 2 J + f • ∇ + |f | 2 4 ∇ 3 a(q -q) |q| 2 J
and hence

∇ 4 q H -q Z + 1 2 trX q H -q Z = -2D ω - 1 2 X • (H -Z ) + 1 2 (trX -trX ) q Z -| H -2ω (Z + H ) - 1 2 
} trX a(q -q) |q| 2 J + 1 2 ( } trX -} trX ) 2aq |q| 2 J -f • ∇ + |f | 2 4 ∇ 3 a(q -q) |q| 2 J +∇ 3 Ξ -4ω Ξ + 1 2 trX Ξ + 2ω Ξ + 1 2 Ξ • X .
Next,

• we commute with d / and L / T , and we rely on the corresponding commutator identities,

• we use the above equation for ∇ 4 ( q Hq Z ) to recover the e 4 derivatives,

• we rely on the estimates (4.2.15), as well as the estimate (4.2.16) for ξ , which allows us to derive, for k ≤ k small + 129,

∇ 4 (d k ( q H -q Z )) + 1 2 trX d k ( q H -q Z ) r 3 u 1 2 +δ dec -2δ 0 + r 2 |d ≤k ( q H -q Z )|.
Since we have, by the choice of f , η = η on (ext) M(r ≥ 2u

2 ), and since q H = 0 on Σ * , see (4.2.2), we have q H = 0 on Σ * . Thus, integrating backwards from Σ * , and using the control q Z provided by (4.2.15), we infer max

0≤k≤k small +129 sup (ext) M r 2 u 1 2 +δ dec -2δ 0 |d k q H | + max 0≤k≤k small +129 sup (ext) M r 2 u 1 2 +δ dec -2δ 0 |d k q Z | .
Also, commuting first the equation for ∇ 4 ( q Hq Z ) with ∇ 3 , using the schematic commutator identity

[∇ 3 , ∇ 4 ] = 2ω ∇ 4 -2ω ∇ 3 + 2(η -η ) • ∇ + ξ ξ , η η , * ρ ,
and proceeding as above to integrate backward from Σ * , we also obtain max

0≤k≤k small +129 sup (ext) M r 2 u 1+δ dec -2δ 0 |d k-1 ∇ 3 q H | + max 0≤k≤k small +129 sup (ext) M r 2 u 1+δ dec -2δ 0 |d k-1 ∇ 3 q Z | .
In view of the control of q H on (ext) M(r ≤ u 2 ) provided by (4.2.17), this yields max

0≤k≤k small +129 sup (ext) M r 2 u 1 2 +δ dec -2δ 0 + ru 1+δ dec -2δ 0 |d k q H | +r 2 u 1+δ dec -2δ 0 d k-1 ∇ 3 q H .
Thus, together with (4.2.15), we infer max

0≤k≤k small +129 sup (ext) M r 2 u 1 2 +δ dec -2δ 0 + ru 1+δ dec -2δ 0 |d k Γ g | + ru 1+δ dec -2δ 0 |d k Γ b | +r 2 u 1+δ dec -2δ 0 d k-1 ∇ 3 Γ g + r 7 2 + δ B 2 |d k A | + |d k B | + r 9 2 + δ B 2 + r 4 u 1 2 +δ dec -2δ 0 |d k-1 ∇ 3 A | +r 4 u 1 2 +δ dec -2δ 0 |d k-1 ∇ 3 B | .
Together with the control of f provided by (4.2.14) and the control of ξ provided by (4.2.16), this concludes the proof of Proposition 3.6.2.

4.3 Proof of Proposition 3.6.5

Let (e 4 , e 3 , e 1 , e 2 ) be the outgoing PG frame of (ext) M. We will exhibit another frame (e 4 , e 3 , e 1 , e 2 ) of (ext) M provided by where f is such that

f = 0 on Σ * , | H = 0 on (ext) M. (4.3.2)
Step 1. We start by deriving an equation for f on (ext) M. In view of (4. Since ω = ξ = 0 and η = -ζ in the outgoing PG structure of (ext) M, we infer

η = -ζ + 1 2 ∇ 4 f .
This yields

H = -Z + 1 2 ∇ 4 F , F := f + i * f . Now, we have 7 H = - aq |q| 2 J + | H , Z = aq |q| 2 J + q Z,
and hence

H + Z = | H + q Z,
so that, together with the condition | H = 0 on (ext) M, see (4.3.2), we infer

∇ 4 F = 2 q Z, on (ext) M. (4.3.3)
Step 2. Next, we estimate f on (ext) M. We assume the following local bootstrap assumption

|d ≤k small +130 f | ≤ √ ru 1 2 +δ dec -2δ 0 + r δ 0 u 1+δ dec -5δ 0 2 on r ≥ r 1 , (4.3.4) 
where r 1 ≥ r 0 . Since f = 0 on Σ * , (4.3.4) holds for r 1 sufficiently large, and our goal is to prove that we may in fact choose r 1 = r 0 and replace √ with in (4.3.4).

In view of the control of Γ g in (4.2.6), we have sup

(ext) M r 2 u 1 2 +δ dec -2δ 0 + ru 1+δ dec -2δ 0 |d ≤k small +130 q Z|
and hence, by interpolation, sup

(ext) M r 2 u 1 2 +δ dec -2δ 0 + r 1+δ 0 u 1+δ dec -5δ 0 2 |d ≤k small +130 q Z| .
Using commutator identities, and in view of (4.2.9), we infer 8

∇ 4 ( d /, L / T ) k F ≤ r 2 u 1+δ dec -2δ 0 + r 1+δ 0 u 1+δ dec -5δ 0 2 for k ≤ k small + 130, r ≥ r 1 .
7 Recall that for the third frame of (ext) M, the Ricci coefficients and curvature components are also linearized using the scalar function r and θ and the complex 1-form J attached to the principal frame of (ext) M.

8 Note that we have

δ dec - 5δ 0 2 δ dec - 5 6 δ dec ≥ δ dec 6 > 0.
Integrating backwards from Σ * where f = 0, we deduce

|( d /, L / T ) k f | ≤ ru 1 2 +δ dec -2δ 0 + r δ 0 u 1+δ dec -5δ 0 2 for k ≤ k small + 130, r ≥ r 1 .
Together with (4.3.3), we recover the e 4 derivatives and obtain

|d k f | ≤ ru 1 2 +δ dec -2δ 0 + r δ 0 u 1+δ dec -5δ 0 2 for k ≤ k small + 130, r ≥ r 1 .
This is an improvement of the bootstrap assumption (4.2.9). Thus, we may choose r 1 = r 0 , and we have

|d k f | ru 1 2 +δ dec -2δ 0 + r δ 0 u 1+δ dec -5δ 0 2 for k ≤ k small + 130 on (ext) M.
Also, commuting once (4.3.3) with e 3 , using the schematic commutator identity

[∇ 3 , ∇ 4 ] = 2ω ∇ 4 -2ω ∇ 3 + 2(η -η ) • ∇ + ξ ξ , η η , * ρ ,
and the fact that ∇ 3 q Z ∈ r -1 d ≤1 Γ b , and proceeding as above to integrate backward from Σ * where ∇ 3 f is under control using the fact that f = 0 on Σ * as well as (4.3.3), we also obtain

|d k-1 ∇ 3 f | ru 1+δ dec -2δ 0 for k ≤ k small + 130 on (ext) M.
Collecting the two above estimates, we obtain

|d k f | ru 1 2 +δ dec -2δ 0 + u 1+δ dec -5δ 0 2 , for k ≤ k small + 130 on (ext) M, |d k-1 ∇ 3 f | ru 1+δ dec -2δ 0 for k ≤ k small + 130 on (ext) M.
(4.3.5)

Step 3. In view of Proposition 2.2.3 applied to our particular case, i.e. a triplet (f , f , λ ) with f = 0 and λ = 1, and the fact that (e 4 , e 3 , e 1 , e 2 ) is an outgoing PG frame, we have

ξ = 0, ξ = ξ + 1 2 ∇ 3 f + ω f + 1 4 tr χ f - 1 4 (a) trχ * f + 1 2 f • χ - 1 2 (f • ζ)f + 1 4 |f | 2 η - 1 4 |f | 2 η + l.o.t., ζ = ζ + ωf + 1 4 f tr χ + 1 4 * f (a) trχ + 1 2 λ -1 f • χ + l.o.t., η = η + 1 4 f tr χ - 1 4 * f (a) trχ + 1 2 f • χ + l.o.t., tr χ = tr χ, (a) trχ = (a) trχ, χ = χ, tr χ = tr χ + div f + f • η -f • ζ - 1 4 |f | 2 λ -1 tr χ + l.o.t., (a) trχ = (a) trχ + curl f + f ∧ η -ζ ∧ f - 1 4 |f | 2 λ -1 (a) trχ + l.o.t., χ = χ + ∇ ⊗f + f ⊗η -f ⊗ζ - 1 4 |f | 2 λ -1 χ + l.o.t., ω = 0, ω = ω - 1 2 f • ζ - 1 2 f • η + - 1 8 |f | 2 tr χ + l.o.t. and α = α, α = α -f ⊗β - * f ⊗ * β) + f ⊗f - 1 2 * f ⊗ * f ρ + 3 2 f ⊗ * f * ρ + l.o.t., β = β + 1 2 α • f + l.o.t., β = β - 3 2 f ρ + * f * ρ + l.o.t., ρ = ρ + f • β + l.o.t., * ρ = * ρ -f • * β + l.o.t.
where the lower order terms denoted by l.o.t. are linear with respect to the Ricci coefficients and curvature components of the outgoing PG structure of (ext) M, and quadratic or higher order in f , and do not contain derivatives of the latter. Also, we have

e 3 (r) = e 3 (r) + 1 4 |f | 2 , e 3 (u) = e 3 (u) + f • ∇(u), e 3 (J (0) ) = e 3 (J (0) ) + f • ∇((J (0) )), ∇ (r) = 1 2 f , ∇ (u) = ∇(u), ∇ (J (0) ) = ∇(J (0) ), 206CHAPTER 4. FIRST CONSEQUENCES OF THE BOOTSTRAP ASSUMPTIONS ∇ 3 J = ∇ 3 J + f • ∇J - 1 4q |f | 2 J, ∇ a J = ∇ a J - 1 2q f a J, a = 1, 2,
while the derivatives of r, u, J (0) and J in the e 4 direction are the same as for the PG structure of (ext) M since e 4 = e 4 . Together with the estimates (4.3.5) for f on (ext) M, and the estimates for the PG structure of (ext) M provided by9 (4.2.6), we immediately infer max

0≤k≤k small +129 sup (ext) M r 2 u 1 2 +δ dec -2δ 0 + ru 1+δ dec -5 2 δ 0 |d k Γ g | + ru 1+δ dec -2δ 0 |d k Γ b | +r 2 u 1+δ dec -2δ 0 d k-1 ∇ 3 Γ g + r 7 2 + δ B 2 |d k A | + |d k B | + r 9 2 + δ B 2 + r 4 u 1 2 +δ dec -2δ 0 |d k-1 ∇ 3 A | +r 4 u 1 2 +δ dec -2δ 0 |d k-1 ∇ 3 B | .
Finally, we have also obtained | H = 0, ξ = 0 and ω = 0. This concludes the proof of proof of Proposition 3.6.5.

A second null frame covering (top) M

In order to construct the global frames of Propositions 3.6.9 and 3.6.11, respectively in section 4.5 and 4.6, we will need to cover (top) M with a regular null frame that fully covers the following region

(top) M ∪ (int) M ∩ {u ≥ u * -1} ∪ (ext) M ∩ {u ≥ u * -1} . (4.4.1)
The ingoing PG frame of (top) M is a priori a natural candidate, but it does unfortunately not fully cover the region10 (4.4.1). We thus need to construct another structure that fully covers the region (4.4.1). This is the goal of this section where we construct in fact an ingoing PT structure11 that fully covers the region (4.4.1).

Definition of an ingoing PT structure covering (top) M

While the ingoing PG structure of (top) M is initialized on {u = u * }, see section 3.2.5, we will initialize below the ingoing PT structure covering (top) M on {u = u * -4} to ensure that it fully covers the region (4.4.1).

To ease the notations, we denote with primes quantities associated to this ingoing PT structure. In particular, we consider the corresponding null frame (e 3 , e 3 , e 1 , e 2 ), scalar functions (r , u , θ ) and complex 1-form J . The following holds:

1. e 3 is null ingoing geodesic.

2. We have

e 3 (r ) = -1, e 3 (θ ) = 0, ∇ 3 (q J ) = 0, q = r + ai cos(θ ).
3. We have

H = aq |q | 2 J .
4. u satisfies e 3 (u ) = 0.

5. We denote by (top) M the region covered by this ingoing PT structure covering (top) M. (top) M is given by

(top) M = {u ≥ u * -4} \ (ext) M(u ≤ u * -4).
6. This ingoing PT structure is initialized on {u = u * -4} as it will be made precise below.

Initialization of the ingoing PT structure covering (top) M

The second ingoing PG structure covering (top) M is initialized from the outgoing PG structure of (ext) M on {u = u * -4} as follows:

1. The scalar functions (r , θ ) and the complex 1-form J are prescribed on {u = u * -4} as follows

r = (ext) r, θ = (ext) θ, J = (ext) J. (4.4.2) 208CHAPTER 4.

FIRST CONSEQUENCES OF THE BOOTSTRAP ASSUMPTIONS

2. Moreover, the scalar function u is prescribed on {u = u * -4} as follows

u = u + 2 (ext) r r 0 r2 + a 2 r2 -2mr + a 2 dr. (4.4.3)
In particular, the 2-spheres S(u , r ) coincide on {u = u * -4} with S(u, (ext) r).

3. Finally, the null frame (e 3 , e 4 , e 1 , e 2 ) is prescribed on {u = u * -4} by the transformation formulas

e 4 = λ (ext) e 4 ,
e a = (ext) e a , a = 1, 2,

e 3 = λ -1(ext) e 3 , (4.4.4) 
where

λ = (ext) λ = (ext) ∆ | (ext) q| 2 . Remark 4.4.1. Since we have (top) M = {u ≥ u * -4} \ (ext) M(u ≤ u * -4)
, and in view of the initialization of u on {u = u * -4}, we infer that (top) M verifies Let δ 0 > 0 be the small constant which satisfies (3.6.3) and let δ dec = δ dec -2δ 0 . Also, let the ingoing PT structure introduced in section 4.4.1 and initialized on {u = u * -4} from the outgoing PG structure of (ext) M in section 4.4.2. For convenience, we denote with primes the quantities associated to this ingoing PT structure. Then:

(top) M ∪ (int) M ∩ {u ≥ u * -1} ∪ (ext) M ∩ {u ≥ u * -1} ⊂ (top) M . ( 4 
1. The scalar functions (r , u , θ ) and the complex 1-form J verify, for k ≤ k small +130, sup

(ext) M(u≥u * -4) u 1+δ dec r 2 d k J -(ext) J + r d k cos(θ ) -cos( (ext) θ) + d k r -(ext) r, u -(ext) u + sup (int) M(u≥u * -1) u 1+δ dec d k r -(int) r, u -u, cos(θ ) -cos( (int) θ), J -(int) J + sup (top) M(r≥r 0 ) ( (top) u) 1+δ dec r 2 d k J -(top) J + r d k cos(θ ) -cos( (top) θ) + d k r -(top) r, u -u + sup (top) M(r≤r 0 ) u 1+δ dec d k r -(top) r, u -u, cos(θ ) -cos( (top) θ), J -(top) J , (4.4.6) 
where we have introduced the following notation

(ext) u := u + 2 (ext) r r 0 r2 + a 2 r2 -2mr + a 2 dr. (4.4.7) 
2. Let :

• (f, f , λ) denote the change of frame coefficients from the outgoing PG frame of (ext) M to the ingoing PT frame (e 4 , e 3 , e 1 , e 2 ),

• ( f , f , λ) denote the change of frame coefficients from the ingoing PG frame of (int) M to the ingoing PT frame (e 4 , e 3 , e 1 , e 2 ),

• ( f, f , λ) denote the change of frame coefficients from the ingoing PG frame of (top) M to the ingoing PT frame (e 4 , e 3 , e 1 , e 2 ).

Then, we have, for k ≤ k small + 130, sup

(ext) M(u≥u * -4) ru 1+δ dec d k f, f , log | (ext) q| 2 (ext) ∆ λ + sup (int) M(u≥u * -1) u 1+δ dec d k f , f , λ -1 + sup (top) M(r≥r 0 ) r( (top) u) 1+δ dec d k f, f , λ -1 + sup (top) M(r≤r 0 ) u 1+δ dec d k f, f , λ -1 . (4.4.8) 3. (Γ b , Γ g , A , B ) verify, for k ≤ k small + 129, sup (top) M (r≥r 0 ) r( (top) u ) 1+δ dec |d k Γ b | + r 2 ( (top) u ) 1 2 +δ dec + r( (top) u ) 1+δ dec |d k Γ g | + sup (top) M (r≥r 0 ) r 2 ( (top) u ) 1+δ dec |d k-1 ∇ 3 Γ g | + r 7 2 +δ dec |d k (A , B )| + sup (top) M (r≥r 0 ) r 4 ( (top) u ) 1 2 +δ dec + r 9 2 +δ dec |d ≤k-1 ∇ 3 A | + sup (top) M (r≥r 0 ) r 4 ( (top) u ) 1 2 +δ dec |d k-1 ∇ 3 B | + sup (top) M (r≤r 0 ) (u ) 1+δ dec |d k (Γ b , Γ g )| , (4.4.9) 
where the quantities (Γ b , Γ g ) are given by Definition 9.3.2 with respect to the above ingoing PT structure, and where (top) u is given by The proof proceeds in several steps.

(top) u := u -2 r r 0 r2 + a 2 r2 -2mr + a 2 dr.

Moreover, the following additional property holds on

(top) M ξ ∈ r -1 Γ g . ( 4 
Step 1. First, we focus on estimates in (ext) M(u ≥ u * -4). For convenience, we denote in Step 1 to Step 5:

• without primes quantities associated to the outgoing PG structure of (ext) M,

• with primes quantities associated to the ingoing PT structure introduced in section 4.4.1 and initialized on {u = u * -4} in section 4.4.2.

Also, we denote by (f, f , λ) the change of frame coefficients from the outgoing PG frame of (ext) M to (e 3 , e 4 , e 1 , e 2 ).

In view of the initialization (4. 

f = f = 0, λ = ∆ |q| 2 , r = r, u = u, θ = θ, J = J, (4.4.11)
where, in Step 1 to Step 5, u denotes (ext) u, i.e.

u = u + 2 r r 0 r2 + a 2 r2 -2mr + a 2 dr
in view of (4.4.7). In order to control (f, f , λ), we introduce the following auxiliary transformation

e 3 = λ e 3 + (f ) b e b + 1 4 |f | 2 e 3 , e a = δ b a + 1 2 (f ) a (f ) b e b + 1 2 (f ) a e 3 + 1 2 (f ) a + 1 8 |f | 2 (f ) a e 4 , e 4 = (λ ) -1 1 + 1 2 f • f + 1 16 |f | 2 |f | 2 e 4 + (f ) b + 1 4 |f | 2 (f ) b e b + 1 4 |f | 2 e 3 ,
where λ > 0 is a scalar and (f , f ) are 1-forms. Since

g(e a , e 3 ) = -f a = -(f ) a + 1 4 |f | 2 (f ) a , g(e 4 , e 3 ) = -2λ = -2(λ ) -1 1 + 1 2 f • f + 1 16 |f | 2 |f | 2 , g(e 4 , e a ) = f a = (f ) a + 1 4 |f | 2 (f ) a ,
we infer

f = f + 1 4 |f | 2 f , λ = (λ ) -1 1 + 1 2 f • f + 1 16 |f | 2 |f | 2 , f = f + 1 4 |f | 2 f , (4.4.12) 
so that it suffices to control (f , f , λ ) in order to control (f, f , λ). Note also that (4.4.11) and (4.4.12) imply

f = f = 0, λ = |q| 2 ∆ on {r = r 0 }. (4.4.13)
Now, let

F := f + i * f , F := f + i * f . 212CHAPTER 4.
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By exchanging the role of e 3 and e 4 , we have the following analog of the two first transport equations of Corollary 2.2.5

∇ (λ ) -1 e 3 F + 1 2 trX F + 2ω F = -2Ξ -χ • F + E 1 (f , Γ), (λ ) -1 ∇ 3 (log(λ )) = 2ω -f • (ζ + η) + E 2 (f , Γ),
where

E 1 (f , Γ) and E 2 (f , Γ) contain expressions of the type O(Γ(f ) 2
) with no derivatives. Also, the transformation formula of Proposition 2.2.3 for η implies

H = H + 1 2 (λ ) -1 ∇ 3 F -ωF + O(r -1 )F + Γ g • F + E 3 (f , f , Γ),
where

E 3 (f , f , Γ) contains expressions of the type O(Γ(f , f ) 2 ) with no derivatives. Since we have H = aq |q | 2 J in an ingoing PT structure, we infer (λ ) -1 ∇ 3 F -2ωF = -2 q H + 2aq |q | 2 J - 2aq |q| 2 J + O(r -1 )F + Γ g • F + E 3 (f, f , Γ)
and hence

∇ (λ ) -1 e 3 F + 1 2 trX F + 2ω F =Γ b + Γ b • F + E 1 (f , Γ), (λ ) -1 ∇ 3 F -2ωF = 2aq |q | 2 J - 2aq |q| 2 J + Γ b + O(r -1 )F + Γ g • F + E 3 (f , f , Γ), (λ ) -1 e 3 (log(λ )) =2ω + O(r -2 )F + Γ b • F + E 2 (f , Γ). (4.4.14)
In order to control (f , f , λ ) from (4.4.14), we will rely in particular on the following consequence of the bootstrap assumptions for the outgoing PG structure of

(top) M sup (ext) M r 2 u 1 2 +δ dec -2δ 0 + ru 1+δ dec -2δ 0 |d ≤k small +130 Γ g | + sup (ext) M ru 1+δ dec -2δ 0 |d ≤k small +130 Γ b | , (4.4.15) 
see (4.2.6). We make the following local bootstrap assumption on

(ext) M(u * -4 ≤ u ≤ u 1 ), for k ≤ k small + 130, u 1+δ dec r d k f , f , log λ |q| 2 ∆ + |d k (r -r)| +r|d k (cos(θ ) -cos θ)| + r 2 |d k (J -J)| ≤ √ , (4.4.16) 
where u * -4 < u 1 ≤ u * . In view of (4.4.11) and (4.4.13), (4.4.16) holds true provided u 1 is chosen sufficiently close to u * -4. From now on, we assume the local bootstrap assumption (4.4.16).

Step 2. In this step, we improve (4.4.16) for f . To this end, we rely on the first equation of (4.4.14), i.e.

∇ (λ ) -1 e 3 F + 1 2 trX F + 2ω F = Γ b + Γ b • F + E 1 (f , Γ).
In view of the control for (Γ b , Γ g ) provided by (4.4.15), the local bootstrap assumptions (4.4.16) on (ext) M(u * -4 ≤ u ≤ u 1 ), and since f = 0 on {u = u * -4} in view of (4.4.13), we easily infer sup

(ext) M(u * -4≤u≤u 1 ) ru 1+δ dec f ,
where we recall that the integration of transport equations along e 3 in (top) M takes place on finite regions in r in view of Remark 4.4.2. Also, commuting first with d / to recover angular derivatives, then with e 4 , using the transport equation to recover e 3 derivatives, and proceeding as above, we obtain the following control of higher order derivatives, for k ≤ k small + 130, sup

(ext) M(u * -4≤u≤u 1 ) ru 1+δ dec d k f , (4.4.17) 
which improves the local bootstrap assumption (4.4.16) for f .

Step 3. In this step, we improve (4.4.16) for λ . To this end, we rely on the third equation of (4.4.14), i.e.

(λ

) -1 e 3 (log(λ )) = 2ω + O(r -2 )F + Γ b • F + E 2 (f , Γ).
We have

(λ ) -1 ∇ 3 log ∆ |q| 2 λ = (λ ) -1 ∇ 3 (log(λ )) + |q| 2 ∆ (λ ) -1 ∇ 3 ∆ |q| 2
which together with the above equation for (λ )

-1 ∇ 3 (log λ) implies (λ ) -1 ∇ 3 log ∆|q| 2 λ = 2ω + |q| 2 ∆ (λ ) -1 ∇ 3 ∆ |q| 2 + O(r -2 )F + Γ b • F + E 2 (f , Γ).
Also, we have by the transformation formula for e 3

(λ ) -1 ∇ 3 ∆ |q| 2 = e 3 + f • ∇ + 1 4 |f | 2 e 3 ∆ |q| 2 = e 3 ∆ |q| 2 + f • ∇ + 1 4 |f | 2 e 3 ∆ |q| 2
and hence

(λ ) -1 ∇ 3 log ∆ |q| 2 λ = 2ω + |q| 2 ∆ e 3 ∆ |q| 2 + O(r -2 )F + Γ b • F + E 2 (f , Γ) + |q| 2 ∆ f • ∇ + 1 4 |f | 2 e 3 ∆ |q| 2 .
Note that we have for the frame of

(ext) M 2ω + |q| 2 ∆ e 3 ∆ |q| 2 = 2q ω + r∆ -1 Γ b = Γ b .
We deduce

(λ ) -1 ∇ 3 log ∆ |q| 2 λ = Γ b + O(r -2 )F + Γ b • F + E 2 (f , Γ) + |q| 2 ∆ f • ∇ + 1 4 |f | 2 e 3 ∆ |q| 2 .
In view of the control for (Γ b , Γ g ) provided by (4.4.15), the local bootstrap assumptions (4.4.16) on (ext) M(u * -4 ≤ u ≤ u 1 ), the control for f in (4.4.17), and since λ = |q| 2 ∆ on {u = u * -4} in view of (4.4.13), we easily infer sup

(ext) M(u * -4≤u≤u 1 ) ru 1+δ dec log ∆ |q| 2 λ ,
where we recall that the integration of transport equations along e 3 in (top) M takes place on finite regions in r in view of Remark 4.4.2. Also, commuting first with d / to recover angular derivatives, then with e 4 , using the transport equation to recover e 3 derivatives, and proceeding as above, we obtain the following control of higher order derivatives, for k ≤ k small + 130, sup 

(ext) M(u * -4≤u≤u 1 ) ru 1+δ dec d k log ∆ |q| 2 λ , ( 4 
ru 1+δ dec d k f , log |q| 2 ∆ λ . (4.4.19)
Step 4. In this step, we improve (4.4.16) for r -r, u -u, cos(θ ) -cos θ and J -J, where u denotes (ext) u, i.e.

u = u + 2 r r 0 r2 + a 2 r2 -2mr + a 2 dr
in view of (4.4.7). The ingoing PT structure on (top) M satisfies in particular

e 3 (r ) = -1, e 3 (u ) = 0, e 3 (θ ) = 0, ∇ 3 J = 1 q J .
Together with the relation between e 3 and e 3 , see (2.2.1), we infer

e 3 (r -r) = -1 -e 3 (r) = -1 -λ -1 e 3 (r) + O(1)f • (f, f ) + rΓ g • f = -1 + λ -1 ∆ |q| 2 -λ -1 ẽ3 (r) + O(1)f • (f, f ) + rΓ g • f = -λ -1 λ - ∆ |q| 2 + rΓ b + O(1)f • (f, f ) + rΓ g • f , e 3 (u -u) = -e 3 (u) = -λ -1 e 3 (u) + O(r -1 )f + O(r -1 )f • (f, f ) = -λ -1 e 3 u + r r 0 r2 + a 2 r2 -2mr + a 2 dr + O(r -1 )f + O(r -1 )f • (f, f ) = -λ -1 e 3 (u) -λ -1 e 3 (r) r 2 + a 2 ∆ + O(r -1 )f + O(r -1 )f • (f, f ) = -λ -1 ẽ3 (u) + ẽ3 (r) r 2 + a 2 ∆ + O(r -1 )f + O(r -1 )f • (f, f ) = rΓ b + O(r -1 )f + O(r -1 )f • (f, f ), e 3 (cos(θ ) -cos(θ)) = -e 3 (cos(θ)) = -λ -1 e 3 (cos θ) + O(r -1 )f + Γ b • f • (f, f ) = Γ b + O(r -1 )f + Γ b • f • (f, f ), 216CHAPTER 4 
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and

∇ 3 (J -J) + 1 q (J -J) = -∇ 3 J - 1 q J = -λ -1 ∇ 3 J - 1 q J + O(r -2 )f + Γ b • (f, f ) + O(r -2 )f • (f, f ) = λ -1 ∆ |q| 2 1 q J -λ -1 } ∇ 3 J - 1 q J + O(r -2 )f + Γ b • (f, f ) +O(r -2 )f • (f, f ) = r -1 Γ b + O(r -2 )λ -1 λ - ∆ |q| 2 + O(r -3 )(r -r) +O(r -3 )(cos(θ ) -cos θ) + O(r -2 )f + Γ b • (f, f ) +O(r -2 )f • (f, f ).
Collecting the above, we have obtained the following transport equations

e 3 (r -r) = -λ -1 λ - ∆ |q| 2 + rΓ b + O(1)f • (f, f ) + rΓ g • f , e 3 (u -u) = rΓ b + O(r -1 )f + O(r -1 )f • (f, f ), e 3 (cos(θ ) -cos(θ)) = Γ b + O(r -1 )f + Γ b • f • (f, f ), ∇ 3 (J -J) + 1 q (J -J) = r -1 Γ b + O(r -2 )λ -1 λ - ∆ |q| 2 + O(r -3 )(r -r) +O(r -3 )(cos(θ ) -cos θ) + O(r -2 )f + Γ b • (f, f ) +O(r -2 )f • (f, f ).
Integrating these transport equations from {u = u * -4} where (4.4.11) holds, relying on the control for (Γ b , Γ g ) provided by (4.4.15), on the local bootstrap assumptions (4.4.16) on (ext) M(u * -4 ≤ u ≤ u 1 ), and on the control for (f , λ) in (4.4.19), we easily infer, for

k ≤ k small + 130, sup (ext) M(u * -4≤u≤u 1 ) u 1+δ dec |d k (r -r, u -u)| + r|d k (cos(θ ) -cos θ)| +r 2 |d k (J -J)| , (4.4.20)
where we first control r -r, u -u and cos(θ ) -cos(θ), and then plug it in the RHS of the transport equation for J -J. This improves the local bootstrap assumption (4.4.16) for r -r, cos(θ ) -cos θ and J -J.

Step 5. We finally improve (4.4.16) for f . In view of the second equation of (4.4.14), we have

(λ ) -1 ∇ 3 F -2ωF = O(r -3 )(r -r) + O(r -3 )(cos(θ ) -cos(θ)) + O(r -1 )(J -J) + Γ b +O(r -1 )F + Γ g • F + E 3 (f, f , Γ).
Integrating this transport equation from {u = u * -4} where f = 0 in view of (4. 

ru 1+δ dec |d k f | .
Together with (4.4.17), (4.4.18) and (4.4.20), this implies, for k ≤ k small + 130, sup

(ext) M(u * -4≤u≤u 1 ) u 1+δ dec r d k f , f , log ∆ |q| 2 λ + |d k (r -r)| +r|d k (cos(θ ) -cos θ)| + r 2 |d k (J -J)| ,
which improves the local bootstrap assumptions (4.4.16). Thus, we may choose u 1 = u * and we obtain, for k ≤ k small + 130, sup

(ext) M(u≥u * -4) u 1+δ dec r d k f , f , log ∆ |q| 2 λ + |d k (r -r)| +r|d k (cos(θ ) -cos θ)| + r 2 |d k (J -J)| .
Together with (4.4.12), and the control of u -u derived in Step 4, we infer sup

(ext) M(u≥u * -4) u 1+δ dec r d k f, f , log |q| 2 ∆ λ + |d k (r -r, u -u)| +r|d k (cos(θ ) -cos θ)| + r 2 |d k (J -J)| , (4.4.21) 
which are the stated estimates for (f, f , λ) and (r , u , cos(θ ), J ) on (ext) M(u ≥ u * -4).

Finally, the transformation formulas of Proposition 2.2.3, the control for (Γ b , Γ g , A, B) provided by (4.4.15) and the control for (f, f , λ) and (r , cos(θ ), J ) on (ext) M(u ≥ u * -4)

provided by (4.4.21) immediately yields, for k ≤ k small + 129, sup

(ext) M(u≥u * -4) ru 1+δ dec d k Γ b + ru 1+δ dec + r 2 u 1 2 +δ dec d k Γ g + sup (ext) M(u≥u * -4) r 2 u 1+δ dec d k-1 ∇ 3 Γ g + r 7 2 +δ B |d k (A , B )| + sup (ext) M(u≥u * -4) r 4 u 1 2 +δ dec d k-1 ∇ 3 B + r 9 2 +δ B + r 4 u 1 2 +δ dec d k-1 ∇ 3 A , which is the stated control of (Γ b , Γ g , A , B ) on (ext) M(u ≥ u * -4
). This concludes the proof of the part of Proposition 4.4.3 on (ext) M(u ≥ u * -4).

Step 6. Next, we consider the control on (int) M(u ≥ u * -1) and on (top) M. We start with (int) M(u ≥ u * -1). In view of the control (4.4.21) in (ext) M(u ≥ u * -4), and in view of the initialization of the ingoing PG structure of (int) M from the ingoing PG structure of (ext) M, see section 3.2.5, we have sup

T ∩{u≥u * -4} u 1+δ dec d k r -(int) r, u -u, cos(θ ) -cos( (int) θ), J -(int) J + sup T ∩{u≥u * -4} u 1+δ dec d k f , f , λ -1 , (4.4.22) 
where we recall that T = {r = r 0 } = (int) M ∩ (ext) M, u = u on T and ( f , f , λ) denote the change of frame coefficients from the ingoing PG frame of (int) M to the ingoing PT frame (e 4 , e 3 , e 1 , e 2 ). Starting from the control provided by (4.4.22), and proceeding as in

Step 1 to Step 5, we propagate (4.4.22) to (int) M(u ≥ u * -4) using transport equations in e 3 , and we obtain the following analog of (4.4.21)

sup (int) M(u≥u * -1) u 1+δ dec d k r -(int) r, u -u, cos(θ ) -cos( (int) θ), J -(int) J + sup (int) M(u≥u * -1) u 1+δ dec d k f , f , λ -1 ,
where we used in particular the fact that [START_REF] Bardeen | Radiation fields in the Schwarzschild background[END_REF]. This is the stated control of (r

(int) M(u ≥ u * -1) ⊂ (int) M(u ≥ u * -
-(int) r, u -u, cos(θ ) -cos( (int) θ), J -(int) J) and ( f , f , λ -1) on (int) M(u ≥ u * -1)
. Also, proceeding as in Step 5, we deduce, using in particular the transformation formulas of Proposition 2.2.3, the stated estimates for (Γ b , Γ g ) on (int) M(u ≥ u * -1), which concludes the proof of the part of Proposition 4.4.3 on (int) M(u ≥ u * -1).

Finally, we consider (top) M. In view of the control (4.4.21) in (ext) M(u ≥ u * -4), and in view of the initialization of the ingoing PG structure of (top) M from the ingoing PG structure of (ext) M, see section 3.2.5, we obtain the analog of (4.4.22) on {u = u * } where we recall that (top) M ∩ (ext) M = {u = u * }. We then propagate to (top) M using transport equations in e 3 and conclude as above. This concludes the proof of the part of Proposition 4.4.3 on (top) M.

Step 7. It remains to prove that ξ ∈ r -1 Γ g on (top) M . We rely on the following linearized null structure equation for ingoing PT structures (4.4.11), since e 4 = λ (ext) e 4 is tangent to {u = u * }, and since (ext) ξ = 0 in the outgoing PG frame of (ext) M, we infer

∇ 3 Ξ = O(r -1 ) | H + O(r -2 ) } trX + O(r -2 ) X + B + O(r -1 ) ∇ 4 J + O(r -3 ) ẽ 4 (r ) + O(r -3 )e 4 (cos(θ )) + Γ b • Γ g , see Proposition 9.3.3. We infer ∇ 3 ξ = r -1 Γ g + Γ b • Γ g . Also, since f = f = 0 on {u = u * -4} in view of
ξ = 0 on {u = u * -4}.
Thus, integrating the above transport equation for ξ from {u = u * -4} where ξ = 0, and using the control for (Γ b , Γ g ) derived in Steps 5 and 6, we infer sup

(top) M r 2 u 1+δ dec + r 3 u 1 2 +δ dec |ξ | ,
where we recall that the integration of transport equations along e 3 in (top) M takes place on finite regions in r in view of Remark 4.4.2. Also, commuting first with d / to recover angular derivatives, then with e 4 , using the transport equation to recover e 3 derivatives, and proceeding as above, we obtain the following control of higher order derivatives, for k ≤ k small + 130, sup

(top) M r 2 u 1+δ dec + r 3 u 1 2 +δ dec d k ξ , which is indeed consistent with ξ ∈ r -1 Γ g on (top) M . This concludes the proof of Proposition 4.4.3.
4.5 Proof of Proposition 3.6.9

Recall the small constant δ 0 > 0 introduced in the proof of Proposition 3.6.2

δ 0 = 130 k large -k small ≤ δ dec 3 . (4.5.1)
In order to produce a global frame on M, we will proceed in several steps. First, we extend the ingoing PG structure of (int) M slightly inside (ext) M.

Lemma 4.5.1. We may extend the ingoing PG structure of (int) M into the region

R (1) := (ext) M( (ext) r ≤ r 0 + 1) ∩ {u ≤ u * }. (4.5.2)
Furthermore:

• we have

max 0≤k≤k small +128 sup R (1) 
u 1+δ dec -2δ 0 d k ( (int) Γ g , (int) Γ b ) ,
• we have

max 0≤k≤k small +129 sup R (1) 
u 1+δ dec -2δ 0 d k f, f , log | (ext) q| 2 (ext) ∆ λ ,
where (f, f , λ) denotes the change of frame coefficients from the outgoing PG frame of (ext) M to the ingoing PG frame of (int) M,

• we have

max 0≤k≤k small +129 sup R (1) ∩ (top) M u 1+δ dec -2δ 0 d k f, f , log λ ,
where (f, f , λ) denotes the change of frame coefficients from the ingoing PG frame of (int) M to the ingoing PT frame of Proposition 4.4.3 on the region (top) M ,

• we have

max 0≤k≤k small +129 sup R (1) 
u 1+δ dec -2δ 0 d k (int) r -(ext) r + d k cos( (int) θ) -cos( (ext) θ) + d k (int) J -(ext) J , and 
max 0≤k≤k small +129 sup R (1) ∩ (top) M u 1+δ dec -2δ 0 d k (int) r -r , u -u + d k cos( (int) θ) -cos(θ ) + d k (int) J -J ,
where (r , u , θ , J ) are associated with the ingoing PT structure of Proposition 4.4.3.

Proof. See Section 4.5.1.

Remark 4.5.2. Along level hypersurfaces of u, in the region r ∼ r 0 on (ext) M, we have

du dr = e 3 (u) e 3 (r) = -2 + O(r -1 0 ).
In particular, since u = u on T = {r = r 0 }, we infer

u ≥ (u * -1) -2 + O(r -1 0 ) > u * - 7 2 on (ext) M( (ext) r ≤ r 0 + 1) ∩ {u * -1 ≤ u ≤ u * }
and hence

(ext) M( (ext) r ≤ r 0 + 1) ∩ {u * -1 ≤ u ≤ u * } ⊂ (ext) M(u ≥ u * -7/2).
We now glue the ingoing PG frame of (int) M, extended slightly into (ext) M in Lemma 4.5.1, to the ingoing PT frame of Proposition 4.4.3 in the matching region

Match 1 := (int) M(u ≥ u * -1) ∪ (ext) M( (ext) r ≤ r 0 + 1) ∩ {u * -1 ≤ u ≤ u * } .(4.5.3)
Lemma 4.5.3. We denote with primes quantities associated to the ingoing PT structure of Proposition 4.4.3. There exists a frame (e 4 , e 3 , e 1 , e 2 ) on

(int) M ∪ (top) M ∪ (ext) M( (ext) r ≤ r 0 + 1) ∪ (ext) M(u ≥ u * -1),
as well as a pair of scalar functions (r , J (0) ), and a complex 1-form J , such that:

(a) In

(top) M ∪ (ext) M(u ≥ u * -1) ∪ (ext) M( (ext) r ≤ r 0 + 1) \ {u ≤ u * } ,
we have (e 4 , e 3 , e 1 , e 2 ) = (e 4 , e 3 , e 1 , e 2 ), as well as r = r , J (0) = cos(θ ), and J = J .

(b) In

(int) M ∪ (ext) M( (ext) r ≤ r 0 + 1) ∩ {u ≤ u * -1},
we have (e 4 , e 3 , e 1 , e 2 ) = ( (int) e 4 , (int) e 3 , (int) e 1 , (int) e 2 ), as well as r = (int) r, J (0) = cos( (int) θ), and J = (int) J, where we recall that the ingoing PG structure of (int) M has been extended slightly into (ext) M in Lemma 4.5.1.

(c) In the matching region, we have

max 0≤k≤k small +128 sup Match 1 u 1+δ dec -2δ 0 d k (Γ g , Γ b ) ,
where the Ricci coefficients and curvature components are the one associated to the frame (e 4 , e 3 , e 1 , e 2 ).

(d) In the matching region, we also have

max 0≤k≤k small +129 sup Match 1 u 1+δ dec -2δ 0 d k (f, f , log λ) ,
where (f, f , λ) denotes either the change of frame coefficients from (e 4 , e 3 , e 1 , e 2 ) to (e 4 , e 3 , e 1 , e 2 ),

or the one from ( (int) e 4 , (int) e 3 , (int) e 1 , (int) e 2 ) to (e 4 , e 3 , e 1 , e 2 ).

(e) In the matching region, we have

max 0≤k≤k small +129 sup Match 1 u 1+δ dec -2δ 0 d k (r -(int) r, J (0) -cos( (int) θ), J -(int) J) .
Proof. See Section 4.5.2.

Finally, we glue a renormalization of the second frame of (ext) M constructed in Proposition 3.6.2 to the frame of Lemma 4.5.3 in the matching region

Match 2 := (ext) M(u ≥ u * -1) ∪ (ext) M( (ext) r ≤ r 0 + 1). (4.5.4)
Remark 4.5.4. Note that the frame of Lemma 4.5.3 is defined on

(int) M ∪ (top) M ∪ Match 2 .
In particular, the second frame of (ext) M constructed in Proposition 3.6.2 and the frame of Lemma 4.5.3 are both defined in Match 2 .

Lemma 4.5.5. Let ( (ext) e 4 , (ext) e 3 , (ext) e 1 , (ext) e 2 ) be the second frame of (ext) M constructed in Proposition 3.6.2, and let (e 4 , e 3 , e 1 , e 2 ) be the frame of Lemma 4.5.3. There exists a global null frame ( (glo) e 4 , (glo) e 3 , (glo) e 1 , (glo) e 2 ) defined on M, as well as a pair of scalar functions ( (glo) r, (glo) J (0) ), and a complex 1-form (glo) J, such that:

(a) In (ext) M \ Match 2 , we have

( (glo) e 4 , (glo) e 3 , (glo) e 1 , (glo) e 2 ) = ( (ext) λ (ext) e 4 , (ext) λ -1(ext) e 3 , (ext) e 1 , (ext) e 2 )
where (ext) λ :=

(ext) ∆ | (ext) q| 2 , as well as (glo) r = (ext) r, (glo) J (0) = cos( (ext) θ), and (glo) J = (ext) J.

(b) In (int) M ∪ (top) M, we have ( (glo) e 4 , (glo) e 3 , (glo) e 1 , (glo) e 2 ) = (e 4 , e 3 , e 1 , e 2 ), as well as (glo) r = r , (glo) J (0) = J (0) , and (glo) J = J .

(c) In the matching region, we have, for k ≤ k small + 128, sup glo) A .

Match 2 ru 1+δ dec d k(glo) Γ b + ru 1+δ dec + r 2 u 1 2 +δ dec d k(glo) Γ g + sup Match 2 r 2 u 1+δ dec d k-1 ∇(glo) e 3 (glo) Γ g + r 7 2 +δ B |d k ( (glo) A, (glo) B)| + sup Match 2 r 4 u 1 2 +δ dec d k-1 ∇(glo) e 3 (glo) B + sup Match 2 r 9 2 +δ B + r 4 u 1 2 +δ dec d k-1 ∇(glo) e 3 ( 
(d) In the matching region, we have

max 0≤k≤k small +129 sup Match 2 ru 1+δ dec -2δ 0 d k (f, f , log λ) ,
where (f, f , λ) denotes either the change of frame coefficients from (e 4 , e 3 , e 1 , e 2 ) to the global frame ( (glo) e 4 , (glo) e 3 , (glo) e 1 , (glo) e 2 ),

or the one from ( (ext) λ (ext) e 4 , (ext) λ -1(ext) e 3 , (ext) e 1 , (ext) e 2 ) to the global frame ( (glo) e 4 , (glo) e 3 , (glo) e 1 , (glo) e 2 ).

(e) In the matching region, we have

max 0≤k≤k small +129 sup Match 2 u 1+δ dec -2δ 0 d k (glo) r -r +r d k (glo) J (0) -J (0) + r 2 d k (glo) J -J and max 0≤k≤k small +129 sup Match 2 u 1+δ dec -2δ 0 d k (glo) r -(ext) r +r d k (glo) J (0) -cos( (ext) θ) + r 2 d k (glo) J -(ext) J .
Proof. See Section 4.5.3.

We are now ready to prove Proposition 3.6.9. The global frame of Proposition 3.6.9 is the one constructed in Lemma 4.5.5. First, note from the definition of Match 1 in (4.5.3) and Match 2 in (4.5.4) that

Match = Match 1 ∩ (int) M ∪ Match 2 ,
where Match is the matching region of Definition 3.6.7 appearing in the statement of Proposition 3.6.9. Next, note that property (c) of Proposition 3. This concludes the proof of Proposition 3.6.9.

Proof of Lemma 4.5.1

To simplify the notations, in this section, we denote

• by (e 4 , e 3 , e 1 , e 2 ) the outgoing PG frame of (ext) M,

• by (u, r, θ) and by J respectively the triplet of scalar functions and the complex 1-form associated to the outgoing PG structure of (ext) M,

• by (e 4 , e 3 , e 1 , e 2 ) the ingoing PG frame of (int) M slightly extended into (ext) M,

• by (u, r , θ ) and by J respectively the triplet of scalar functions and the complex 1form associated to the ingoing PG structure of (int) M slightly extended into (ext) M,

• by (f, f , λ) the change of frame from (e 4 , e 3 , e 1 , e 2 ) to (e 4 , e 3 , e 1 , e 2 ).

Recall from Section 3.2.5 that we have, in view of the initialization of the ingoing PG frame of (int) M on T = {r = r 0 } from the outgoing PG frame of (ext) M,

u = u, r = r, θ = θ, f = f = 0, λ = ∆ |q| 2 on {r = r 0 }. (4.5.5)
In order to control (f, f , λ), we introduce, as in the proof of Proposition 4.4.3, the following auxiliary transformation

e 3 = λ e 3 + (f ) b e b + 1 4 |f | 2 e 3 , e a = δ b a + 1 2 (f ) a (f ) b e b + 1 2 (f ) a e 3 + 1 2 (f ) a + 1 8 |f | 2 (f ) a e 4 , e 4 = (λ ) -1 1 + 1 2 f • f + 1 16 |f | 2 |f | 2 e 4 + (f ) b + 1 4 |f | 2 (f ) b e b + 1 4 |f | 2 e 3 ,
where λ > 0 is a scalar and (f , f ) are 1-forms. In view of (4.4.12), it suffices to control (f , f , λ ) in order to control (f, f , λ). Note also that (4.5.5) and (4.4.12) imply

f = f = 0, λ = |q| 2 ∆ on {r = r 0 }. (4.5.6)
Now, let

F := f + i * f , F := f + i * f .
By exchanging the role of e 3 and e 4 , we have the following analog of the transport equations of Corollary 2.2.5

∇ (λ ) -1 e 3 F + 1 2 trX F + 2ω F = -2Ξ -χ • F + E 1 (f , Γ), (λ ) -1 ∇ 3 (log(λ )) = 2ω -f • (ζ + η) + E 2 (f , Γ), ∇ (λ ) -1 e 3 F + 1 2 trXF = -2(H -Z) -2D (log(λ )) + 2ωF + E 3 (∇ ≤1 f , f , Γ, λχ ),
where E 1 (f, Γ) and E 2 (f, Γ) contain expressions of the type O(Γ(f ) 2 ) with no derivatives, and

E 3 (f, f , Γ) contains expressions of the type f ∇ f + O(Γ(f, f ) 2 ).
Since the transport equations for F and λ are the same as the ones in Step 1 of the proof of Proposition 4.4.3, we may proceed as in Step 2 and Step 3 of the proof of Proposition 4.4.3 and obtain max

k≤k small +130 sup (ext) M( (ext) r≤r 0 +1)∩{u≤u * } u 1+δ dec -2δ 0 d k f , log ∆ |q| 2 λ .
Next, we estimate f . We have

D (log(λ )) = D log ∆ |q| 2 λ + D log |q| 2 ∆ .
Using the transformation formula for e a , we infer

D (log(λ )) = D log ∆ |q| 2 λ + D log |q| 2 ∆ + F f • ∇ + F e 3 + 1 2 F + 1 8 |f | 2 F e 4 log |q| 2 ∆ .
Together with the above transport equation for F , we deduce

∇ (λ ) -1 e 3 F + 1 2 trXF = -2 H -Z + D log |q| 2 ∆ -2D log ∆ |q| 2 λ +2ωF + E 3 (∇ ≤1 f , f , Γ, λχ ) -2 F f • ∇ + F e 3 + 1 2 F + 1 8 |f | 2 F e 4 log |q| 2 ∆ .
Note that we have for the frame of (ext) M, recalling that D(r) = 0 and hence D(∆) = 0,

H -Z + D log |q| 2 ∆ = aq |q| 2 J + q H - aq |q| 2 J -q Z - D(|q| 2 ) |q| 2 = Γ b
and hence

∇ (λ ) -1 e 3 F + 1 2 trXF = Γ b -2D log ∆ |q| 2 λ + 2ωF + E 3 (∇ ≤1 f , f , Γ, λχ ) -2 F f • ∇ + F e 3 + 1 2 F + 1 8 |f | 2 F e 4 log |q| 2 ∆ .
Integrating this transport equation from {r = r 0 }, where F = 0 in view of (4.5.6), to the region (ext) M( (ext) r ≤ r 0 +1)∩{u ≤ u * }, using the above control for f and λ , the control (4.2.6) for the outgoing PG structure of (ext) M, and the above mentioned structure of the error term E 3 (∇ ≤1 f , f , Γ, λχ , we easily deduce, since

F = f + i * f , max k≤k small +129 sup (ext) M( (ext) r≤r 0 +1)∩{u≤u * } u 1+δ dec -2δ 0 d k f .
Together with the above control of f and λ , we infer max

k≤k small +129 sup (ext) M( (ext) r≤r 0 +1)∩{u≤u * } u 1+δ dec -2δ 0 d k f , f , ∆ |q| 2 λ .
In view of (4.4.12), we infer max

k≤k small +129 sup (ext) M( (ext) r≤r 0 +1)∩{u≤u * } u 1+δ dec -2δ 0 d k f, f , |q| 2 ∆ λ , which is the desired control of (f, f , λ) in (ext) M( (ext) r ≤ r 0 + 1) ∩ {u ≤ u * }.
Next, since e 3 (r) = 1, e 3 (cos θ) = 0 and ∇ 3 J = 1 q J , we may proceed as in Step 4 of the proof of Proposition 4.4.3 and obtain

e 3 (r -r) = -λ -1 λ - ∆ |q| 2 + rΓ b + O(1)f • (f, f ) + rΓ g • f , e 3 (cos(θ ) -cos(θ)) = Γ b + O(r -1 )f + Γ b • f • (f, f ), ∇ 3 (J -J) + 1 q (J -J) = r -1 Γ b + O(r -2 )λ -1 λ - ∆ |q| 2 + O(r -3 )(r -r) +O(r -3 )(cos(θ ) -cos θ) + O(r -2 )f + Γ b • (f, f ) +O(r -2 )f • (f, f ).
Integrating these transport equations from {r = r 0 }, where r = r, cos(θ ) = cos(θ), q = q and J = J in view of (4.5.5), to the region (ext) M( (ext) r ≤ r 0 + 1) ∩ {u ≤ u * }, using the above control for (f, f , λ) and the control (4.2.6) for the outgoing PG structure of (ext) M, we easily deduce max

k≤k small +129 sup (ext) M( (ext) r≤r 0 +1)∩{u≤u * } u 1+δ dec -2δ 0 d k (r -r, cos(θ ) -cos(θ), J -J) as stated.
Also, we consider the control of (Γ g , Γ b ). The change of frame formulas of Proposition 2.2.3, the above control of the change of frame coefficients (f, f , λ), the control (4.2.6) for the outgoing PG structure of (ext) M, and the above control of r -r, cos(θ ) -cos(θ) and J -J imply max

k≤k small +128 sup (ext) M( (ext) r≤r 0 +1)∩{u≤u * } u 1+δ dec -2δ 0 d k Γ b , Γ g as stated.
So far, we have proved all statements concerning comparisons between the slight extension of the ingoing PG structure of (int) M into (ext) M and the outgoing PG structure of (ext) M. Then, the statements concerning comparisons between the slight extension of the frame of (int) M into (ext) M and the ingoing PT structure of Proposition 4.4.3 follow immediately from the above comparisons and the comparison between the ingoing PT structure of Proposition 4.4.3 and the outgoing PG structure of (ext) M done in that proposition. This concludes the proof of Lemma 4.5.1.

Proof of Lemma 4.5.3

To simplify the notations, in this section, we denote

• by (e 4 , e 3 , e 1 , e 2 ) the ingoing PG frame of (int) M slightly extended into (ext) M in Lemma 4.5.1,

• by (u, r, θ) and by J respectively the triplet of scalar functions and the complex 1-form associated to the ingoing PG structure of (int) M,

• by (e 4 , e 3 , e 1 , e 2 ) the ingoing PT frame of Proposition 4.4.3 which exists on (top) M ,

• by (u , r , θ ) and by J respectively the triplet of scalar functions and the complex 1-form associated to the ingoing PT structure of Proposition 4.4.3,

• by (f, f , λ) the change of frame coefficients from (e 4 , e 3 , e 1 , e 2 ) to (e 4 , e 3 , e 1 , e 2 ).

Recall the definition of the matching region in (4.5.3)

Match 1 = (int) M(u ≥ u * -1) ∪ (ext) M( (ext) r ≤ r 0 + 1) ∩ {u * -1 ≤ u ≤ u * } . Note that Match 1 ⊂ (int) M ∪ (ext) M( (ext) r ≤ r 0 + 1) ∩ {u ≤ u * } ,
and that, in view of the definition of (top) M , Remark 4.5.2 and the control of u -u in Proposition 4.4.3, we also have

Match 1 ⊂ (top) M .
In particular, the above mentioned frames, scalars and complex 1-forms exist on Match 1 .

Let ψ be a smooth cut-off function of u such that ψ = 0 for u ≤ u * -1 and ψ = 1 for u ≥ u * . Then, we define the null frame (e 4 , e 3 , e 1 , e 2 ) on

(int) M ∪ (top) M ∪ (ext) M( (ext) r ≤ r 0 + 1) ∪ (ext) M(u ≥ u * -1),
and the quantities (r , J (0) , J ) as follows:

• In

(top) M ∪ (ext) M( (ext) r ≤ r 0 + 1) ∪ (ext) M(u ≥ u * -1) \ {u ≤ u * } ,
we have (e 4 , e 3 , e 1 , e 2 ) = (e 4 , e 3 , e 1 , e 2 ), r = r , J (0) = cos(θ ), J = J .

• In

(int) M ∪ (ext) M( (ext) r ≤ r 0 + 1) ∩ {u ≤ u * -1},
we have (e 4 , e 3 , e 1 , e 2 ) = (e 4 , e 3 , e 1 , e 2 ), r = r, J (0) = cos(θ), J = J.

• In the matching region Match 1 , (e 4 , e 3 , e 1 , e 2 ) is defined from (e 4 , e 3 , e 1 , e 2 ) using the change of frame coefficients (f , f , λ ) with

f = ψ(u)f, f = ψ(u)f , λ = 1 -ψ(u) + ψ(u)λ,
where we recall that (f, f , λ) denotes the coefficients corresponding to the change of frame from (e 4 , e 3 , e 1 , e 2 ) to (e 4 , e 3 , e 1 , e 2 ).

• In the matching region Match 1 , r , J (0) and J are defined by

r = ψ(u)r + (1 -ψ(u))r, J (0) = ψ(u) cos(θ ) + (1 -ψ(u)) cos θ, J = ψ(u)J + (1 -ψ(u))J.
In view of the above definitions, properties (a) and (b) of Lemma 4.5.3 are immediate. Also, using the definition of (f , f , λ ) and the control of (f, f , λ) provided in Match 1 ∩ (int) M by Proposition 4.4.3 and in Match 1 ∩ (ext) M by Lemma 4.5.1, we have max

k≤k small +129 sup Match 1 u 1+δ dec -2δ 0 (f , f , log(λ )) .
Also, if (f , f , λ ) denotes the coefficients of the change of frame from (e 4 , e 3 , e 1 , e 2 ) to (e 4 , e 3 , e 1 , e 2 ), we easily obtain from the above control of (f , f , λ ) and (f, f , λ)

max k≤k small +129 sup Match 1 u 1+δ dec -2δ 0 (f , f , log(λ )) ,
which concludes the proof of property (d) of Lemma 4.5.3.

Finally, in view of the definition of r , J (0) and J in Match 1 , and the control of rr, cos(θ ) -cos θ and J -J provided in Match 1 ∩ (int) M by Proposition 4.4.3 and in Match 1 ∩ (ext) M by Lemma 4.5.1, we have max

k≤k small +129 sup Match 1 u 1+δ dec -2δ 0 d k r -r, J (0) -cos(θ), J -J .
Together with the change of frame formulas of Proposition 2.2.3, the above control of the change of frame coefficients (f , f , λ ), and the bootstrap assumptions on decay and boundedness for the ingoing PG structure of (int) M, we infer max

k≤k small +128 sup Match 1 u 1+δ dec -2δ 0 d k Γ g , Γ b
which is property (c). This concludes the proof of Lemma 4.5.3.

Proof of Lemma 4.5.5

To simplify the notations, in this section, we denote

• by (e 4 , e 3 , e 1 , e 2 ) the frame of Lemma 4.5.3,

• by (r, J (0) ) and by J respectively the pair of scalar functions and the complex 1-form of Lemma 4.5.3,

• by (e 4 , e 3 , e 1 , e 2 ) the second frame of (ext) M constructed in Proposition 3.6.2,

• by (u, r , θ ) and by J respectively the triplet of scalar functions and the complex 1-form associated to the outgoing PG structure of (ext) M.

Recall the definition of the matching region in (4.5.4)

Match 2 = (ext) M(u ≥ u * -1) ∪ (ext) M( (ext) r ≤ r 0 + 1).
Note that the above mentioned frames, scalars and complex 1-forms exist on Match 

ru 1+δ dec d k Γ b + ru 1+δ dec + r 2 u 1 2 +δ dec d k Γ g + sup Match 2 r 2 u 1+δ dec d k-1 ∇ 3 Γ g + r 7 2 +δ B |d k (A, B)| + sup Match 2 r 4 u 1 2 +δ dec d k-1 ∇ 3 B + sup Match 2 r 9 2 +δ B + r 4 u 1 2 +δ dec d k-1 ∇ 3 A .
We define the following null frame (e 4 , e 3 , e 1 , e 2 ) on (ext) M

e 4 = ∆ |q | 2 e 4 , e 3 = |q | 2 ∆ e 3 , e a = e a , a = 1, 2.
We define the linearized quantities (Γ g , Γ b ) using (r , θ ) and J , with the ingoing normalization. Let also (f, f , λ) denote the coefficients corresponding to the change of frame from (e 4 , e 

ru 1+δ dec -2δ 0 + r 2 u 1 2 +δ dec -2δ 0 d k f, f , λ -1 +r 2 u 1+δ dec -2δ 0 d k-1 ∇ 3 f, f , λ -1 .
Let ψ be a smooth cut-off function of (r , u) such that ψ = 0 on (ext) M \ Match 2 , ψ = 1 for (int) M ∪ (top) M, and such that ψ only depends on u for r ≥ r 0 + 1. Then, we define the global null frame (e 4 , e 3 , e 1 , e 2 ) of M and the quantities (r , J (0) , J ) as follows:

• In (ext) M \ Match 2 , we have (e 4 , e 3 , e 1 , e 2 ) = (e 4 , e 3 , e 1 , e 2 ), r = r , J (0) = cos(θ ), J = J .

• In (int) M ∪ (top) M, we have (e 4 , e 3 , e 1 , e 2 ) = (e 4 , e 3 , e 1 , e 2 ), r = r, J (0) = J (0) , J = J.

• In the matching region Match 2 , (e 4 , e 3 , e 1 , e 2 ) is defined from (e 4 , e 3 , e 1 , e 2 ) using the change of frame coefficients (f , f , λ ) with

f = ψ(r , u)f, f = ψ(r , u)f , λ = 1 -ψ(r , u) + ψ(r , u)λ,
where we recall that (f, f , λ) denotes the coefficients corresponding to the change of frame from (e 4 , e 3 , e 1 , e 2 ) to (e 4 , e 3 , e 1 , e 2 ).

• In the matching region Match 1 , r , J (0) and J are defined by

r = ψ(r , u)r + (1 -ψ(r , u))r, J (0) = ψ(r , u) cos(θ ) + (1 -ψ(r , u))J (0) , J = ψ(r , u)J + (1 -ψ(r , u))J.
In view of the above definitions, properties (a) and (b) of Lemma 4.5.3 are immediate. Also, using the definition of (f , f , λ ), the fact that ψ only depends on12 u for r ≥ r 0 + 1 and the above control of (f, f , λ), we have, for k ≤ k small + 129, sup

Match 2 ru 1+δ dec -2δ 0 + r 2 u 1 2 +δ dec -2δ 0 d k f , f , λ -1 +r 2 u 1+δ dec -2δ 0 d k-1 ∇ 3 f , f , λ -1 .
Also, if (f , f , λ ) denotes the coefficients of the change of frame from (e 4 , e 3 , e 1 , e 2 ) to (e 4 , e 3 , e 1 , e 2 ), we easily obtain from the above control of (f , f , λ ) and (f,

f , λ), for k ≤ k small + 129, sup Match 2 ru 1+δ dec -2δ 0 + r 2 u 1 2 +δ dec -2δ 0 d k f , f , λ -1 +r 2 u 1+δ dec -2δ 0 d k-1 ∇ 3 f , f , λ -1
which concludes the proof of property (d) of Lemma 4.5.5.

Next, in view of the definition of r , J (0) and J in Match 1 , and the control of r -r, cos(θ ) -J (0) and J -J of Lemma 4.5.1 and Lemma 4.5.3, we have max

k≤k small +129 sup Match 1 u 1+δ dec -2δ 0 d k r -r, J (0) -J (0) , J -J
which concludes the proof of property (e) of Lemma 4.5.5. Together with the change of frame formulas of Proposition 2.2.3, the above control of the change of frame coefficients (f , f , λ ), and the above control for (Γ b , Γ g , A, B), we infer, for k ≤ k small + 128, sup

Match 2 ru 1+δ dec d k Γ b + ru 1+δ dec + r 2 u 1 2 +δ dec d k Γ g + sup Match 2 r 2 u 1+δ dec d k-1 ∇ 3 Γ g + r 7 2 +δ B |d k (A , B )| + sup Match 2 r 4 u 1 2 +δ dec d k-1 ∇ 3 B + sup Match 2 r 9 2 +δ B + r 4 u 1 2 +δ dec d k-1 ∇ 3 A
which is property (c) of Lemma 4.5.5. This concludes the proof of Lemma 4.5.5.

Proof of Proposition 3.6.11

We glue a renormalization of the third frame of (ext) M constructed in Proposition 3.6.5 to the frame of Lemma 4.5.3 in the matching region Match 2 given by (4.5.4), noticing in view of Remark 4.5.4 that both frames are defined in Match 2 .

Lemma 4.6.1. Let ( (ext) e 4 , (ext) e 3 , (ext) e 1 , (ext) e 2 ) be the third frame of (ext) M constructed in Proposition 3.6.5, and let (e 4 , e 3 , e 1 , e 2 ) be the frame of Lemma 4.5.3. There exists a global null frame ( (glo ) e 4 , (glo ) e 3 , (glo ) e 1 , (glo ) e 2 ) defined on M, as well as a pair of scalar functions ( (glo ) r, (glo ) J (0) ), and a complex 1-form (glo ) J, such that:

(a) In (ext) M \ Match 2 , we have

( (glo ) e 4 , (glo ) e 3 , (glo ) e 1 , (glo ) e 2 ) = ( (ext) λ (ext) e 4 , (ext) λ -1(ext) e 3 , (ext) e 1 , (ext) e 2 )
where (ext) λ :=

(ext) ∆ | (ext) q| 2 ,
as well as (glo ) r = (ext) r, (glo ) J (0) = cos( (ext) θ), and (glo ) J = (ext) J.

(b) In (int) M ∪ (top) M, we have ( (glo ) e 4 , (glo ) e 3 , (glo ) e 1 , (glo ) e 2 ) = (e 4 , e 3 , e 1 , e 2 ), as well as (glo ) r = r , (glo ) J (0) = J (0) , and (glo ) J = J .

(c) In the matching region, we have, for k ≤ k small + 128, sup

Match 2 ru 1+δ dec d k(glo ) Γ b + ru 1+δ dec + r 2 u 1 2 +δ dec d k(glo ) Γ g + sup Match 2 r 2 u 1+δ dec d k-1 ∇(glo ) e 3 (glo ) Γ g + r 7 2 +δ B |d k ( (glo ) A, (glo ) B)| + sup Match 2 r 4 u 1 2 +δ dec d k-1 ∇(glo ) e 3 (glo ) B + sup Match 2 r 9 2 +δ B + r 4 u 1 2 +δ dec d k-1 ∇(glo ) e 3 (glo ) A .
(d) In the matching region, we have

max 0≤k≤k small +129 sup Match 2 ∩ (ext) M ru 1+δ dec -2δ 0 d k (f, f , log λ) ,
where (f, f , λ) denotes either the change of frame coefficients from (e 4 , e 3 , e 1 , e 2 ) to the global frame ( (glo ) e 4 , (glo ) e 3 , (glo ) e 1 , (glo ) e 2 ),

or the one from ( (ext) λ (ext) e 4 , (ext) λ -1(ext) e 3 , (ext) e 1 , (ext) e 2 ) to the global frame ( (glo ) e 4 , (glo ) e 3 , (glo ) e 1 , (glo ) e 2 ).

(e) In the matching region, we have

max 0≤k≤k small +129 sup Match 2 u 1+δ dec -2δ 0 d k (glo ) r -r +r d k (glo ) J (0) -J (0) + r 2 d k (glo ) J -J and max 0≤k≤k small +129 sup Match 2 u 1+δ dec -2δ 0 d k (glo ) r -(ext) r +r d k (glo ) J (0) -cos( (ext) θ) + r 2 d k (glo ) J -(ext) J .
Proof. The proof of Lemma 4.6.1 is completely analogous to the one Lemma 4.5.5.

We are now ready to prove Proposition 3.6.11. The global frame of Proposition 3.6.11 is the one constructed in Lemma 4.6.1. The proof of properties (a) to (c) of Proposition 3.6.11 is completely analogous to the one of properties (a) to (f) of Proposition 3.6.9. Finally, property (d) of Proposition 3.6.11 follows from the fourth property of Proposition 3.6.5. This concludes the proof of Proposition 3.6.11.

Chapter 5

Decay estimates on the last slice (Theorem M3)

The goal of this chapter is to prove Theorem M3, i.e. to improve our bootstrap assumptions on decay for the integrable frame of Σ * . This will be achieved in Section 5.5, see Proposition 5.5.1. We will then use these improvements to derive decay estimates for the PG frame of (ext) M on Σ * in Section 5.7, see Proposition 5.7.3.

In order to count the number of derivatives under control in this chapter, we introduce for convenience the following notation k * := k small + 80.

(5.0.1)

Geometric setting on Σ *

We recall the properties of the defining boundary Σ * of our GCM admissible spacetime introduced in Section 3.2.3. To start with Σ * is equipped, in view of Section 3.2.3, with a frame (e 1 , e 2 , e 3 , e 4 ) and a function r such that Σ * , r, (e 1 , e 2 , e 3 , e 4 ) is a framed hypersurface, see Definition 2.5.1. Also, Σ * comes equipped with function u which verifies, for a constant1 c * ,

u = c * -r. (5.1.1)
Recall that we have also imposed the transversality conditions on Σ * (see (3.3.3))

ξ = 0, ω = 0, η = -ζ, e 4 (r) = 1, e 4 (u) = 0, (5.1.2)
which allows us to make sense of all the Ricci coefficients in the frame of Σ * , i.e.,

χ, κ = tr χ, η, ζ, η, ξ, χ, κ = tr χ, ξ,
as well as make sense of all first order derivatives of r and u on Σ * .

For convenience, we introduce the following notations y := e 3 (r), z := e 3 (u).

(5.1.3)

We thus have, using the transversality condition for e 4 (r) and e 4 (u), and the fact that (e 1 , e 2 ) is adapted to the r-foliation on Σ * ,

∇(r) = ∇(u) = 0, e 4 (u) = 0, e 4 (r) = 1, e 3 (r) = y, e 3 (u) = z. (5.1.4) 
Also, recall that

ν = e 3 + b * e 4 (5.1.5) 
denotes the vectorfield tangent to Σ * , orthogonal to the foliation and normalized by the condition g(ν, e 4 ) = -2.

Effective uniformization of almost round 2-spheres

In this section, we recall some of the basic results on effective uniformization from [START_REF] Klainerman | Effective results in uniformization and intrinsic GCM spheres in perturbations of Kerr[END_REF] that will be useful in this chapter, as well as in chapter 8.

Definition 5.1.1. A 2 dimensional, closed, Riemannian surface (S, g S ) is said to be almost round if its Gauss curvature K S verifies, for a sufficiently small > 0,

K S - 1 (r S ) 2 ≤ (r S ) 2 , (5.1.6)
where r S is the area radius of S.

The following theorem is Corollary 3.8 in [START_REF] Klainerman | Effective results in uniformization and intrinsic GCM spheres in perturbations of Kerr[END_REF].

Theorem 5.1.2 (Effective uniformization). Given an almost round sphere (S, g S ) as above there exists, up to isometries2 of S 2 , a unique diffeomorphism Φ : S 2 → S and a unique conformal factor u such that

Φ # (g S ) = (r S ) 2 e 2u γ S 2 , S 2 e 2u x i = 0, i = 1, 2, 3. (5.1.7)
Moreover, the size of the conformal factor u is small with respect to the parameter , i.e.

u L ∞ (S 2 ) .

Theorem 5.1.2 is used to define a canonical = 1 basis on S, see Definition 3.10 in [START_REF] Klainerman | Effective results in uniformization and intrinsic GCM spheres in perturbations of Kerr[END_REF].

Definition 5.1.3 (Basis of canonical = 1 modes on S). Let (Φ, u) be the unique, up to isometries of S 2 , uniformization pair given by Theorem 5.1.2. We define the basis of canonical = 1 modes on S by

J S := J S 2 • Φ -1 , (5.1.8) 
where J S 2 denotes the = 1 spherical harmonics.

The main properties of this basis are given in Lemma 3.12 in [START_REF] Klainerman | Effective results in uniformization and intrinsic GCM spheres in perturbations of Kerr[END_REF] which we review below.

Lemma 5.1.4. Let J S denote the basis of canonical = 1 modes on S of Definition 5.1.3. Then

∆ S J (p,S) = - 2 (r S ) 2 J (p,S) + 2 (r S ) 2 1 -e -2v J (p,S) , S J (p,S) J (q,S) da g = 4π 3 (r S ) 2 δ pq + S J (p,S) J (q,S) 1 -e -2v da g S , S J (p,S) da g = 0,
(5.1.9)

with ∆ S the Laplace-Beltrami of the metric g S and v := u • Φ -1 . Moreover we have

∆ S J (p,S) = - 2 (r S ) 2 + O (r S ) 2 J (p,S) , S J (p,S) J (q,S) da g = 4π 3 (r S ) 2 δ pq + O( (r S ) 2 ), (5.1.10)
where > 0 is the smallness constant appearing in (5.1.6).

The following proposition is Proposition 4.15 in [START_REF] Klainerman | Effective results in uniformization and intrinsic GCM spheres in perturbations of Kerr[END_REF].

Proposition 5.1.5. Let (S, g S ) be an almost round sphere, i.e. verifying (5.1.6). Consider an approximate uniformization pair ( Φ, u), where Φ : S 2 → S is a smooth diffeomorphism and u a smooth scalar function on S 2 such that the following are verified, for δ such that 0 < δ ≤ and for s ≥ 2,

Φ # (g S ) -(r S ) 2 e 2 u γ 0 H s (S 2 ) ≤ (r S ) 2 δ, u H 2 (S 2 ) ≤ . (5.1.11)
Assume in addition that the scalar functions

J (p) := J (p,S 2 ) • Φ -1 , p ∈ {0, +, -}, satisfy S J (p) ≤ (r S ) 2 δ.
(5.1.12)

Then we can choose3 the uniformization pair (Φ, u) in Theorem 5.1.2 such that4 

(r S ) -1 u • ( Φ) -1 -u • Φ -1 hs(S) + max p=0,+,- (r S ) -1 J (p) -J (p,S) h s+1 (S) δ. (5.1.13)
We recall the following definition from [START_REF] Klainerman | Effective results in uniformization and intrinsic GCM spheres in perturbations of Kerr[END_REF] on the calibration of uniformization maps between almost round spheres S 1 , S 2 and diffeomorphisms Ψ :

S 1 → S 2 .
Definition 5.1.6. On S 2 we fix5 a point N and a unit vector v in the tangent space T N S 2 . Given Ψ : S 1 → S 2 , we say that the effective uniformization maps

Φ 1 : S 2 → S 1 , Φ 2 : S 2 → S 2 are calibrated relative to Ψ if the map Ψ := (Φ 2 ) -1 • Ψ • Φ 1 : S 2 → S 2 is such that:
1. The map Ψ fixes the point N , i.e. Ψ(N ) = N .

2. The tangent map Ψ # fixes the direction of v, i.e. Ψ # (v) = a 1,2 v where a 1,2 > 0.

3. The tangent map Ψ # preserves the orientation of T N S 2 .

The following theorem is Corollary 4.11 in [START_REF] Klainerman | Effective results in uniformization and intrinsic GCM spheres in perturbations of Kerr[END_REF].

Theorem 5.1.7. Let Ψ : S 1 → S 2 be a given diffeomorphism and assume the following, for δ such that 0 < δ ≤ , 1. The surfaces S 1 , S 2 are close to each other, i.e. for some s ≥ 0,

g S 1 -Ψ # (g S 2 ) h 4+s (S 1 ) ≤ (r S 1 ) 3 δ. (5.1.14)
2. The maps Φ 1 , Φ 2 are calibrated according to Definition 5.1.6.

Then

Ψ -I L ∞ (S 2 ) + Ψ -I H 1 (S 2 ) δ, (5.1.15)
and the conformal factors u 1 , u 2 verify

u 1 -Ψ # u 2 L ∞ (S 2 ) δ.
(5.1.16)

The GCM conditions on Σ *

The framed hypersurface Σ * , r, (e 1 , e 2 , e 3 , e 4 ) introduced in Section 3.2.3 terminates in a future boundary S * on which the given function r is constant, i.e. S * is a leaf of the r-foliation of Σ * . On S * there exist coordinates (θ, ϕ) such that 1. The induced metric g on S * takes the form g = r 2 e 2φ (dθ) 2 + sin 2 θ(dϕ) 2 .

(5.1.17)

2. The functions Once (θ, ϕ) are chosen on S * we extend them to Σ * by setting

J (0) := cos θ, J ( 
ν(θ) = ν(ϕ) = 0. (5.1.20)
We extend the J (p) functions to Σ * by setting ν(J (p) ) = 0, p = 0, +, -.

(5.1.21)

We also impose the following transversality conditions on Σ * for (θ, ϕ) and J (p) e 4 (θ) = 0, e 4 (ϕ) = 0, e 4 (J (p) ) = 0, p = 0, +, -.

(5.1.22)

Recall the following, see Definition 2.6.1

Definition 5.1.8. Given a scalar function f on any sphere S of the r-foliation, its = 1 modes are given by p) , p = +, 0, -.

(f ) =1 = 1 |S| S f J (
Remark 5.1.9. This definition is such that the = 1 modes have the same scaling in r as the corresponding quantity.

Endowed with these canonical coordinates and J (p) basis, Σ * is an admissible GCM hypersurface, i.e.,

1. On S * we have

κ = 2 r , κ = - 2Υ r , (5.1.23) (div β) =1 = 0, (5.1.24) 
as well as

S * J (+) curl β = 0, S * J (-) curl β = 0. (5.1.25)
2. On any sphere of the r-foliation of Σ * , we have

κ = 2 r , κ = - 2Υ r + C 0 + p=0,+,- C p J (p) , µ = 2m r 3 + M 0 + p=0,+,- M p J (p) , (5.1.26) 
where C 0 , C p , M 0 , M p are scalar functions on Σ * , constant on the leaves of the foliation. Also 

(div η) =1 = (div ξ) =1 = 0, b * = -1 - 2m r , ( 5 
r * = δ * -1 0 u * 1+δ dec (5.1.30) which implies in particular on Σ * r ≥ r * = δ * -1 0 u * 1+δ dec ≥ δ * -1 0 u 1+δ dec .

Main equations in the frame of Σ *

Recall that the following transversality conditions hold on Σ * , see (5.1.2),

ξ = 0, ω = 0, η = -ζ. (5.1.31) 
Proposition 5.1.10. We have on Σ * , for the Ricci coefficients and curvature components associated to the GCM frame of Σ * , the following 6 :

1. The Ricci coefficients verify the equations 6 We only provide the equations relevant for the control of the GCM frame of Σ * .

∇ 4 tr χ = - 1 2 tr χ 2 -| χ| 2 , ∇ 4 χ + tr χ χ = -α, ∇ 4 tr χ + 1 2 tr χtr χ = -2div ζ + 2|ζ| 2 + 2ρ -χ • χ, ∇ 4 χ + 1 2 tr χ χ + tr χ χ = -∇ ⊗ζ + ζ ⊗ζ, ∇ 3 tr χ + 1 2 tr χtr χ = 2div η + 2ωtr χ + 2|η| 2 + 2ρ -χ • χ, ∇ 3 tr χ + 1 2 tr χ 2 + 2ωtr χ = 2div ξ + 2ξ • (η -3ζ) -| χ| 2 , ∇ 3 χ + 1 2 tr χ χ + tr χ χ -2ω χ = ∇ ⊗η + η ⊗η, ∇ 3 χ + tr χ χ + 2ω χ = ∇ ⊗ξ + ξ ⊗(η -3ζ) -α,
∇ 4 ζ + tr χζ = -2 χ • ζ -β, ∇ 3 ζ + 2∇ω = -χ • (ζ + η) - 1 2 tr χ(ζ + η) + 2ω(ζ -η) + χ • ξ + 1 2 tr χ ξ -β, div χ + ζ • χ = 1 2 ∇tr χ + 1 2 tr χζ -β, div χ -ζ • χ = 1 2 ∇tr χ - 1 2 tr χζ + β, K = -ρ - 1 4 tr χtr χ + 1 2 χ • χ, curl ζ = - 1 2 χ ∧ χ + * ρ, curl η = 1 2 χ ∧ χ + * ρ, curl ξ = ξ ∧ (η -ζ).
2. The curvature components verify the equations

∇ 3 α -∇ ⊗β = - 1 2 tr χα + 4ωα + (ζ + 4η) ⊗β -3(ρ χ + * ρ * χ), ∇ 4 β -div α = -2tr χβ + α • ζ, ∇ 3 β -(∇ρ + * ∇ * ρ) = -tr χβ + 2ω β + 2β • χ + 3(ρη + * ρ * η) + α • ξ, ∇ 4 ρ -div β = - 3 2 tr χρ -ζ • β - 1 2 χ • α, ∇ 4 * ρ + curl β = - 3 2 tr χ * ρ + ζ • * β + 1 2 χ • * α, ∇ 3 ρ + div β = - 3 2 tr χρ -(2η -ζ) • β + 2ξ • β - 1 2 χ • α, ∇ 3 * ρ + curl β = - 3 2 tr χ * ρ -(2η -ζ) • * β -2ξ • * β - 1 2 χ • * α.
Proof. In view of the transversality conditions (5.1.2) and the fact that (e 1 , e 2 ) are tangent to the 2-spheres of the r-foliation of Σ * , we have on Σ *

(a) trχ = (a) trχ = 0, ξ = 0, ω = 0, η + ζ = 0.
The proof follows then by plugging these identities in Propositions 2.1.3 and 2.1.4.

Definition 5.1.11. The mass aspect function µ is defined on Σ by

µ := -div ζ -ρ + 1 2 χ • χ.
Lemma 5.1.12. The following relations hold true for y = e 3 (r) and z = e 3 (u): Proof. We make use of [e a , e 3 ] = (ζ a -η a )e 3 -ξ a e 4 for a = 1, 2, which we apply to r.

∇y = -ξ + ζ -η)y, ∇z = (ζ -η)z. ( 5 
Using ∇(r) = 0 and e 4 (r) = 1, we infer

∇(e 3 (r)) = (ζ -η)e 3 (r) -ξ.
Similarly, using ∇(u) = 0 and e 4 (u) = 0, we have

∇(e 3 (u)) = (ζ -η)e 3 (u).
Since y = e 3 (r) and z = e 3 (u), this concludes the proof of the first identities.

Next, since u + r = c * on Σ * and ν is tangent to Σ * , we have

0 = ν(u + r) = e 3 (u) + e 3 (r) + b * e 4 (u) + b * e 4 (r) = y + z + b *
and hence b * = -y -z as stated. This concludes the proof of the lemma.

Linearized quantities and main quantitative assumptions

Recall the notation κ = tr χ, κ = tr χ and y = e 3 (r), z = e 3 (u). Also, recall the following linearized quantities introduced in Definition 3.3.2:

q κ := tr χ - 2 r , q κ := tr χ + 2Υ r , q ω := ω - m r 2 , q ρ := ρ + 2m r 3 , q y := y + Υ, q z := z -2, q b * := b * + 1 + 2m r , q µ := µ - 2m r 3 ,
where Υ = 1 -2m r .

We denote by Γ g , Γ b the sets of linearized quantities7 below.

• The set Γ g Γ g : = q κ, χ, ζ, q κ, rα, rβ, rq ρ, r * ρ, rq µ .

(5.1.34)

• The set Γ b Γ b = η, χ, q ω, ξ, rβ, α, r -1 q y, r -1 q z, r -1 q b * . (5.1.35)
Definition 5.1.13. We make use of the following norms on

S = S(u) ⊂ Σ * , f ∞ (u) := f L ∞ (S(u)) , f 2 (u) := f L 2 (S(u)) , f ∞,k (u) := k i=0 d i * f ∞ (u), f 2,k (u) := (5.1.37) 2. For 0 ≤ k ≤ k large , Γ g ∞,k ≤ r -2 , Γ b ∞,k ≤ r -1 . (5.1.38) Ref 2.
Recall from (5.0.1) that k * = k small + 80 in this chapter. The following estimates on Σ * are obtained in Theorems M1 and M2:

1. The quantity q satisfies, in view of Theorem M1, on Σ * , for all 0

≤ k ≤ k * , q ∞,k 0 r -1 u -1 2 -δextra , ∇ 3 q ∞,k-1 0 r -1 u -1-δextra , (5.1.39)
as well as

Σ * (u,u * ) u 2+2δ dec |∇ 3 d k q| 2 2 0 . (5.1.40) 2. According to Theorem M2, α satisfies, for all 0 ≤ k ≤ k * , Σ * (u,u * ) u 2+2δ dec |d k * α| 2 2 0 .
(5.1.41)

3. According to Theorem M1, α satisfies on Σ * , for all 0

≤ k ≤ k * , α ∞,k 0 r -7 2 -δextra , ∇ 3 α + f ⊗β - * f ⊗ * β ∞,k-1 0 r -9 2 -δextra , (5.1.42) 
where the 1-form f satisfies, for all 0

≤ k ≤ k * -1, f ∞,k r -1 .
(5.1.43)

Remark 5.1.14. Recall from the statement of Theorem M1 that q satisfying (5.1.39) (5.1.40) is expressed in the global frame of Proposition 3.6.9. Also, Theorem M1 implies in fact on Σ * , for all

0 ≤ k ≤ k * , α ∞,k 0 r -7 2 -δextra , ∇ e 3 α ∞,k-1 0 r -9 2 -δextra , (5.1.44) 
where the quantities with prime are expressed in the global frame of Proposition 3.6.9.

To infer (5.1.42) from (5.1.44), notice first that the change of frame coefficients (f, f , λ) from the frame of Σ * to the global frame of Proposition 3.6.9 satisfy, for all 0 ≤ k ≤ k * , .45) in view of property (f ) of Proposition 3.6.9, (3.6.5) and (3.2.5)-(3.2.6). Then, we choose f = ∇ 3 (f (2) ) which satisfies (5.1.43), and (5.1.42) follows immediately from (5.1.44) (5.1.45), the following change of frame formula of Proposition 2.2.3

f = f (1) + f (2) , f (2) ∞,k + λ -1 ∞,k r -1 , f ∞,k r -1 , (f (1) ) 1 = 0, (f (1) ) 2 = a sin θ r , on S * , ∇ ν (rf (1) ) = 0 on Σ * , (5.1 
λ -2 α = α + f ⊗β - * f ⊗ * β) + f ⊗f - 1 2 * f ⊗ * f ρ + 3 2 f ⊗ * f * ρ + l.o.t.,
and the dominant condition (5.1.30) for r on Σ * 8 . Finally, Theorem M2 implies in fact 8 Notice in particular that we have on 1) -b∇ 4 (f (1) ) which together with (5.1.30) and the definition of f (1) in (5.1.45) yields 

Σ * ∇ 3 (f (1) ) = r -1 ∇ ν (rf (1) ) -r -1 ν(r)f (1) -b∇ 4 (f (1) ) = -r -1 ν(r)f ( 
|∇ 3 (f (1) ⊗β - * f (1) ⊗ * β)| r -1 |∇ 3 β| + r -2 |β| r -5 0 r -9 2 -δextra . on Σ * , for all 0 ≤ k ≤ k * , Σ * (u,u * ) u 2+2δ dec |d k * α | 2 2 0 . ( 5 
|d k α| |d k α | + r -1 |d ≤k β| + • • • |d k α | + r -3 .
Together with (5.1.46) and the dominant condition (5.1.30) for r on Σ * , we obtain (5.1.41).

We conclude this section with an interpolation lemma.

Lemma 5.1.15. We have for

9 k ≤ k * Γ g ∞,k r -2 u -1 2 - δ dec 2 , ∇ ν Γ g ∞,k-1 r -2 u -1-δ dec 2 , Γ b ∞,k r -1 u -1-δ dec 2 .
(5.1.47)

Proof. Since k small < k * < k large , we have, interpolating between (5.1.37) and (5.

1.38), for k ≤ k * , Γ g ∞,k r -2 u -1 2 -δ dec 1- k * -k small k large -k small , ∇ ν Γ g ∞,k-1 r -2 u -1-δ dec 1-k * -k small k large -k small , Γ b ∞,k r -1 u -1-δ dec 1-k * -k small k large -k small . Now, since k * satisfies 10 k * ≤ k small + δ dec 3 (k large -k small ), δ dec (k large -k small ) ≥ 1 2 δ dec k large -δ dec 1,
and we may thus assume δ dec (k large -k small ) ≥ 240 so that, in view of k * = k small + 80, we have indeed

3(k * -k small ) = 240 ≤ δ dec (k large -k small ).
we infer

(2 + 2δ dec ) k * -k small k large -k small ≤ δ dec and hence - 1 2 -δ dec 1 - k * -k small k large -k small = - 1 2 - δ dec 2 - 1 2 δ dec -(1 + 2δ dec ) k * -k small k large -k small ≤ - 1 2 - δ dec 2
as well as

(-1 -δ dec ) 1 - k * -k small k large -k small = -1 - δ dec 2 - 1 2 δ dec -(2 + 2δ dec ) k * -k small k large -k small ≤ -1 - δ dec 2 .
This yields

Γ g ∞,k r -2 u -1 2 - δ dec 2 , ∇ ν Γ g ∞,k-1 r -2 u -1-δ dec 2 , Γ b ∞,k r -1 u -1-δ dec 2 ,
(5.1.48) as stated.

Hodge operators

We recall the following Hodge operators acting on 2-surfaces S (see [START_REF] Christodoulou | The global nonlinear stability of the Minkowski space[END_REF] chapter 2 and [START_REF] Klainerman | Global Non-Linear Stability of Schwarzschild Spacetime under Polarized Perturbations[END_REF]):

Definition 5.1.16. We define the following Hodge operators:

1. The operator d / 1 takes any 1-form f into the pair of functions (div f, curl f ).

2. The operator d / 2 takes any symmetric traceless 2-tensor f into the 1-form div f .

3. The operator d * / 1 takes any pair of scalars (h, * h) into the 1-form -∇h + * ∇ * h.

4.

The operator d * / 2 takes any 1-form f into the symmetric traceless 2-tensor -1 2 ∇ ⊗f .

One can easily check that d * / k is the formal adjoint on L 2 (S) of d / k for k = 1, 2. Moreover,

d * / 1 d / 1 = -∆ 1 + K, d / 1 d * / 1 = -∆ 0 , d * / 2 d / 2 = - 1 2 ∆ 2 + K, d / 2 d * / 2 = - 1 2 (∆ 1 + K).
(5.1.49)

Using (5.1.49) one can prove the following (see Chapter 2 in [START_REF] Christodoulou | The global nonlinear stability of the Minkowski space[END_REF]).

Proposition 5.1.17. Let (S, g) be a compact manifold with Gauss curvature K. We have, i.) The following identity holds for 1-forms f

S |∇f | 2 + K|f | 2 = S | d / 1 f | 2 .
ii.) The following identity holds for symmetric traceless 2-tensors f

S |∇f | 2 + 2K|f | 2 = 2 S | d / 2 f | 2 .
iii.) The following identity holds for scalars f

S |∇f | 2 = S | d * / 1 f | 2 .
iv.) The following identity holds for 1-forms

f S |∇f | 2 -K|f | 2 = 2 S | d * / 2 f | 2 .

Basic equations for the linearized quantities

Proposition 5.1.18. The following equations hold true on Σ * :

1. The linearized null structure equations are given by

∇ 4 q κ = Γ g • Γ g , ∇ 4 χ + 2 r χ = -α, ∇ 4 ζ + 2 r ζ = -β + Γ g • Γ g , ∇ 4 q κ + 1 r q κ = -2div ζ + 2q ρ + Γ b • Γ g , ∇ 4 χ + 1 r χ = Υ r χ -∇ ⊗ζ + Γ b • Γ g , and 
∇ 3 q κ = 2div η + 2q ρ - 1 r q κ + 4 r q ω + 2 r 2 q y + Γ b • Γ b , ∇ 3 q κ - 2Υ r q κ = 2div ξ + 4Υ r q ω - 2m r 2 q κ - 2 r 2 - 8m r 3 q y + Γ b • Γ b , ∇ 3 χ - 2Υ r χ = -α - 2m r 2 χ + ∇ ⊗ξ + Γ b • Γ b , ∇ 3 ζ - Υ r ζ = -β -2∇q ω + Υ r (η + ζ) + 1 r ξ + 2m r 2 (ζ -η) + Γ b • Γ b , ∇ 3 χ - Υ r χ = ∇ ⊗η - 1 r χ + 2m r 2 χ + Γ b • Γ b . Also, div χ = 1 r ζ -β + Γ g • Γ g , div χ = 1 2 ∇q κ + Υ r ζ + β + Γ b • Γ g , curl ζ = * ρ + Γ b • Γ g , curl η = * ρ + Γ b • Γ g , curl ξ = Γ b • Γ b , and 
q K = - 1 2r q κ -q ρ + Γ b • Γ g , q µ = -div ζ -q ρ + Γ b • Γ g . 2.
The linearized Bianchi identities are given by

∇ 3 α - Υ r α = ∇ ⊗β + 4m r 2 α + 6m r 3 χ + Γ b • (α, β) + r -1 Γ g • Γ g , ∇ 4 β + 4 r β = -div α + r -1 Γ g • Γ g , ∇ 3 β - 2Υ r β = (∇ρ + * ∇ * ρ) + 2m r 2 β - 6m r 3 η + r -1 Γ b • Γ g , ∇ 4 q ρ + 3 r q ρ = div β + r -1 Γ b • Γ g , ∇ 3 q ρ - 3Υ r q ρ = -div β + 3m r 3 q κ - 6m r 4 q y - 1 2 χ • α + r -1 Γ b • Γ b , ∇ 4 * ρ + 3 r * ρ = -curl β + r -1 Γ b • Γ g , ∇ 3 * ρ - 3Υ r * ρ = -curl β - 1 2 χ • * α + r -1 Γ b • Γ b .
Proof. The proof follows immediately from Proposition 5.1.10, the definition of the linearized quantities, the definition of Γ g and Γ b , the fact that y = e 3 (r), and the GCM condition q κ = 0 on Σ * .

Commutation lemmas

We start with the following lemma.

Lemma 5.1.19. For any tensor on S, the following commutation formulas hold true

[∇ 3 , ∇ a ]f = - 1 2 tr χ∇ a f + (η a -ζ a )∇ 3 f -χ ab ∇ b f + ξ a ∇ 4 f + (F [f ]) a , [∇ 4 , ∇ a ]f = - 1 2 tr χ∇ a f + (η a + ζ a )∇ 4 f -χ ab ∇ b f + (F [f ]) a ,
where the tensors F [f ] and F [f ] have the following schematic form

F [f ] = β, χ • η, χ • ξ • f, F [f ] = β, χ • η, χ • ξ • f.
Proof. See Lemma 7.3.3 in [START_REF] Christodoulou | The global nonlinear stability of the Minkowski space[END_REF].

Lemma 5.1.20. The following commutation formulas hold true for any tensor f on S ⊂ Σ * :

1. We have

[∇ 3 , ∇]f = Υ r ∇f + Γ b • ∇ 3 f + r -1 Γ b • d ≤1 f, [∇ 4 , ∇]f = - 1 r ∇f + r -1 Γ g • d ≤1 f.
2. We have

[∇ 3 , ∆]f = 2Υ r ∆f + r -1 d / ≤1 Γ b • ∇ 3 f + r -1 Γ b • df , [∇ 4 , ∆]f = - 2 r ∆f + r -1 d / ≤1 Γ g • df .
3. We have

[∇ ν , ∇]f = 2 r ∇f + Γ b • ∇ ν f + r -1 Γ b • d ≤1 f.

4.

We have 

[∇ ν , ∆]f = 4 r ∆f + r -1 d / ≤1 Γ b • ∇ ν f + r -1 Γ b • df .
[∇ 3 , r∇]f = rΓ b • ∇ 3 f + Γ b • d ≤1 f, [∇ 4 , r∇]f = Γ g • d ≤1 f, [∇ 3 , r 2 ∆]f = r d / ≤1 Γ b • ∇ 3 f + r -1 Γ b • df , [∇ 4 , r 2 ∆]f = r d / ≤1 Γ g • df , (5.1.50) 
and 

[∇ ν , r∇]f = rΓ b • ∇ ν f + Γ b • d ≤1 f, [∇ ν , r 2 ∆]f = r d / ≤1 Γ b • ∇ ν f + d / ≤1 Γ b • df . ( 5 

Additional equations

Proposition 5.1.22. We have, schematically,

2∇q ω - 1 r ξ = -∇ 3 ζ -β + 1 r η + r -1 Γ g + Γ b • Γ b , 2 d / 2 d * / 2 η = -∇ 3 ∇q κ - 2 r ∇ 3 ζ - 2 r β + r -2 d / ≤1 Γ g + r -1 d / ≤1 (Γ b • Γ b ), 2 d / 2 d * / 2 ξ = -∇ 3 ∇q κ - 2 r ∇ 3 ζ - 2 r β + r -2 d / ≤1 Γ g + r -1 d / ≤1 (Γ b • Γ b ).
Proof. See Section B.1 in the appendix.

The following corollary of Proposition 5.1.22 will be very useful.

Proposition 5.1.23. The following identities hold true on Σ * :

2 d * / 2 d * / 1 d / 1 d / 2 d * / 2 η = -d * / 2 d * / 1 d / 1 ∇ 3 ∇q κ + 2 r ∇ 3 d * / 2 d * / 1 q µ - 4 r d * / 2 d * / 1 div β + r -5 d / ≤4 Γ g + r -4 d / ≤4 (Γ b • Γ b ), (5.1.52) 
2 d * / 2 d * / 1 d / 1 d / 2 d * / 2 ξ = ∇ 3 d * / 2 d / 2 + 2 r 2 d * / 2 d * / 1 q κ + 2 r ∇ 3 d * / 2 d * / 1 q µ - 4 r d * / 2 d * / 1 div β + r -5 d / ≤4 Γ g + r -4 d / ≤4 (Γ b • Γ b ), (5.1.53)
where by convention, for any scalar f ,

d * / 1 f := d * / 1 (f, 0) = -∇f.
Proof. See Section B.2 in the appendix.

Corollary 5.1.24. The following identities hold true on Σ * .

2 d * / 2 d * / 1 d / 1 d / 2 d * / 2 η = -d * / 2 d * / 1 d / 1 ∇ ν ∇q κ + 2 r ∇ ν d * / 2 d * / 1 q µ - 4 r d * / 2 d * / 1 div β + r -5 d / ≤5 Γ g + r -4 d / ≤4 (Γ b • Γ b ), (5.1.54) 2 d * / 2 d * / 1 d / 1 d / 2 d * / 2 ξ = ∇ ν d * / 2 d / 2 + 2 r 2 d * / 2 d * / 1 q κ + 2 r ∇ ν d * / 2 d * / 1 q µ - 4 r d * / 2 d * / 1 div β + r -5 d / ≤5 Γ g + r -4 d / ≤4 (Γ b • Γ b ).
(5.1.55)

Proof. We have in view of Proposition 5.1.18

∇ 4 q κ ∈ Γ g • Γ g , ∇ 4 q κ ∈ r -1 d / ≤1 Γ g , ∇ 4 q µ ∈ r -2 d / ≤1 Γ g , which together with b * = -1 -2m r + rΓ b yields d * / 2 d * / 1 d / 1 b * ∇ 4 ∇q κ ∈ r -5 d / ≤5 Γ g , b * r ∇ 4 d * / 2 d * / 1 q µ ∈ r -5 d / ≤5 Γ g , b * ∇ 4 d * / 2 d / 2 + 2 r 2 d * / 2 d * / 1 q κ ∈ r -5 d / ≤5 Γ g .
Since ν = e 3 + b * e 4 , the proof of (5.1.54) and (5.1.55) follows then immediately from Proposition 5.1.23.

Additional renormalized equations on Σ

* Lemma 5.1.25. We have along Σ * ∇ ν ∆q κ + 2Υ r div ζ = O(r -1 )∆q κ + 2∆div ξ + O(r -2 )∆q y + O(r -2 )div ζ + O(r -1 )div β + O(r -2 )div η + O(r -2 )div ξ + 2 1 + O(r -1 ) ∆div ζ -2 1 + O(r -1 ) ∆q ρ + O(r -1 )div β + r -2 d / ≤2 (Γ b • Γ b ), ∇ ν div β = O(r -1 )div β + ∆ρ + (1 + O(r -1 ))div div α + O(r -3 )div η + r -2 d / ≤1 (Γ b • Γ g ), ∇ ν curl β = 8 r (1 + O(r -1 ))curl β -∆ * ρ + (1 + O(r -1 ))curl div α + O(r -3 ) * ρ + r -2 d / ≤1 (Γ b • Γ g ), ∇ ν q ρ - 1 2 χ • χ = -div β -(1 + O(r -1 ))div β + O(r -1 )q ρ + O(r -3 )q κ + O(r -4 )q y + r -1 d / ≤1 (Γ b • Γ b ), (5.1.56) 
where the notation O(r a ), for a ∈ R, denotes an explicit function of r which is bounded by r a as r → +∞.

Proof. See Section B.3 in the appendix.

Equations involving q

Proposition 5.1.26. Let O(r a ) denote, for a ∈ R, a function of (r, cos θ) bounded by r a as r → +∞. In the frame of Σ * , the following holds:

1. We have

(q) = r 4 d * / 2 d * / 1 (-ρ, * ρ) + O(r -2 ) + d / ≤2 Γ b + r 2 d / ≤2 Γ b • Γ g . (5.1.57)
2. We have

(∇ 3 (rq)) = r 5 d * / 2 d * / 1 div β, -curl β + O(r) d / ≤3 α +O(r -2 ) + r d / ≤3 Γ g + r 3 d / ≤3 (Γ b • Γ g ).
(5.1.58)

Proof. See Section B.5 in the appendix.

Hodge elliptic systems

For a tensor f on S, we define the following standard weighted Sobolev norms for any integer k ≥ 0 

f h k (S) := k j=0 d / j f L 2 (S) . ( 5 
= S(u) ⊂ Σ * we have, for all k ≤ k large : 1. If f is a 1-form f h k+1 (S) r d / 1 f h k (S) . (5.1.60) 2. If f is a symmetric traceless 2-tensor v h k+1 (S) r d / 2 v h k (S) . (5.1.61) 3. If (h, * h) is a pair of scalars (h -h, * h - * h) h k+1 (S) r d * / 1 (h, * h) h k (S) .
(5.1.62)

Proof. Recall from Proposition 5.1.18 the linearized Gauss equation

K = - 1 2r q κ -q ρ + Γ b • Γ g .
In view of the control (5.1.38) for Γ g and Γ b , we have

d / ≤k large K - 1 r 2 L ∞ (S) r 3 .
Together with Proposition 5.1.17, and a Poincaré inequality for d * / 1 , this immediately yields the case k = 0. The case k ≥ 1 then follows by the above control of K and elliptic regularity.

The operator d * / 2 is not coercive but satisfies instead the following estimates.

Lemma 5.1.28. On a fixed sphere S = S(u) ⊂ Σ * , we have for any 1-form f and all k ≤ k large

f h k+1 (S) r d * / 2 f h k (S) + r 2 ( d / 1 f ) =1 . (5.1.63)
Note also the straightforward inequality

|( d / 1 f ) =1 | r -1 d / 1 f L 2 (S) .
(5.1.64)

Proof. The case k = 0 is proved in Lemma 2.19 of [START_REF] Klainerman | Construction of GCM spheres in perturbations of Kerr[END_REF]. The higher derivative estimates follow by elliptic regularity and the above control of K.

Corollary 5.1.29. On a fixed sphere S = S(u) ⊂ Σ * , we have for any pair of scalars (5.2.1)

(h, * h) and all k ≤ k large -1 (h -h, * h - * h) h k+2 (S) r 2 d * / 2 d * / 1 (h, * h) h k (S) + r 3 (∆h) =1 + r 3 (∆ * h) =1 . Proof. Applying Lemma 5.1.28 with f = d * / 1 (h, * h) yields the control of d * / 1 (h, * h). The control of (h -h, * h - * h)
Proof. Recall that u(S * ) = u * , u(S 1 ) = 1 and 1 ≤ u ≤ u * along Σ * . Since r is a decreasing function of u on Σ * , we infer r * ≤ r ≤ r(S 1 ) on Σ * .
To conclude, it thus suffices to prove that r(S 1 ) ≤ r * (1 + O( 0 )). To this end, recall first (5.1.1), i.e., u + r = c * along Σ * , so that

r(S * ) + u * = c * = r(S 1 ) + 1 and hence r(S 1 ) = r * + u * -1 = r * 1 + u * -1 r * ≤ r * 1 + u * r * .
Together with the dominant condition on r (5.1.30) on Σ * , i.e., r * = δ * -1

0 u 1+δ dec *
, we infer r(S 1 ) ≤ r * (1 + O( 0 )) which concludes the proof of the lemma.

Transport lemmas along Σ *

Lemma 5.2.2. For any scalar function h on Σ * , we have the formula

ν S h = z S 1 z ν(h) + (κ + b * κ)h . (5.2.2)
In particular 11

ν(r) = rz 2 z -1 (κ + b * κ) (5.2.3)
where for a scalar function f , f denotes the average of f with respect to the spheres of the foliation of Σ * .

Proof. Recall that on Σ * the coordinates θ, ϕ where defined s.t. ν(θ) = ν(ϕ) = 0. Moreover, in view of the transversality condition e 4 (u) = 0 on Σ * , we have ν(u) = e 3 (u). Thus ν(u) = z and hence ν = z∂ u in the (u, θ, ϕ) coordinates system. We infer

ν S h = z∂ u S h = z S ∂ u h + g ab g(D a ∂ u , e b ) = z S 1 z ν(h) + g ab g(D a ν, e b ) = z S 1 z ν(h) + g ab g(D a (e 3 + b * e 4 ), e b ) = z S 1 z ν(h) + (κ + b * κ)h
which yields the first identity. The second identity follows then by choosing h = 1 in the first identity.

Corollary 5.2.3. For any scalar function h on Σ * , we have

ν S h = S ν(h) - 4 r S h + r 3 Γ b ν(h) + r 2 Γ b h (5.2.4)
and

ν(r) = -2 + rΓ b . (5.2.5) 
In particular, we have

ν(h) = ν(h) + rΓ b ν(h) + Γ b h, (5.2 

.6)

where h and ν(h) denote respectively the average of h and ν(h) on the spheres of Σ * .

Proof. Since we have

κ = 2 r + Γ g , κ = - 2Υ r + Γ g , b * = -1 - 2m r + rΓ b , we infer κ + b * κ = - 4 r + Γ b . (5.2.7)
The proof follows then easily from Lemma 5.2.2, (5.2.7) and the fact that z = 2 + rΓ b .

We now control transport equation in ν along Σ * .

Lemma 5.2.4. Let n and m be two integers, and let f and h be two scalar functions on

Σ * . Assume that f satisfies along Σ * ν(f ) - n r f = h + Γ b f. (5.2.8)
Then, we have for all

1 ≤ u ≤ u * r m f L ∞ (S(u)) r m * f L ∞ (S * ) + u * u r m h L ∞ (S(u )) + r m Γ b f L ∞ (S(u )) du (5.2.9)
where the inequality is uniform in u.

Proof. We rewrite the transport equation for f as

ν(r n 2 f ) = r n 2 ν(f ) + n 2 ν(r) r f = r n 2 n r f + h + Γ b f + n 2 -2 + rΓ b r f = r n 2 (h + Γ b f )
where we have used ν(r) = -2 + rΓ b . Integrating from S * , we deduce for all 1

≤ u ≤ u * r n 2 f L ∞ (S(u)) r n 2 * f L ∞ (S * ) + u * u r n 2 h L ∞ (S(u )) + r n 2 Γ b f L ∞ (S(u )) du
where the inequality is uniform in u. Multiplying this estimate by r

m-n 2 *
, and since r is comparable to r * on Σ * in view of (5.2.1), we infer the stated estimate.

Corollary 5.2.5. Let n and m be two integers, let s ≥ 0 be a positive real number, and let f and h be two scalar functions on Σ * . Assume that f satisfies along

Σ * ν(f ) - n r f = h + Γ b f. (5.2.

10)

Assume also that there exists a constant C > 0 such that

sup 1≤u≤u * u s r m * f L ∞ (S * ) + u * u r m h L ∞ (S(u )) ≤ C. (5.2.11)
Then, we have

sup Σ * r m u s |f | C.
(5.2.12)

Proof. In view of Lemma 5.2.4, there exists a constant

C 0 > 0, uniform in 1 ≤ u ≤ u * , such that for all 1 ≤ u ≤ u * r m f L ∞ (S(u)) ≤ C 0 r m * f L ∞ (S * ) + C 0 u * u r m h L ∞ (S(u )) + r m Γ b f L ∞ (S(u )) du
and hence, in view of the assumptions of the corollary, and the assumption on Γ b , we infer

u s r m f L ∞ (S(u)) ≤ C 0 C + u s u * u r m f L ∞ (S(u )) u 1+δ dec du
and the proof easily follows by bootstrap from u = u * and the fact that s ≥ 0.

Control of φ and the

= 1 basis J (p) on S *
In this section, we will rely on the following control of the Gauss curvature sup

S * d / ≤k * K - 1 r 2 r 3 u 1 2 + δ dec 2 , (5.2.13) 
which follows immediately from the fact that q K ∈ r -1 Γ g in view of the linearized Gauss equation of Proposition 5.1.18, and the control of Lemma 5.1.15 for Γ g .

Recall that φ is the conformal factor of the metric g on S * , see (5.1.17). We have the following lemma. Lemma 5.2.6. We have on

S * d / ≤k * φ L ∞ (S * ) ru 1 2 + δ dec 2 . (5.2.14)
Proof. In view of

• the control (5.2.13) of K on S * ,
• the fact that g is conformal to the metric of S 2 with conformal factor r 2 e 2φ , see (5.1.17),

• and the balanced condition (5.1.19) for the = 1 modes J (p) , we are in position to apply Corollary 3.8 in [START_REF] Klainerman | Effective results in uniformization and intrinsic GCM spheres in perturbations of Kerr[END_REF] (restated here as Theorem 5.1.2) which yields12 

φ h k * +2 (S * ) ru 1 2 + δ dec 2 .
Together with Sobolev, this concludes the proof of the lemma.

Lemma 5.2.7. We have on S * S *

J (p) = 0, S * J (p) J (q) = 4π 3 r 2 δ pq + O ru -1 2 -δ dec , d / ≤k * ∆J (p) + 2 r 2 J (p) L ∞ (S * ) = O r -3 u -1 2 - δ dec 2 .
(5.2.15)

Proof. The first identity in (5.2.15) is the balanced condition (5.1. [START_REF] Dafermos | Linear stability of the Schwarzschild solution to gravitational perturbations[END_REF]), so we focus on the two other identities. In view of Lemma 3.12 in [START_REF] Klainerman | Effective results in uniformization and intrinsic GCM spheres in perturbations of Kerr[END_REF] (restated here as Lemma 5.1.4), we have13 

S * J (p) J (q) = 4π 3 r 2 δ pq + S * J (p) J (q) (1 -e -2φ ), ∆J (p) + 2 r 2 J (p) = 2 r 2 (1 -e -2φ )J (p) ,
and the last two identities in (5.2.15) follow from the control (5.2.14) of φ.

Properties of the

= 1 basis J (p) on Σ *
We are ready to derive the basic properties of the = 1 basis on Σ * .

Lemma 5.2.8. The functions J (p) verify the following properties

1. We have on Σ * S J (p) = O ru -δ dec , S J (p) J (q) = 4π 3 r 2 δ pq + O ru -δ dec .
(5.2.16)

2. We have on Σ * ∇ ν r 2 ∆ + 2)J (p) = O d / ≤1 Γ b .
(5.2.17)

3. For any k ≤ k * -1, we have on Σ * d k * ∆ + 2 r 2 J (p) r -3 u -δ dec 2 .

We have for any

k ≤ k * -3 on Σ * d k * d * / 2 d * / 1 J (p) r -3 u -δ dec 2 ,
where by d * / 1 J (p) , we mean either

d * / 1 (J (p) , 0) or d * / 1 (0, J (p) ).
Proof. We proceed in steps as follows.

Step 1. Since ν(J (p) ) = 0 and J (p) = O(1), we have, in view of Corollary 5.2.3

ν S J (p) = - 4 r S J (p) + r 2 Γ b , ν S J (p) J (q) = - 4 r S J (p) J (q) + r 2 Γ b . Since ν(r) = -2 + rΓ b , we infer ν r -2 S J (p) = Γ b , ν r -2 S J (p) J (q) - 4π 3 δ pq = Γ b .
Applying Corollary 5.2.5 to the above transport equations with the choices s = δ dec > 0, n = 0 and m = 1, and using the control on S * provided by (5.2.15) and the control of Γ b on Σ * , we infer (5.2.16).

Step 2. Using the commutation formulas of Corollary 5.1.21 we have, since ν(J (p) ) = 0,

∇ ν r 2 ∆ + 2 J (p) = ∇ ν , r 2 ∆ J (p) = r d / ≤1 Γ b • ∇ ν J (p) + d / ≤1 Γ b • dJ (p) = d / ≤1 Γ b • dJ (p) = d / ≤1 Γ b
as stated.

Step 3. Commuting the identity in Step 2 with d / k , and using Corollary 5.1.21, we have

∇ ν d / k r 2 ∆ + 2 J (p) = d / ≤k+1 Γ b .
Applying Corollary 5.2.5 to the above transport equations with the choices s = δ dec 2 > 0, n = 0 and m = 1, and using the control on S * provided by (5.2.15) and the control of Γ b on Σ * , we infer, for

k ≤ k * -1, d / k ∆ + 2 r 2 J (p) r -3 u -δ dec 2 .
Together with the transport equation of Step 2 and the control of Γ b , we infer, for any k ≤ k * -1,

d k * ∆ + 2 r 2 J (p) r -3 u -δ dec 2
as stated.

Step 4. We introduce the notation

F := d * / 2 d * / 1 (J (p)
), where by d * / 1 J (p) , we mean either d * / 1 (J (p) , 0) or d * / 1 (0, J (p) ). We have

d / 1 d / 2 F = d / 1 d / 2 d * / 2 d * / 1 (J (p) ). Using the identity 2 d / 2 d * / 2 = d * / 1 d / 1 -2K, we deduce 14 2 d / 1 d / 2 F = d / 1 ( d * / 1 d / 1 -2K) d * / 1 (J (p) ) = d / 1 d * / 1 d / 1 d * / 1 J (p) -2K d / 1 d * / 1 (J (p) ) + (∇K, * ∇K) • d * / 1 (J (p) ) = ∆ 2 J (p) + 2K∆J (p) + (∇K, * ∇K) • d * / 1 (J (p) ).
Therefore, since q

K = K -r -2 ∈ r -1 Γ g , we have 2 d / 1 d / 2 F = ∆ 2 J (p) + 2 r 2 ∆J (p) + 2 q K∆J (p) + (∇ q K, * ∇ q K) • d * / 1 (J (p) ) = ∆ ∆ + 2 r 2 J (p) + r -3 d / ≤1 Γ g .
In view of the coercivity of the operators d / 1 and d / 2 , see Lemma 5.1.27, and in view of the definition of F , we deduce for k ≥ 2

d * / 2 d * / 1 J (p) h k (S) ∆ + 2 r 2 J (p) h k (S) + r -1 Γ g h k (S) .
In view of the estimate proved in Step 3 and the control of Γ g , we infer

d * / 2 d * / 1 J (p) h k * -1 (S) r -2 u -δ dec 2 .
Using Sobolev, we deduce, for k ≤ k * -3,

d / k d * / 2 d * / 1 J (p) r -3 u -δ dec 2 .
Together with the above transport equation along ν and the control of Γ b , we infer, for any k ≤ k * -3,

d k * d * / 2 d * / 1 J (p) r -3 u -δ dec 2 ,
as stated. This concludes the proof of Lemma 5.2.8.

We state below two corollaries of Lemma 5.2.8.

Corollary 5.2.9. On a fixed sphere S = S(u) ⊂ Σ * , we have for any pair of scalars (h, * h) and all k ≤ k large -1

(h, * h) h k+2 (S) r 2 d * / 2 d * / 1 (h, * h) h k (S) + r (h) =1 + r ( * h) =1 + r|h| + r| * h|.
Proof. In view of Corollary 5.1.29, we have

(h -h, * h - * h) h k+2 (S) r 2 d * / 2 d * / 1 (h, * h) h k (S) + r 3 (∆h) =1 + r 3 (∆ * h) =1 . Since (∆h) =1 = (∆(h -h)) =1 = - 2 r 2 (h -h) =1 + ∆ + 2 r 2 (h -h) =1 ,
and similarly for * h, we infer

(h -h, * h - * h) h k+2 (S) r 2 d * / 2 d * / 1 (h, * h) h k (S) + r (h -h) =1 + r ( * h - * h) =1 +r 3 ∆ + 2 r 2 (h -h) =1 + r 3 ∆ + 2 r 2 ( * h - * h) =1 .
Now, using integration by parts and Lemma 5.2.8, we have, for p = 0, +, -,

S ∆ + 2 r 2 (h -h)J (p) = S (h -h) ∆ + 2 r 2 J (p) h -h L 2 (S) r ∆ + 2 r 2 J (p) L ∞ (S) r 2 h -h L 2 (S)
and hence

∆ + 2 r 2 (h -h) =1 r 4 h -h L 2 (S) .
We infer

(h -h, * h - * h) h k+2 (S) r 2 d * / 2 d * / 1 (h, * h) h k (S) + r (h -h) =1 + r ( * h - * h) =1 + r h -h L 2 (S) + r * h - * h L 2 (S) .
For > 0 small enough, we may absorb the last terms on the RHS and deduce

(h -h, * h - * h) h k+2 (S) r 2 d * / 2 d * / 1 (h, * h) h k (S) + r (h -h) =1 + r ( * h - * h) =1 .
In particular, we infer

(h, * h) h k+2 (S) r 2 d * / 2 d * / 1 (h, * h) h k (S) + r (h) =1 + r ( * h) =1 + r|h| + r| * h| as desired.
Corollary 5.2.10. The scalar functions C 0 , C p , M 0 , M p on Σ * verify

C 0 ∈ Γ g , C p ∈ Γ g , M 0 ∈ r -1 Γ g , M p ∈ r -1 Γ g . (5.2.18)
Proof. Recall that we have on Σ * in view of our GCM conditions

q κ = C 0 + p C p J (p)
and hence

C 0 + p C p J (p) = Γ g .
Integrating this identity on S, as well as multiplying it by J (q) and integrating is also on S, we obtain, after dividing by |S|,

C 0 = Γ g + O(r -2 ) p S J (p) C p , C q = Γ g + O(r -2 ) S J (q) C 0 + O(r -2 ) p S
J (p) J (q) -4π 3 r 2 δ pq C p , q = 0, +, -.

Together with Lemma 5.2.8, we deduce

C 0 = Γ g + O( ) p C p , C q = Γ g + O( )C 0 + O( ) p C p , q = 0, +, -,
which yields the desired result for C 0 and C p .

Next, recall that we have on Σ * in view of our GCM conditions

q µ = M 0 + p M p J (p)
and hence

M 0 + p M p J (p) = r -1 Γ g .
The proof for M 0 and M p follows then the same line as the one for C 0 and C p . This concludes the proof of the corollary.

Finally, we state below a corollary of Corollary 5.2.10 and Corollary 5.1.24.

Corollary 5.2.11. The following identities hold true on Σ * .

2 d * / 2 d * / 1 d / 1 d / 2 d * / 2 η = - 4 r d * / 2 d * / 1 div β + r -5 d / ≤5 Γ g + r -4 d / ≤4 (Γ b • Γ b ) + p=0,+,- r -1 ∇ ν r -1 Γ g d * / 2 d * / 1 (J (p) ) , 2 d * / 2 d * / 1 d / 1 d / 2 d * / 2 ξ = - 4 r d * / 2 d * / 1 div β + r -5 d / ≤5 Γ g + r -4 d / ≤4 (Γ b • Γ b ) + p=0,+,- ∇ ν r -2 Γ g d / ≤2 d * / 2 d * / 1 (J (p) ) + p=0,+,- r -1 ∇ ν r -1 Γ g d * / 2 d * / 1 (J (p) ) .
(5.2.19)

Proof. In view of the definition of the linearized quantities q κ, q κ and q µ, we may rewrite the GCM conditions (5.1.26) as follows

q κ = 0, q κ = C 0 + p=0,+,- C p J (p) , q µ = M 0 + p=0,+,- M p J (p) .
Since the scalar functions C 0 , C p , M 0 , and M p are constant on the leaves of the r-foliation of Σ * , and since ν is tangent to Σ * , we infer

d * / 2 d * / 1 d / 1 ∇ ν ∇q κ = 0, ∇ ν d * / 2 d / 2 + 2 r 2 d * / 2 d * / 1 q κ = ∇ ν d * / 2 d / 2 + 2 r 2 d * / 2 d * / 1 C 0 + p=0,+,- C p J (p) = p=0,+,- ∇ ν C p d * / 2 d / 2 + 2 r 2 d * / 2 d * / 1 (J (p) ) , ∇ ν d * / 2 d * / 1 q µ = ∇ ν d * / 2 d * / 1 M 0 + p=0,+,- M p J (p) = p=0,+,- ∇ ν M p d * / 2 d * / 1 (J (p) ) .
Since we have, in view of Corollary 5.2.10, C p ∈ Γ g and M p ∈ r -1 Γ g , we infer

d * / 2 d * / 1 d / 1 ∇ ν ∇q κ = 0, ∇ ν d * / 2 d / 2 + 2 r 2 d * / 2 d * / 1 q κ = p=0,+,- ∇ ν r -2 Γ g d / ≤2 d * / 2 d * / 1 (J (p) ) , ∇ ν d * / 2 d * / 1 q µ = p=0,+,- ∇ ν r -1 Γ g d * / 2 d * / 1 (J (p) ) .
Plugging these identities in (5.1.54) and (5.1.55), we obtain

2 d * / 2 d * / 1 d / 1 d / 2 d * / 2 η = - 4 r d * / 2 d * / 1 div β + r -5 d / ≤5 Γ g + r -4 d / ≤4 (Γ b • Γ b ) + p=0,+,- r -1 ∇ ν r -1 Γ g d * / 2 d * / 1 (J (p) ) , 2 d * / 2 d * / 1 d / 1 d / 2 d * / 2 ξ = - 4 r d * / 2 d * / 1 div β + r -5 d / ≤5 Γ g + r -4 d / ≤4 (Γ b • Γ b ) + p=0,+,- ∇ ν r -2 Γ g d / ≤2 d * / 2 d * / 1 (J (p) ) + p=0,+,- r -1 ∇ ν r -1 Γ g d * / 2 d * / 1 (J (p) ) ,
as stated.

Propagation equations along Σ * for some = 1 modes

We have the following corollary of Lemma 5.1.25.

Corollary 5.2.12. We have along Σ * , for p = 0, +, -,

ν S ∆q κ + 2Υ r div ζ J (p) = O(r -3 ) S q κJ (p) + O(r -2 ) S div ζJ (p) + O(r -1 ) S div βJ (p) + O(r -2 ) S q ρJ (p) +O(r -1 ) S div βJ (p) + r ∆ + 2 r 2 J (p) d / ≤1 Γ b + d / ≤2 (Γ b • Γ b ), (5.2.20) ν S div βJ (p) = O(r -1 ) S div βJ (p) + O(r -2 ) S q ρJ (p) (5.2.21) +r ∆ + 2 r 2 J (p) + d * / 2 d * / 1 J (p) Γ g + d / ≤1 (Γ b • Γ g ), ν S curl βJ (p) = 4 r (1 + O(r -1 )) S curl βJ (p) + 2 r 2 (1 + O(r -1 )) S * ρJ (p) +r ∆ + 2 r 2 J (p) + d * / 2 d * / 1 J (p) Γ g + d / ≤1 (Γ b • Γ g ), (5.2.22) 
and

ν S q ρ - 1 2 χ • χ J (p) = - S div βJ (p) -(1 + O(r -1 )) S div βJ (p) +O(r -1 ) S q ρ - 1 2 χ • χ J (p) + O(r -3 ) S q κJ (p) +O(r -2 ) S div ζJ (p) + r ∆ + 2 r 2 J (p) Γ b +r d / ≤1 (Γ b • Γ b ), (5.2.23)
where by

d * / 1 J (p) , we mean d * / 1 (J (p) , 0) or d * / 1 (0, J (p) ).
Proof. See Section B.4.

Control of the flux of some quantities on Σ *

The goal of this section is to establish the following. We also have, for

k ≤ k * -10, Γ b ∞,k 0 r -1 u -1-δ dec . (5.3.2)
Proof. Note that (5.3.2) follows immediately from (5.3.1) using the trace theorem and Sobolev. We thus concentrate our attention on deriving (5.3.1).

Step 1. We first prove the corresponding estimates for β away from its = 1 mode. More precisely we prove the following.

Lemma 5.3.2. The following estimates hold true for all k ≤ k * -3

Σ * r 2 u 2+2δ dec d k * β 2 Σ * r 4 u 2+2δ dec d / 1 ∇ ≤k ν β =1 2 + 2 0 . (5.3.3)
Proof. Recall the identity (5.1.58)

(∇ 3 (rq)) = r 5 d * / 2 d * / 1 div β, -curl β + O(r) d / ≤3 α + O(r -2 ) + r d / ≤3 Γ g + r 3 d / ≤3 (Γ b • Γ g ).
Together with the control of Γ b and Γ g provided by Ref 1 and Lemma 5.1.15, we infer, for k ≤ k * -3,

r 5 |d k * d * / 2 d * / 1 div β, -curl β | |d ≤k * -3 * ∇ 3 (rq)| + r|d ≤k * * α| + 1 r 2 + ru 1 2 + δ dec 2 + 2 u 3 2 + 3δ dec 2 |d ≤k * -3 * ∇ 3 (rq)| + r|d ≤k * * α| + 0 u 3 2 + 3δ dec 2
where we used in the last inequality the dominance condition (5.1.30) on r on Σ * . Also, using the fact that e 3 (r) = -Υ + O(r) and Ref 2 for q, we have

|d ≤k * -3 * ∇ 3 (rq)| r|d ≤k * -3 * ∇ 3 q| + |d ≤k * -3 * q| r|d ≤k * -3 * ∇ 3 q| + ru 1 2 +δ dec r|d ≤k * -3 * ∇ 3 q| + 0 u 3 2 + 3δ dec 2
where we used again the dominance condition (5.1.30) on r on Σ * . We infer

r 5 |d k * d * / 2 d * / 1 div β, -curl β | r|d ≤k * -3 * ∇ 3 q| + r|d ≤k * * α| + 0 u 3 2 + 3δ dec 2 .
Dividing by r, squaring, and integrating on Σ * , we deduce

Σ * r 8 u 2+2δ dec |d k * d * / 2 d * / 1 div β, -curl β | 2 Σ * u 2+2δ dec |d ≤k * -3 * ∇ 3 q| 2 + Σ * u 2+2δ dec |d ≤k * * α| 2 + Σ * 2 0
r 2 u 1+δ dec and hence, since δ dec > 0 and using the control of α and ∇ 3 q provided by Ref 2, we deduce, for k ≤ k * -3,

Σ * r 8 u 2+2δ dec |d k * d * / 2 d * / 1 div β, -curl β | 2 2 0 .
Taking into account the commutator Lemma 5.1.20, this yields, for k ≤ k * -3,

Σ * r 8 u 2+2δ dec | d * / 2 d * / 1 (div , -curl ) d k * β| 2 2 0 .
Using the Hodge estimates of Lemma 

≤ k * -3, Σ * r 2 u 2+2δ dec d k * β 2 Σ * r 4 u 2+2δ dec d / 1 ∇ ≤k ν β =1 2 + 2 0
as stated. This concludes the proof of Lemma 5.3.2.

Step 2. We next derive the following non-sharp, preliminary, estimate for the = 1 mode of d

/ 1 β d / 1 ∇ k ν β =1 0 r 3 u 3 2 + 3δ dec 2 , k ≤ k * -3. (5.3.4)
To this end, we use the following consequence of the Codazzi equation for χ

d / 2 χ = β + r -1 d / ≤1 Γ g + Γ b • Γ g . Differentiating w.r.t. ν k d / 1 for k ≤ k * -3, we infer ν k d / 1 d / 2 χ = ν k d / 1 β + r -2 d ≤k * -1 * Γ g + r -1 d ≤k * -2 * (Γ b • Γ g ).
Taking into account the commutator Lemma 5.1.20, this yields, for k ≤ k * -3,

d / 1 d / 2 ∇ k ν χ = d / 1 ∇ k ν β + r -2 d ≤k * -1 * Γ g + r -1 d ≤k * -2 * (Γ b • Γ g ).
Projecting on the = 1 modes, this yields for k ≤ k * -3

( d / 1 d / 2 ∇ k ν χ) =1 = ( d / 1 ∇ k ν β) =1 + r -2 d ≤k * -1 * Γ g + r -1 d ≤k * -2 * (Γ b • Γ g ).
Together with the control of Γ b and Γ g provided by Ref 1 and Lemma 5.1.15, we infer, for k ≤ k * -3,

|( d / 1 ∇ k ν β) =1 | |( d / 1 d / 2 ∇ k ν χ) =1 | + r 4 u 1 2 + δ dec 2
which together with the dominance condition (5.1.30) on r on Σ * implies, for k ≤ k * -3,

|( d / 1 ∇ k ν β) =1 | |( d / 1 d / 2 ∇ k ν χ) =1 | + 0 r 3 u 3 2 + 3δ dec 2 . Next, we estimate ( d / 1 d / 2 ∇ k ν χ) =1 . We have ( d / 1 d / 2 ∇ k ν χ) =1,p = 1 |S| S d / 1 d / 2 ∇ k ν χJ (p) = 1 |S| S ∇ k ν χ • d * / 2 d * / 1 J (p)
and hence

|( d / 1 d / 2 ∇ k ν χ) =1 | | d * / 2 d * / 1 J (p) ||d k * Γ b |.
Together with the control of Γ b provided by Lemma 5.1.15, and the control of d * / 2 d * / 1 J (p) provided by Lemma 5.2.8 we infer, for k ≤ k * -3,

|( d / 1 d / 2 ∇ k ν χ) =1 | r 3 u δ dec 2 ru 1+ δ dec 2 0 r 4 u 1+δ dec 0 r 3 u 2+2δ dec .
Plugging in the above, we deduce, for k ≤ k * -3,

|( d / 1 ∇ k ν β) =1 | |( d / 1 d / 2 ∇ k ν χ) =1 | + 0 r 3 u 3 2 + 3δ dec 2 0 r 3 u 3 2 + 3δ dec 2
which concludes the proof of (5.3.4).

Step 3. Using the estimate (5.3.3) of Step 1 and the estimate (5.3.4) of Step 2, we obtain,

for k ≤ k * -3, Σ * r 2 u 2+2δ dec d k * β 2 Σ * r 4 u 2+2δ dec d / 1 ∇ ≤k ν β =1 2 + 2 0 2 0 + 2 0 u * 1 u -1-δ dec and hence Σ * r 2 u 2+2δ dec |d k * β| 2 2 0 , k ≤ k * -3, (5.3.5)
which is the desired estimate for β.

Step 4. We now prove the desired estimate for χ, i.e.

Σ *

u 2+2δ dec d k * χ| 2 2 0 , k ≤ k * -3. (5.3.6)
Proof of (5.3.6). One starts with the the following consequence of the Codazzi equation for χ

d / 2 χ = β + r -1 d / ≤1 Γ g + Γ b • Γ g . Differentiating w.r.t. d * / 2 , we infer d * / 2 d / 2 χ = d * / 2 β + r -2 d / ≤2 Γ g + r -1 d / ≤1 (Γ b • Γ g ) .
Taking into account the commutator Lemma 5.1.20, this yields, for k ≤ k * -3,

d * / 2 d / 2 d k * χ = d * / 2 (d k * β) + r -2 d / ≤k * -1 Γ g + r -1 d / ≤k * -2 (Γ b • Γ g ) .
Together with the control of Γ b and Γ g provided by Ref 1 and Lemma 5.1.15, we infer, for k ≤ k * -3,

| d * / 2 d / 2 d k * χ| | d * / 2 (d k * β)| + r 4 u 1 2 + δ dec 2 | d * / 2 (d k * β)| + 0 r 3 u 3 2 + 3δ dec 2 ,
where we used again the dominance condition (5.1.30) on r on Σ * . Squaring and multiplying by r 4 u 2+2δ dec , we infer

r 4 u 2+2δ dec | d * / 2 d / 2 d k * χ| 2 r 4 u 2+2δ dec | d * / 2 (d k * β)| 2 + 2 0 r 2 u 1+δ dec ,
which yields after integration on Σ * implies, for k ≤ k * -3,

Σ * r 4 u 2+2δ dec | d * / 2 d / 2 d k * χ| 2 Σ * r 4 u 2+2δ dec | d * / 2 (d k * β)| 2 + Σ * 2 0 r 2 u 1+δ dec 2 0 + Σ * r 4 u 2+2δ dec | d * / 2 (d k * β)| 2 .
Hence, together with (5.3.3), we infer

Σ * r 4 u 2+2δ dec | d * / 2 d / 2 d k * χ| 2 2 0 .
In view of the coercivity of d * / 2 d / 2 , see (5.1.49), we deduce

Σ * r 4 u 2+2δ dec |d k * χ| 2 2 0 , k ≤ k * -3, (5.3.7) 
which is the stated estimate (5.3.6).

Step 5. Next, we establish the estimates for η and ξ in Proposition 5. 

2 d * / 2 d * / 1 d / 1 d / 2 d * / 2 η = - 4 r d * / 2 d * / 1 div β + r -5 d / ≤5 Γ g + r -4 d / ≤4 (Γ b • Γ b ) + p=0,+,- r -1 ∇ ν r -1 Γ g d * / 2 d * / 1 (J (p) ) , 2 d * / 2 d * / 1 d / 1 d / 2 d * / 2 ξ = - 4 r d * / 2 d * / 1 div β + r -5 d / ≤5 Γ g + r -4 d / ≤4 (Γ b • Γ b ) + p=0,+,- ∇ ν r -2 Γ g d / ≤2 d * / 2 d * / 1 (J (p) ) + p=0,+,- r -1 ∇ ν r -1 Γ g d * / 2 d * / 1 (J (p) ) .
Taking into account the commutator Lemma 5.1.20, this yields, for k ≤ k * -6,

2 d * / 2 d * / 1 d / 1 d / 2 d * / 2 d k * η = r -4 d ≤k * -3 * β + r -5 d ≤k * * Γ g + r -4 d ≤k * * (Γ b • Γ b ) + p=0,+,- r -1 d ≤k * -3 * r -1 Γ g d * / 2 d * / 1 (J (p) ) , 2 d * / 2 d * / 1 d / 1 d / 2 d * / 2 d k * ξ = r -4 d ≤k * -3 * β + r -5 d ≤k * * Γ g + r -4 d ≤k * * (Γ b • Γ b ) + p=0,+,- r -1 d ≤k * -3 * r -1 Γ g d * / 2 d * / 1 (J (p) ) .
Together 

| d * / 2 d * / 1 d / 1 d / 2 d * / 2 d k * η| + | d * / 2 d * / 1 d / 1 d / 2 d * / 2 d k * ξ| r -4 |d ≤k * -3 * β| + r 7 u 1 2 + δ dec 2 + 2 r 6 u 2+ 3δ dec 2 r -4 |d ≤k * -3 * β| + 0 r 6 u 3 2 + 3δ dec 2
where we used again the dominance condition (5.1.30) on r on Σ * . Squaring and multiplying by r 10 u 2+2δ dec , we infer

r 10 u 2+2δ dec | d * / 2 d * / 1 d / 1 d / 2 d * / 2 d k * η| 2 + | d * / 2 d * / 1 d / 1 d / 2 d * / 2 d k * ξ| 2 r 2 u 2+2δ dec |d ≤k * -3 * β| 2 + 2 0 r 2 u 1+δ dec
which yields after integration on Σ * implies, for k ≤ k * -6,

Σ * r 10 u 2+2δ dec | d * / 2 d * / 1 d / 1 d / 2 d * / 2 d k * η| 2 + | d * / 2 d * / 1 d / 1 d / 2 d * / 2 d k * ξ| 2 Σ * r 2 u 2+2δ dec |d ≤k * -3 * β| 2 + Σ * 2 0 r 2 u 1+δ dec 2 0 + Σ * r 2 u 2+2δ dec |d ≤k * -3 * β| 2 .
Hence, together with (5.3.5), we deduce, for k ≤ k * -6, 

Σ * r 10 u 2+2δ dec | d * / 2 d * / 1 d / 1 d / 2 d * / 2 d k * η| 2 + | d * / 2 d * / 1 d / 1 d / 2 d * / 2 d k * ξ| 2 2 0 . Since, d * / 1 d / 1 = d / 2 d * / 2 + 2K, we have d * / 2 d * / 1 d / 1 d / 2 = d * / 2 ( d / 2 d * / 2 + 2K) d / 2 = d * / 2 d / 2 d * / 2 d / 2 + 2 r 2 + 2 d * / 2 q K d / 2 = d * / 2 d / 2 d * / 2 d / 2 + 2 r 2 + 2r -3 d /Γ g d
≤ k * -6, Σ * r 2 u 2+2δ dec | d * / 2 d k * η| 2 + | d * / 2 d k * ξ| 2 2 0 ,
which is the stated estimate (5.3.8). This completes the proof of Lemma 5.3.3.

Step 6. In this step, we derive the desired estimates for η and ξ, i.e. we show

Σ * u 2+2δ dec |d k * η| 2 + |d k * ξ| 2 2 0 , k ≤ k * -6.
(5.3.9)

To this end, we apply Lemma 5.1.28 which yields

d k * η L 2 (S) + d k * ξ L 2 (S) r d * / 2 d k * η L 2 (S) + r d * / 2 d k * ξ L 2 (S) +r 2 ( d / 1 ∇ k ν η) =1 + r 2 ( d / 1 ∇ k ν ξ) =1 .
Squaring, multiplying by u 2+2δ dec and integrating in u, we infer

Σ * u 2+2δ dec |d k * η| 2 + |d k * ξ| 2 Σ * r 2 u 2+2δ dec | d * / 2 d k * η| 2 + | d * / 2 d k * ξ| 2 + Σ * r 2 u 2+2δ dec ( d / 1 ∇ k ν η) =1 2 + ( d / 1 ∇ k ν ξ) =1 2
which together with the estimate (5.3.8) of Step 5 implies, for k ≤ k * -6,

Σ * u 2+2δ dec |d k * η| 2 + |d k * ξ| 2 2 0 + Σ * r 2 u 2+2δ dec ( d / 1 ∇ k ν η) =1 2 + ( d / 1 ∇ k ν ξ) =1 2 .
Now, assume that we have

( d / 1 ∇ k ν η) =1 + ( d / 1 ∇ k ν ξ) =1 0 r 2 u 3 2 + 3δ dec 2 , k ≤ k * . (5.3.10) Then, we infer, for k ≤ k * -6, Σ * u 2+2δ dec |d k * η| 2 + |d k * ξ| 2 2 0 + Σ * 2 0 r 2 u 1+δ dec 2 0
which is the desired estimate (5.3.9).

In view of the above, to complete the proof of (5.3.9), it suffices to prove (5.3.10). In view of the commutator Lemma 5.1.20, we have

d / 1 ∇ k ν η = ν k d / 1 η + r -2 d / ≤k * Γ b + d / ≤k * (Γ b • Γ b ), d / 1 ∇ k ν ξ = ν k d / 1 ξ + r -2 d / ≤k * Γ b + d / ≤k * (Γ b • Γ b ).
Using d / 1 = (div , curl ) and following consequence of the null structure equations

curl η = r -1 Γ g + Γ b • Γ g , curl ξ = Γ b • Γ b , we infer d / 1 ∇ k ν η = ν k div η + r -1 d / ≤k * Γ g + d / ≤k * (Γ b • Γ b ), d / 1 ∇ k ν ξ = ν k div ξ + r -2 d / ≤k * Γ b + d / ≤k * (Γ b • Γ b ),
which together with the control of Γ b provided by Ref 1 and Lemma 5.1.15 implies, for

k ≤ k * , |( d / 1 ∇ k ν η) =1 | + |( d / 1 ∇ k ν ξ) =1 | |(ν k div η) =1 | + |(ν k div ξ) =1 | + r 3 u 1 2 + δ dec 2 + 2 r 2 u 2+ 3δ dec 2 |(ν k div η) =1 | + |(ν k div ξ) =1 | + 0 r 2 u 3 2 + 3δ dec 2
where we used the dominance condition (5.1.30) on r on Σ * . Also, since ν(J (p) ) = 0 and ν(r) = -2 + rΓ b , we have in view of Corollary 5.2.3

ν k 1 |S| S div ηJ (p) = 1 |S| S ν k (div η)J (p) + r -2 d ≤k * -1 * Γ b + d ≤k * * (Γ b • Γ b ), ν k 1 |S| S div ξJ (p) = 1 |S| S ν k (div ξ)J (p) + r -2 d ≤k * -1 * Γ b + d ≤k * * (Γ b • Γ b ).
Now, recall the GCM conditions

(div η) =1 = (div ξ) =1 = 0.
Since ν is tangent to Σ * , we infer

ν k 1 |S| S div ηJ (p) = 0, ν k 1 |S| S div ξJ (p) = 0, p = 0, +, -,
and plugging in the above

(ν k div η) =1 = r -2 d ≤k * -1 * Γ b + d ≤k * * (Γ b • Γ b ), (ν k div ξ) =1 = r -2 d ≤k * -1 * Γ b + d ≤k * * (Γ b • Γ b ).
Together with the control of Γ b provided by Ref 1 and Lemma 5.1.15, we infer, for k ≤ k * ,

|(ν k div η) =1 | + |(ν k div ξ) =1 | r 3 u 1+ δ dec 2 + 2 r 2 u 2+ 3δ dec 2 0 r 2 u 2+ 3δ dec
where we used the dominance condition (5.1.30) on r on Σ * . Recalling the above estimate, for k ≤ k * ,

|( d / 1 ∇ k ν η) =1 | + |( d / 1 ∇ k ν ξ) =1 | |(ν k div η) =1 | + |(ν k div ξ) =1 | + 0 r 2 u 3 2 + 3δ dec 2 , we deduce, for k ≤ k * , |( d / 1 ∇ k ν η) =1 | + |( d / 1 ∇ k ν ξ) =1 | 0 r 2 u 3 2 + 3δ dec 2
which is the desired estimate (5.3.10). This concludes the proof of (5.3.9).

Step 7. In this step, we derive the desired estimates for y = e 3 (r), z = e 3 (u) and b * , i.e. we show

Σ * r -2 u 2+2δ dec d k * (q y) 2 + d k * (q z) 2 + d k * ( q b * ) 2 2 0 , k ≤ k * -7. (5.3.11)
To this end, we make use of the equations (see Lemma 5.1.12)

∇q y = -ξ + ζ -η)y = -ξ + η + Γ g , ∇q z = (ζ -η)z = -2η + Γ g .
In view of the commutator Lemma 5.1.20, we infer

∇d k * q y = -d k * ξ + d k * η + d ≤k * Γ g + rd ≤k * (Γ b • Γ b ), ∇d k * q z = -2d k * η + d ≤k * Γ g + rd ≤k * (Γ b • Γ b ).
Using the control of Γ b and Γ g provided by Ref 1 and Lemma 5.1.15, and the dominance condition (5.1.30) on r on Σ * , we obtain

|∇d k * q y| + |∇d k * q z| |d k * ξ| + |d k * η| + r 2 u 1 2 + δ dec 2 + 2 ru 2+ 3δ dec 2 |d k * ξ| + |d k * η| + 0 ru 3 2 + 3δ dec 2 .
Squaring, multiplying by u 2+2δ dec and integrating on Σ * , we infer, for k ≤ k * -6,

Σ * u 2+2δ dec |∇d k * q y| 2 + |∇d k * q z| 2 2 0 + Σ * u 2+2δ dec |d k * η| 2 + |d k * ξ| 2 .
Together with (5.3.9), this yields, for k ≤ k * -6,

Σ * u 2+2δ dec |∇d k * q y| 2 + |∇d k * q z| 2 2 0 .
Since b * = -y -z in view of Lemma 5.1.12, we deduce, for k ≤ k * -6,

Σ * u 2+2δ dec |∇d k * q y| 2 + |∇d k * q z| 2 + |∇d k * q b * | 2 2 0 .
(5.3.12)

In view of (5.3.12), it remains to estimate the averages ν k (q y), ν k (q z) and ν k ( q b * ). We start with b * . In view of the definition of q b * and (5.1.27), we have

q b * = 0,
where q b * denotes the average of q b * on the spheres foliating Σ * . Since ν is tangent along Σ * , we infer, for any k,

ν k q b * = 0.
Together with Corollary 5.2.3, we deduce, for any k,

ν k ( q b * ) = d ≤k (r 2 Γ b • Γ b ).
Using the control of Γ b provided by Ref 1 and Lemma 5.1.15, this yields, for k ≤ k * ,

|ν k ( q b * )| 2 u 2+ 3δ dec 2 0 u 2+ 3δ dec 2 .
In particular, we infer, for k ≤ k * ,

Σ * r -2 u 2+2δ dec ν k ( q b * ) 2 2
0 .

(5.3.13) Next, we estimate the average ν k (q y). Recall from Lemma 5.2.2 the following identity

ν(r) = rz 2 z -1 (κ + b * κ).
Using the transversality condition e 4 (r) = 1 on Σ * , the fact that ν = e 3 + b * e 4 , and the GCM condition κ = 2/r, we infer

y + b * = rz 2 z -1 κ + 2 r b * = r(2 + q z) 2 1 2 + q z - 2Υ r + 2 r b * + rΓ g = 1 + 1 2 q z 1 - 1 2 q z (-Υ + b * ) + rΓ g + r 2 Γ b • Γ b
and hence

q y = - 1 2 q z -q z -q b * -q b * + rΓ g + r 2 Γ b • Γ b .
Taking the average, we infer

q y = rΓ g + r 2 Γ b • Γ b .
Together with Corollary 5.2.3, we deduce

ν k (q y) = rd ≤k * Γ g + r 2 d ≤k * (Γ b • Γ b ).
Using the control of Γ b and Γ g provided by Ref 1 and Lemma 5.1.15, and the dominance condition (5.1.30) on r on Σ * , we deduce, for k ≤ k * ,

|ν k (q y)| ru 1 2 + δ dec 2 + 2 u 2+ 3δ dec 2 0 u 3 2 + 3δ dec 2 .
Squaring, multiplying by r -2 u 2+2δ dec and integrating on Σ * , we infer, for k ≤ k * ,

Σ * r -2 u 2+2δ dec ν k (q y) 2 2 0 .
Together with (5.3.13) and the fact that z = -y -b * in view of Lemma 5.1.12, we deduce,

for k ≤ k * , Σ * r -2 u 2+2δ dec ν k (q y) 2 + ν k (q z) 2 + ν k ( q b * ) 2 2
0 .

Together with (5.3.12), and using a Poincaré inequality, we infer, for k ≤ k * -7,

Σ * r -2 u 2+2δ dec d k * (q y) 2 + d k * (q z) 2 + d k * ( q b * ) 2 2 0
which is the desired estimate (5.3.11).

Step 8. In this final step, we derive the desired estimate for q ω, i.e. we show

Σ * u 2+2δ dec d k * (q ω) 2 2 0 , k ≤ k * -7. (5.3.14)
We start with the equations

∇ 4 q κ = Γ g • Γ g , ∇ 3 q κ = 2div η + 4 r q ω + 2 r 2 q y + r -1 Γ g + Γ b • Γ b ,
which together with the fact that ν = e 3 + b * e 4 yield

∇ ν q κ = 2div η + 4 r q ω + 2 r 2 q y + r -1 Γ g + Γ b • Γ b .
Since our GCM assumption for κ on Σ * implies q κ = 0, and since ν is tangent to Σ * , we infer

0 = 2div η + 4 r q ω + 2 r 2 q y + r -1 Γ g + Γ b • Γ b ,
and hence

q ω = - r 2 div η - 1 2r q y + Γ g + rΓ b • Γ b .
Using the control of Γ b and Γ g provided by Ref 1 and Lemma 5.1.15, and the dominance condition (5.1.30) on r on Σ * , we deduce, for k ≤ k * ,

|d k * q ω| |d k+1 * η| + r -1 |d k * q y| + r 2 u 1 2 + δ dec 2 + 2 ru 2+ 3δ dec 2 |d k+1 * η| + r -1 |d k * q y| + 0 ru 3 2 + 3δ dec 2 .
Squaring, multiplying by u 2+2δ dec , and integrating on Σ * , we infer

Σ * u 2+2δ dec |d k * q ω| 2 Σ * u 2+2δ dec |d k+1 * η| 2 + Σ * r -2 u 2+2δ dec |d k * q y| 2 + 2 0 .
Together with (5.3.9) for η and (5.3.11) for q y, we infer, for k ≤ k * -7,

Σ * u 2+2δ dec |d k * q ω| 2 2 0
which is the desired estimate for q ω. Together with the estimates of Step 1 to Step 7, we deduce, for k ≤ k * -7,

Σ * u 2+2δ dec |d k * Γ b | 2 2 0
which is the desired estimate (5.3.1). This concludes the proof of Proposition 5.3.1.

As a corollary of the above we derive the following improved version of Lemma 5.2.8.

Corollary 5.3.4. The functions J (p) verify the following properties 1. We have on Σ * S

J (p) = O ru -1 2 - δ dec 2 , S J (p) J (q) = 4π 3 r 2 δ pq + O ru -1 2 - δ dec 2 . 2. For any k ≤ k * -10, we have on Σ * d k * ∆ + 2 r 2 J (p) r -3 u -1 2 - δ dec 2 .

We have for any

k ≤ k * -10 on Σ * d k * d * / 2 d * / 1 J (p) r -3 u -1 2 - δ dec 2 ,
where by

d * / 1 J (p) , we mean either d * / 1 (J (p) , 0) or d * / 1 (0, J (p) ).
Proof. The proof follows exactly the same lines as the proof of Lemma 5. We start with estimates for the = 1 modes on S * . Recall that on S * we have in particular the following, see Section 5.1.2,

κ = 2 r , κ = - 2Υ r , (div β) =1 = 0, (curl β) =1,± = 0, (curl β) =1,0 = 2am r 5 . Lemma 5.4.1. The Gauss curvature K of S * verifies |( q K) =1 | 0 r 3 u 2+2δ dec . (5.4.1)
Proof. Recall that the metric on S * is given by

g S * = e 2φ r 2 (dθ) 2 + (sin θ) 2 (dϕ) 2 .
The Gauss curvature thus satisfies

K = -∆φ + e -2φ r 2
and hence

K - 1 r 2 = -∆ + 2 r 2 φ + h(φ) r 2 , h(φ) = e -2φ -1 + 2φ.
Integrating by parts,

S * K - 1 r 2 J (p) = - S * ∆ + 2 r 2 φJ (p) + S * h(φ) r 2 J (p) = - S * φ ∆ + 2 r 2 J (p) + S * h(φ) r 2 J (p) .
Using the control of φ of Lemma 5.2.6, i.e.

φ = O( r -1 u -1 2 - δ dec
2 ) and the estimate for (∆ + 2/r 2 )J (p) in Corollary 5.3.4, we easily deduce that

S * K - 1 r 2 J (p) r 2 u 1+δ dec .
Using the dominance condition (5.1.30) on r on Σ * , we infer

S * K - 1 r 2 J (p) 0 ru 2+2δ dec ,
i.e. recalling the definition of = 1 modes,

|( q K) =1 | 0 r 3 u 2+2δ dec as stated. Lemma 5.4.2. The following holds on S * q ρ - 1 2 χ • χ =1 0 r -3 u -2-2δ dec . (5.4.2)
Proof. Recall that our GCM conditions on S * imply in particular q κ = q κ = 0 on S * . This implies that the Gauss equation on S * takes the form

q K = -q ρ + 1 2 χ • χ and hence q ρ - 1 2 χ • χ =1 = -q K =1 .
Hence, in view of Lemma 5.4.1, we obtain 

q ρ - 1 2 χ • χ =1 0 r -3 u -2-2δ dec as stated.
|(div β) =1 | + |(curl β) =1,± | + (curl β) =1,0 - 2am r 5 0 r -5 u -1-δ dec , |(νdiv β) =1 | + |(νcurl β) =1 | 0 r -5 u -1-δ dec , |(div ζ) =1 | + |(curl ζ) =1,± | + (curl ζ) =1,0 - 2am r 4 0 r -4 u -1-δ dec , |(q κ) =1 | 0 r -2 u -2-2δ dec , (5.4.3) q ρ - 1 2 χ • χ =1 0 r -3 u -2-2δ dec , * ρ - 1 2 χ ∧ χ =1,± + * ρ - 1 2 χ ∧ χ =1,0 - 2am r 4 0 r -3 u -2-2δ dec , |(q µ) =1 | 0 r -3 u -2-2δ dec .
(5.4.4)

Remark 5.4.4. Note that the results are consistent with strong peeling.

Proof. We make the following local bootstrap assumption on Σ *

|(div β) =1 | + |(curl β) =1,± | + (curl β) =1,0 - 2am r 5 ≤ r -5 u -1-δ dec , |(q κ) =1 | ≤ r -2 u -2-δ dec .
(5.4.5)

Step 1. We start with the control of ( d / 1 ζ) =1 . Recall the following consequence of the Codazzi equation for χ

d / 2 χ = 1 r ζ -β + Γ g • Γ g . Differentiating w.r.t. d / 1 , we infer d / 1 d / 2 χ = 1 r d / 1 ζ -d / 1 β + r -1 d / ≤1 (Γ g • Γ g ).
Projecting on the = 1 modes, this yields

( d / 1 d / 2 χ) =1 = 1 r ( d / 1 ζ) =1 -( d / 1 β) =1 + r -1 d / ≤1 (Γ g • Γ g ).
Next, we estimate ( d / 1 d / 2 χ) =1 . We have

( d / 1 d / 2 χ) =1,p = 1 |S| S d / 1 d / 2 χJ (p) = 1 |S| S χ • d * / 2 d * / 1 J (p)
and hence

|( d / 1 d / 2 χ) =1 | | d * / 2 d * / 1 J (p) ||Γ g |.
We deduce

( d / 1 ζ) =1 = r( d / 1 β) =1 + r| d * / 2 d * / 1 J (p) |Γ g + d / ≤1 (Γ g • Γ g )
and thus

|(div ζ) =1 | + |(curl ζ) =1,± | r|(div β) =1 | + r|(curl β) =1,± | + r| d * / 2 d * / 1 J (p) |Γ g + d / ≤1 (Γ g • Γ g ), (curl ζ) =1,0 - 2am r 4 r (curl β) =1,0 - 2am r 5 + r| d * / 2 d * / 1 J (p) |Γ g + d / ≤1 (Γ g • Γ g ).
Using 

|(div ζ) =1 | + |(curl ζ) =1,± | + (curl ζ) =1,0 - 2am r 4 r 4 u 1+δ dec . (5.4.6)
Step 2. Next, we consider the control of (div β) =1 . Recall the following consequence of the Codazzi equation for χ

div χ = 1 2 ∇q κ + Υ r ζ + β + Γ b • Γ g . Differentiating w.r.t. div , we infer div d / 2 χ = 1 2 ∆q κ + Υ r div ζ + div β + r -1 d / ≤1 (Γ b • Γ g ).
Projecting on the = 1 modes, this yields

(div d / 2 χ) =1 = 1 2 (∆q κ) =1 + Υ r (div ζ) =1 + (div β) =1 + r -1 d / ≤1 (Γ b • Γ g ).
As in Step 1, we have

|(div d / 2 χ) =1 | | d * / 2 d * / 1 J (p) ||Γ b |.
Also, we have

(∆q κ) =1,p = 1 |S| S ∆q κJ (p) = - 2 r 2 1 |S| S q κJ (p) + 1 |S| S q κ ∆ + 2 r 2 J (p)
and hence

|(∆q κ) =1 | r -2 |(q κ) =1 | + ∆ + 2 r 2 J (p) |Γ g |.
We deduce

|(div β) =1 | r -2 |(q κ) =1 | + r -1 |(div ζ) =1 | + ∆ + 2 r 2 J (p) |Γ g | +| d * / 2 d * / 1 J (p) ||Γ b | + r -1 | d / ≤1 (Γ b • Γ g )|.
Together with the local bootstrap assumption (5.4.5) on (q κ) =1 , the control of (div ζ) =1 in (5.4.6), the control of d * / 2 d * / 1 J (p) and (∆ + 2/r 2 )J (p) provided by Corollary 5.3.4, and the control of Γ g provided by Ref 1, we obtain

|(div β) =1 | r 4 u 2+δ dec + r 5 u 1+δ dec + r 3 u 1 2 + δ dec 2 | d / ≤1 Γ b |.
Using the dominance condition (5.1.30) on r on Σ * , we infer

|(div β) =1 | 0 r 3 u 3+2δ dec + 0 r 2 u 3 2 + 3δ dec 2 | d / ≤1 Γ b |.
By integration in u, and using Sobolev, we deduce

u * u r 3 (div β) =1 0 u 2+2δ dec + 0 u * u u -3 2 - 3δ dec 2 d / ≤3 Γ b L 2 (S) 0 u 2+2δ dec + 0 u 2+2δ dec Σ * u 2+2δ dec | d / ≤3 Γ b | 2 1 2
.

Hence, in view of Proposition 5.3.1, we obtain

u * u r 3 (div β) =1 0 u 2+2δ dec .
(5.4.7)

Step 3. We provide the estimate for (q ρ -1 2 χ • χ) =1 . Recall from Corollary 5.2.12 that we have along Σ * , for p = 0, +, -,

ν S q ρ - 1 2 χ • χ J (p) = O(r -1 ) S q ρ - 1 2 χ • χ J (p) + h 1 ,
where the scalar function h 1 is given by

h 1 = - S div βJ (p) -(1 + O(r -1 )) S div βJ (p) + O(r -3 ) S q κJ (p) +O(r -2 ) S div ζJ (p) + r ∆ + 2 r 2 J (p) Γ b + r d / ≤1 (Γ b • Γ b ).
In view of the local bootstrap assumption (5.4.5) on (q κ) =1 and (div β) =1 , the control of (div ζ) =1 in (5.4.6), the control of (∆ + 2/r 2 )J (p) provided by Corollary 5.3.4, and the control of Γ g provided by Ref 1, we obtain

|h 1 | r 2 |(div β) =1 | + r 3 u 1+δ dec + r| d / ≤1 (Γ b • Γ b )|.
Using the dominance condition (5.1.30) on r on Σ * , we infer

|h 1 | r 2 |(div β) =1 | + r| d / ≤1 (Γ b • Γ b )| + 0 ru 3+3δ dec .
By integration in u, and using Sobolev, we deduce

u * u r|h 1 | 0 u 2+3δ dec + u * u r 3 |(div β) =1 | + u * u d / ≤3 Γ b 2 L 2 (S) 0 u 2+3δ dec + u * u r 3 |(div β) =1 | + 0 u 2+2δ dec Σ * u 2+2δ dec | d / ≤3 Γ b | 2 1 2
.

Together with the control of (div β) =1 in (5.4.7) and the control of Γ b in Proposition 5.3.1, we obtain

u * u r|h 1 | 0 u 2+2δ dec . Since ν S q ρ - 1 2 χ • χ J (p) = O(r -1 ) S q ρ - 1 2 χ • χ J (p) + h 1 ,
we may thus apply Corollary 5.2.5 which implies

ru 2+2δ dec S q ρ - 1 2 χ • χ J (p) r * u 2+2δ dec * S * q ρ - 1 2 χ • χ J (p) + 0 .
Together with the control of (q ρ -1 2 χ • χ) =1 on S * provided by Lemma 5.4.2, we infer

ru 2+2δ dec S q ρ - 1 2 χ • χ J (p) 0
and hence

q ρ - 1 2 χ • χ =1 0 r 3 u 2+2δ dec .
(5.4.8)

Step 4. We provide the estimate for (q κ) =1 . Recall from Corollary 5.2.12 that we have along Σ * , for p = 0, +, -,

ν S ∆q κ + 2Υ r div ζ J (p) = h 2
where the scalar function h 2 is given by

h 2 = O(r -3 ) S q κJ (p) + O(r -2 ) S div ζJ (p) + O(r -1 ) S div βJ (p) +O(r -2 ) S q ρ - 1 2 χ • χ J (p) + O(r -1 ) S div βJ (p) +r ∆ + 2 r 2 J (p) d / ≤1 Γ b + d / ≤2 (Γ b • Γ b ).
In view of the local bootstrap assumption (5.4.5) on (q κ) =1 and (div β) =1 , the control of (div ζ) =1 in (5.4.6), and the control of (∆ + 2/r 2 )J (p) provided by Corollary 5.3.4, we obtain

|h 2 | r|(div β) =1 | + r 3 u 2+δ dec + r 4 u 1+δ dec + r 2 u 1 2 + δ dec 2 |Γ b | + | d / ≤2 (Γ b • Γ b )| r|(div β) =1 | + r 3 u 2+δ dec + r 4 u 1+δ dec + | d / ≤2 (Γ b • Γ b )|.
Using the dominance condition (5.1.30) on r on Σ * , we infer

|h 2 | r|(div β) =1 | + 0 r 2 u 3+2δ dec + | d / ≤2 (Γ b • Γ b )|.
By integration in u, and using Sobolev, we deduce

u * u r 2 |h 2 | 0 u 2+2δ dec + u * u r 3 |(div β) =1 | + u * u d / ≤4 Γ b 2 L 2 (S) 0 u 2+2δ dec + u * u r 3 |(div β) =1 | + 1 u 2+2δ dec Σ * u 2+2δ dec | d / ≤4 Γ b | 2 .
Together with the control of (div β) =1 in (5.4.7) and the control of Γ b in Proposition 5.3.1, we obtain

u * u r 2 |h 2 | 0 u 2+2δ dec . Since ν S ∆q κ + 2Υ r div ζ J (p) = h 2 ,
we may thus apply Corollary 5.2.5 which implies

r 2 u 2+2δ dec S ∆q κ + 2Υ r div ζ J (p) r 2 * u 2+2δ dec * S * ∆q κ + 2Υ r div ζ J (p) + 0 .
Since q κ = 0 on S * , and using the control of (div ζ) =1 in (5.4.6), we infer

r 2 u 2+2δ dec S ∆q κJ (p) 0 + u 1+δ dec r
and hence

u 2+2δ dec S q κJ (p) 0 + u 1+δ dec r + r 4 u 2+2δ dec ∆ + 2 r 2 J (p) |Γ g |.
Together with the control of Γ g provided by Ref 1, the control of (∆ + 2/r 2 )J (p) provided by Corollary 5.3.4, and the dominance condition (5.1.30) on r on Σ * , we infer

u 2+2δ dec S q κJ (p) 0 + u 1+δ dec r 0 and hence |(q κ) =1 | 0 r 2 u 2+2δ dec .
(5.4.9)

Step 5. Next, we estimate ( * ρ -1 2 χ ∧ χ) =1 . Recall that we have

curl ζ = * ρ - 1 2 χ ∧ χ.
We infer from the control of (curl ζ) =1 in (5.4.6) * ρ -

1 2 χ ∧ χ =1,± + * ρ - 1 2 χ ∧ χ =1,0 - 2am r 4 r 4 u 1+δ dec .
Together with the dominance condition (5.1.30) on r on Σ * , we infer * ρ -

1 2 χ ∧ χ =1,± + * ρ - 1 2 χ ∧ χ =1,0 - 2am r 4 0 r 3 u 2+2δ dec . (5.4.10)
Step 6. We provide the estimate for (div β) =1 . Recall from Corollary 5.2.12 that we have along Σ * , for p = 0, +, -,

ν S div βJ (p) = O(r -1 ) S div βJ (p) + h 3
where the scalar function h 3 is given by

h 3 = O(r -2 ) S q ρ - 1 2 χ • χ J (p) + r ∆ + 2 r 2 J (p) + d * / 2 d * / 1 J (p) Γ g + d / ≤1 (Γ b • Γ g ).
In view of the control of (q ρ -1 2 χ • χ) =1 in (5.4.8), the control of (∆ + 2/r 2 )J (p) and d * / 2 d * / 1 J (p) provided by Corollary 5.3.4, and the control of Γ g provided by Ref 1, we obtain

|h 3 | 0 r 3 u 2+2δ dec + 2 r 4 u 1+ 3δ dec 2 + r 2 u 1 2 +δ dec | d / ≤1 Γ b |.
Using the dominance condition (5.1.30) on r on Σ * , we infer

|h 3 | 0 r 3 u 2+2δ dec + r 2 u 1 2 +δ dec | d / ≤1 Γ b |.
By integration in u, and using Sobolev, we obtain

u * u r 3 |h 3 | 0 u 1+δ dec + u * u u 1 2 +δ dec d / ≤3 Γ b L 2 (S) 0 u 1+δ dec + 0 u 1+2δ dec Σ * u 2+2δ dec | d / ≤3 Γ b | 2 1 2
.

Together with the control of Γ b in Proposition 5.3.1, we infer

u * u r 3 |h 3 | 0 u 1+δ dec . Since ν S div βJ (p) = O(r -1 ) S div βJ (p) + h 3 ,
we may thus apply Corollary 5.2.5 which implies, together with the fact that (div β) =1 = 0 on S * ,

r 3 u 1+δ dec S div βJ (p) 0 ,
and hence

|(div β) =1 | 0 r 5 u 1+δ dec .
(5.4.11)

Step 7. We provide the estimate for (curl β) =1 . Recall from Corollary 5.2.12 that we have along Σ * , for p = 0, +, -,

ν S curl βJ (p) = 4 r (1 + O(r -1 )) S curl βJ (p) + 2 r 2 (1 + O(r -1 )) S * ρ - 1 2 χ ∧ χ J (p) +r ∆ + 2 r 2 J (p) + d * / 2 d * / 1 J (p) Γ g + d / ≤1 (Γ b • Γ g ).
In the case p = ±, since we have (curl β) =1,± = 0 on S * , using (5.4.10) to control ( * ρ -1 2 χ ∧ χ) =1,± , and arguing exactly as for the control of (div β) =1 in Step 6, we obtain the following analog of (5.4.11)

(curl β) =1,± 0 r 5 u 1+δ dec .
(5.4.12)

Next, we focus on the case p = 0. We rewrite the above transport equation in this particular case

ν S curl βJ (0) = 4 r (1 + O(r -1 )) S curl βJ (0) + 2 r 2 (1 + O(r -1 )) S * ρ - 1 2 χ ∧ χ J (0) +r ∆ + 2 r 2 J (0) + d * / 2 d * / 1 J (0) Γ g + d / ≤1 (Γ b • Γ g ). Since ν(r) = -2 + rΓ b , we have ν r 3 S curl βJ (0) = r 3 ν S curl βJ (0) + 3r 2 ν(r) S curl βJ (0) = r 3 ν S curl βJ (0) -6r 2 S curl βJ (0) + r 5 Γ b (curl β) =1,0 ,
and hence

ν r 3 S curl βJ (0) = - 2 r r 3 (1 + O(r -1 )) S curl βJ (0) + 2r(1 + O(r -1 )) S * ρ - 1 2 χ ∧ χ J (0) +r 5 Γ b (curl β) =1,0 + r 4 ∆ + 2 r 2 J (0) + d * / 2 d * / 1 J (0) Γ g + r 3 d / ≤1 (Γ b • Γ g ) which we rewrite ν r 3 S curl βJ (0) -8πam = - 2 r r 3 S curl βJ (0) -8πam + h 4
where the scalar function h 4 is given by

h 4 = O(r 3 ) * ρ - 1 2 χ ∧ χ =1,0 - 2am r 4 + O(r 3 )(curl βJ (0) ) =1,0 +O(r 2 ) * ρ - 1 2 χ ∧ χ =1,0 + r 5 Γ b (curl β) =1,0 +r 4 ∆ + 2 r 2 J (0) + d * / 2 d * / 1 J (0) Γ g + r 3 d / ≤1 (Γ b • Γ g ).
In view of the control of ( * ρ -1 2 χ ∧ χ) =1 in (5.4.10), the local bootstrap assumption (5.4.5) on (curl β) =1,0 , the control of (∆ + 2/r 2 )J (p) 

|h 4 | 1 r 2 + 0 u 2+2δ dec + ru 1+δ dec + r u 1 2 +δ dec | d / ≤1 Γ b |.
Using the dominance condition (5.1.30) on r on Σ * , we infer

|h 4 | 0 u 2+2δ dec + r u 1 2 +δ dec | d / ≤1 Γ b |.
By integration in u, and using Sobolev, we obtain

u * u |h 4 | 0 u 1+δ dec + u * u u 1 2 +δ dec d / ≤3 Γ b L 2 (S) 0 u 1+δ dec + u 1+2δ dec Σ * u 2+2δ dec | d / ≤3 Γ b | 2 1 2
.

Together with the control of Γ b in Proposition 5.3.1, we infer

u * u |h 4 | 0 u 1+δ dec . Since ν r 3 S curl βJ (0) -8πam = - 2 r r 3 S curl βJ (0) -8πam + h 4 ,
we may thus apply Corollary 5.2.5 which implies, together with the fact that there holds (curl β) =1,0 = 2am r 5 on S * ,

r 3 u 1+δ dec S curl βJ (0) - 8πam r 3 0 ,
and hence, together with (5.4.12), we have obtained

(curl β) =1,± + (curl β) =1,0 - 2am r 5 0 r 5 u 1+δ dec . (5.4.13) 
Remark 5.4.5. Note that (5.4.9) for (q κ) =1 , (5.4.11) for (div β) =1 , and (5.4.13) for (curl ζ) =1 , improve the local bootstrap assumptions (5.4.5).

Step 8. We have by the definition of the mass aspect function µ

q µ = -div ζ -q ρ - 1 2 χ • χ and hence (q µ) =1 = -(div ζ) =1 -q ρ - 1 2 χ • χ =1 .
Together with the estimates (5.4.6) for (div ζ) =1 and (5.4.8) for (q ρ -1 2 χ • χ) =1 , we infer

|(q µ) =1 | 0 r 3 u 2+2δ dec + r 4 u 1+δ dec .
Using the dominance condition (5.1.30) on r on Σ * , we deduce

|(q µ) =1 | 0 r 3 u 2+2δ dec .
(5.4.14)

Step 9. It remains to derive estimates for (νdiv β) =1 and (νcurl β) =1 . In view of Lemma 5.1.25, we have along

Σ * νdiv β = O(r -1 )div β + ∆ρ + (1 + O(r -1 ))div div α + O(r -3 )div η + r -2 d / ≤1 (Γ b • Γ g ), νcurl β = 8 r (1 + O(r -1 ))curl β -∆ * ρ + (1 + O(r -1 ))curl div α + O(r -3 ) * ρ + r -2 d / ≤1 (Γ b • Γ g ),
where the notation O(r a ), for a ∈ R, denotes an explicit function of r which is bounded by r a as r → +∞. We infer

(νdiv β) =1 = O(r -1 )(div β) =1 + (∆ρ) =1 + (1 + O(r -1 ))(div div α) =1 + O(r -3 )(div η) =1 + r -2 d / ≤1 (Γ b • Γ g ), ( νcurl 
β) =1 = 8 r (1 + O(r -1 ))(curl β) =1 -(∆ * ρ) =1 + (1 + O(r -1 ))(curl div α) =1 + O(r -3 )( * ρ) =1 + r -2 d / ≤1 (Γ b • Γ g ).
Using the fact that (div η) =1 = 0, and integrating by parts ∆, div div and curl div , we obtain

|(νdiv β) =1 | + |(νcurl β) =1 | r -1 |(div β) =1 | + r -1 |(curl β) =1 | + r -2 q ρ - 1 2 χ • χ =1 + r -2 * ρ - 1 2 χ ∧ χ =1 +r -1 ∆ + 2 r 2 J (p) + d * / 2 d * / 1 J (p) |Γ g | + r -2 | d / ≤1 (Γ b • Γ g )|.
Together with the above estimates, we infer

|(νdiv β) =1 | + |(νcurl β) =1 | 1 r 6 + 0 r 5 u 3 2 +2δ dec .
Using the dominance condition (5.1.30) on r on Σ * , we deduce

|(νdiv β) =1 | + |(νcurl β) =1 | 0 r 5 u 1+δ dec . (5.4.15)
This concludes the proof of Proposition 5.4.3.

Estimates for = 0 modes on Σ *

In this section, we control the average (i.e. the = 0 mode) of q κ, q ρ, * ρ and q µ. Recall the definition of the Hawking mass 2m

H r = 1 + 1 16π S κκ.
In order to control = 0 modes on Σ * , we will need in particular to compare the Hawking mass m H with the constant m. To this end, we will rely on the following lemma.

Lemma 5.4.6. We have

ρ = - 2m H r 3 + Γ b • Γ g (5.4.16)
and

ν(m H ) = r 2 d / ≤1 (Γ b • Γ b ).
(5.4.17)

Proof. We start with the identity for the average of ρ. Recall the Gauss equation

K = -ρ - 1 4 tr χtr χ + 1 2 χ • χ.
Integrating on S, and using the definition of the Hawking mass m H , we obtain

S K = - S ρ -4π 2m H r -1 + 1 2 S χ • χ.
Since from Gauss Bonnet we have

S K = 4π, we infer S ρ = - 8πm H r + 1 2 S χ • χ and hence ρ = - 2m H r 3 + Γ b • Γ g as stated. Note that this implies ρ + 2m H r 3 = ρ + 2m H r 3 + ρ -ρ = ρ + 2m H r 3 + ρ + 2m r 3 -ρ + 2m r 3 = r -1 Γ g + Γ b • Γ g = r -1 Γ g so that ρ + 2m H r 3 ∈ r -1 Γ g .
Next, we focus on the identity for ν(m H ). From the null structure equations, we have on Σ * e 3 (tr χtr χ) = tr χ -

1 2 tr χ 2 -2ωtr χ + 2div ξ + 2ξ • (η -3ζ) -| χ| 2 +tr χ - 1 2 tr χtr χ + 2ωtr χ + 2div η + 2|η| 2 + 2ρ -χ • χ = -tr χtr χ 2 + 2tr χρ + 2tr χdiv ξ + 2tr χdiv η +tr χ 2ξ • (η -3ζ) -| χ| 2 + tr χ 2|η| 2 -χ • χ and e 4 (tr χtr χ) = tr χ - 1 2 tr χtr χ -2div ζ + 2|ζ| 2 + 2ρ -χ • χ + tr χ - 1 2 tr χ 2 -| χ| 2 = -tr χ 2 tr χ + 2tr χρ -2tr χdiv ζ + tr χ 2|ζ| 2 -χ • χ -tr χ| χ| 2 .
Hence, we obtain 

)ρ + 4 r div ξ - 4Υ r div η + 4 1 + 2m r r div ζ + r -1 d / ≤1 (Γ b • Γ b ).
Together with Lemma 5.2.2, we infer

ν S tr χtr χ = z S 1 z ν(tr χtr χ) + (κ + b * κ)tr χtr χ = z S 1 z 2(tr χ + b * tr χ)ρ + 4 r div ξ - 4Υ r div η + 4 1 + 2m r r div ζ + r -1 d / ≤1 (Γ b • Γ b ) .
Integrating by parts the divergences, we deduce

ν S tr χtr χ = 2z S 1 z (tr χ + b * tr χ)ρ + r d / ≤1 (Γ b • Γ b ).
Thus, in view of the definition of the Hawking mass,

2m H r = 1 + 1 16π S
tr χtr χ, we infer

ν 2m H r = z 8π S 1 z (tr χ + b * tr χ)ρ + r d / ≤1 (Γ b • Γ b ).
On the other hand, we have

ν 2m H r = 2ν(m H ) r - 2m H ν(r) r 2
and hence, using again Lemma 5.2.2,

ν 2m H r = 2ν(m H ) r - 2m H r 2 z 8πr S 1 z (tr χ + b * tr χ) which yields ν(m H ) = rz 16π S 1 z (tr χ + b * tr χ) ρ + 2m H r 3 + r 2 d / ≤1 (Γ b • Γ b ).
Recalling from above that we have ρ

+ 2m H r 3 ∈ r -1 Γ g , we infer ν(m H ) = - 1 4π S ρ + 2m H r 3 + r 2 d / ≤1 (Γ b • Γ b ).
Together with the above control of the average of ρ + 2m H r 3 , we deduce

ν(m H ) = r 2 d / ≤1 (Γ b • Γ b )
as desired. This concludes the proof of Lemma 5.4.6.

Proposition 5.4.7 (Control of = 0 modes on Σ * ). We have on

Σ * sup Σ * u 1+2δ dec |m H -m| + r 2 q κ + r 3 q ρ + r 3 q µ + r 3 | * ρ| 0 .
(5.4.18)

Proof. Recall from Lemma 5.4.6 that we have Next, recall from Lemma 5.4.6 that we have

ν(m H ) = r 2 d / ≤1 (Γ b • Γ b ).
ρ = - 2m H r 3 + Γ b • Γ g .
Together with the above control for m H -m, and the control of Γ b and Γ g provided by Ref 1, we deduce

q ρ = ρ + 2m r 3 0 r 3 u 1+2δ dec as desired.
Next, taking the average of

curl ζ = * ρ - 1 2 χ ∧ χ, we infer * ρ = 1 2 χ ∧ χ = Γ b • Γ g ,
and the conclusion follows from the control of Γ b and Γ g provided by Ref 1.

Next, using the definition of the Hawking mass and the GCM condition for κ on Σ * , we have

2m H r = 1 + 1 16π S κκ = 1 + 1 8πr S κ = 1 + r 2 κ
and hence

κ = - 2 r 1 - 2m H r = - 2Υ r + 4 r 2 (m H -m).
Together with the above control for m H -m, we deduce

κ + 2Υ r 0 r 2 u 1+2δ dec as desired.
Finally, we consider µ. We have by definition of µ, and in view of Gauss equation,

µ = -div ζ -ρ + 1 2 χ • χ = -div ζ + K + 1 4 tr χtr χ.
Integrating, and using integration by parts, we obtain

S µ = S K + 1 4 S tr χtr χ.
Using Gauss Bonnet and the definition of the Hawking mass, we deduce

S µ = 4π + 4π 2m H r -1 = 8πm H r = 8πm r + 8π(m H -m) r .
Together with the above control for m H -m, we deduce

µ - 2m r 3 0 r 3 u 1+2δ dec
as desired. This concludes the proof of the proposition.

Proof of Theorem M3

We are now ready to prove Theorem M3.

Proposition 5.5.1. We have along Σ * , for all k ≤ k * -12,

d ≤k * Γ b 0 r -1 u -1-δ dec , d ≤k * Γ g 0 r -2 u -1 2 -δ dec , d ≤k-1
Moreover, for all k ≤ k * -12,

d ≤k * q κ 0 r -2 u -1-δ dec , d ≤k * q µ 0 r -3 u -1-δ dec , d ≤k-1 * ∇ ν α 0 r -9 2 -δextra , d ≤k-1 * ∇ ν β 0 r -4 u -1 2 -δ dec .
(5.5. Note also that q κ = 0 in view of our GCM conditions, and that the estimate for α 15 has already been established in (5.1.42). Thus, it only remains to control the following quantities

q κ, χ, ζ, q ρ, * ρ, q µ, β.
We control these quantities as follows, starting first with estimates for angular derivatives.

Step 1. We start with d / k q κ and d / k q µ. Recall from our GCM conditions that we have on

Σ * q κ = C 0 + p C p J (p) , q µ = M 0 + p M p J (p) .
Differentiating w.r.t. d * / 2 d * / 1 , and recalling that C 0 , C p , M 0 and M p are constant on the spheres S, we infer

d * / 2 d * / 1 q κ = p C p d * / 2 d * / 1 J (p) , d * / 2 d * / 1 q µ = p M p d * / 2 d * / 1 J (p) , which yields, for k ≥ 0, d * / 2 d * / 1 q κ h k (S) r p |C p | d / ≤k d * / 2 d * / 1 J (p) L ∞ (S) , d * / 2 d * / 1 q µ h k (S) r p |M p | d / ≤k d * / 2 d * / 1 J (p) L ∞ (S) .
15 But not the one for ∇ ν α in (5.5.2) which is in fact derived in Step 4.

Together with Corollary 5.2.9, we infer

q κ h k+2 (S) r 3 p |C p | d / ≤k d * / 2 d * / 1 J (p) L ∞ (S) + r|(q κ) =1 | + r|q κ|, q µ h k+2 (S) r 3 p |M p | d / ≤k d * / 2 d * / 1 J (p) L ∞ (S) + r|(q µ) =1 | + r|q µ|.
In view of the control of the = 1 mode of q κ and q µ in Proposition 5.4.3, the control of the average of q κ and q µ in Proposition 5.4. 

q κ h k+2 (S) 0 ru 1+δ dec , q µ h k+2 (S) 0 r 2 u 1+δ dec .
Together with Sobolev, this implies, for k ≤ k * -10,

| d / k q κ| 0 r 2 u 1+δ dec , | d / k q µ| 0 r 3 u 1+δ dec . (5.5.3) 
Step 2. Next, we focus on d / k q ρ and d / k * ρ. Recall from Proposition 5.1.26 that we have

(q) = r 4 d * / 2 d * / 1 (-ρ, * ρ) + O(r -2 ) + d / ≤2 Γ b + r 2 d / ≤2 Γ b • Γ g .
We infer, for k ≥ 0,

d * / 2 d * / 1 (-q ρ, * ρ) h k (S) r -3 d / ≤k q L ∞ (S) + r -5 + r -3 d / ≤k+2 Γ b L ∞ (S) +r -1 d / ≤k+2 (Γ b • Γ g ) L ∞ (S) .
In view of Ref 2 for q, the control of Γ b established in Proposition 5.3.1, and the control of Γ g provided by Ref 1, we obtain, for k ≤ k * -12,

d * / 2 d * / 1 (-q ρ, * ρ) h k (S) 1 r 5 + 0 r 4 u 1 2 +δ dec .
Together with the dominance condition (5.1.30) on r on Σ * , this yields, for k ≤ k * -12,

d * / 2 d * / 1 (-q ρ, * ρ) h k (S) 0 r 4 u 1 2 +δ dec .
In view Corollary 5.2.9, we deduce, for k ≤ k * -12,

(-q ρ, * ρ) h k+2 (S) 0 r 2 u 1 2 +δ dec + r|(q ρ) =1 | + r|( * ρ) =1 | + r|q ρ| + r| * ρ|.
In view of the control of the = 1 mode of q ρ and * ρ in Proposition 5.4.3, and the control of the average of q ρ and * ρ in Proposition 5.4.7, we infer, for k ≤ k * -12,

q ρ h k+2 (S) 0 r 2 u 1 2 +δ dec , * ρ h k+2 (S) 0 r 2 u 1 2 +δ dec .
Together with Sobolev, this implies, for k ≤ k * -12,

| d / k q ρ| 0 r 3 u 1 2 +δ dec , | d / k * ρ| 0 r 3 u 1 2 +δ dec .
(5.5.4)

Step 3. Next, we focus on d / k ζ. From the definition of µ, and the null structure equation for curl ζ, we have

d / 1 ζ = -q µ -q ρ + 1 2 χ • χ, * ρ - 1 2 χ • χ = (-q µ -q ρ, * ρ) + Γ b • Γ g .
In view of Lemma 5.1.27, we infer, for k ≥ 0,

ζ h k+1 (S) r q µ h k (S) + r q ρ h k (S) + r * ρ h k (S) + r 2 d / ≤k (Γ b • Γ g ) L ∞ (S) .
Together with the control of q µ derived in Step 1, the control of (q ρ, * ρ) (5.5.5)

derived
Step 4. Next, we focus on d / k β and d / k ∇ ν α. Recall the following consequence of Bianchi

d * / 2 β = ∇ 3 α + O(r -1 )α + O(r -3 )Γ g + Γ b (α, β) + r -1 Γ g • Γ g .
In view of Lemma 5.1.28, we infer, for k ≥ 0,

β h k+1 (S) r d / ≤k ∇ 3 α L 2 (S) + r d / ≤k α L ∞ (S) + r -1 d / ≤k Γ g L ∞ (S) +r d / ≤k (Γ b • (α, β)) L 2 (S) + r d / ≤k (Γ g • Γ g ) L ∞ (S) + r 2 ( d / 1 β) =1 ,
which we rewrite in the following form, for k ≤ k * -1,

β h k+1 (S) r 2 d / ≤k ∇ 3 α + f ⊗β - * f ⊗ * β L ∞ (S) + β h k (S) + r d / ≤k α L ∞ (S) +r -1 d / ≤k Γ g L ∞ (S) + r d / ≤k (Γ g • Γ g ) L ∞ (S) + r 2 ( d / 1 β) =1 ,
where f is the 1-form introduced in (5. 1.42), and where we used the fact that f satisfies (5. 

β h k+1 (S) β h k (S) + 0 r 5 2 +δextra + 1 r 3 .
Absorbing the first term on the RHS for > 0 small enough, and in view of the dominance condition (5.1.30) for r on Σ * , this yields, for k ≤ k * -1, (5.5.7)

β h k+1 (S) 0 r 2 u
Step 5. Next, we focus on d / k χ. Recall the following consequence of Codazzi (see Proposition 5.1.18)

d / 2 χ = 1 r ζ -β + Γ g • Γ g .
In view of Lemma 5.1.27, we infer, for k ≥ 0, (5.5.8)

χ h k+1 (S) ζ h k (S) + r β h k (S) + r 2 d / ≤k (Γ g • Γ g ) L ∞ (S) .
Step 6. In view of Steps 1-5, and the fact that q κ = 0 in view of our GCM conditions, and that the estimate for α has already been established in Theorem M2, we have obtained,

for k ≤ k * -12, | d / k Γ g | 0 r 2 u 1 2 +δ dec , | d / ≤k q κ| 0 r 2 u 1+δ dec , | d / ≤k q µ| 0 r 3 u 1+δ dec .
(5.5.9)

Step 7. Next, we estimate ∇ ν Γ g . From the null structure equations and Bianchi identities, one observes that all quantities in Γ g verify schematically 16

∇ ν Γ g = r -1 d / ≤1 Γ b + r -1 Γ g + Γ b • Γ b .
Together with the control of Γ b established in Proposition 5.3.1, and the control of Γ g provided by Ref 1, we infer, for k ≤ k * -10,

d ≤k-1 * ∇ ν Γ g 0 r 2 u 1+δ dec + 1 r 3 .
In view of the dominance condition (5.1.30) on r on Σ * , this yields, for k ≤ k * -10,

d ≤k-1 * ∇ ν Γ g 0 r 2 u 1+δ dec .
Together with the estimates of Step 6, and the control of Γ b established in Proposition 5.3.1, we deduce, for k ≤ k * -12,

d ≤k * Γ b 0 r -1 u -1-δ dec , d ≤k * Γ g 0 r -2 u -1 2 -δ dec , d ≤k-1
Step 8. We conclude the proof with an estimate for ∇ ν β. In view of the Bianchi identities for ∇ 3 β and ∇ 4 β, and using the fact that ν = e 3 + b * e 4 , we have

∇ ν β = r -2 d / ≤1 Γ g .
Together with the estimate for Γ g derived in Step 7, we infer, for k ≤ k * -12,

d ≤k-1 * ∇ ν β| 0 r -4 u -1 2 -δ dec . (5.5.11)
This concludes the proof of Proposition 5.5.1.

We conclude this section with the following non-sharp corollary of Proposition 5.5.1, Proposition 5.4.3 and Corollary 5.2.12 that will be useful in Section 8.5.

Corollary 5.5.3. We have along

Σ * |ν((div β) =1 )| + |ν((curl β) =1,± )| + ν (curl β) =1,0 - 2am r 5 0 r 5 u 1+δ dec , ν (q κ) =1 2 0 r 2 u 2+2δ dec + 0 r 3 u 1+δ dec .
Proof. Recall the following identities derived in Corollary 5.2.12 along Σ * , for p = 0, +, -,

ν S ∆q κ + 2Υ r div ζ J (p) = O(r -3 ) S q κJ (p) + O(r -2 ) S div ζJ (p) + O(r -1 ) S div βJ (p) + O(r -2 ) S q ρJ (p) +O(r -1 ) S div βJ (p) + r ∆ + 2 r 2 J (p) d / ≤1 Γ b + d / ≤2 (Γ b • Γ b ), ν S div βJ (p) = O(r -1 ) S div βJ (p) + O(r -2 ) S q ρJ (p) +r ∆ + 2 r 2 J (p) + d * / 2 d * / 1 J (p) Γ g + d / ≤1 (Γ b • Γ g ),
and

ν S curl βJ (p) = 4 r (1 + O(r -1 )) S curl βJ (p) + 2 r 2 (1 + O(r -1 )) S * ρJ (p) +r ∆ + 2 r 2 J (p) + d * / 2 d * / 1 J (p) Γ g + d / ≤1 (Γ b • Γ g ).
The estimates then easily follow from the control of the = 1 modes in Proposition 5.4.3, the control of Γ g and Γ b provided by Proposition 5.5.1, the control of (∆ + 2 r 2 )J (p) and d * / 2 d * / 1 J (p) provided by Corollary 5.3.4 (with 0 smallness constant instead of thanks to Proposition 5.5.1), and the dominance condition for r on Σ * .

5.6 Control of J (p) and J on Σ * Recall that the induced metric g on S * takes the form

g = r 2 e 2φ (dθ) 2 + sin 2 θ(dϕ) 2 .
For the constructions in Definition 5.6.1 below, we will rely on a special orthonormal basis (e 1 , e 2 ) of the tangent space of S * given by

e 1 = 1 re φ ∂ θ , e 2 = 1 r sin θe φ ∂ ϕ , on S * .
(5.6.1)

To control the regularity of the basis of = 1 modes J (p) , p = 0, +, -, we introduce the following 1-forms.

Definition 5.6.1. Let f 0 , f + and f -be the 1-forms defined on S * by:

(f 0 ) 1 = 0, (f 0 ) 2 = sin θ, (f + ) 1 = cos θ cos ϕ, (f + ) 2 = -sin ϕ, (f -) 1 = cos θ sin ϕ, (f -) 2 = cos ϕ, on S * , (5.6.2)
in the orthonormal basis (e 1 , e 2 ) of S * given by (5.6.1), and extended to Σ * by:

∇ ν f 0 = 0, ∇ ν f + = 0, ∇ ν f -= 0. (5.6.3)
This allows us to renormalize ∇(J (p) ), p = 0, +, -on Σ * as follows.

Definition 5.6.2. We introduce the notations

∇J (0) := ∇J (0) + 1 r * f 0 , ∇J (+) := ∇J (+) - 1 r f + , ∇J (-) := ∇J (-) - 1 r f -.
We also introduce the following renormalization for angular derivatives of f 0 and f ± .

Definition 5.6.3. We introduce the notations curl

(f 0 ) := curl (f 0 ) - 2 r cos θ, div (f ± ) := div (f ± ) + 2 r J (±) .
Finally, note that the complex horizontal 1-form J introduced in Definition 3.3.4 verifies

J = 1 |q| (f 0 + i * f 0 ) on Σ * .
(5.6.4)

We also introduce the following two complex horizontal 1-forms J ± given by

J ± := 1 |q| (f ± + i * f ± ) on Σ * , (5.6.5) 
as well as the following renormalizations

D • J := D • J - 4i(r 2 + a 2 ) cos θ |q| 4 , D • J ± := D • J ± + 4r 2 |q| 4 J (±) + 2ia 2 cos θ |q| 4 J (∓) .
(5.6.6)

The goal of this section is to prove the following proposition.

Proposition 5.6.4. We have on Σ * , for all k ≤ k * -12

d k * ∇J (p) 0 r 2 u 1 2 +δ dec ,
and on Σ * , for all k ≤ k * -13

d k * div (f 0 ), curl (f 0 ), ∇ ⊗f 0 , ∇f 0 - 1 r cos θ ∈ + d k * div (f ± ), curl (f ± ), ∇ ⊗f ± , ∇f ± + 1 r J (±) δ 0 r 2 u 1 2 +δ dec ,
as well as 

d k * D • J + d k * D • J ± 0 r 3 u
J (p) = 0, S * J (p) J (q) = 4π 3 r 2 δ pq + O 0 ru -1 2 -δ dec , d / ≤2 ∆ + 2 r 2 J (p) L ∞ (S * ) = O 0 r -3 u -1 2 -δ dec .
(5.6.8)

Proof. In view of the Gauss equation, we have q K ∈ r -1 Γ g . Together with the estimate for Γ g in Proposition 5.5.1, we infer sup

S * d / ≤k * -12 K - 1 r 2 0 r 3 u 1 2 +δ dec .
The proof follows then immediately from the one of Lemma 5.2.6 and Lemma 5.2.7 upon replacing the estimate (5.2.13) for q K with the above one.

The following lemma provides identities for first order derivatives of J (p) , p = 0, +, -.

Lemma 5.6.6. We have on S * ∇J

(0) = - 1 r (e -φ -1) * f 0 , ∇J (+) = 1 r (e -φ -1)f + , ∇J (-) = 1 r (e -φ -1)f -.
(5.6.9)

Proof. Let the orthonormal basis (e 1 , e 2 ) of S * be given by (5.6.1). We have

e 1 (J (0) ) = 1 re φ ∂ θ (cos θ) = - 1 re φ sin θ, e 2 (J (0) ) = 1 r sin θe φ ∂ ϕ (cos θ) = 0, e 1 (J (+) ) = 1 re φ ∂ θ (sin θ cos ϕ) = 1 re φ cos θ cos ϕ, e 2 (J (+) ) = 1 r sin θe φ ∂ ϕ (sin θ cos ϕ) = - 1 re φ sin ϕ, e 1 (J (-) ) = 1 re φ ∂ θ (sin θ sin ϕ) = 1 re φ cos θ sin ϕ, e 2 (J (-) ) = 1 r sin θe φ ∂ ϕ (sin θ sin ϕ) = 1 re φ cos ϕ.
Together with the definition of f 0 and f ± , we infer

∇J (0) = - 1 re φ * f 0 , ∇J (+) = 1 re φ f + , ∇J (-) = 1 re φ f -.
In view of Definition 5.6.2, this concludes the proof of the lemma.

The following lemma provides identities for first order derivatives of f 0 , f + and f -. Lemma 5.6.7. We have on

S * div (f 0 ) = f 0 • ∇φ, curl (f 0 ) = 2 re φ cos θ -f 0 ∧ ∇φ, div (f + ) = - 2 re φ J (+) + f + • ∇φ, curl (f + ) = f + ∧ ∇φ, div (f -) = - 2 re φ J (-) + f -• ∇φ, curl (f -) = -f -∧ ∇φ,
(5.6.10)

and

∇ ⊗f 0 = f 0 • ∇φ f 0 ∧ ∇φ f 0 ∧ ∇φ -f 0 • ∇φ , ∇ ⊗f + = (f + ) 2 ∇ 2 φ -(f + ) 1 ∇ 1 φ -(f + ) 1 ∇ 2 φ -(f + ) 2 ∇ 1 φ -(f + ) 1 ∇ 2 φ -(f + ) 2 ∇ 1 φ -(f + ) 2 ∇ 2 φ + (f + ) 1 ∇ 1 φ , ∇ ⊗f -= (f -) 2 ∇ 2 φ -(f -) 1 ∇ 1 φ -(f -) 1 ∇ 2 φ -(f -) 2 ∇ 1 φ -(f -) 1 ∇ 2 φ -(f -) 2 ∇ 1 φ -(f -) 2 ∇ 2 φ + (f -) 1 ∇ 1 φ .
(5.6.11)

In particular, in view of Definition 5.6.3, we have curl

(f 0 ) = 2 r cos θ(e -φ -1) -f 0 ∧ ∇φ, div (f ± ) = - 2 r J (±) (e -φ -1) + f ± • ∇φ.
Proof. See Section B.6 in the Appendix.

Lemma 5.6.8. On S * , there holds, for k ≤ k * -12,

d / k ∇J (0) , ∇J (+) , ∇J (-) 0 r 2 u 1 2 +δ dec . Also, we have on S * , for k ≤ k * -13, d / k div (f 0 ), curl (f 0 ), ∇ ⊗f 0 0 r 2 u 1 2 +δ dec , d / k div (f ± ), curl (f ± ), ∇ ⊗f ± 0 r 2 u 1 2 +δ dec .
In particular, we have on S * , for k ≤ k * -13,

d / k ∇f 0 - 1 r cos θ ∈, ∇f ± + 1 r J (±) δ 0 r 2 u 1 2 +δ dec .
Proof. The proof follows immediately from the identities of Lemma 5.6.6 and Lemma 5.6.7 together with the control of φ provided by (5.6.7).

Proof of Proposition 5.6.4

We start with the following lemma.

Lemma 5.6.9. We have on

Σ * |f + | 2 = (cos θ) 2 (cos ϕ) 2 + (sin ϕ) 2 , |f -| 2 = (cos θ) 2 (sin ϕ) 2 + (cos ϕ) 2 , |f 0 | 2 = (sin θ) 2 , f + • f 0 = -J (-) , f -• f 0 = J (+) , f + • f -= -(sin θ) 2 cos ϕ sin ϕ.
Proof. Since ∇ ν f ± = 0, ∇ ν f 0 = 0, ν(J (±) ) = 0, and ν(θ) = ν(ϕ) = 0 on Σ * , it suffices to prove these identities on S * which follows immediately from the definition of f ± , f 0 and J (±) on S * .

The next lemma relates angular derivatives of J and J ± with the ones of f 0 and f ± .

Lemma 5.6.10. We have on

Σ * D • J = O(r -4 ) + 2 |q| div (f 0 ) - 2a 2 cos θ |q| 3 f 0 • ∇J (0) + i 2 |q| curl (f 0 ) - 2a 2 cos θ |q| 3 f 0 • * ∇J (0) ,
(5.6.12)

D • J ± = O(r -4 ) + 2 |q| div (f ± ) - 2a 2 cos θ |q| 3 f ± • ∇J (0) + i 2 |q| curl (f ± ) - 2a 2 cos θ |q| 3 f ± • * ∇J (0) , (5.6.13) 
where O(r a ) denotes, for a ∈ R, a function of (r, cos θ) bounded by r a as r → +∞.

Proof. See Section B.7 in the Appendix.

The following lemma provides a transport equation for ∇J (p) , ∇f 0 and ∇f ± along Σ * .

Lemma 5.6.11. Assume the following transversality conditions on

Σ * ν(θ) = 0, ν(ϕ) = 0, ∇ 4 f 0 = 0, ∇ 4 f + = 0, ∇ 4 f -= 0.
Then, we have on

Σ * ∇ ν r∇f 0 -cos θ ∈ = Γ b • d / ≤1 f 0 , ∇ ν r∇f ± + J (±) δ = Γ b • d / ≤1 f ± , ∇ ν r ∇J (p) = Γ b • d / ≤1 J (p) , p = 0, +, -.
Proof. Recall from Corollary 5.1.21 the following commutation formula

[∇ ν , r∇]f = rΓ b • ∇ ν f + Γ b • d ≤1 f.
Applying it to f 0 , f ± , and using the fact that ∇ ν (f 0 , f ± ) = 0 and ∇ 4 (f 0 , f ± ) = 0, we infer

∇ ν (r∇f 0 ) = Γ b • d / ≤1 f 0 , ∇ ν (r∇f ± ) = Γ b • d / ≤1 f ± , ∇ ν (r∇J (p) ) = Γ b • d / ≤1 J (p) , p = 0, +, -, which yields, since ν(θ) = ν(ϕ) = 0, ∇ ν r∇f 0 -cos θ ∈ = Γ b • d / ≤1 f 0 , ∇ ν r∇f ± + J (±) δ = Γ b • d / ≤1 f ± , ∇ ν r ∇J (p) = Γ b • d / ≤1 J (p) , p = 0, +, -,
as stated. This concludes the proof of the lemma.

We are now ready to prove Proposition 5.6.4.

Proof of Proposition 5.6.4. Recall from Lemma 5.6.11 that we have on Σ *

∇ ν r∇f 0 -cos θ ∈ = Γ b • d / ≤1 f 0 , ∇ ν r∇f ± + J (±) δ = Γ b • d / ≤1 f ± , ∇ ν r ∇J (p) = Γ b • d / ≤1 J (p) , p = 0, +, -.
Using the commutation formula from Corollary 5.1.21

[∇ ν , r∇]f = rΓ b • ∇ ν f + Γ b • d ≤1 f, we infer 17 ∇ ν d / k r∇f 0 -cos θ ∈ = d / ≤k (Γ b • d / ≤1 f 0 ) + d / ≤k Γ b • r∇f 0 -cos θ ∈ , ∇ ν d / k r∇f ± + J (±) δ = d / ≤k (Γ b • d / ≤1 f ± ) + d / ≤k Γ b • r∇f ± + J (±) δ , ∇ ν d / k r ∇J (p) = d / ≤k (Γ b • d / ≤1 J (p) ), p = 0, +, -.
In view of Corollary 5.2.5, we infer on Σ * , for all k ≤ k * -12

r d / k r ∇J (p) r d / k r ∇J (p) L ∞ (S * ) + u * u r| d / ≤k Γ b | and on Σ * , for all k ≤ k * -13 r d / k r∇f 0 -cos θ ∈ r d / k r∇f 0 -cos θ ∈ L ∞ (S * ) + u * u r| d / ≤k Γ b |, r d / k r∇f ± + J (±) δ r d / k r∇f ± + J (±) δ L ∞ (S * ) + u * u r| d / ≤k Γ b |.
Now, in view of Sobolev and Proposition 5.3.1, we have on Σ * , for k ≤ k * -12, 

u * u r| d / ≤k Γ b | 1 u 1 2 +δ dec u * u r 2 u 2+2δ dec | d / ≤k * -12 Γ b | 2 1 2 1 u 1 2 +δ dec u * u u 2+2δ dec d / ≤k * -10 Γ b 2 L 2 (S) 1 2 1 u 1 2 +δ dec Σ * u 2+2δ dec | d / ≤k * -10 Γ b | 2
d / k ∇f 0 - 1 r cos θ ∈ + d / k ∇f ± + 1 r J (±) δ 0 r 2 u 1 2 +δ dec .
Together with Lemma 5.6.11 and the control for Γ b in Proposition 5.3.1, we deduce on Σ * , for all k ≤ k * -12

d k * ∇J (p) 0 r 2 u 1 2 +δ dec ,
and on Σ * , for all k ≤ k * -13

d k * ∇f 0 - 1 r cos θ ∈ + d k * ∇f ± + 1 r J (±) δ 0 r 2 u 1 2 +δ dec .
This implies in particular, on Σ * , for all k ≤ k * -13,

d k * div (f 0 ) + d k * curl (f 0 ) + d k * ∇ ⊗f 0 + d k * div (f ± ) + d k * curl (f ± ) + d k * ∇ ⊗f ± 0 r 2 u 1 2 +δ dec .
Finally, recalling from Lemma 5.6.10 the following identities on Σ *

D • J = O(r -4 ) + 2 |q| div (f 0 ) - 2a 2 cos θ |q| 3 f 0 • ∇J (0) +i 2 |q| curl (f 0 ) - 2a 2 cos θ |q| 3 f 0 • * ∇J (0) , D • J ± = O(r -4 ) + 2 |q| div (f ± ) - 2a 2 cos θ |q| 3 f ± • ∇J (0) +i 2 |q| curl (f ± ) - 2a 2 cos θ |q| 3 f ± • * ∇J (0) ,
where O(r a ) denotes, for a ∈ R, a function of (r, cos θ) bounded by r a as r → +∞, we immediately infer from the above that there holds on Σ * , for all k ≤ k * -13,

d k * D • J + d k * D • J ± 0 r 3 u 1 2 +δ dec + 1 r 4 .
In view of the dominance condition (5.1.30) on r on Σ * , this yields, for k ≤ k * -13,

d k * D • J + d k * D • J ± 0 r 3 u 1 2 +δ dec
which concludes the proof of Proposition 5.6.4.

A additional estimate for β on Σ *

This section is devoted to a decay estimate for β, see Corollary 5.6.15. We start with the following two lemmas.

Lemma 5.6.12. We have on Σ * , for k ≤ k * -13,

d / k ∇ ⊗ β - 3am r 4 f 0 | d / k ∇ ⊗β| + 0 r 6 u 1 2 +δ dec , div β - 3am r 4 f 0 -div β 0 r 6 u 1 2 +δ dec , curl β - 3am r 4 f 0 -curl β - 6amJ (0) r 5 0 r 6 u 1 2 +δ dec .
Proof. The proof follows immediately from the control of f 0 provided by Proposition 5.6.4 and the definition of J (0) and curl (f 0 ).

Lemma 5.6.13. The functions J (p) verify the following properties on Σ * S

J (p) = O 0 ru -1 2 -δ dec , S J (p) J (q) = 4π 3 r 2 δ pq + O 0 ru -1 2 -δ dec , ∆ + 2 r 2 J (p) 0 r -3 u -1 2 -δ dec , and 
d * / 2 d * / 1 J (p) 0 r -3 u -1 2 -δ dec ,
where by d * / 1 J (p) , we mean either

d * / 1 (J (p) , 0) or d * / 1 (0, J (p) ).
Proof. The proof follows exactly the same lines as the proof of Corollary 5.3.4 by replacing the control on S * of Lemma 5.2.7 by the improved control on S * provided by Corollary 5.6.5.

The following lemma controls the = 1 modes of J (0) . Lemma 5.6.14. We have on Σ * J (0) =1,0 -

1 3 + J (0) =1,± 0 ru 1 2 +δ dec .
Proof. We have, by definition of the = 1 modes on Σ * , for p = 0, +, -,

J (0) =1,p = 1 |S| S J (0) J (p)
and hence

J (0) =1,p - 1 3 δ p0 = 1 4πr 2 S J (0) J (p) - 4π 3 r 2 δ p0 .
The proof follows then from Lemma 5.6.13.

Corollary 5.6.15. We have on

Σ * d / 1 β - 3am r 4 f 0 =1 0 r 5 u 1+δ dec , and, for k ≤ k * -14, sup Σ * r 7 2 +δextra d / ≤k β - 3am sin θ r 4 f 0 0 .
Proof. We start with the first estimate. In view of the definition of d / 1 and Lemma 5.6.12, we have

d / 1 β - 3am r 4 f 0 =1 |(div β) =1 | + (curl β) =1 - 6am(J (0) ) =1 r 5 + 0 r 6 u 1 2 +δ dec .
Together with Lemma 5.6.14, we infer

d / 1 β - 3am r 4 f 0 =1 |(div β) =1 | + |(curl β) =1,± | + (curl β) =1,0 - 2am r 5 + 0 r 6 u 1 2 +δ dec .
In view of Proposition 5.4.3, we infer

d / 1 β - 3am r 4 f 0 =1 0 r 5 u 1+δ dec + 0 r 6 u 1 2 +δ dec
and hence, using the dominance of r on Σ * ,

d / 1 β - 3am r 4 f 0 =1 0 r 5 u 1+δ dec as stated.
Next, we focus on the second estimate. In view of Lemma 5.1.28, we have

β - 3am r 4 f 0 h k * -12 (S) r d * / 2 β - 3am r 4 f 0 h k * -13 (S) + r 2 d / 1 β - 3am r 4 f 0 =1 .
In view of the above estimate, we deduce

d / k * -14 β - 3am r 4 f 0 L ∞ (S) r d / ≤k * -13 ∇ ⊗β L ∞ (S) + 0 r 4 u 1+δ dec .
It remains to control ∇ ⊗β. We have the following consequence of Bianchi

∇ ⊗β = ∇ 3 α - Υ r α + r -3 Γ g + Γ b • (α, β) + r -1 Γ g • Γ g .
Together with the control of α in (5.1.42), the control for ∇ 3 α in (5. as stated. This concludes the proof of the corollary.

5.6.4 An estimate for high order derivatives of J (p) and J

In this section, we derive the following proposition on the control of k large derivatives of J (p) , f 0 , f ± and J.

Proposition 5.6.16. We have on Σ * , for all k ≤ k large

d k * ∇J (p) r ,
and on Σ * , for all k ≤ k large -1

d k * div (f 0 ), curl (f 0 ), ∇ ⊗f 0 , ∇f 0 - 1 r cos θ ∈ + d k * div (f ± ), curl (f ± ), ∇ ⊗f ± , ∇f ± + 1 r J (±) δ r ,
as well as

d k * D • J + d k * D • J ± r 2 .
Proof. In view of the Gauss equation, we have q K ∈ r -1 Γ g . Together with the estimate for Γ g in Ref 1, we infer sup

S * d / ≤k large K - 1 r 2 r 3 .
Arguing as in Corollary 5.6.5, we infer sup

S * d / ≤k large φ r .
Then, arguing as in Lemma 5.6.8, we deduce, for k ≤ k large , sup

S * d / k ∇J (0) , ∇J (+) , ∇J (-) r 2 ,
and for k ≤ k large -1, sup S * d / k div (f 0 ), curl (f 0 ), ∇ ⊗f 0 r 2 , sup S * d / k div (f ± ), curl (f ± ), ∇ ⊗f ± r 2 , sup S * d / k ∇f 0 - 1 r cos θ ∈, ∇f ± + 1 r J (±) δ r 2 .
Next, recall from the proof of Proposition 5.6.4 (recall also Footnote 17)

∇ ν d / k r∇f 0 -cos θ ∈ = d / ≤k (Γ b • d / ≤1 f 0 ) + d / ≤k Γ b • r∇f 0 -cos θ ∈ , ∇ ν d / k r∇f ± + J (±) δ = d / ≤k (Γ b • d / ≤1 f ± ) + d / ≤k Γ b • r∇f ± + J (±) δ , ∇ ν d / k r ∇J (p) = d / ≤k (Γ b • d / ≤1 J (p) ), p = 0, +, -.
In view of Corollary 5.2.5, we infer on Σ * , for all k ≤ k large

r d / k r ∇J (p) r d / k r ∇J (p) L ∞ (S * ) + u * u r| d / ≤k Γ b | and on Σ * , for all k ≤ k large -1 r d / k r∇f 0 -cos θ ∈ r d / k r∇f 0 -cos θ ∈ L ∞ (S * ) + u * u r| d / ≤k Γ b |, r d / k r∇f ± + J (±) δ r d / k r∇f ± + J (±) δ L ∞ (S * ) + u * u r| d / ≤k Γ b |. In view of the control of Γ b provided by Ref 1, we have, for k ≤ k large , u * u r| d / ≤k Γ b | u * 1 du u * .
Together with the above control on S * , and the dominance of r on Σ * , we obtain on Σ * , for all k ≤ k large

d / k r ∇J (p) u * r 0 ,
and on Σ * , for all k ≤ k large -1

d / k r∇f 0 -cos θ ∈ u * r 0 , d / k r∇f ± + J (±) δ u * r 0 .
This implies in particular, on Σ * , for all k ≤ k large -1,

d k * div (f 0 ) + d k
Finally, recalling from Lemma 5.6.10 the following identities on Σ *

D • J = O(r -4 ) + 2 |q| div (f 0 ) - 2a 2 cos θ |q| 3 f 0 • ∇J (0) +i 2 |q| curl (f 0 ) - 2a 2 cos θ |q| 3 f 0 • * ∇J (0) , D • J ± = O(r -4 ) + 2 |q| div (f ± ) - 2a 2 cos θ |q| 3 f ± • ∇J (0) +i 2 |q| curl (f ± ) - 2a 2 cos θ |q| 3 f ± • * ∇J (0) ,
where O(r a ) denotes, for a ∈ R, a function of (r, cos θ) bounded by r a as r → +∞, we immediately infer from the above that there holds on Σ * , for all k ≤ k large -1,

d k * D • J + d k * D • J ± r 2
which concludes the proof of Proposition 5.6.16.

Proposition 5.6.4 and Proposition 5.6.16 motivate the following definition.

Definition 5.6.17. We denote by Γ b the set of linearized quantities below

Γ b := Γ b ∪ ∇J (p) , d k * Γ b := d k * Γ b ∪ d k * ∇J (p) ∪ d k-1 * Γ b,1 , for k ≥ 1, Γ b,1 = div (f 0 ), curl (f 0 ), ∇ ⊗f 0 , div (f ± ), curl (f ± ), ∇ ⊗f ± , r D • J, r D • J ± .
Corollary 5.6.18. We have on Σ * , for k ≤ k * -12,

|d k * Γ b | 0 ru 1+δ dec , and, for k ≤ k large |d k * Γ b | r .
Proof. This is an immediate consequence of Ref 1 and Proposition 5.3.1 for Γ b , and of Proposition 5.6.4 and Proposition 5.6.16 for the rest of Γ b .

Remark 5.6.19. In view of Corollary 5.6.18, Γ b enjoys the same estimates as Γ b . Note that the estimates of angular derivatives of J (p) , f 0 , f ± and J are

• consistent with Γ g for k ≤ k * -12 derivatives in view of Proposition 5.6.4,

• consistent with Γ b for k ≤ k large derivatives in view of Proposition 5.6.16.

We do not need the better decay properties and simply treat these angular derivatives as Γ b , which justifies their inclusion in Γ b .

Decay estimates for the PG frame on Σ *

In this section, we use the decay estimates derived for the integrable frame of Σ * in Proposition 5.5.1, and the estimates of Section 5.6, to derive decay estimates for the PG frame of (ext) M. This is a prerequisite to the improvement of the bootstrap assumptions on decay on (ext) M of Chapter 6.

Initialization of the PG frame on Σ *

Let (e 3 , e 4 , e 1 , e 2 ) denote the null frame of Σ * , and let (e 3 , e 4 , e 1 , e 2 ) denote the PG frame of (ext) M. Then, (e 3 , e 4 , e 1 , e 2 ) is initialized on Σ * by

e 4 = e 4 + f b e b + 1 4 |f | 2 e 3 , e a = δ b a + 1 2 f a f b e b + 1 2 f a e 4 + 1 2 f a + 1 8 |f | 2 f a e 3 , e 3 = 1 + 1 2 f • f + 1 16 |f | 2 |f | 2 e 3 + f b + 1 4 |f | 2 f b e b + 1 4 |f | 2 e 4 , (5.7.1) 
where

f = a r f 0 , f = - (ν(r) -b * ) 1 -1 4 b * |f | 2 f, (5.7.2)
with the 1-form f 0 being defined in Definition 5.6.1. All quantities with primes denote in Section 5.7 the ones corresponding to the PG frame of (ext) M. Furthermore, the coordinates (r , u , θ , ϕ ) associated to the PG frame of (ext) M are initialized on Σ * as follows

r = r, u = u, θ = θ, ϕ = ϕ, on (ext) M.
(5.7.3) Also, note that the complex horizontal 1-form J introduced in Definition 3.3.4 verifies

J = 1 |q| (f 0 + i * f 0 ) on Σ * , ∇ 4 J = - 1 q J on (ext) M.
(5.7.4)

We also introduce the following two complex horizontal 1-forms J ± given by

J ± = 1 |q| (f ± + i * f ± ) on Σ * , ∇ 4 J ± = - 1 q J ± on (ext) M.
(5.7.5)

Remark 5.7.1. Recall that the complex 1-form J is needed to linearize Z, H, D(cos θ), and D(u), and the complex 1-form J ± is needed to linearize D(J (±) ).

Also, note that the transformation formulas involve all Ricci coefficients of the foliation of Σ * . We thus need to prescribe transversality conditions for the Ricci coefficients not defined on Σ * , i.e. ξ, ω and η. We recall that we choose them to be compatible with an outgoing geodesic foliation initialized on Σ * , i.e.

ξ = 0, ω = 0, η = -ζ. (5.7.6)
Recall the definition of Γ b and Γ g in the PG frame of (ext) M.

Definition 5.7.2. Recall Definition 2.6.6 for the definition of the linearized quantities in an outgoing PG frame. The set of all linearized quantities is of the form Γ g ∪ Γ b with Γ g , Γ b defined as follows.

1. The set Γ g with Γ g = } trX , X , q Z , } trX , r q P , rB , rA .

(5.7.7)

2. The set Γ b = Γ b,1 ∪ Γ b,2 ∪ Γ b,3 with Γ b,1 = q H , X , q ω , Ξ , rB , A , Γ b,2 = r -1 ẽ 3 (r), D (cos θ), e 3 (cos θ), } D u, r -1 ẽ 3 (u), D (J (+) ), D (J (-)
), e 3 (J (+) ), e 3 (J (-) ) ,

Γ b,3 = r D • J, r D ⊗J, r } ∇ 3 J, r D • J ± , r D ⊗J ± , r ∇ 3 J ± .
(5.7.8)

The goal of this section is to prove the following proposition concerning the control of the PG frame on Σ * .

Proposition 5.7.3. We have on

Σ * , for k ≤ k * -15, sup Σ * ru 1+δ dec |d k Γ b | + r 2 u 1 2 +δ dec |d k Γ g | + r 2 u 1+δ dec |d k-1 ∇ 3 Γ g | 0 , sup Σ * r 2 u 1+δ dec |d k } trX | + r 3 u 1+δ dec d k D • q Z + 2 q P 0 , sup Σ * r 7 2 +δextra |d k B | + r 4 u 1 2 +δ dec |d k-1 ∇ 3 B | 0 , sup Σ * r 5 u 1+δ dec D • - a 2 J • ∇ e 4 - a 2 J • ∇ e 3 • B - 3a 2 q P J - a 4 J • A =1 0 , and 
sup Σ * r 5 u 1+δ dec D • L / T B =1 0 .
The proof of Proposition 5.7.3 is done in Section 5.7.5, relying on the estimates of Sections 5.7.2, 5.7.3 and 5.7.4. ±) ).

±) ) + f • ∇(J (±) ) + 1 4 |f | 2 e 3 (J ( 
Since e 3 = ν -b * e 4 , and since ν(r ) = ν(r), ν(u ) = ν(u), ν(cos θ ) = 0 and ν(J (±) ) = 0, we infer, using also

ν(u) = -ν(r), f = a r f 0 , and |f | 2 = a 2 (sin θ) 2 r 2 , e 4 (r ) = 1 -ν(r)a 2 (sin θ) 2 4r 2 1 -b * a 2 (sin θ) 2 4r 2 , e 4 (u ) = ν(r)a 2 (sin θ) 2 4r 2 1 -b * a 2 (sin θ) 2 4r 2 , e 4 (cos θ ) = - a r f 0 • ∇(cos θ) 1 -b * a 2 (sin θ) 2 4r 2 , e 4 (J (±) ) = - a r f 0 • ∇(J (±) ) 1 -b * a 2 (sin θ) 2 4r 2
.

18 Since r = r, u = u, ∇(r) = 0 and ∇(u) = 0 on Σ * , and since ∇ is tangent to Σ * , we have indeed

∇(r ) = 0 and ∇(u ) = 0, ∇(cos θ ) = ∇(cos θ) and ∇(J (±) ) = ∇(J (±) ) on Σ * .
Since we have

ν(r) = -2 + Γ b , b * = -1 - 2m r + rΓ b , ∇(cos θ) = - 1 r * f 0 + ∇J (0) , ∇J (±) = 1 r f ± + ∇J (±) ,
we infer, in view of Definition 5.6.17 for Γ b ,

e 4 (r ) = 1 + O(r -2 ) + r -1 Γ b , e 4 (u ) = O(r -2 ) + r -1 Γ b , e 4 (cos θ ) = r -1 Γ b , e 4 (J (±) ) = O(r -2 ) + r -1 Γ b .
Also, in view of the change of the definition (5.7.1) of the frame of (ext) M, and using again ∇(r ) = 0 on Σ * , we have

∇ (r ) = 1 2 f e 4 (r ) + 1 2 f + 1 8 |f | 2 f e 3 (r ) = 1 2 e 4 (r ) + 1 4 |f | 2 e 3 (r ) f + 1 2 f e 3 (r ).
Together with (5.7.2), we infer

∇ (r) = 1 2 - (ν(r) -b * ) 1 -1 4 b * |f | 2 e 4 (r ) + 1 4 |f | 2 e 3 (r ) + e 3 (r ) f.
In view of the above, we have

e 4 (r ) + 1 4 |f | 2 e 3 (r ) = 1, e 3 (r ) = ν(r) -b * e 4 (r ),
and hence

∇ (r) = 1 2 - (ν(r) -b * ) 1 -1 4 b * |f | 2 + ν(r) -b * e 4 (r ) f.
Using again the above, we have

e 4 (r ) = 1 -ν(r)|f | 2 4 1 -b * |f | 2
and hence

∇ (r) = 1 2 - (ν(r) -b * ) 1 -1 4 b * |f | 2 + ν(r) -b * 1 -ν(r)|f | 2 4 1 -b * |f | 2 4 f = 0 as stated.
Next, we focus on deriving the stated estimates. First, using the above identities for e 4 (r ), e 4 (u ), e 4 (cos θ ) and e 4 (J (±) ), we have

e 3 (r ) = ν(r ) -b * e 4 (r ) = ν(r) -b * 1 + O(r -2 ) + r -1 Γ b = -Υ + O(r -2 ) + r -1 Γ b , e 3 (u ) = ν(u ) -b * e 4 (u ) = ν(u) -b * O(r -2 ) + r -1 Γ b = 2 + O(r -2 ) + r -1 Γ b , e 3 (cos θ ) = ν(cos θ ) -b * e 4 (cos θ ) = ν(cos θ) -b * r -1 Γ b = r -1 Γ b , e 3 (J (±) ) = ν(J (±) ) -b * e 4 (J (±) ) = ν(J (±) ) -b * O(r -2 ) + r -1 Γ b = O(r -2 ) + r -1 Γ b .
Together with (5.7.2) and the above identities for the e 4 derivatives, we infer

ẽ 3 (r ) = O(r -2 ) + r -1 Γ b , e 3 (u ) = O(r -2 ) + r -1 Γ b , e 3 (cos θ ) = r -1 Γ b , e 3 (J (±) ) = O(r -2 ) + r -1 Γ b .
Together with the dominance condition (5.1.30) on r on Σ * , and the estimates for Γ b of Corollary 5.6.18, we obtain sup

Σ * ru 1+δ dec d ≤k * -12 e 3 (cos θ ) + d ≤k * -12 e 3 (J (±) ) + sup Σ * u 1+δ dec d ≤k * -12 ẽ 3 (r ) + d ≤k * -12 e 3 (u ) 0 .
Finally, we control the angular derivatives. We have in view of (5.7.2) and the above identities for the e 4 derivatives and e 3 derivatives

∇ (u ) = O(r -1 )e 4 (u ) + 1 2 f 1 + O(r -2 ) e 3 (u ) = a r f 0 + O(r -3 ) + r -2 Γ b , ∇ (cos θ ) = 1 + O(r -2 ) ∇(cos θ) + O(r -1 )e 3 (cos θ ) + O(r -1 )e 4 (cos θ ) = - 1 r * f 0 + Γ b , ∇ (J (±) ) = 1 + O(r -2 ) ∇(J (±) ) + O(r -1 )e 3 (J (±) ) + O(r -1 )e 4 (J (±) ) = 1 r f ± + Γ b + O(r -3 ),
and hence

∇ (u ) = O(r -3 ) + r -2 Γ b , ∇ (cos θ ) = O(r -3 ) + Γ b , ∇ (J (±) ) = O(r -3 ) + Γ b .
Together with the dominance condition ( 5 This concludes the proof of the lemma.

Lemma 5.7.5. Consider the change of frame coefficients (f , f , λ ) from the PG frame (e 3 , e 4 , e 1 , e 2 ) of (ext) M to the frame (e 3 , e 4 , e 1 , e 2 ) on Σ * , i.e.

e 4 = λ e 4 + f b e b + 1 4 |f | 2 e 3 , e a = δ b a + 1 2 f a f b e b + 1 2 f a e 4 + 1 2 f a + 1 8 |f | 2 f a e 3 , e 3 = (λ ) -1 1 + 1 2 f • f + 1 16 |f | 2 |f | 2 e 3 + f b + 1 4 |f | 2 f b e b + 1 4 |f | 2 e 4 .
(5.7.9)

Then, we have

λ = 1 + O(r -2 ) + r -1 Γ b , f = - a r 1 + O(r -2 ) + r -1 Γ b f 0 , f = - aΥ r 1 + O(r -2 ) + r -1 Γ b f 0 .
Proof. Recall that (f, f , λ), with λ = 1 and (f, f ) given by (5.7.2), are the change of frame coefficients from the frame (e 3 , e 4 , e 1 , e 2 ) to the frame (e 3 , e 4 , e 1 , e 2 ), so that (f , f , λ ) correspond to the inverse transformation of the one of (f, f , λ). Thus, according to (2.2.3), (f , f , λ ) is related to the transition coefficients (f, f , λ) by

λ = λ -1 1 + 1 2 f • f + 1 16 |f | 2 |f | 2 , f a = - λ 1 + 1 2 f • f + 1 16 |f | 2 |f | 2 f a + 1 4 |f | 2 f a , f a = -λ -1 f a + 1 4 |f | 2 f a .
Since (f, f ) are given by (5.7.2), and since

|f 0 | 2 = (sin θ) 2 , ν(r) = -2 + rΓ b and b * = -1 -2m r + rΓ b , we have f = a r f 0 , f = - (ν(r) -b * ) 1 -1 4 b * a 2 (sin θ) 2 r 2 a r f 0 = aΥ r 1 + O(r -2 ) + rΓ b f 0 , f • f = - (ν(r) -b * ) 1 -1 4 b * a 2 (sin θ) 2 r 2 a 2 (sin θ) 2 r 2 = a 2 (sin θ) 2 Υ r 2 1 + O(r -2 ) + rΓ b , |f | 2 = a 2 (sin θ) 2 r 2 , |f | 2 = (ν(r) -b * ) 2 1 -1 4 b * a 2 (sin θ) 2 r 2 2 a 2 (sin θ) 2 r 2 = a 2 (sin θ) 2 Υ 2 r 2 1 + O(r -2 ) + rΓ b ,
and hence, using also λ = 1, we infer

λ = 1 + O(r -2 ) + r -1 Γ b , f = - a r 1 + O(r -2 ) + r -1 Γ b f 0 , f = - aΥ r 1 + O(r -2 ) + r -1 Γ b f 0 , as stated.
Lemma 5.7.6. We have

∇ O(r -j ) = O(r -j-1 ) + O(r -j ) Γ b , ν O(r -j ) = O(r -j-1 ) + O(r -j ) Γ b ,
where the notation Γ b has been introduced in Definition 5.6.17.

Proof. Recall that by O(r -j ), we mean a function h(r, cos θ) such that

|(r∂ r ) k (∂ cos θ ) l h| C k,l r j , as r → +∞.
The proof is then an immediate consequence of the fact that ν(r) = -2 + rΓ b and

∇(cos θ) = -1 r * f 0 + Γ b .
Lemma 5.7.7. We have

div (f ) = r -1 d ≤1 * Γ b + O 1 r 3 , curl (f ) = - 2a cos θ r 2 + r -1 d ≤1 * Γ b + O 1 r 3 , ∇ ⊗f = r -1 d ≤1 * Γ b + O 1 r 3 , div (f ) = r -1 d ≤1 * Γ b + O 1 r 3 , curl (f ) = - 2a cos θΥ r 2 + r -1 d ≤1 * Γ b + O 1 r 3 , ∇ ⊗(f ) = r -1 d ≤1 * Γ b + O 1 r 3 , ∇λ = O(r -3 ) + r -2 d ≤1 * Γ b .
Also, we have

∇ ν f = 2 r f + r -1 Γ b + O 1 r 3 , ∇ ν f = 2 r f + r -1 d ≤1 * Γ b + O 1 r 3 , ν(λ ) = O(r -3 ) + r -1 d ≤1 * Γ b ,
where the notation Γ b has been introduced in Definition 5.6.17.

Proof. Recall that

λ = 1 + O(r -2 ) + r -1 Γ b , f = - a r 1 + O(r -2 ) + r -1 Γ b f 0 , f = - aΥ r 1 + O(r -2 ) + r -1 Γ b f 0 .
The proof follows then immediately from the definition of Γ b , Lemma 5.7.6, and the fact that ν(r) = -2 + rΓ b and ∇ ν f 0 = 0.

Decay estimates for the PG frame on Σ *

We start with the control of the Ricci coefficients of the PG frame of (ext) M on Σ * .

Lemma 5.7.8. We have on Σ * , for k ≤ k * -13,

d k * χ , ξ , q ω , q η 0 ru 1+δ dec , d k * χ , | trχ , (a) trχ , q ζ 0 r 2 u 1 2 +δ dec , d k-1 * ∇ ν χ , | trχ , (a) trχ , q ζ 0 r 2 u 1+δ dec , d k * | trχ , (a) trχ 0 r 2 u 1+δ dec .
(5.7.10)

Proof. We consider the frame transformation from the frame (e 1 , e 2 , e 3 , e 4 ) of (ext) M to the frame (e 1 , e 2 , e 3 , e 4 ) of Σ * , with corresponding change of frame coefficients (f , f , λ ).

Using the transformation formulas of Proposition 2.2.3, Lemma 5.7.5 on the control of (f , f , λ ), and the fact that (a) trχ = (a) trχ = 0, ξ = 0, ω = 0, and η = -ζ , we have

tr χ = tr χ + div (f ) + O(r -3 ) + O(r -1 )q η + r -1 Γ g + r -2 Γ b , 0 = (a) trχ + curl (f ) + O(r -3 ) + O(r -1 )q η + r -1 Γ g + r -2 Γ b , χ = χ + ∇ ⊗f + O(r -3 ) + O(r -1 )q η + r -1 Γ g + r -2 Γ b , tr χ = tr χ + div (f ) + O(r -3 ) + O(r -1 )ξ + r -1 Γ g + r -2 Γ b , 0 = (a) trχ + curl (f ) + O(r -3 ) + O(r -1 )ξ + r -1 Γ g + r -2 Γ b , χ = χ + ∇ ⊗f + O(r -3 ) + r -1 Γ b + r -2 Γ b , and 
ζ = ζ -∇(log λ ) - 1 4 tr χ f + 1 4 f tr χ + 1 4 f div (f ) + 1 4 * f curl (f ) +O(r -1 )(q ω , χ ) + r -1 Γ g + O(r -3 ) + r -1 Γ b + r -2 Γ b + r -1 Γ g .
Together with Lemma 5.7.7 on the control of first order derivatives of (f , f , λ ), and Corollary 2.4.26 on the asymptotic for r large of the Kerr values of the PG frame, we infer

| trχ = | trχ + O(r -3 ) + O(r -1 )q η + r -1 Γ g + r -1 d ≤1 * Γ b , 0 = (a) trχ + O(r -3 ) + O(r -1 )q η + r -1 Γ g + r -1 d ≤1 * Γ b , χ = χ + O(r -3 ) + O(r -1 )q η + r -1 Γ g + r -1 d ≤1 * Γ b , | trχ = | trχ + O(r -3 ) + O(r -1 )ξ + r -1 Γ g + r -1 d ≤1 * Γ b , 0 = (a) trχ + O(r -3 ) + O(r -1 )ξ + r -1 Γ g + r -1 d ≤1 * Γ b , χ = χ + O(r -3 ) + r -1 Γ b + r -1 d ≤1 * Γ b , and 
ζ = q ζ + O(r -3 ) + O(r -1 )(q ω , χ ) + r -1 Γ g + r -1 d ≤1 * Γ b .
Next, we use again the transformation formulas of Proposition 2.2.3, summing the one of ξ with the one for η multiplied by λ 2 b * , summing the one of ω with the one for ω multiplied by -λ 2 b * , and summing the one for η with the one for ξ multiplied by λ 2 b * . Proceeding as above, and using in addition the fact that ν = e 3 + b * e 4 , and the transversality conditions ξ = 0, ω = 0 and η = -ζ for the frame of Σ * , we infer

ξ -b * ζ = ξ -b * ζ + 1 2 ∇ ν f + 1 4 tr χ f + b * 4 tr χ f + O(r -3 ) + r -1 Γ b + r -2 Γ b , ω = ω + 1 2 ν(log λ ) + O(r -3 ) + r -1 Γ b + r -2 Γ b , η = η + 1 2 ∇ ν f + 1 4 f tr χ + b * 4 tr χ f + O(r -3 ) + r -1 Γ b + r -2 Γ b .
Together with Lemma 5.7.7 on the control of first order derivatives of (f , f , λ ), and Corollary 2.4.26 on the asymptotic for r large of the Kerr values of the PG frame, we deduce

ξ -b * ζ = ξ -q ζ + O(r -3 ) + r -1 Γ b + r -1 d ≤1 * Γ b , q ω = q ω + O(r -3 ) + r -1 Γ b + r -1 d ≤1 * Γ b , η = q η + O(r -3 ) + r -1 Γ b + r -1 d ≤1 * Γ b . In view of the above, we infer χ , ξ , q ω , q η = O(r -3 ) + Γ g + r -1 Γ b + d ≤1 * Γ b .
Together with the bootstrap assumptions for Γ g and Γ b , and Corollary 5.6.18 on the control of Γ b , this yields on Σ * , for k ≤ k * -13,

d k * χ , ξ , q ω , q η 0 ru 1+δ dec + r 2 + 1 r 3 ,
and hence, together with the dominance condition (5.1.30) on r on Σ * , we obtain, for k ≤ k * -13,

d k * χ , ξ , q ω , q η 0 ru 1+δ dec .
Next, using again the above, we have

χ , | trχ , (a) trχ , q ζ = O(r -3 ) + Γ g + O(r -1 ) χ , ξ , q ω , q η + r -1 Γ g + r -1 d ≤1 * Γ b , | trχ , (a) trχ = O(r -3 ) + | trχ + O(r -1 ) χ , ξ , q ω , q η + r -1 Γ g + r -1 d ≤1 * Γ b .
Together with the above control for χ , ξ , q ω , and q η , the control for Γ g and | trχ of Proposition 5.5.1, the bootstrap assumptions for Γ g , and Corollary 5.6.18 on the control of Γ b , this yields on Σ * , for k ≤ k * -13,

d k * χ , | trχ , (a) trχ , q ζ 0 r 2 u 1 2 +δ dec + 1 r 3 , d k-1 * ∇ ν χ , | trχ , (a) trχ , q ζ 0 r 2 u 1+δ dec + 1 r 3 , d k * | trχ , (a) trχ 0 r 2 u 1+δ dec + 1 r 3 ,
and hence, together with the dominance condition (5.1.30) on r on Σ * , we obtain, for k ≤ k * -13,

d k * χ , | trχ , (a) trχ , q ζ 0 r 2 u 1 2 +δ dec , d k-1 * ∇ ν χ , | trχ , (a) trχ , q ζ 0 r 2 u 1+δ dec , d k * | trχ , (a) trχ 0 r 2 u 1+δ dec .
This concludes the proof of the lemma.

Lemma 5.7.9. We have on Σ * , for k ≤ k * -14,

r 7 2 +δextra d k β + r 4 u 1 2 +δ dec d k-1 ∇ ν β + r 3 u 1 2 +δ dec d k q P +r 3 u 1+δ dec d k-1 ∇ ν q P + r 2 u 1+δ dec d k β 0 , and 
d k * β -β - 3am r 4 f 0 - 3a 2r q ρ f 0 + | * ρ * f 0 - a 2r f 0 • α 0 r 4 u 1+δ dec .
Proof. We consider the frame transformation from the frame (e 1 , e 2 , e 3 , e 4 ) of (ext) M to the frame (e 1 , e 2 , e 3 , e 4 ) of Σ * , with corresponding change of frame coefficients (f , f , λ ).

Using the transformation formulas of Proposition 2.2.3, and Lemma 5.7.5 on the control of (f , f , λ ), we have19 

β = β + 3 2 - a r f 0 - 2m r 3 + q ρ - a r * f 0 | * ρ - a 2r f 0 • α + O(r -2 )β + O(r -3 )α +O(r -3 )Γ g + O(r -5 ) + r -3 Γ b , β = β + O(r -1 )α + O(r -4 ) + r -2 Γ g + r -3 Γ b , ρ = ρ + O(r -4 ) + r -2 Γ g + O(r -1 )β + O(r -2 )α , * ρ = * ρ + O(r -4 ) + r -2 Γ g + O(r -1 )β + O(r -2 )α .
In particular, we have

β = O(r -1 )α + O(r -4 ) + r -2 Γ g + r -1 Γ b ,
which together with the control of Theorem M2 for α , the control of Proposition 5.3.1 for Γ b , and the bootstrap assumptions for Γ g , this yields on Σ * , for k ≤ k * -10,

|d k * β | 0 r 2 u 1+δ dec + 1 r 4 ,
and hence, together with the dominance condition (5.1.30) on r on Σ * , we obtain, for k ≤ k * -10,

|d k * β | 0 r 2 u 1+δ dec .
Next, we rewrite the above identities for ρ and * ρ as

q ρ = O(r -4 ) + r -2 Γ g + O(r -1 )β + O(r -2 )α + r -1 Γ g , | * ρ = O(r -4 ) + r -2 Γ g + O(r -1 )β + O(r -2 )α + r -1 Γ g ,
which together with the above control of β , the control of Theorem M2 for α , the control for Γ g of Proposition 5.5.1, and the bootstrap assumptions for Γ g , this yields on Σ * , for k ≤ k * -10,

|d k * (q ρ , | * ρ )| 0 r 3 u 1 2 +δ dec + 1 r 4 , |d k-1 * ∇ ν (q ρ , | * ρ )| 0 r 3 u 1+δ dec + 1 r 4 ,
and hence, together with the dominance condition (5.1.30) on r on Σ * , we obtain, for k ≤ k * -12,

|d k * (q ρ , | * ρ )| 0 r 3 u 1 2 +δ dec , |d k-1 * ∇ ν (q ρ , | * ρ )| 0 r 3 u 1+δ dec .
Next, we rewrite the above identity for β as 20

β = β - 3am r 4 f 0 + 3a 2r q ρ f 0 + | * ρ * f 0 + a 2r f 0 • α + O(r -2 )β + O(r -3 )α +O(r -3 )Γ g + O(r -5 ) + r -3 Γ b ,
which together with the above control of β , the control of Theorem M2 for α , the control for Γ g of Proposition 5.5.1, and the bootstrap assumptions for Γ g , this yields on Σ * , for k ≤ k * -12,

d k * β -β - 3am r 4 f 0 - 3a 2r q ρ f 0 + | * ρ * f 0 - a 2r f 0 • α 0 r 4 u 1+δ dec + 1 r 5 ,
and hence, together with the dominance condition (5.1.30) on r on Σ * , we obtain, for k ≤ k * -12,

d k * β -β - 3am r 4 f 0 - 3a 2r q ρ f 0 + | * ρ * f 0 - a 2r f 0 • α 0 r 4 u 1+δ dec .
In particular, we have, for k ≤ k * -12,

d k * β d k * β - 3am r 4 f 0 + r -1 d k * q ρ , | * ρ , α + 0 r 4 u 1+δ dec , d k-1 * ∇ ν β d k-1 * ∇ ν β - 3am r 4 f 0 + r -1 d k * q ρ , | * ρ , α + 0 r 4 u 1+δ dec d k-1 * ∇ ν β + r -1 d k * q ρ , | * ρ , α + 1 r 5 + 0 r 4 u 1+δ dec ,
where we also used the fact that ∇ ν f 0 = 0, ν(r) = -2 + rΓ b , and the estimates Ref 1 for Γ b . Together with the estimate of Corollary 5.6.15 for β -3am sin θ r 4 f 0 , the estimates of Proposition 5.5.1 for ∇ ν β, the above estimates for q ρ and | * ρ , the control of Theorem M1 for α , and the dominance condition (5.1.30) on r on Σ * , we infer, for k ≤ k * -14,

d k * β 0 r 7 2 +δextra , d k-1 * ∇ ν β 0 r 4 u 1 2 +δ dec ,
which concludes the proof of the lemma. 20 See Footnote 19 for the gain of one power of r in front of α .

Additional decay estimates on Σ *

In this section, we prove the remaining estimates of Proposition 5.7.3. We start with the following lemma.

Lemma 5.7.10. We have

sup Σ * r 5 u 1+δ dec D • - a 2 J • ∇ e 4 - a 2 J • ∇ e 3 • B - 3a 2 q P J - a 4 J • A =1 0 .
Proof. Recall from Lemma 5.7.9 that we have on Σ * , for k ≤ k * -14,

d k * β -β - 3am r 4 f 0 - 3a 2r q ρ f 0 + | * ρ * f 0 - a 2r f 0 • α 0 r 4 u 1+δ dec ,
and hence, in particular,

d / 1 β - 3a 2r q ρ f 0 + | * ρ * f 0 - a 2r f 0 • α -d / 1 β - 3am r 4 f 0 0 r 5 u 1+δ dec .
Taking the = 1 mode, we infer

d / 1 β - 3a 2r q ρ f 0 + | * ρ * f 0 - a 2r f 0 • α =1 d / 1 β - 3am r 4 f 0 =1 + 0 r 5 u 1+δ dec .
Together with Corollary 5.6.15, we deduce

d / 1 β - 3a 2r q ρ f 0 + | * ρ * f 0 - a 2r f 0 • α =1 0 r 5 u 1+δ dec .
Next, in view of the definition of J in terms of f 0 , and since |q| = r(1 + O(r -2 )), we have

B - 3a 2 q P J - a 4 J • A 1 = β - 3a 2r q ρ f 0 + | * ρ * f 0 - a 2r α • f 0 1 +i β - 3a 2r q ρ f 0 + | * ρ * f 0 - a 2r α • f 0 2 + O(r -2 )( q P , A ),
and hence

B - 3a 2 q P J - a 4 J • A = w + i * w + O(r -2 )( q P , A ), with w := β - 3a 2r q ρ f 0 + | * ρ * f 0 - a 2r α • f 0 .
Then, we have

D • B - 3a 2 q P J - a 4 J • A = D • (w + i * w) + O(r -3 ) d / ≤1 ( q P , A ) = (∇ -i * ∇) • (w + i * w) + O(r -3 ) d / ≤1 ( q P , A ) = 2div (w) + 2icurl (w) + O(r -3 ) d / ≤1 ( q P , A )
and hence sup

Σ * r 5 u 1+δ dec D • B - 3a 2r q P J - a 4r J • A =1 sup Σ * r 5 u 1+δ dec |( d / 1 w) =1 | + sup Σ * r 2 u 1+δ dec | d / ≤1 ( q P , A )|.
In view of the definition of w, we infer from the above, using also the improved estimates for q P of Lemma 5.7.9 and the control of Theorem M1 for A , sup

Σ * r 5 u 1+δ dec D • B - 3a 2 q P J - a 4 J • A =1 0 .
Next, using the decomposition

D - a 2 J∇ e 4 - a 2 J∇ e 3 = (1 + O(r -2 ))D + O(r -2 )∇ e 4 + O(r -2 )∇ e 3 + O(r -3 ),
we have

D • - a 2 J • ∇ e 4 - a 2 J • ∇ e 3 • B - 3a 2 q P J - a 4 J • A -D • B - 3a 2 q P J - a 4 J • A r -4 |d ≤1 Γ g | + r -2 |∇ ν B |.
Together with the bootstrap assumptions on Γ g and the estimate for ∇ ν B in Lemma 5.7.9, we infer on

Σ * D • - a 2 J • ∇ e 4 - a 2 J • ∇ e 3 • B - 3a 2 q P J - a 4 J • A -D • B - 3a 2 q P J - a 4 J • A 1 r 6 ,
and hence, together with the dominance in r condition on Σ * , we infer

D • - a 2 J • ∇ e 4 - a 2 J • ∇ e 3 • B - 3a 2 q P J - a 4 J • A -D • B - 3a 2 q P J - a 4 J • A 0 r 5 u 1+δ dec .
Together with the above, we infer sup

Σ * r 5 u 1+δ dec D • - a 2 J • ∇ e 4 - a 2 J • ∇ e 3 • B - 3a 2 q P J - a 4 J • A =1 0 as desired.
Lemma 5.7.11. We have

sup Σ * r 5 u 1+δ dec D • L / T B =1 0 .
Proof. We have 

(L / T B ) ab = (∇ T B ) ab + g(D e a T,
k ab = O(r -3 ) + Γ b .
We infer

L / T B = ∇ T B + O(r -3 )B + Γ b B .
This yields

2L / T B = ∇ e 3 B + ∇ e 4 B + O(r -2 )d ≤1 B + Γ b B .
Using the Bianchi identities, we infer

2L / T B = D q P + 2 r B + 1 2 D • A - 4 r B +O(r -2 )d ≤1 B + O(r -2 )A + r -3 Γ b + r -1 Γ g • Γ b = D q P + 2 r B + 1 2 D • A - 4 r B + r -3 d ≤1 (Γ b ) + r -1 Γ g • Γ b .
Hence, using also the decomposition

D = (1 + O(r -2 ))D + O(r -1 )∇ e 4 + O(r -1 )∇ e 3 + O(r -3 ),
and relying again on the Bianchi identities to include O(r -1 )∇ e 3 q P and O(r

-1 )∇ e 3 A in r -3 d ≤1 (Γ b ), we obtain 2L / T B = D q P + 2 r B + 1 2 D • A - 4 r B + r -3 d ≤1 (Γ b ) + r -1 Γ g • Γ b = D q P - 2 r B + 1 2 D • A + r -3 d ≤1 (Γ b ) + r -1 Γ g • Γ b .
This yields

2L / T B = D q P - 2 r B - 3a 2r q P J - a 4r J • A + 1 2 D • A +r -3 d ≤1 (Γ b ) + r -1 Γ g • Γ b .
We infer

D • L / T B = 1 2 D • D q P - 1 r D • B - 3a 2r q P J - a 4r J • A + 1 4 D • D • A +r -4 d ≤2 (Γ b ) + r -2 d ≤1 (Γ g • Γ b ) = ∆ q P - 1 r D • B - 3a 2r q P J - a 4r J • A + 1 4 D • D • A +r -4 d ≤2 (Γ b ) + r -2 d ≤1 (Γ g • Γ b ).
Recalling

q ρ = q ρ + r -2 Γ b + O 1 r 4 , | * ρ = * ρ + r -2 Γ b + O 1 r 4 ,
we obtain

D • L / T B = ∆(q ρ -i * ρ) - 1 r D • B - 3a 2r q P J - a 4r J • A + 1 4 D • D • A +r -4 d ≤2 (Γ b ) + r -2 d ≤1 (Γ g • Γ b ).
We deduce

D • L / T B =1 = [∆q ρ] =1 -i [∆ * ρ] =1 + 1 4 D • D • A =1 - 1 r D • B - 3a 2r q P J - a 4r J • A =1 +r -4 d ≤2 (Γ b ) + r -2 d ≤1 (Γ g • Γ b ).
Since, for a scalar f , * (D

• D•)f = 2 * (div div + icurl div )f = 2 d * / 2 d * / 1 (f, 0) + 2i d * / 2 d * / 1 (0, f ),
we infer, by integration by parts of

D • D•, D • D • A =1 |A || d * / 2 d * / 1 J (p) |
and hence

D • L / T B =1 1 r D • B - 3a 2r q P J - a 4r J • A =1 + 2 r 2 |[q ρ] =1 | + 2 r 2 |[ * ρ] =1 | + ∆ + 2 r 2 q ρ =1 + ∆ + 2 r 2 * ρ =1 + |A || d * / 2 d * / 1 J (p) | +r -4 |d ≤2 (Γ b )| + r -2 |d ≤1 (Γ g • Γ b )|.
The conclusion then follows from Proposition 5.4.3 for the control of the = 1 mode of q ρ and * ρ, the control of Theorem M1 for A , the control of d * / 2 d * / 1 J (p) and (∆ + 2 r 2 )J (p) in Lemma 5.6.13, the above improved control of Γ b , and the one of Corollary 5.7.10 for

D • B - 3a 2r q P J - a 4r J • A =1 .
This concludes the proof of the corollary.

Lemma 5.7.12. We have, for k ≤ k * -14, sup

Σ * r 3 u 1+δ dec d k * D • q Z + 2 q P 0 .
Proof. Using the decomposition

D = (1 + O(r -2 ))D + O(r -1 )∇ e 4 + O(r -1 )∇ e 3 + O(r -3 ),
we have, using also e 3 = ν + r -1 d,

D • q Z = D • q Z + O(r -1 )∇ ν q Z + r -2 d ≤ Γ g and hence D • q Z + 2 q P = D • q Z + 2 q P + O(r -1 )∇ ν q Z + r -2 d ≤1 Γ g .
Recalling from the above the transformation formulas

q Z = Z + O(r -1 )(q ω , χ ) + r -1 Γ g + O(r -3 ) + r -1 d ≤1 * Γ b , q P = q ρ + i * ρ + O(r -4 ) + r -2 Γ g + O(r -1 )β + O(r -2 )α .
We infer

D • q Z + 2 q P = D • Z + 2(q ρ -i * ρ) + O(r -4 ) + O(r -2 ) d / ≤1 (q ω , χ ) + O(r -1 )β +O(r -2 )α + r -2 d ≤2 * Γ b + O(r -1 )∇ ν q Z + r -2 d ≤1 Γ g .
Together with the control of the Ricci coefficients of the PG frame on Σ * provided by Lemma 5.7.8, the control of the curvature components of the PG frame on Σ * provided by Lemma 5.7.9, the bootstrap assumptions on Γ g , and the control of Γ b provided by Corollary 5.6.18, we obtain on Σ * , for k ≤ k * -14,

d k * D • q Z + 2 q P d k * D • Z + 2(q ρ -i * ρ) + 0 r 3 u 1+δ dec + 1 r 4 ,
and hence, in view of the dominance in r condition for r on Σ * , this yields, for k ≤ k * -14,

d k * D • q Z + 2 q P d k * D • Z + 2(q ρ -i * ρ) + 0 r 3 u 1+δ dec .
Next, we compute

D • Z + 2(q ρ -i * ρ) = (∇ -i * ∇) • (ζ + i * ζ) + 2(q ρ -i * ρ) = 2 div ζ + q ρ + 2i(curl ζ - * ρ).
Together with the definition of µ and the null structure equation for curl ζ, we infer

D • Z + 2(q ρ -i * ρ) = 2 -q µ + 1 2 χ • χ -i χ ∧ χ = -2q µ + Γ b • Γ g .
We infer on Σ * , for k ≤ k * -14,

d k * D • q Z + 2 q P d k * q µ + d k * (Γ b • Γ g ) + 0 r 3 u 1+δ dec .
Together with the control for q µ, Γ b and Γ g of Proposition 5.5.1, we deduce on Σ * , for k ≤ k * -14,

d k * D • q Z + 2 q P 0 r 3 u 1+δ dec .
This concludes the proof of the lemma.

Lemma 5.7.13. We have

sup Σ * ru 1 2 +δ dec (r 2 ∆ + 2)J (p) + r 2 d * / 2 d * / 1 (J (p) , 0) + r 2 d * / 2 d * / 1 (0, J (p) ) 0 .
Proof. Since ν(J (p) ) = 0, and since J (p) is extended to (ext) M by e 4 (J (p) ) = 0, we easily infer from (5.7.1) the following estimate on Σ *

(r 2 ∆ + 2)J (p) + r 2 d * / 2 d * / 1 (J (p) , 0) + r 2 d * / 2 d * / 1 (0, J (p) ) (r 2 ∆ + 2)J (p) + r 2 d * / 2 d * / 1 (J (p) , 0) + r 2 d * / 2 d * / 1 (0, J (p) ) + r -2 |d ≤2 J (p) |.
In view of the control of d * / 2 d * / 1 J (p) and (∆ + 2 r 2 )J (p) in Lemma 5.6.13, we infer on Σ * (r 2 ∆ + 2)

J (p) + r 2 d * / 2 d * / 1 (J (p) , 0) + r 2 d * / 2 d * / 1 (0, J (p) ) 0 ru 1 2 +δ dec + 1 r 2 .
Together with the dominance condition on r on Σ * , we infer 

(r 2 ∆ + 2)J (p) + r 2 d * / 2 d * / 1 (J (p) , 0) + r 2 d * / 2 d * / 1 (0, J (p) ) 0 ru 1 

Chapter 6

Decay estimates on the region (ext) M (Theorem M4)

The goal of this chapter is to prove Theorem M4 by extending the decay estimates on Σ * derived in Section 5.7 to the full spacetime region (ext) M. The main result is stated in Proposition 6.4.4. The estimates on Σ * , derived in Section 5.7, are summarized in Proposition 6.4.3.

The results proved in this chapter rely only on the main bootstrap assumptions on (ext) M, the estimates for the extreme curvature component A derived in Theorem M1, and the estimates on the last slice proved in Section 5.7.

In order to count the number of derivatives under control in this chapter, we introduce for convenience the following notation k * := k small + 60. (6.0.1)

Preliminaries

6.1.1 The PG structure of (ext) M

Throughout this chapter we work with the spacetime region (ext) M, terminating in the GCM last slice Σ * , as discussed in Section 3.2. For the convenience of the reader we recall below some the main facts concerning (ext) M.

1. The PG structure of (ext) M, given by r, (e 3 , e 4 ), H together with adapted PG coordinates (u, θ, ϕ), is such that 2. In (ext) M, we have 1 ≤ u ≤ u * and r ≥ r 0 , with r 0 sufficiently large.

ξ = 0, ω = 0, η + ζ = 0, ( 6 
3. The timelike hypersurface T = {r = r 0 } is a boundary of (ext) M.

4.

The constants (a, m) are the ones associated to S * according to Definition 2.5.5, see Section 3.2.4.

5.

(ext) M comes equipped, see Section 2.6.1, with a basis of = 1 modes J (p) with p = 0, +, -verifying e 4 (J (p) ) = 0. (6.1.3)

6.

(ext) M comes equipped with complex, anti-selfadjoint 1 1-form J, J ± satisfying, see Section 2.6.2 and Section 3.3.2

∇ 4 J = - 1 q J, ∇ 4 J ± = - 1 q J ± , (J + ) • (J) = - 1 |q| 2 J (-) , (J -) • (J) = 1 |q| 2 J (+) , (6.1.4)
as well as

J • J = 2(sin θ) 2 |q| 2 , J + • J + = 2(cos θ) 2 (cos ϕ) 2 + 2(sin ϕ) 2 |q| 2 , J -• J -= 2(cos θ) 2 (sin ϕ) 2 + 2(cos ϕ) 2 |q| 2 .
(6.1.5)

1 i.e. * J = -iJ, * J ± = -iJ ± .

Linearized quantities and definition of Γ g and Γ b

We recall below the linearized quantities obtained by subtracting their Kerr(a, m) values, see Definition 2.6.6:

1. Linearization of Ricci and curvature coefficients.

} trX := trX - 2 q , } trX := trX + 2q∆ |q| 4 , q Z := Z - aq |q| 2 J, q H := H - aq |q| 2 J, q ω := ω - 1 2 ∂ r ∆ |q| 2 , q P := P + 2m q 3 . (6.1.6)
2. Linearization of derivatives of r, q, u. (6.1.7)

3. Linearization for J and J ± .

D • J := D • J - 4i(r 2 + a 2 ) cos θ |q| 4 , } ∇ 3 J := ∇ 3 J - ∆q |q| 4 J, D • J ± := D • J ± + 4 r 2 J (±) ± 4ia 2 cos θ |q| 4 J (∓) , ∇ 3 J ± := ∇ 3 J ± - ∆q |q| 4 J ± ± 2a |q| 2 J ∓ . (6.1.8)
4. Linearization for J (p) . DJ (0) := DJ (0) -iJ, D(J (±) ) := D(J (±) ) -J ± , e 3 (J (+) ) := e 3 (J (+) ) + 2a |q| 2 J (-) , e 3 (J (-) ) := e 3 (J (-) ) -2a |q| 2 J (+) .
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We also recall the sets Γ g , Γ b , see Definition 2.6.7:

1. The set Γ g with Γ g = } trX, X, q Z, } trX, r q P , rB, rA . (6.1.10)

2. The set Γ b = Γ b,1 ∪ Γ b,2 ∪ Γ b,3 ∪ Γ b,4 with Γ b,1 = q H, X, q ω, Ξ, rB, A , Γ b,2 = r -1 ẽ3 (r), | Dq, | Dq, | Du, r -1 ẽ3 (u) , Γ b,3 = D(J (0) ), D(J (±)
), e 3 (J (0) ), e 3 (J (±) ) ,

Γ b,4 = r D • J, r D ⊗J, r } ∇ 3 J, r D • J ± , r D ⊗J ± , r ∇ 3 J ± .
(6.1.11)

Main assumptions

Definition 6.1.1. We make use of the following norms on S = S(u, r)

⊂ (ext) M, f ∞ (u, r) : = f L ∞ S(u,r) , f 2 (u, r) := f L 2 S(u,r) , f ∞,k (u, r) := k i=0 d i f ∞ (u, r), f 2,k (u, r) := k i=0 d i f 2 (u, r).
(6.1.12)

We shall also make use of

f ∞,k ( (ext) M) = sup (ext) M |d ≤k f |.
Remark 6.1.2. We note that the derivatives d / = (r∇) and d = (r∇, r∇ 4 , ∇ 3 ) are defined with respect to the outgoing PG frame of (ext) M, which is not adapted to the spheres S(u, r). Definition 6.1.3 (Order of magnitude notation). Throughout this chapter, we will be using the notation O(r -p ) to denote:

1. a scalar function depending only on (r, θ) which is smooth and such that Often in the text we shall use the notation r -p U , where U is a small quantity, instead of O(r -p )U .

r p |(r∂ r , ∂ θ ) k O(r -p )| 1 for k ≥ 0 and r ≥ r 0 ,
We will also make use of the following notation. Definition 6.1.4. We introduce the notation U ∈ r -p Good k for horizontal tensors U satisfying

d ≤k U 0 r -p u -1-δ dec . (6.1.13)
For the benefit of the reader we state below the main assumptions which will be used throughout this chapter:

Ref 1.
In view of our main bootstrap assumptions on decay and boundedness, the following estimates hold on (ext) M:

1. For 0 ≤ k ≤ k small , we have Γ g ∞,k min r -2 u -1 2 -δ dec , r -1 u -1-δ dec , ∇ 3 Γ g ∞,k-1 r -2 u -1-δ dec , Γ b ∞,k r -1 u -1-δ dec , (6.1.14) 
and

B ∞,k min r -3 (u + 2r) -1 2 -δ dec , r -2 (u + 2r) -1-δ dec , ∇ 3 B ∞,k-1 min r -4 (u + 2r) -1 2 -δ dec , r -3 (u + 2r) -1-δ dec . (6.1.15)
2. We also make the auxiliary bootstrap assumption

2 for 0 ≤ k ≤ k small } trX ∞,k r -2 u -1-δ dec . (6.1.16) 3. For k ≤ k large , we have Γ g ∞,k r -2 , Γ b ∞,k r -1 .
(6.1.17) Remark 6.1.5. Note that we can interpolate between the estimates (6.1.14) for k ≤ k small and (6.1.17) for k ≤ k large to derive on (ext) M, for 3 all k ≤ k * , Remark 6.1.6. In view of the assumptions Ref 1 for Γ g and Γ b , we see that the estimates satisfied by Γ g are stronger that those satisfied by Γ b so that we will often replace terms of type Γ g + Γ b by Γ b . Similarly, we will also often replace terms of type r -1 Γ b + Γ g by Γ g , and terms of type

Γ g ∞,k min r -2 u -1 2 - δ dec 2 , r -1 u -1-δ dec 2 , ∇ 3 Γ g ∞,k-1 r -2 u -1-δ dec 2 , Γ b ∞,k r -1 u -1-δ dec 2 , ( 6 
∇ 3 Γ g + r -1 d ≤1 Γ b by r -1 d ≤1 Γ b . Ref 2.
According to Theorem M1, we have on

(ext) M, for 4 all 0 ≤ k ≤ k * , A ∞,k 0 min r -3 (u + 2r) -1 2 -δextra , r -2 u -1-δextra , ∇ 3 A ∞,k-1 0 min r -9 2 -δ dec , r -4 u -1 2 -δextra , r -3 u -1-δextra , ∇ 2 3 A ∞,k-1 0 min r -9 2 -δ dec u -1 2 -δextra , r -4 u -1-δextra , (6.1.19) 
where we recall that δ extra > δ dec .

Remark 6.1.7. According to Theorem M1, we have in fact on (ext) M, for all 0

≤ k ≤ k * , 5 A ∞,k 0 min r -3 (u + 2r) -1 2 -δextra , r -2 u -1-δextra , ∇ e 3 A ∞,k-1 0 min r -4 (u + 2r) -1 2 -δextra , r -3 u -1-δextra , ∇ 2 e 3 A ∞,k-1 0 min r -5 u -1 2 -δextra , r -4 u -1-δextra ,
where the quantities with prime are expressed in the global frame of Proposition 3.6.9.

Then, (6.1.19) follows immediately from these estimates, the following change of frame formula of Proposition 2.2.3 3 Recall from (6.0.1) that k * = k small + 60 throughout this chapter. 4 Recall from (6.0.1) that k * = k small + 60 throughout this chapter. 5 The estimate for ∇ 2 e 3

λ -2 α = α + f ⊗β - * f ⊗ * β) + f ⊗f - 1 2 * f ⊗ * f ρ + 3 2 f ⊗ * f * ρ + l.o.t.,
A follows immediately from the estimate in Theorem M1 for A , ∇ e 3 A and q, and the definition of q which yields ∇ 2

e 3 A = O(r -4 )q + O(r -1 )∇ 3 A + O(r -2 )A .
and the control of the change of frame coefficients (f, f , λ) provided by Property (f ) of Proposition 3.6.9 together with (3.6.5). Note that the anomalous estimates in (6.1.19) for the maximum power of r in ∇ 3 A and ∇ We recall below a subset of the null structure and Bianchi equations holding for an outgoing PG structure, see Proposition 2.3.4.

A ∈ r -2-δ Good k * , ∇ 3 A ∈ r -3-δ Good k * , ∇ 2 3 A ∈ r -4-δ Good k * . ( 6 
Proposition 6.1.9. In the outgoing PG structure of (ext) M, we have

∇ 4 trX + 1 2 (trX) 2 = - 1 2 X • X, ∇ 4 X + (trX) X = -A, ∇ 4 trX + 1 2 trXtrX = -D • Z + Z • Z + 2P - 1 2 X • X, ∇ 4 X + 1 2 trX X = - 1 2 D ⊗Z + 1 2 Z ⊗Z - 1 2 trX X, ∇ 4 Z + trXZ = -X • Z -B, ∇ 4 H + 1 2 trX(H + Z) = - 1 2 X • (H + Z) -B, ∇ 4 ω -(2η + ζ) • ζ = ρ, and 
1 2 D • X + 1 2 X • Z = 1 2 DtrX + 1 2 trXZ -i (trX)H -B, 1 2 D • X - 1 2 X • Z = 1 2 DtrX - 1 2 trXZ -i (trX)(-Z + Ξ) + B.
Also, we have

∇ 3 A - 1 2 D ⊗B = - 1 2 trXA + 4ωA + 1 2 (Z + 4H) ⊗B -3P X, ∇ 4 B - 1 2 D • A = -2trXB + 1 2 A • Z, ∇ 3 B -DP = -trXB + 2ωB + B • X + 3P H + 1 2 A • Ξ, ∇ 4 P - 1 2 D • B = - 3 2 trXP - 1 2 Z • B - 1 4 X • A, ∇ 3 P + 1 2 D • B = - 3 2 trXP - 1 2 (2H -Z) • B + Ξ • B - 1 4 X • A, ∇ 4 B + DP = -trXB + B • X + 3P Z, ∇ 3 B + 1 2 D • A = -2trX B -2ω B - 1 2 A • (-2Z + H) -3P Ξ, ∇ 4 A + 1 2 D ⊗B = - 1 2 trXA + 5 2 Z ⊗B -3P X.
We also recall the following transport equations in the e 4 direction for derivatives of the outgoing PG coordinates (r, u, θ), see Proposition 2.3.6.

Proposition 6.1.10. The following equations hold true for the coordinates (u, r, θ) associated to an outgoing PG structure e 4 (e 3 (r)) = -2ω,

∇ 4 Du + 1 2 trXDu = - 1 2 X • Du, e 4 (e 3 (u)) = -(Z + H) • Du , ∇ 4 D cos θ + 1 2 trXD cos θ = - 1 2 X • D cos θ, e 4 (e 3 (cos θ)) = -(Z + H) • D cos θ .

Commutator formulas revisited

We record below the main commutation formulas which will be used in this chapter.

Real case

The following commutation formulas are an immediate adaptation of those in Lemma 2.1.2 to the case of an outgoing PG structure 6 .

Lemma 6.1.11. We have the following commutations formulas:

1. If f is a scalar, we have

[∇ 4 , ∇ b ]f = - 1 2 tr χ∇ b f + (a) trχ * ∇ b f -χ bc ∇ c f, [∇ 4 , ∇ 3 ]f = -2(ζ + η) • ∇f -2ω∇ 4 f.
2. If U is a horizontal tensor, we have

[∇ 4 , ∇ b ]U = - 1 2 tr χ∇ b + (a) trχ * ∇ b U -χ bc ∇ c U +O(1)tr χζU + O(r -2 ) χU + O(1)βU, [∇ 4 , ∇ 3 ]U = -2(ζ + η) • ∇U -2ω∇ 4 U + O(1)ηζU + O(1) * ρU.

Complex case

The following commutation formulas can be easily derived from the ones above, see also section 4.2 in [START_REF] Giorgi | Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes[END_REF]. Lemma 6.1.12. The following commutation formulas hold true. 1. For a scalar complex function F , we have

[∇ 4 , D]F = - 1 2 trXDF + r -1 Γ g • d /F. (6.1.22)
2. For an anti-self dual horizontal 1-form U , we have

[∇ 4 , D ⊗]U = - 1 2 trX(D ⊗U -Z ⊗U ) + r -1 Γ g • d / ≤1 U (6.1.23)
and

[∇ 4 , D•]U = - 1 2 trX D • U + Z • U ) + r -1 Γ g • d / ≤1 U. (6.1.24)
6 That is ξ = 0, ω = 0 and η + ζ = 0.

3. For an anti-self dual symmetric traceless horizontal 2-form U , we have

[∇ 4 , D•]U = - 1 2 trX D • U + 2Z • U ) + r -1 Γ g • d / ≤1 U. (6.1.25)
4. For an anti-self dual horizontal k-tensor, we have 

[∇ 4 , D]U = - 1 2 trXDU + O(1)ZU + r -1 Γ g • d / ≤1 U. ( 6 
[∇ 4 , qD]U = Γ g • d /U,
2. an anti-self dual horizontal 1-form, we have

[∇ 4 , qD ⊗]U = O(r -2 )U + Γ g • d / ≤1 U,
3. an anti-self dual horizontal 1-form, or an anti-self dual symmetric traceless horizontal 2-form, we have

[∇ 4 , q D•]U = O(r -2 )U + Γ g • d / ≤1 U,
4. an anti-self dual horizontal k-tensor, we have

[∇ 4 , qD]U = O(r -2 )U + Γ g • d / ≤1 U.
Proof. This follows immediately from Lemma 6.1.12 and the fact that e 4 (q) = 1, trX = 2 q + Γ g and Z = O(r -2 ) + Γ g .

Linearized null structure equations and Bianchi identities for outgoing PG structures

Recall the definition of the linearized quantities and of Γ g and Γ b in Section 6.1.2. We use extensively the notation O(r -p ) made in Definition 6.1.3 to denote lower order linear terms. The following lemma provides the linearized null structure equations and Bianchi identities in (ext) M.

Lemma 6.1.15. The linearized null structure equations in the e 4 direction are

∇ 4 ( } trX) + 2 q } trX = Γ g • Γ g , ∇ 4 X + 2r |q| 2 X = -A + Γ g • Γ g , ∇ 4 q Z + 2 q q Z = - aq |q| 2 J • X -B + O(r -2 ) } trX + Γ g • Γ g , ∇ 4 q H + 1 q q H = - 1 q q Z - ar |q| 2 J • X -B + O(r -2 ) } trX + Γ b • Γ g , ∇ 4 } trX + 1 q } trX = -D • q Z + 2 q P + O(r -2 ) q Z + O(r -1 ) } trX +O(r -1 ) D • J + O(r -3 ) D(cos θ) + Γ b • Γ g , ∇ 4 X + 1 q X = - 1 2 D ⊗ q Z + O(r -2 ) q Z + O(r -1 ) X + O(r -1 )D ⊗J + O(r -3 ) D(cos θ) +Γ b • Γ g , ∇ 4 (q ω) = ( q P ) + O(r -2 ) q Z + O(r -2 ) q H + Γ b • Γ g , ∇ 4 Ξ + 1 q Ξ = O(r -1 ) d / ≤1 (q ω) + O(r -2 ) q Z + O(r -2 ) q H + O(r -2 ) } trX +O(r -3 ) D(cos θ) + Γ b • q ω, Γ g .
The linearized Codazzi for X takes the form

1 2 D • X = 1 q q Z -B + O(r -2 ) X + O(r -2 ) q H + O(r -1 ) d / ≤1 } trX + O(r -2 ) D(cos θ) + Γ b • Γ g .
The linearized Bianchi equations for B, P, B are

∇ 4 B + 4 q B = 1 2 D • A + aq 2|q| 2 J • A + Γ g • (B, A), ∇ 4 q P - 1 2 D • B = - 3 q q P - aq 2|q| 2 J • B + O(r -3 ) } trX + r -1 Γ g • Γ g + Γ b • A, ∇ 4 B + D q P = - 2 q B + O(r -2 ) q P + O(r -3 ) q Z + O(r -4 ) D(cos θ) + r -1 Γ b • Γ g . Also ∇ 3 B -D q P = 2 r B + O(r -2 )B + O(r -2 ) q P + O(r -3 ) q H + O(r -4 ) D(cos θ) + r -1 Γ b • Γ g .
Proof. The proof of the lemma relies on the null structure equations and Bianchi identities of Proposition 6.1.9, the definition of the linearized quantities and of Γ g and Γ b in Section 348CHAPTER 6. DECAY ESTIMATES ON THE REGION (EXT ) M (THEOREM M4)

6.1.2, the notation O(r -p ) made in Definition 6.1.3, the fact that a and m are constants, and the following identities

e 4 (r) = 1, e 4 (θ) = 0, ∇ 4 J = - 1 q J, e 4 (q) = 1, e 4 (q) = 1, ∇(r) = 0,
where we used in particular the fact that q = r + ai cos θ and q = r -ai sin θ. See Section C.1 for the proof.

6.1.7 Other linearized equations for outgoing PG structures Lemma 6.1.16. We have

e 4 ẽ3 (r) = -2q ω, ∇ 4 | Du + 1 q | Du = O(r -1 ) } trX + O(r -1 ) X + Γ b • Γ g , e 4 ẽ3 (u) = O(r -1 ) q H + O(r -1 ) q Z + O(r -2 ) | Du + Γ b • Γ b , ∇ 4 D cos θ + 1 q D cos θ = i 2 J • X + O(r -1 ) } trX + Γ b • Γ g , e 4 (e 3 (cos θ)) = O(r -1 ) q H + O(r -1 ) q Z + O(r -2 ) D cos θ + Γ b • Γ b .
Proof. One can proceed as in Lemma 6.1.15 starting with the corresponding equations in Proposition 6.1.10. See Section C.2 for the details.

Lemma 6.1.17. The following equations hold for the tensors J, J ± :

1. We have

∇ 4 (D ⊗J) + 2 q D ⊗J = O(r -1 )B + O(r -2 ) } trX + O(r -2 ) X +O(r -2 ) q Z + O(r -3 ) D(cos θ) + r -1 Γ b • Γ g , ∇ 4 D • J + 2 q D • J = O(r -1 )B + O(r -2 ) } trX + O(r -2 ) X + O(r -2 ) q Z +O(r -3 ) D(cos θ) + r -1 Γ b • Γ g , ∇ 4 } ∇ 3 J + 1 q } ∇ 3 J = O(r -3 ) ẽ3 (r) + O(r -3 )e 3 (cos θ) + O(r -2 )q ω +O(r -2 ) q H + O(r -2 ) q Z + O(r -2 ) | ∇J + O(r -1 ) q P +r -1 Γ b • Γ b .
2. We also have

∇ 4 (D ⊗J ± ) + 2 q D ⊗J ± = O(r -1 )B + O(r -2 ) } trX + O(r -2 ) X +O(r -2 ) q Z + O(r -3 ) D(cos θ) + r -1 Γ b • Γ g , ∇ 4 D • J ± + 2 q D • J ± = O(r -1 )B + O(r -2 ) } trX + O(r -2 ) X + O(r -2 ) q Z +O(r -3 ) D(cos θ) + r -1 Γ b • Γ g , ∇ 4 ∇ 3 J ± + 1 q ∇ 3 J ± = O(r -3 ) ẽ3 (r) + O(r -3 )e 3 (cos θ) + O(r -2 )q ω +O(r -2 ) q H + O(r -2 ) q Z + O(r -2 ) | ∇J + O(r -1 ) q P +r -1 Γ b • Γ b .
Proof. To prove the first part of the lemma, we make use of the transport equation ∇ 4 J = -q -1 J, the relations

D • J = 4i(r 2 + a 2 ) cos θ |q| 4 + D • J, J • J = 2(sin θ) 2 |q| 2 , J = O(r -1 ),
and the commutation formulas of Lemma 6.1.12 (see also Remark 6.1.13) as follows

∇ 4 D ⊗J = D ⊗∇ 4 J + [∇ 4 , D ⊗]J = -D ⊗ 1 q J - 1 2 trX(D ⊗J -Z ⊗J) + O(r -1 )B + O(r -2 ) X = - 2 q D ⊗J + D(q) q 2 ⊗J + 1 q aq |q| 2 J + q Z ⊗J + O(r -1 )B + O(r -2 ) } trX + O(r -2 ) X +r -1 Γ b • Γ g = - 2 q D ⊗J + O(r -1 )B + O(r -2 ) } trX + O(r -2 ) X + O(r -2 ) q Z + O(r -3 ) D(cos θ) + r -1 Γ b • Γ g .
Also, in the same vein,

∇ 4 D • J = ∇ 4 D • J - 4i(r 2 + a 2 ) cos θ |q| 4 = -D • 1 q J + [∇ 4 , D•]J - 8ir cos θ |q| 4 + 8i(r 2 + a 2 ) cos θ |q| 6 e 4 (|q| 2 ) = - 1 q D • J + D(q) q 2 • J - 1 2 trX(D • J + Z • J) + O(r -1 )B + O(r -2 ) X - 8ir cos θ |q| 4 + 16ir(r 2 + a 2 ) cos θ |q| 6 = - 1 q + 1 q D • J + a q 2 J • J - 1 q aq |q| 2 J • J - 8ir cos θ |q| 4 + 16ir(r 2 + a 2 ) cos θ |q| 6 +O(r -1 )B + O(r -2 ) } trX + O(r -2 ) X + O(r -2 ) q Z + O(r -3 ) D(q) + r -1 Γ b • Γ g = - 2 q D • J + O(r -1 )B + O(r -2 ) } trX + O(r -2 ) X + O(r -2 ) q Z +O(r -3 ) D(cos θ) + r -1 Γ b • Γ g .
Finally, using the commutation formula for [∇ 4 , ∇ 3 ] in Lemma 2.1.2, we have

∇ 4 } ∇ 3 J = ∇ 4 ∇ 3 J - ∆q |q| 4 J = -∇ 3 1 q J + [∇ 4 , ∇ 3 ]J -∂ r ∆q |q| 4 J + ∆ |q| 4 J = - 1 q ∇ 3 J + e 3 (q) q 2 J -2ω∇ 4 J -2(η + ζ) • ∇J -2(ζ • J)η + 2(η • J)ζ -2 * ρ * J -∂ r ∆q |q| 4 J + ∆ |q| 4 J. Continuing ∇ 4 } ∇ 3 J = - 1 q } ∇ 3 J + O(r -3 ) ẽ3 (r) + O(r -3 )e 3 (cos θ) + O(r -2 )q ω + O(r -2 ) q H +O(r -2 ) q Z + O(r -2 ) | ∇J + O(r -1 ) q P + r -1 Γ b • Γ b .
This concludes the proof of the first part of the lemma. The proof of the second part is similar and left to the reader. Lemma 6.1.18. The following equations hold true7 

∇ 4 D(J (±) ) + 1 q D(J (±) ) = O(r -1 ) } trX + O(r -1 ) X + Γ b • Γ g , ∇ 4 ∇ 3 J (±) = O(r -2 ) D(J (±) ) + O(r -1 ) q Z + O(r -1 ) q H + Γ b • Γ b . (6.1.27)
Proof. Recall that, see (6.1.9), D(J (±) ) = D(J (±) ) -J ± , e 3 (J (±) ) = e 3 (J (±) ) ± 2a |q| 2 J (∓) .

Starting with the equation ∇ 4 (J (±) ) = 0 we use the commutator formulas of Lemma 6.1.12 (see also Remark 6.1.13) to derive

∇ 4 (DJ (p) ) = [∇ 4 , D]J (p) = - 1 2 trXDJ (p) + r -1 X • dJ (p) .
Hence

∇ 4 (DJ (p) ) + 1 2 trXDJ (p) = r -1 X • dJ (p) .
We further deduce, using ∇ 4 J ± + 1 q J ± = 0,

∇ 4 D(J (±) ) + 1 2 trX D(J (±) ) = ∇ 4 D(J (±) ) -J ± + 1 2 trX D(J (±) ) -J ± = r -1 X • dJ (p) -∇ 4 J ± + 1 2 trXJ ± = r -1 X • dJ (p) - 1 2 } trXJ ± .
Thus, since J (±) = O(1) and J ± = O(r -1 ),

∇ 4 D(J (±) ) + 1 q D(J (±) ) = O(r -1 ) } trX + O(r -1 ) X + Γ b • Γ g as stated.
Similarly

∇ 4 ∇ 3 J (±) = [∇ 4 , ∇ 3 ]J (±) = -2(ζ + η) • ∇J (±) = -(Z + H) • DJ (±) = -(Z + H) • D(J (±) ) + J ±
and thus

∇ 4 ∇ 3 J (±) ± 2a |q| 2 J (∓) = -(Z + H) • D(J (±) ) + J ± ∓ 4ar |q| 4 J (∓) .
Hence

∇ 4 ∇ 3 J (±) = -(Z + H) • J ± ∓ 4ar |q| 4 J (∓) + O(r -2 ) D(J (±) ) + Γ b • Γ b . 352CHAPTER 6. DECAY ESTIMATES ON THE REGION (EXT ) M (THEOREM M4)
Now, recalling that ,

Z = q Z + aq |q| 2 J, H = q H + aq |q| 2 J, (J ± ) • (J) = ∓ 1 |q| 2 J (∓) , we deduce (Z + H) • J ± = ( q Z + q H) • J ± + aq |q| 2 + aq |q| 2 J • J ± = 4ar |q| 2 (J) • (J ± ) + O(r -1 ) q Z + O(r -1 ) q H = ∓ 4ar |q| 4 J (∓) + O(r -1 ) q Z + O(r -1 ) q H.
Hence

∇ 4 ∇ 3 J (±) = O(r -2 ) D(J (±) ) + O(r -1 ) q Z + O(r -1 ) q H + Γ b • Γ b
as stated.

The vectorfield T in (ext) M

We recall that in (ext) M, the vectorfield T was defined by, see Section 2.6.5, 2. We have

T := 1 2 e 3 + ∆ |q| 2 e 4 -2a ( 
T(u) = 1 + 1 2 ẽ3 (u) -2a (J) • | ∇u , T(r) = 1 2 ẽ3 (r). (6.1.30)
3. We have

T(cos θ) = 1 2 e 3 (cos θ) -2a (J) • ∇ cos θ , T(J (±) ) = 1 2 e 3 (J (±) ) -a (J) • D(J (±) ) . (6.1.31)
In particular

T(r) ∈ rΓ b , T(u) = 1 + rΓ b , T(cos θ) ∈ Γ b , T(J (±) ) ∈ Γ b .
Proof. Equation (6.1.29) follows easily from

| (J)| 2 = (sin θ) 2 |q| 2 .
The identities in (6.1.30) follow easily from the relations e 4 (r) = 1, e 4 (u) = 0, ∇(r) = 0, and the definition of the linearized quantities ẽ3 (r), ẽ3 (u) and | ∇u.

To check the first identity in (6.1.31), we make use of e 4 (θ) = 0, the definition of the linearized quantity ∇ cos θ = ∇ cos θ -(iJ), and (J) • (J) = 0, which yields

T(cos θ) = 1 2 e 3 (cos θ) -a (J) • ∇ cos θ = 1 2 e 3 (cos θ) -a (J) • ∇ cos θ.
To check the second identity in (6.1.31), we make use of e 4 (J (±) ) = 0, the definition of the linearized quantities e 3 (J ) , see (6.1.4). Thus

(±) ) = e 3 (J (±) ) ± 2a |q| 2 J (∓) , D(J (±) ) = D(J (±) ) -J ± , and the identity (J ± ) • (J) = ∓ 1 |q| 2 J (∓
T(J (±) ) = 1 2 e 3 + ∆ |q| 2 e 4 -2a (J) b e b J (±) = 1 2 e 3 (J (±) ) -a (J) • ∇J (±) = 1 2 e 3 (J (±) ) ∓ a |q| 2 J (∓) -a (J) • DJ (±) = 1 2 e 3 (J (±) ) ∓ a |q| 2 J (∓) -a (J) • D(J (±) ) + J ± = 1 2 e 3 (J (±) ) -a (J) • D(J (±) ) -a (J) • J ± ∓ a |q| 2 J (∓) = 1 2 e 3 (J (±) ) -a (J) • D(J (±) )
as stated.

Remark 6.1.20. In Kerr, we have T = ∂ t where ∂ t is the coordinate vectorfield corresponding to the Boyer-Lindquist coordinates.

We recall below Proposition 2.6.10 Proposition 6.1.21. We have (T) π 44 = 0, (T) π 4a ∈ Γ g and all other components of (T) π, relative to the frame of (ext) M, are in Γ b . Moreover 6.1.9 Commutation formulas with L / T

g ab (T) π ab = Γ g .
We recall the following definition of projected Lie derivative, see section 2.2.8 of [START_REF] Giorgi | Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes[END_REF].

Given vectorfields X, Y , the projected Lie derivative L / X Y is given by

L / X Y := L X Y + 1 2 g(L X Y, e 3 )e 4 + 1 2 g(L X Y, e 4 )e 3 .
Given a horizontal covariant k-tensor U , the horizontal Lie derivative L / X U is defined to be the projection of L X U to the horizontal space. Thus, for horizontal indices

A = a 1 . . . a k , (L / X U ) A : = ∇ X U A + D a 1 X b U b...a k + • • • + D a k X b U a 1 ...b . (6.1.32) 
We recall below Lemma 2.2.13 in [START_REF] Giorgi | Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes[END_REF].

Lemma 6.1.22. The following commutation formulas hold true for a horizontal covariant k-tensor U and a vectorfield X

∇ b (L / X U A ) -L / X (∇ b U A ) = k j=1 (X) Γ / a j bc U c a 1 ... ...a k , ∇ 4 (L / X U A ) -L / X (∇ 4 U A ) + ∇ L / X e 4 U A = k j=1 (X) Γ / a j 4c U c a 1 ... ...a k , ∇ 3 (L / X U A ) -L / X (∇ 3 U A ) + ∇ L / X e 3 U A = k j=1 (X) Γ / a j 3c U c a 1 ... ...a k , (6.1.33 
)

with 8 (X) Γ / abc = 1 2 (∇ a (X) π bc + ∇ b (X) π ac -∇ c (X) π ab ), (X) Γ / a4b = 1 2 (∇ a (X) π 4b + ∇ 4 (X) π ab -∇ b (X) π a4 ), (X) Γ / a3b = 1 2 (∇ a (X) π 3b + ∇ 3 (X) π ab -∇ b (X) π a3 ).
(6.1.34) 8 Here, (X) π ab is treated as a horizontal symmetric 2-tensor, and (X) π a4 , (X) π a3 , as horizontal 1-forms.

We apply Lemma 6.1.22 to the case when X is the vectorfield T. Lemma 6.1.23. The following holds true:

1. We have

L / T e 4 ∈ Γ b . (6.1.35)
2. For any horizontal k-tensor U , we have

∇ 4 (L / T U A ) -L / T (∇ 4 U A ) = r -1 Γ b • d /U + r -1 dΓ b • U. (6.1.36)
3. For any horizontal k-tensor U , we have Next, in view of the form of (X) Γ / in Lemma 6.1.22 with the particular choice X = T, and together with Proposition 6.1.21, we have

∇(L / T U A ) -L / T (∇U A ) = r -1 d /Γ b • U. ( 6 
(T) Γ / abc = 1 2 (∇ a (T) π bc + ∇ b (T) π ac -∇ c (T) π ab ) ∈ r -1 d /Γ b , (T) Γ / a4b = 1 2 (∇ a (T) π 4b + ∇ 4 (T) π ab -∇ b (T) π a4 ) ∈ r -1 dΓ b .
Using Lemma 6.1.22 with X = T, we infer

∇ b (L / T U A ) -L / T (∇ b U A ) = r -1 d /Γ b • U, ∇ 4 (L / T U A ) -L / T (∇ 4 U A ) + ∇ L / T e 4 U A = r -1 dΓ b • U.
The first identity yields (6.1.37) while the second identity, together with (6.1.35), yields (6.1.36). This concludes the proof of the lemma. 

L / T U A = 1 2 ∇ 3 U A + 1 2 ∆ |q| 2 ∇ 4 U A + O(r -1 )∇U A + O(r -3 )U + Γ b • U. (6.1.38)
In particular

L / T U = 1 2 ∇ 3 U + O(r -1 )d ≤1 U + Γ b • U, L / 2 T U = 1 4 ∇ 2 3 U + O(r -1 )d ≤1 ∇ 3 U + O(r -2 )d ≤2 U + d ≤1 (Γ b • U ). (6.1.39)
Proof. Recall from Proposition 6.1.21 that we have

k ab = g(D a T, e b ) = - 2amr cos θ |q| 4 ∈ ab +Γ b .
Together with (6.1.32), for p = 1, 2 and A = a 1 . . . a p , we obtain

(L / T U ) A = ∇ T U A + D a 1 T b U b...ap + • • • + D ap T b U a 1 ...b = ∇ T U A - 2pamr cos θ |q| 4 * U A + Γ b • U = 1 2 ∇ 3 U A + 1 2 ∆ |q| 2 ∇ 4 U A -(J) b ∇ b U A + O(r -3 )U + Γ b • U = 1 2 ∇ 3 U A + 1 2 ∆ |q| 2 ∇ 4 U A + O(r -1 )∇U A + O(r -3 )U + Γ b • U
as stated. The two other identities easily follow from this one.

In the same spirit, we have the following more precise decomposition.

Corollary 6.1.25. We have

∇ 3 = 2L / T - ∆ |q| 2 ∇ 4 + O(r -1 )∇ + O(r -3 ) + Γ b . (6.1.40)
Proof. Note from the proof of the previous lemma the identity

L / T f = ∇ T f + f • k. Since 2T = e 3 + ∆ |q| 2 e 4 + O(r -1 )∇, k = O(r -3 ) + Γ b ,
we infer

∇ 3 = 2L / T - ∆ |q| 2 ∇ 4 + O(r -1 )∇ + O(r -3 ) + Γ b
as desired.

6.2 Properties of the spheres S(u, r)

An orthonormal frame of S(u, r)

The following lemma exhibits an orthonormal frame of S(u, r).

Lemma 6.2.1. Let (e 1 , e 2 ) be an orthonormal basis of the horizontal structure associated to the PG structure of (ext) M. Then, there exists an orthonormal basis (e 1 , e 2 ) of the tangent space of S(u, r) of the following form

e a = δ b a + 1 2 f a f b e b + 1 2 f a e 4 + 1 2 f a + 1 8 |f | 2 f a e 3 ,
where the 1-forms f and f are given by

f = - 4 e 3 (u) + (e 3 (u)) 2 + 4|∇u| 2 e 3 (r) ∇u, f = 2e 3 (r) (e 3 (u)) 2 + 4|∇u| 2 e 3 (r) ∇u.
Also, Thus, since r ≥ r 0 in (ext) M, we infer e 3 (u) > 0, (e 3 (u)) 2 + 4|∇u| 2 e 3 (r) > 0, on (ext) M.

f = - 2|q| 2 r 2 + a 2 + Σ + rΓ b ∇u, f = - ∆ Σ + rΓ b ∇u. ( 6 
Thus, we may apply Lemma 2.3.7 which yields the existence of an orthonormal basis (e 1 , e 2 ) of the tangent space of S(u, r) of the form

e a = δ b a + 1 2 f a f b e b + 1 2 f a e 4 + 1 2 f a + 1 8 |f | 2 f a e 3 ,
with the 1-forms f and f given by Lemma 6.2.2. Let f and f be the horizontal 1-forms given by (6.2.1). Also, let the scalar function λ be given by (2.3.3), i.e.

λ = 1 + 1 2 f • f + 1 16 |f | 2 |f | 2 .
Then, we have

f = O(r -1 ), f = O(r -1 ), f = f + O(r -2 ) + Γ b , λ = 1 + O(r -2 ),
as well as

f - ∆ |q| 2 f + 1 4 |f | 2 f = Γ b .
Proof. In view of (6.2.1), we have

f = - 2|q| 2 r 2 + a 2 + Σ + rΓ b ∇u, f = - ∆ Σ + rΓ b ∇u,
which, together with the formula for λ in terms of f and f , immediately implies the first three claimed identities.

Concerning the last one, we have

f - ∆ |q| 2 f + 1 4 |f | 2 f = (h + rΓ b ) ∇u where h = - ∆ Σ + ∆ |q| 2 2|q| 2 r 2 + a 2 + Σ + 1 4 2|q| 2 r 2 + a 2 + Σ 2 |∇u| 2 ∆ Σ = ∆ Σ(r 2 + a 2 + Σ) 2 -(r 2 + a 2 + Σ) 2 + 2(r 2 + a 2 + Σ)Σ + ∆a 2 (sin θ) 2 = ∆ Σ(r 2 + a 2 + Σ) 2 Σ 2 -(r 2 + a 2 ) 2 + ∆a 2 (sin θ) 2 = 0 so that f - ∆ |q| 2 f + 1 4 |f | 2 f = rΓ b ∇u = Γ b
as desired. 

f c f b e a (log λ) - 1 2 f c λ -1 χ ab + 1 2 f b λ -1 χ ac + 1 2 ζ a f c f b - 1 4 f c λ -1 χ ad f b f d - 1 2 f c χ ab + 1 2 f b χ ac + Err[g(D e a e b , e c )],
where Err[g(D e a e b , e c )] contains all the terms depending on (f, f , Γ), without derivative, and at least quadratic in (f, f ), and where the scalar function λ is given by (2.3.3).

Proof. See appendix C.3. Proposition 6.2.4. Let V be a horizontal k-tensor. Then, for horizontal indices

B = b 1 • • • b k and B c (j) = b 1 • • • b j-1 c b j+1 • • • b k we have ∇ a V B = ∇ a V B + 1 2 f a f c ∇ c V B + 1 2 f a ∇ 4 V B + 1 2 f a + 1 8 |f | 2 f a ∇ 3 V B - k j=1 1 2 f c f b j ∇ a (log λ) - 1 2 f c λ -1 χ ab j + 1 2 f b j λ -1 χ ac + 1 2 ζ a f c f b j - 1 4 f c λ -1 χ ad f b j f d - 1 2 f c χ ab j + 1 2 f b j χ ac + Err[g(D e a e b j , e c )] V B c (j) , * ∇ a V B = * ∇ a V B + 1 2 * f a f c ∇ c V B + 1 2 * f a ∇ 4 V B + 1 2 * f a + 1 8 |f | 2 * f a ∇ 3 V B - k j=1 1 2 f c f b j * ∇ a (log λ) - 1 2 f c λ -1 * χ ab j + 1 2 f b j λ -1 * χ ac + 1 2 * ζ a f c f b j - 1 4 f c λ -1 * χ ad f b j f d - 1 2 f c * χ ab j + 1 2 f b j * χ ac + ∈ ad Err[g(D e d e b j , e c )] V B c (j) ,
and

D a V B = D a V B + 1 2 F a f c ∇ c V B + 1 2 F a ∇ 4 V B + 1 2 F a + 1 8 |f | 2 F a ∇ 3 V B + (E[V ]) aB ,
with

(E[V ]) aB = - k j=1 1 2 f c f b j D a (log λ) - 1 2 f c λ -1 X ab j + 1 2 f b j λ -1 X ac + 1 2 Z a f c f b j - 1 4 f c λ -1 X ad f b j f d - 1 2 f c X ab j + 1 2 f b j X ac V B c (j) + Err[g(D e a e b j , e c )] + i ∈ ad Err[g(D e d e b j , e c )] V B c (j) ,
where the horizontal 1-forms f and f are given by (6.2.1), and the horizontal complex 1-forms F and F are given by

F := f + i * f, F := f + i * f .
Proof. We prove the formula for ∇ V . For simplicity, we do it for a 1-tensor V . We have

∇ a V b = e a (V b ) -g(D e a e b , e c )V c . Since e a = δ b a + 1 2 f a f b e b + 1 2 f a e 4 + 1 2 f a + 1 8 |f | 2 f a e 3 , and 
g(D e a e b , e c ) = δ d a + 1 2 f a f d g (D e d e b , e c ) + 1 2 f a g (D e 4 e b , e c ) + 1 2 f a + 1 8 |f | 2 f a g (D e 3 e b , e c ) - 1 2 f c χ ab + 1 2 f b χ ac + 1 2 ζ a f c f b - 1 4 f c χ ad f b f d - 1 2 f c χ ab + 1 2 f b χ ac + Err[g(D e a e b , e c )]
we infer

∇ a V b = δ b a + 1 2 f a f d e d + 1 2 f a e 4 + 1 2 f a + 1 8 |f | 2 f a e 3 (V b ) - δ d a + 1 2 f a f d g (D e d e b , e c ) + 1 2 f a g (D e 4 e b , e c ) + 1 2 f a + 1 8 |f | 2 f a g (D e 3 e b , e c ) - 1 2 f c χ ab + 1 2 f b χ ac + 1 2 ζ a f c f b - 1 4 f c χ ad f b f d - 1 2 f c χ ab + 1 2 f b χ ac + Err[g(D e a e b , e c )] V c
and hence

∇ a V b = δ b a + 1 2 f a f d ∇ d V b + 1 2 f a ∇ 4 V b + 1 2 f a + 1 8 |f | 2 f a ∇ 3 V b -- 1 2 f c χ ab + 1 2 f b χ ac + 1 2 ζ a f c f b - 1 4 f c χ ad f b f d - 1 2 f c χ ab + 1 2 f b χ ac + Err[g(D e a e b , e c )] V c
as stated. The formulas for * ∇ a V B and D a V B are proved in the same manner.

Corollary 6.2.5. Let f and f be the horizontal 1-forms given by (6.2.1), and let the scalar function λ be given by (2.3.3). Then, recalling the notation of Definition 6.1.3, we have

∇ = 1 + O(r -2 ) ∇ + O(r -1 )L / T + O(r -3 ) + r -1 Γ b d ≤1 . (6.2.2)
Also, we have

∇ = (1 + O(r -2 ))∇ + O(r -1 )∇ 4 + O(r -1 )∇ 3 + O(r -3 ) + r -1 Γ b d ≤1 . (6.2.3)
Proof. Note that the second identity is an immediate consequence of the first in view of (6.1.40). Thus, we focus on proving the first one. Recall from Proposition 6.2.4 that we have for a horizontal tensor V and indices

B = b 1 • • • b k ∇ a V B = ∇ a V B + 1 2 f a f c ∇ c V B + 1 2 f a ∇ 4 V B + 1 2 f a + 1 8 |f | 2 f a ∇ 3 V B - k j=1 1 2 f c f b j ∇ a (log λ) - 1 2 f c λ -1 χ ab j + 1 2 f b j λ -1 χ ac + 1 2 ζ a f c f b j - 1 4 f c λ -1 χ ad f b j f d - 1 2 f c χ ab j + 1 2 f b j χ ac + Err[g(D e a e b j , e c )] V B c (j) .
Thus, using in particular f = O(r -1 ) and f = O(r -1 ) and λ = 1 + O(r -2 ), see Lemma 6.2.2,

∇ = 1 + O(r -2 ) ∇ + 1 2 f ∇ 4 + 1 2 f + 1 8 |f | 2 f ∇ 3 + E + O(r -3 ),
where E is given by

(EV ) aB = - k j=1 - 1 2 f c λ -1 χ ab j + 1 2 f b j λ -1 χ ac - 1 2 f c χ ab j + 1 2 f b j χ ac V B c (j) .
We use f = O(r -1 ) and f = O(r -1 ) and the transformation formulas for the Ricci coefficients of Proposition 2.2.3 for χ to deduce

λ -1 χ ab = χ ab + O(r -2 ) + Γ g
and hence, using also f = f + O(r -2 ) + Γ b in view of Lemma 6.2.2, we infer

(EV ) aB = - 1 2 k j=1 -f c χ ab j + χ ab j + f b j χ ac + χ ac + O(r -3 ) + r -1 Γ b V B (j) . Since χ ab + χ ab = O(r -2 ) + Γ b , (EV ) aB = - 1 2 k j=1 O(r -3 ) + r -1 Γ b V B (j) (6.2.4) 
and hence

∇ = 1 + O(r -2 ) ∇ + 1 2 f ∇ 4 + 1 2 f + 1 8 |f | 2 f ∇ 3 + E + O(r -3 ) + r -1 Γ b .
Recalling the decomposition (6.1.40), i.e.

∇ 3 = 2L / T - ∆ |q| 2 ∇ 4 + O(r -1 )∇ + O(r -3 ) + Γ b ,
we infer, using also f = O(r -1 ) and f = O(r -1 ) in view of Lemma 6.2.2,

∇ = 1 + O(r -2 ) ∇ + O(r -1 )L / T + 1 2 f - ∆ |q| 2 f + 1 4 |f | 2 f ∇ 4 +O(r -3 ) + r -1 Γ b .
Recalling also, from Lemma 6.2.2,

f - ∆ |q| 2 f + 1 4 |f | 2 f = Γ b ,
we deduce

∇ = 1 + O(r -2 ) ∇ + O(r -1 )L / T + O(r -3 ) + r -1 Γ b d ≤1
as stated. 

+ f • f + 1 2 |f | 2 |f | 2 tr χ + 2f • χ • f + |f | 2 f • χ • f +f • η + 1 2 (f • f )(f • η) + 1 4 |f | 2 (f • η) + 1 8 |f | 2 |f | 2 f • η +f • ζ + 1 2 (f • f )(f • ζ) + 1 4 |f | 2 (f • ζ) + 1 8 (f • ζ)|f | 2 |f | 2 -ω |f | 2 + 1 2 |f | 2 (f • f ) + 1 16 |f | 4 |f | 2 .
Proof. Recall that e 4 (r) = 1 and e 4 (u) = 0. Consider coordinates (x 1 , x 2 ) on S(u, r 0 ) and transport it by e 4 (x 1 ) = e 4 (x 2 ) = 0. Then, e 4 = ∂ r and hence, for a scalar function h, we have

e 4 S(u,r) h = ∂ r h |g|dx 1 dx 2 = ∂ r (h) + 1 |g| ∂ r ( |g|)h dx 1 dx 2 . Now, we have ∂ r (g ab ) = ∂ r g ∂ ∂x a , ∂ ∂x b = g D ∂ ∂r ∂ ∂x a , ∂ ∂x b + g ∂ ∂x a , D ∂ ∂r ∂ ∂x b = g D ∂ ∂x a ∂ ∂r , ∂ ∂x b + g ∂ ∂x a , D ∂ ∂x b ∂ ∂r = g D ∂ ∂x a e 4 , ∂ ∂x b + g ∂ ∂x a , D ∂ ∂x b e 4 .
Since 

1 |g| ∂ r ( |g|) = 1 2 g ab ∂ r g ab , 364CHAPTER 
j b a = δ b a + 1 2 f a f b , k a = 1 2 f a , l a = 1 2 f a + 1 8 |f | 2 f a . ( 6 
= δ c a + 1 2 f a f c δ d b + 1 2 f b f d χ cd + 2 1 2 f a + 1 8 |f | 2 f a δ d b + 1 2 f b f d η d +2 δ c a + 1 2 f a f c 1 2 f b + 1 8 |f | 2 f b ζ c -4ω 1 2 f a + 1 8 |f | 2 f a 1 2 f b + 1 8 |f | 2 f b .
Taking the trace, this yields

δ ab g(D e a e 4 , e b ) = 1 + f • f + 1 2 |f | 2 |f | 2 tr χ + 2f • χ • f + |f | 2 f • χ • f +f • η + 1 2 (f • f )(f • η) + 1 4 |f | 2 (f • η) + 1 8 |f | 2 |f | 2 f • η +f • ζ + 1 2 (f • f )(f • ζ) + 1 4 |f | 2 (f • ζ) + 1 8 (f • ζ)|f | 2 |f | 2 -ω |f | 2 + 1 2 |f | 2 (f • f ) + 1 16 |f | 4 |f | 2
which concludes the proof of the lemma. Proof. Recall that we have

δ ab g(D e a e 4 , e b ) = 1 + f • f + 1 2 |f | 2 |f | 2 tr χ + 2f • χ • f + |f | 2 f • χ • f +f • η + 1 2 (f • f )(f • η) + 1 4 |f | 2 (f • η) + 1 8 |f | 2 |f | 2 f • η +f • ζ + 1 2 (f • f )(f • ζ) + 1 4 |f | 2 (f • ζ) + 1 8 (f • ζ)|f | 2 |f | 2 -ω |f | 2 + 1 2 |f | 2 (f • f ) + 1 16 |f | 4 |f | 2 .
Hence in view of the form of f and f in (6.2.1), and in view of the control of the outgoing PG structure of (ext) M provided by Ref 1, including the estimate (6.1.16) for } trX, we infer

δ ab g(D e a e 4 , e b ) = ν 0 (r, θ) + O r 2 u 1+δ dec ,
where the function ν 0 (r, θ) denotes the Kerr value. While it is in principle computable from the above formula, it is easier to compute it directly in Kerr. We have in Kerr in the (θ, ϕ) coordinates

∂ r S h = ∂ r 2π 0 π 0 hΣ sin θdθdϕ = S ∂ r (h) + ∂ r Σ Σ h
and hence

ν 0 (r, θ) = ∂ r Σ Σ .
We deduce in general 

e 4 (h) + ν 0 (r, θ)h + O u 1+δ dec h = S(u,r) e 4 (h) + ∂ r Σ Σ h + O u 1+δ dec h = S(u,r) e 4 (Σh) Σ + O u 1+δ dec h,
where we have used in particular the fact that Σ = Σ(r, θ) and e 4 (r) = 1, e 4 (θ) = 0, so that ∂ r Σ = e 4 (Σ). This concludes the proof of the corollary.

6.2.4 Definition of = 1 modes on S(u, r)

Recall the definition of the basis of = 1 modes J (p) , p = 0, +, -in (ext) M, see Section 2.6.1. Relative to the PG coordinates (θ, ϕ) of (ext) M, we have

J (0) = cos θ, J (+) = sin θ cos ϕ, J (-) = sin θ sin ϕ.
The = 1 modes of a scalar function on S(u, r) are defined as follows.

Definition 6.2.8. Given a scalar function f on a sphere S = S(u, r), we define the = 1 modes of f to be the triplet of numbers

(f ) =1 = 1 |S| S f J (0) , 1 |S| S f J (+) , 1 |S| S f J (-) .
Lemma 6.2.9. We have on

(ext) M S J (p) = O 1 + ru -1 2 -δ dec , S J (p) J (q) = 4π 3 r 2 δ pq + O 1 + ru -1 2 -δ dec .
Proof. Let h be a scalar function such that e 4 (h) = 0. Then, we have in view of Corollary 6.2.7

e 4 r -2 S h = S e 4 (r -2 Σh) Σ + O r 2 u 1+δ dec h = S e 4 (r -2 Σ) Σ h + O r 2 u 1+δ dec h.
Also, since e 4 (r) = 1 and e 4 (θ) = 0, we have

e 4 Σ r 2 = ∂ r Σ r 2 = ∂ r 1 + a 2 r 2 2 + a 2 (sin θ) 2 ∆ r 4 = O(r -3 )
and hence

e 4 r -2 S h = O 1 r 3 + r 2 u 1+δ dec h.
Applying this identity with h = J (p) and h = J (p) J (q) , we infer

e 4 r -2 S J (p) = O 1 r 3 + r 2 u 1+δ dec , e 4 r -2 S J (p) J (q) = O 1 r 3 + r 2 u 1+δ dec .
Integrating from Σ * , and together with the control on Σ * of Lemma 5.6.13, we infer

r -2 S J (p) = O 1 r 2 + ru 1 2 +δ dec , r -2 S J (p) J (q) = 4π 3 δ pq + O 1 r 2 + ru 1 2 +δ dec , as stated.
Proposition 6.2.10. Let ∇ denote the covariant derivative on S(u, r). Then, we have on (ext) M, for p = 0, +, -,

|D ⊗D J (p) | + |r 2 ∆ J (p) + 2| r 3 u 1 2 +δ dec + 1 r 4 .
Proof. See Section C.4.

Elliptic estimates on S(u, r)

We denote by (e 1 , e 2 ) the orthonormal frame of S = S(u, r) ⊂ (ext) M defined in section 6.2.1. We first estimate the Gauss curvature of the spheres S.

Lemma 6.2.11. Let K denote the Gauss curvature of the sphere S = S(u, r) ⊂ (ext) M.

Then, K satisfies

sup (ext) M r 2 K - 1 r 2 1 r 2 0 + r 0 . (6.2.6)
Remark 6.2.12. In view of the above control of K, S(u, r) is, for r 0 large enough, an almost round sphere in the sense of Definition 5.1.1.

Proof. By Gauss equation, we have

K = -ρ - 1 4 tr χ tr χ + 1 2 χ • χ ,
where tr χ , tr χ , χ , χ and ρ correspond to the null frame (e 4 , e 3 , e 1 , e 2 ) adapted to S(u, r), with (e 1 , e 2 ) the orthonormal frame of S defined in section 6.2.1. The change of frame formulas of Proposition 2.2.3, the control of (f, f ) in (6.2.1), and the computation in the Kerr case in Lemma 2.4.27 imply9 

λ -1 tr χ = 2 r + O(r -3 ) + d ≤1 Γ g , λtr χ = - 2 1 -2m r r + O(r -3 ) + d ≤1 Γ g , λ -1 χ = O(r -3 ) + d ≤1 Γ g , λ χ = O(r -3 ) + d ≤1 Γ b , ρ = - 2m r 3 + O(r -5 ) + r -1 Γ g .
Plugging in Gauss equation, this yields

K = 1 r 2 + O(r -4 ) + r -1 d ≤1 Γ g .
Together with the control of Γ g , and the fact that r ≥ r 0 in (ext) M, this concludes the proof of the lemma.

We denote by d / 1 , d / 2 , d * / 1 , d * / 2 the standard Hodge operators on S, see Definition 5.1.16. Since the spheres S are almost round, see Remark 6.2.12, and in view of the properties of the basis of = 1 modes J (p) , see Lemma 6.2.9 and Proposition 6.2.10, the Hodge elliptic estimates of Lemma 5.1.27 and Lemma 5.1.28 apply. We recall these results in the proposition below. Proposition 6.2.13. For any sphere S = S(u, r) ⊂ (ext) M we have for k ≤ k large :

1. If f is a 1-form ( d / ) ≤k+1 f L 2 (S) r ( d / ) ≤k d / 1 f L 2 (S) . (6.2.7) 2. If f is a symmetric traceless 2-tensor ( d / ) ≤k+1 f L 2 (S) r ( d / ) ≤k d / 2 f L 2 (S) . (6.2.8) 3. If (h, * h) is a pair of scalars ( d / ) ≤k+1 (h -h, * h - * h) L 2 (S) r ( d / ) ≤k d * / 1 (h, * h) L 2 (S) . (6.2.9)
and hence, we infer

D (D • U ) = -2 d * / 1 d / 1 (f ) + i * d * / 1 d / 1 (f ) .
Thus, the second identity follows immediately from the first and the third estimate of Proposition 6.2.13.

Finally, we consider the third identity. Since U is an anti-selfdual symmetric traceless 2-tensor, f = (U ) is a real symmetric traceless 2-tensor and

U = f + i * f.
In particular, we have

D • U = -2 div (f ) + idiv ( * f ) .
Thus, the third identity follows immediately from the first estimate of Proposition 6.2.13. This concludes the proof of Corollary 6.2.14.

6.3 Renormalized quantities for outgoing PG structures 6.3.1 Renormalization of q H, cos θ and D • q Z

We introduce the following renormalized quantities:

[ q H] ren : = 1 q q q H -q q Z + 1 3 -q 2 + |q| 2 B + a 2 (q -q)J • X , [ D cos θ] ren : = 1 q q D cos θ + i 2 |q| 2 J • X , [ | M ] ren : = 1 qq 2 q D • q 2 q Z + - a 2 q 2 - a 2 |q| 2 J • X + 2q 3 q P -2aq 2 J • q Z + - 1 3 q 2 q 2 - 1 3 qq 3 + 2 3 q 4 D • B + a q 2 q + 2 3 qq 2 - 13 6 q 3 J • B + a 2 (q 2 + |q| 2 )J • X • J . (6.3.1)
Remark 6.3.1. Note that, in the particular case a = 0, [ | M ] ren is given by

D • q Z + 2 q P = 2(div (ζ) + q ρ) + 2i(curl (ζ) - * ρ),
where we have used the fact that q ζ = ζ and | * ρ = * ρ when a = 0. In particular, the real part of [ | M ] ren coincides in that case, modulo a factor of -2, with the linearized mass aspect function q µ = -div ζq ρ. Thus, while there is no quantity denoted by M in our work, the abuse of notation | M should be thought as a complexified version of the linearized mass aspect function, and [ | M ] ren as its corresponding renormalized version.

Proposition 6.3.2. We have

∇ 4 q[ q H] ren = O(r -1 ) } trX + O(1) d / ≤1 A + rΓ b • Γ g , ∇ 4 q[ D cos θ] ren = O(1) } trX + O(r)A + rΓ b • Γ g , ∇ 4 qq 2 [ | M ] ren = O(1) d / ≤1 } trX + O(r) d / ≤2 A + r 2 d / ≤1 (Γ g • Γ g ) + r 3 Γ b • A. (6.3.2)
Proof. See Section C.5.

Renormalization of the = 1 modes of D • B

Definition 6.3.3. We introduce the following renormalized quantities

[B] ren := B - 3a 2 q P J - a 4 J • A, [D•] ren := D • - a 2 J • ∇ 4 - a 2 J • ∇ 3 . (6.3.3)
The goal of the section is to prove the following proposition. 

rJ (0) Σ [D•] ren r 4 [B] ren = O(1)d ≤1 X + O(r)d ≤2 B + O(r 2 )d ≤1 ∇ 3 B + O(r)d ≤2 q P +O(1)d ≤1 } trX + O(r 2 )d ≤1 ∇ 3 A + O(r)d ≤2 A + r 4 d ≤1 Γ g • (B, A) +r 4 d ≤1 Γ b • ∇ 3 A + r 2 d ≤2 Γ g • Γ g + O r 2 u 1 2 +δ dec d ≤1 A, B,
rJ (±) Σ [D•] ren r 4 [B] ren ∓ a r 2 S(u,r) rJ (∓) Σ [D•] ren r 4 [B] ren = O(1)d ≤1 X + O(r)d ≤2 B + O(r 2 )d ≤1 ∇ 3 B + O(r)d ≤2 q P +O(1)d ≤1 } trX + O(r 2 )d ≤1 ∇ 3 A + O(r)d ≤2 A + r 4 d ≤1 Γ g • (B, A) +r 4 d ≤1 Γ b • ∇ 3 A + r 2 d ≤2 Γ g • Γ g + O r 2 u 1 2 +δ dec d ≤1 A, B, r -1 q P . (6.3.5)
The proof of Proposition 6.3.4 is based on the following identity.

Lemma 6.3.5. The following identity holds true

∇ 4 -a (J) b ∇ b r[D•] ren r 4 [B] ren = r 5 2 D • D • A -a(J ⊗B) + Err,
where the D is taken with respect to the integral frame (e 1 , e 2 ) adapted to S(u, r), see Section 6.2.1, and where the error term is given by

Err = O(1)d ≤1 X + O(r)d ≤2 B + O(r 2 )d ≤1 ∇ 3 B + O(r)d ≤2 q P + O(1)d ≤1 } trX +O(r 2 )d ≤1 ∇ 3 A + O(r)d ≤2 A + r 4 d ≤1 Γ g • (B, A) + r 4 d ≤1 Γ b • ∇ 3 A +r 2 d ≤2 Γ g • Γ g .
Proof. See Section C.6.

We will also use the following lemma. Lemma 6.3.6. We have

(J) b ∇ b (J (0) ) = r -1 Γ b , (J) b ∇ b (J (+) ) = - 1 r 2 J (-) + O(r -4 ) + r -1 Γ b , (J) b ∇ b (J (-) ) = 1 r 2 J (+) + O(r -4 ) + r -1 Γ b .
Proof. Since (J) = * (J) and J (0) = cos θ, we have

(J) b ∇ b (J (0) ) = (J) • (D cos θ) = (J) • (iJ + D cos θ) = (J) • (J) + r -1 Γ b = (J) • * (J) + r -1 Γ b = r -1 Γ b .
Also, from Definition 2.6.6 and formula (2.6.16), we have

D(J (±) ) = J ± + DJ (±) , DJ (±) ∈ Γ b ,
where the complex 1-forms J + and J -satisfy, see (6.1.4), * J ± = -iJ ± ,

(J + ) • (J) = - 1 |q| 2 J (-) , (J -) • (J) = 1 |q| 2 J (+) .
We infer

(J) b ∇ b (J (±) ) = (J) • (D(J (±) )) = (J) • (J ± + DJ (±) ) = (J) • (J ± ) + r -1 Γ b ,
and hence

(J) b ∇ b (J (+) ) = - 1 |q| 2 J (-) + r -1 Γ b = - 1 r 2 J (-) + O(r -4 ) + r -1 Γ b , (J) b ∇ b (J (-) ) = 1 |q| 2 J (+) + r -1 Γ b = 1 r 2 J (+) + O(r -4 ) + r -1 Γ b .
This concludes the proof of Lemma 6.3.6.

We are now ready to prove Proposition 6.3.4.

Proof of Proposition 6. We apply this identity with the choice h = J (p) Σ r[D•] ren r 4 [B] ren . We obtain, using also e 4 (J (p) ) = 0, J (p) = O(1), and Σ ≥ r 2 , and recalling the definition of [D•] ren , [B] ren , see Definition 6.3.3, for p = 0, +, -, e 4 S(u,r)

J (p) Σ r[D•] ren r 4 [B] ren = S(u,r) J (p) Σ ∇ 4 r[D•] ren r 4 [B] ren + O u 1+δ dec J (p) Σ r[D•] ren r 4 [B] ren = S(u,r) J (p) Σ ∇ 4 r[D•] ren r 4 [B] ren + O r 2 u 1+δ dec d ≤1 B, r -1 q P , r -1 A = S(u,r) J (p) Σ ∇ 4 -a (J) b ∇ b r[D•] ren r 4 [B] ren + S(u,r) J (p) Σ a (J) b ∇ b r[D•] ren r 4 [B] ren + O r 2 u 1+δ dec d ≤1 B, r -1 q P , r -1 A . 374CHAPTER 6. DECAY ESTIMATES ON THE REGION (EXT ) M (THEOREM M4)
Making use of Lemma 6.3.5, we infer, for p = 0, +, -,

e 4
S(u,r)

J (p) Σ r[D•] ren r 4 [B] ren = S(u,r) J (p) Σ r 5 2 D • D • A -a(J ⊗B) + a S(u,r) J (p) Σ (J) b ∇ b r[D•] ren r 4 [B] ren + S(u,r) J (p) Σ Err + O r 2 u 1+δ dec d ≤1 B, r -1 q P , r -1 A .
Since Σ ≥ r 2 and J (p) = O(1), we obtain, with error terms 10 Err of the same form as the ones in Lemma 6.3.5,

e 4
S(u,r)

J (p) Σ r[D•] ren r 4 [B] ren = S(u,r) J (p) r 3 2 D • D • A -a(J ⊗B) + a S(u,r) J (p) Σ (J) b ∇ b r[D•] ren r 4 [B] ren +O r 2 u 1+δ dec d ≤1 B, r -1 q P , r -1 A + Err.
Integrating by parts twice, we have S(u,r)

J (p) r 3 2 D • D • A -a(J ⊗B) = 1 2 S(u,r) r 3 2 A -a(J ⊗B) D ⊗D J (p) = O(r 5 ) A -a(J ⊗B) D ⊗D J (p) ,
where we used the fact that J (p) is real valued. Also, according to Proposition 6.2.10, we have, for p = 0, +, -,

|D ⊗D J (p) | r 3 u 1 2 +δ dec + 1 r 4 .
We infer S(u,r)

J (p) r 3 2 D • D • A -a(J ⊗B) = O r 2 u 1 2 +δ dec + O(r) A -a(J ⊗B) .
Therefore, with error term Err of the same form as the ones in Lemma 6.3.5, e 4 S(u,r)

J (p) Σ r[D•] ren r 4 [B] ren = a S(u,r) J (p) Σ (J) b ∇ b r[D•] ren r 4 [B] ren + O r 2 u 1 2 +δ dec d ≤1 A, B, r -1 q P + Err.
Next, in view of Corollary 6.2.5, we have the rough decomposition

∇ = (1 + O(r -2 ))∇ + O(r -1 )∇ 4 + O(r -1 )∇ 3 + O(r -3 ) + r -1 Γ b d ≤1 or ∇ = ∇ + O(r -1 )∇ 3 + O(r -2 )d ≤1 + r -1 Γ b d ≤1 .
Hence, with error terms Err of the same form as the ones in Lemma 6.3.5,

e 4
S(u,r)

J (p) Σ r[D•] ren r 4 [B] ren = a S(u,r) J (p) Σ (J) b ∇ b r[D•] ren r 4 [B] ren + Err + O r 2 u 1 2 +δ dec d ≤1 A, B, r -1 q P .
Integrating by parts S(u,r)

J (p) Σ (J) b ∇ b r[D•] ren r 4 [B] ren = - S(u,r) div J (p) Σ (J) r[D•] ren r 4 [B] ren .
Using again the decomposition

∇ = ∇ + O(r -1 )∇ 3 + O(r -2 )d ≤1 + r -1 Γ b d ≤1 , recalling that ∇ 3 J = } ∇ 3 J + ∆q |q| 4 J = r -1 Γ b + O(r -1
)J, as well as e 3 (J (+) ), e 3 (J (-) ) ∈ Γ b , we deduce, e 4 S(u,r)

J (p) Σ r[D•] ren r 4 [B] ren = -a S(u,r) div J (p) Σ (J) r[D•] ren r 4 [B] ren + Err + O r 2 u 1 2 +δ dec d ≤1 A, B, r -1 q P .
Since div ( (J)) = r -1 Γ b , we infer, with error term Err of the same form as the ones in Lemma 6.3.5, e

S(u,r)

J (p) Σ r[D•] ren r 4 [B] ren = -a S(u,r) 1 r 2 (J) b ∇ b (J (p) ) r[D•] ren r 4 [B] ren + Err + O r 2 u 1 2 +δ dec d ≤1 A, B, r -1 q P .
Now, recall that we have according to Lemma 6.3.6

(J) b ∇ b (J (0) ) = r -1 Γ b , (J) b ∇ b (J (+) ) = - 1 r 2 J (-) + O(r -4 ) + r -1 Γ b , (J) b ∇ b (J (-) ) = 1 r 2 J (+) + O(r -4 ) + r -1 Γ b .
Since Σ = r 2 + O(1), we obtain, with error term Err of the same form as the ones in Lemma 6.3.5, e 4 S(u,r)

J (0) Σ r[D•] ren r 4 [B] ren = Err + O r 2 u 1 2 +δ dec d ≤1 A, B, r -1 q P and e 4 
S(u,r)

J (±) Σ r[D•] ren r 4 [B] ren = ± a r 2 S(u,r) rJ (∓) Σ [D•] ren r 4 [B] ren +Err + O r 2 u 1 2 +δ dec d ≤1 A, B, r -1 q P ,
as desired. This concludes the proof of Proposition 6.3.4.

Main

Estimates in (ext) M

Transport lemmas

The transport lemmas derived in this section will be used repeatedly in the proof of Theorem M4. Recall the norms of Definition 6.1.1, i.e.

f ∞ (u, r) := f L ∞ S(u,r) , f ∞,k (u, r) := k i=0 d i f ∞ (u, r).
Recall also that the weighted derivatives d / = (r∇) and d = (r∇, r∇ 4 , ∇ 3 ) are defined with respect to the outgoing PG frame of (ext) M. Lemma 6.4.1. Let U and F be anti-selfdual k-tensors. Assume that U verifies one of the following equations, for a real constant c,

∇ 4 U + c q U = F (6.4.1)
or

∇ 4 U + c q U = F. (6.4.2)
In both cases we derive, for any r 0 ≤ r ≤ r * at fixed u, with

1 ≤ u ≤ u * , r c U ∞ (u, r) r c * U ∞ (u, r * ) + r * r λ c F ∞ (u, λ)dλ. (6.4.3)
Proof. Assume first that U satisfies (6.4.1). Since e 4 (q) = 1, we can rewrite the equation in the form

∇ 4 (q c U ) = q c F.
The desired inequality follows then immediately by integration in r, using the fact that e 4 (r) = 1, e 4 (u) = 0 and r ≤ |q| ≤ 2r.

Next, assume that U satisfies (6.4.2). Since e 4 (q) = 1 and e 4 (q) = 1, we can rewrite the equation in the form

∇ 4 |q| c U = |q| c - c q U + F + c|q| c-1 ∇ 4 (|q|)U = |q| c - c q U + F + c|q| c-1 1 2|q| q + q U = |q| c - c q U + F + c|q| c 1 2|q| 2 q + q U = |q| c - c q U + F + c|q| c 1 q U = |q| c F, i.e. ∇ 4 |q| c U = |q| c F.
We can then proceed in the same manner as in the first case.

Proposition 6.4.2. Solutions U of the equations (6.4.1) or (6.4.2) verify the following estimate, for all k ≤ k large , r 0 ≤ r ≤ r * , and

1 ≤ u ≤ u * , r c U ∞,k (u, r) r c * U ∞,k (u, r * ) + r * r λ c F ∞,k (u, λ)dλ. (6.4.4)
Proof. The proof being similar for (6.4.1) and (6.4.2), we only treat the case where U verifies (6.4.1), i.e.

∇ 4 U + c q U = F.
Recall from Corollary 6.1.14 that we have

[∇ 4 , qD]U = O(r -2 )U + Γ g • d / ≤1 U. 378CHAPTER 6. DECAY ESTIMATES ON THE REGION (EXT ) M (THEOREM M4)
Also, recall from Lemma 6.1.23 that we have

[∇ 4 , L / T ]U = r -1 Γ b • d /U + r -1 dΓ b • U.
We infer, using also T(q) ∈ rΓ b in view of Lemma 6.1.19, and

D(q) = O(r -1 ) + Γ b , ∇ 4 ((qD) j L / l T U ) + c q (qD) j L / l T U = (qD) j L / l T F + O(r -2 )(qD, L / T ) ≤j+l U +r -1 j+l p=0 d ≤p (Γ b )(qD, L / T ) j+l-p U. (6.4.5)
Applying Lemma 6.4.1 to (6.4.5), and using the control of Γ b , we obtain, for k ≤ k large , j+l≤k r c (qD

) j L / l T U ∞ (u, r) r c * U ∞,k (u, r * ) + r * r λ c F ∞,k (u, λ) + O(λ -2 ) j+l≤k λ c (qD) j L / l T U ∞ (u, λ) dλ.
Together with Gronwall lemma, we infer, for k ≤ k large , j+l≤k r c (qD

) j L / l T U ∞ (u, r) r c * U ∞,k (u, r * ) + r * r λ c F ∞,k (u, λ)dλ. (6.4.6)
Next, multiplying (6.4.5) with r and differentiating it w.r.t. (r∇ 4 ) p , and using also the control of Γ b , we have, for p ≥ 1 and j

+ l + p ≤ k ≤ k large , |(r∇ 4 ) p (qD) j L / l T U )| r|d ≤k-1 F | + |(r∇ 4 ) p-1 (qD, L / T ) j+l U )|.
Together with (6.4.6), we deduce by iteration, for

k ≤ k large , j+l+p≤k r c (r∇ 4 ) p (qD) j L / l T U ∞ (u, r) r c * U ∞,k (u, r * ) + r c+1 F ∞,k-1 (u, r) + r * r λ c F ∞,k (u, λ)dλ. Using r c+1 F ∞,k-1 (u, r) r * r λ c (λ∇ 4 ) ≤1 F ∞,k-1 (u, λ)dλ r * r λ c F ∞,k (u, λ)dλ, we obtain, for k ≤ k large , j+l+p≤k r c (r∇ 4 ) p (qD) j L / l T U ∞ (u, r) r c * U ∞,k (u, r * ) + r * r λ c F ∞,k (u, λ)dλ.
Since q = r + O(1), and since e 3 is spanned by (T, e 4 , e 1 , e 2 ) in view of the definition of T, see (6.1.28), we infer, for k ≤ k large ,

r c U ∞,k (u, r) r c * U ∞,k (u, r * ) + r * r λ c F ∞,k (u, λ)dλ
as desired. This concludes the proof of Proposition 6.4.2.

6.4.2 Estimates for the outgoing PG structure of (ext) M on Σ *

In this section, we recall the main estimates derived in Section 5.7 on Σ * with respect to the outgoing PG structure of (ext) M. More precisely, we restate below Proposition 5.7.3. Note that in the statement of that proposition, the PG frame is denoted by prime, while the frame adapted to Σ * , which is used in the proof, is unprimed. Since, in this chapter, we only deal with the outgoing PG frame of (ext) M, we therefore drop the primes in the statement of Proposition 5.7.3 which thus takes the following form.

Proposition 6.4.3. We have on Σ * , for

11 k ≤ k * , sup Σ * ru 1+δ dec |d k Γ b | + r 2 u 1 2 +δ dec |d k Γ g | + r 2 u 1+δ dec |d k-1 ∇ 3 Γ g | 0 , sup Σ * r 2 u 1+δ dec |d k } trX| + r 3 u 1+δ dec d k D • q Z + 2 q P + r 4 u 1 2 +δ dec |d k-1 ∇ 3 B| 0 ,
and

sup Σ * r 5 u 1+δ dec [D•] ren [B] ren =1 + D • L / T B =1 0 .

Strategy of the proof of Theorem M4

Our goal in this chapter is to extend the results of Proposition 6.4.3 to (ext) M, i.e. to prove the following proposition which implies Theorem M4. 380CHAPTER 6. DECAY ESTIMATES ON THE REGION (EXT ) M (THEOREM M4) Proposition 6.4.4. We have on (ext) M, for12 k ≤ k * -8, sup

(ext) M ru 1+δ dec |d k Γ b | + r 2 u 1 2 +δ dec + ru 1+δ dec |d k Γ g | + r 2 u 1+δ dec |d k-1 ∇ 3 Γ g | 0 ,
and

sup (ext) M r 2 u 1+δ dec |d k } trX| + sup (ext) M r 4 u 1 2 +δ dec |d k-1 ∇ 3 B| 0 .
We now describe the strategy of the proof of Proposition 6.4.4. To start with, we need to distinguish between the estimates for the Γ g quantities which involve O(r -2 u -1/2-δ dec ) decay, and those which involve O(r -1 u -1-δ dec ) decay. The first are relatively easy to derive using our main linearized equations, see Lemma 6.1.15, the corresponding estimates on the last slice, Proposition 6.4. In what follows, we describe the main steps in deriving the much more subtle O(r -1 u -1-δ dec ) estimates for the Γ g quantities:

1. First derive an estimate for } trX using the Raychadhouri equation it verifies, Proposition 6.4.2, and its estimate on the last slice. The resulting estimates improve the stronger assumption made in Ref 1, see (6.1.16), i.e. we obtain (6.1.16) with being replaced by 0 .

2. We observe that we are not able to estimate directly the other primary quantities X, B, q Z, q P . Consider for example the equation verified by

X ∇ 4 X + (trX) X = -A.
This works well, with the help of Proposition 6.4.2, to derive an estimate of the form O 0 r -2 u -1/2-δ dec but fails to provide an O 0 r -1 u -1-δ dec estimate. Indeed according to Ref 2, we only have

A = O 0 r -2-δ u -1-δ dec , for a small constant δ = 1 2 δ extra -δ dec > 0.
On the other hand we can commute with L / T and derive an estimate of the form L / T X = O 0 r -2 u -1-δ dec by making use of the fact that,

according to Ref 2, L / T A = O 0 r -3-δ u -1-δ dec .
3. We encounter a similar issue with estimates for B. To start with we can not use its natural transport equation

∇ 4 B + 2trXB = 1 2 D • A + 1 2 (2Z + H) • A.
Indeed, this transport equation is seriously overshooting in r, i.e. its integration would require decay in r for A which is well beyond what is consistent with our estimates. We look instead at another Bianchi equation,

D ⊗B + (Z + 4H) ⊗B = ∇ 3 A + 1 2 trX -4ω A + 3P X.
4. We need first to commute with L / T to take advantage of the previously derived information for L / T X. This provides an estimate for D ⊗L / T B from which we would have to recover L / T B.

5. The problem however is that D ⊗ is not an operator on S(t, u). It is for this reason that we have to appeal to Proposition 6.2.4 and Corollary 6.2.5 to derive instead an estimate for D ⊗L / T B.

6. In the process however we generate another L / T derivative for B, i.e. we first need an estimates for L / 2 T B. Fortunately this can be derived 13 Σ q D • (q 4 L / T B)J (p) which can therefore be estimated, using our information on Σ * . Using the transformation formulas between the prime and unprimed frames we then estimate D •L / T B =1 and thus, by Corollary 6.2.14, the derivatives ( d / ) k L / T B. Transforming back to the outgoing PG frame of (ext) M, we derive the desired estimates for L / T B.

8. The estimates for L / T q Z and L / T q P are then similar to the ones for L / T X. Our strategy therefore is to estimate first L / T X, L / 2 T B, L / T B, L / T q Z and L / T q P , and then derive estimates for the primary quantities using elliptic theory on the spheres S = S(r, u). 9. The estimates for the quantities X, B, q Z, q P , though more subtle, follow a similar pattern. The main difference is that they require the transport equations for the renor- 10. We first derive conditional decay estimates, see Proposition 6.5.1, in which the term (D • B) =1 appear on the right hand side. The estimate are then made unconditional in Proposition 6.5.2. It is important to note that the estimates for X, B, q Z, q P in Proposition 6.5.2 not only improve the corresponding assumptions in Ref 1 by replacing with 0 ; they are also better in powers of r, that is they gain r -δ for δ > 0. These improvements are needed later to derive the correct estimates for the remaining quantities in Γ b .

11. All remaining estimates, i.e. the O(r -2 u -1/2-δ dec ) decay estimates for Γ g , and the decay estimates for Γ b , are derived in Propositions 6.5.4 and Proposition 6.6.2. Proof. We apply Proposition 6.4.2 to the equation

Estimates for } trX

∇ 4 } trX + 2 q } trX = Γ g • Γ g
and derive, for all r 0 ≤ r ≤ r * ,

r 2 } trX ∞,k (u, r) r 2 * } trX ∞,k (u, r * ) + r * r λ 2 Γ g • Γ g ∞,k (u, λ)dλ.
Thus, in view of the estimates Proposition 6.4.3 for } trX on Σ * , bootstrap assumptions Ref 1 for Γ g and interpolation Remark 6.1.5, we derive sup

r 0 ≤r≤r * r 2 } trX ∞,k (u, r) 0 u -1-δ dec , k ≤ k * , 1 ≤ u ≤ u * ,
which concludes the proof of the proposition.

Estimates for renormalized quantities in (ext) M

We extend the estimates for the renormalized quantities [H] ren , [ D cos θ] ren and [ | M ] ren from Σ * , as recorded in Proposition 6.4.3, to all of (ext) M. We do this with the help of the transport equations derived in Proposition 6.3.2. We also make use of the estimates for A in Ref 2, as well as the above estimate for } trX.

Lemma 6.4.6. We have on

(ext) M max k≤k * sup (ext) M ru 1+δ dec d k [H] ren 0 , max k≤k * sup (ext) M ru 1+δ dec d k [ D cos θ] ren 0 ,
and

max k≤k * -1 sup (ext) M r 3 u 1+δ dec d k [ | M ] ren 0 .
Proof. According to Proposition 6.3.2, we have

∇ 4 q[ q H] ren = O(r -1 ) } trX + O(1) d / ≤1 A + rΓ b • Γ g , ∇ 4 q[ D cos θ] ren = O(1) } trX + O(r)A + rΓ b • Γ g , ∇ 4 qq 2 [ | M ] ren = O(1) d / ≤1 } trX + O(r) d / ≤2 A + r 2 d / ≤1 (Γ g • Γ g ) + r 3 Γ b • A.
Applying Proposition 6.4.2 to the first identity, and using the estimate on Σ * for [ q H] ren , we derive, for all k ≤ k * , r 0 ≤ r ≤ r * and 1

≤ u ≤ u * , r [ q H] ren ∞,k (u, r) r * [ q H] ren ∞,k (u, r * ) + r * r F ∞,k (u, λ)dλ 0 u -1-δ dec + r * r F ∞,k (u, λ)dλ
where

F := O(r -1 ) } trX + O(1) d / ≤1 A + rΓ b • Γ g .
Using the available estimates for } trX and A, we obtain, for all k ≤ k * , r 0 ≤ r ≤ r * and 1

≤ u ≤ u * , r * r F ∞,k (u, λ)dλ 0 r -1 u -1-δ dec .
Hence, we infer, for all k ≤ k * , r 0 ≤ r ≤ r * and 1

≤ u ≤ u * , r [ q H] ren ∞,k (u, r) 0 u -1-δ dec
as stated. The two other estimates are derived in the same manner.

6.4.6

Estimates for some L / T derivatives in (ext) M Proposition 6.4.7. We have on 15 (ext) M, for r 0 sufficiently large,

max k≤k * -1 sup (ext) M r 2 u 1+δ dec |d k L / T X| 0 , max k≤k * -2 sup (ext) M r 4 u 1+δ dec |d k L / 2 T B| 0 , max k≤k * -3 sup (ext) M r 3+δ u 1+δ dec |d k L / T B| 0 , max k≤k * -3 sup (ext) M r 2 u 1+δ dec |d k L / T q Z| 0 , max k≤k * -4 sup (ext) M r 3 u 1+δ dec |d k L / T q P | 0 .
Proof. The proof contains several steps.

Step 1. First, we estimate L T X. Starting with

∇ 4 X + (trX) X = -A,
and commuting with L / T we derive, in view of Lemma 6.1.23,

∇ 4 L / T X + (trX)L / T X = -L / T A + d ≤1 (Γ g ) • d ≤1 (Γ g )
and hence

∇ 4 L / T X + 2 q L / T X = -L / T A + d ≤1 (Γ g ) • d ≤1 (Γ g ).
Hence, applying Proposition 6.4.2, we have, for all r 0 ≤ r ≤ r * and 1

≤ u ≤ u * , r 2 L / T X ∞,k (u, r) r 2 * L / T X ∞,k (u, r * ) + r * r λ 2 F ∞,k (u, λ)dλ
where

F = -L / T A + d ≤1 (Γ g ) • d ≤1 (Γ g ).
According to the improved estimates for A of Theorem M1, we have, recalling that the small constant δ > 0 is given by δ

= 1/2(δ extra -δ dec ), max k≤k * sup (ext) M r 2+δ u 1+δ dec |d k A| + max k≤k * -1 sup (ext) M r 3+δ u 1+δ dec |d k ∇ 3 A| 0 .
Since L / T A = ∇ 3 A + r -1 d ≤1 A, and together with the estimates for Γ g and the form of F , we infer

max k≤k * -1 sup (ext) M r 3+δ u 1+δ dec |d k F | 0 .
Taking into account the control on Σ * , we deduce, for all

k ≤ k * -1, r 0 ≤ r ≤ r * and 1 ≤ u ≤ u * , r 2 L / T X ∞,k (u, r) 0 u -1-δ dec
as stated.

Step 2. Next, we estimate L / 2 T B. Recall that we have

∇ 4 B + 4 q B = 1 2 D • A + aq 2|q| 2 J • A + Γ g • (A, B).
We commute with L / T and obtain, using Lemma 6.1.23,

∇ 4 L / T B + 4 q L / T B = 1 2 D • L / T A + aq 2|q| 2 J • L / T A + d ≤1 (Γ g )d ≤1 (A, B).
Commuting with L / T again, we derive

∇ 4 L / 2 T B + 4 q L / 2 T B = 1 2 D • L / 2 T A + aq 2|q| 2 J • L / 2 T A + d ≤2 (Γ g )d ≤2 (A, B).
Hence, applying Proposition 6.4.2, we infer, for all r 0 ≤ r ≤ r * and 1 ≤ u ≤ u * ,

r 4 L / 2 T B ∞,k (u, r) r 4 * L / 2 T B ∞,k (u, r * ) + r * r λ 4 F ∞,k (u, λ)dλ
where

F = 1 2 D • L / 2 T A + O(r -2 )L / 2 T A + d ≤2 (Γ g )d ≤2 (A, B).
Making use of the improved estimate for A, ∇ 3 A and ∇ 2 3 A in Ref 2, we have, using also the relation between L / 2 T and ∇ 2 3 in (6.1.39),

max k≤k * -1 sup (ext) M r 4+δ u 1+δ dec |d k L / 2 T A| 0 .
Therefore, together with the definition of F , and the control for B and Γ g provided by Ref 1, we infer, for k ≤ k * -1, and for all r 0 ≤ r ≤ r * and 1
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Using also the estimates for L / 2 T B on Σ * , we obtain, for all k ≤ k * -2, r 0 ≤ r ≤ r * and 1 ≤ u ≤ u * ,

r 4 L / 2 T B ∞,k (u, r) 0 u -1-δ dec
as stated.

Step 3. Next, we estimate D ⊗L / T B. We start with the equation

D ⊗B + (Z + 4H) ⊗B = ∇ 3 A + 1 2 trX -4ω A + 3P X.
Commuting with L / T , and using Lemma 6.1.23 for the commutator, we infer

D ⊗L / T B + (Z + 4H) ⊗L / T B = L / T ∇ 3 A + 1 2 trX -4ω L / T A + 3P L / T X +r -2 d ≤1 (Γ b )d ≤1 (Γ g ) + d ≤1 (Γ b )A.
Using the relation between L / T and ∇ 3 in (6.1.39), as well as the fact that Z = O(r -2 )+Γ g and H = O(r -2 ) + Γ b , we deduce

D ⊗L / T B = O(r -2 )L / T B + ∇ 2 3 A + O(r -1 )d ≤1 ∇ 3 A + O(r -2 )d ≤1 A + O(r -3 )L / T X +r -2 d ≤1 (Γ b )d ≤1 (Γ g ) + d ≤1 (Γ b )d ≤1 (A, B).
In view of Corollary 6.2.5 we have

D = 1 + O(r -2 ) D + O(r -1 )L / T + O(r -3 ) + r -1 Γ b d ≤1 = D + O(r -3 ) d / ≤1 + O(r -1 )L / T + r -1 Γ b d ≤1 ,
and thus

D ⊗L / T B = D ⊗L / T B + O(r -3 ) d / ≤1 L / T B + O(r -1 )L / 2 T B + r -1 Γ b d ≤1 L / T B.
Hence,

D ⊗L / T B = O(r -1 )L / 2 T B + O(r -2 ) d / ≤1 L / T B + ∇ 2 3 A + O(r -1 )d ≤1 ∇ 3 A + O(r -2 )d ≤1 A +O(r -3 )L / T X + r -2 d ≤1 (Γ b )d ≤1 (Γ g ) + d ≤1 (Γ b )d ≤1 (A, B).
Using again Corollary 6.2.5 we can express d /L / T B in terms of d / L / T B and derive

D ⊗L / T B = O(r -1 )L / 2 T B + O(r -2 )( d / ) ≤1 L / T B + ∇ 2 3 A + O(r -1 )d ≤1 ∇ 3 A + O(r -2 )d ≤1 A +O(r -3 )L / T X + r -2 d ≤1 (Γ b )d ≤1 (Γ g ) + d ≤1 (Γ b )d ≤1 (A, B).
we commute with L / T and obtain, using Lemma 6.1.23, the following more precise transport equation for ∇ 4 L / T B compared the one used in Step 2

∇ 4 L / T B + 4 q L / T B = 1 2 D • L / T A + aq 2|q| 2 J • L / T A + (r -1 d ≤1 (Γ b ), L / T Γ g )d ≤1 (A, B) +Γ g L / T (A, B). Since ∇ 3 Γ g = r -1 d ≤1 Γ b ,
and in view of the link between L / T and ∇ 3 , we infer

∇ 4 L / T B + 4 q L / T B = 1 2 D • L / T A + aq 2|q| 2 J • L / T A + r -1 d ≤1 (Γ b )d ≤1 (A, B) + Γ g ∇ 3 (A, B) = 1 2 D • L / T A + O(r -2 )L / T A + r -1 d ≤1 (Γ b )d ≤1 (A, B) + Γ g ∇ 3 (A, B) = 1 2 D • L / T A + O(r -2 )∇ 3 A + O(r -3 )d ≤1 A + r -1 d ≤1 (Γ b )d ≤1 (A, B) +Γ g ∇ 3 (A, B)
and hence

∇ 4 (q 4 L / T B) = q 4 2 D • L / T A + O(r 2 )∇ 3 A + O(r)d ≤1 A + r 3 d ≤1 (Γ b )d ≤1 (A, B) +r 4 Γ g ∇ 3 (A, B).
We commute with q D• relying on the following commutator estimate (see Corollary 6.1.14)

[∇ 4 , q D•] = O(r -2 ) + Γ g • d / ≤1 .
Using also D(q) = O(r -1 ) + Γ b , q = r + O(1), and the link between L / T and ∇ 3 , we deduce

∇ 4 (q D • (q 4 L / T B)) = O(r 2 )L / T B + r 5 2 D • D • L / T A + O(r 2 ) d / ≤2 ∇ 3 A + O(r)d ≤3 A +r 3 d / ≤1 (d ≤1 (Γ b )d ≤1 (A, B)) + r 4 d ≤1 (Γ g ∇ 3 (A, B)).
Since e 4 (J (p) ) = 0 on (ext) M, and using J (p) = O(1), we derive, for p = 0, +, -,

∇ 4 (q D • (q 4 L / T B)J (p) ) = O(r 2 )L / T B + r 5 2 D • D • L / T AJ (p) + O(r 2 ) d / ≤2 ∇ 3 A + O(r)d ≤3 A +r 3 d / ≤1 (d ≤1 (Γ b )d ≤1 (A, B)) + r 4 d ≤1 (Γ g ∇ 3 (A, B)).
Next we integrate on S with the help of Corollary 6. Applying this to 

h := 1 Σ q D • (q 4 L / T B)J (p) , ( 6 
S(u,r) h = S 1 Σ ∇ 4 (q D • (q 4 L / T B)J (p) ) + O u 1+δ dec 1 Σ q D • (q 4 L / T B)J (p) = O(r 2 )L / T B + r 3 2 S D • D • L / T AJ (p) + O(r 2 ) d / ≤2 ∇ 3 A + O(r)d ≤3 A +r 3 d / ≤1 (d ≤1 (Γ b )d ≤1 (A, B)) + r 4 d ≤1 (Γ g ∇ 3 (A, B)) +O r 2 u 1+δ dec d / ≤1 L / T B. 4 

Now, using again

D = D + O(r -3 ) d / ≤1 + O(r -1 )L / T + r -1 Γ b d ≤1 , we have D • D • L / T A = D • D • L / T A + O(r -2 )d ≤1 ∇ 2 3 A + O(r -3 )d ≤2 ∇ 3 A + O(r -4 )d ≤3 A +r -1 d ≤1 (Γ g • d ≤1 ∇ 3 A) + r -2 d ≤3 (Γ g • A)
and hence

e 4 S(u,r) h = O(r 2 )L / T B + r 3 2 S D • D • L / T AJ (p) + O(r 3 )d ≤1 ∇ 2 3 A +O(r 2 )d ≤2 ∇ 3 A + O(r)d ≤3 A + r 3 d ≤3 (Γ b (A, B))
+r 4 d ≤1 (Γ g d ≤1 ∇ 3 (A, B)) + O r 2 u 1+δ dec d / ≤1 L / T B.
Integrating by parts and making use of

D ⊗D J (p) r 3 u 1 2 +δ dec + 1 r 4 ,
see Proposition 6.2.10, we deduce Now, recall that h is given by

S D • D • L / T AJ (p) = S L / T A D ⊗D J (p) = O ru 1 2 +δ dec L / T A + O(r -2 )L / T A. Therefore e 4 S(u,r) h = O(r 2 )L / T B + O(r 3 )d ≤1 ∇ 2 3 A + O(r 2 )d ≤2 ∇ 3 A + O(r)d ≤3 A +r 3 d ≤3 (Γ b (A, B)) + r 4 d ≤1 (Γ g d ≤1 ∇ 3 (A, B)) +O r 2 u 1+δ dec d / ≤1 L / T B + O r 2 u 1 2 +δ dec L / T A.
h = 1 Σ q D • (q 4 L / T B)J (p) ,
so that, together with Σ = r 2 + O(1) and q = r + O(1), we have

S h = r 5 D • L / T B =1 + O(r 3 ) d / ≤1 L / T B. (6.4.11)
Together with (6.4.9), we infer

r 2 L / T B = O(r -2 ) S h + O( 0 r -1-δ u -1-δ dec ).
Plugging the second identity in the above, we obtain

e 4 S(u,r) h = O(r -2 ) S h + O 0 r 1+δ u 1+δ dec .
Using Gronwall lemma, we deduce

S(u,r) h S(r * ,u) h + 0 u 1+δ dec .
Together with (6.4.11), and the control of D • L / T B =1 and L / T B on Σ * , this yields, on any sphere S = S(u, r) of (ext) M,

(D • L / T B) =1 0 r -5 u -1-δ dec + r -2 d / ≤1 L / T B L ∞ (S) .
(6.4.12)

Step 6. We are now in position to conclude the estimate for L / T B. By combining (6.4.12) with the estimate (6.4.9) derived in Step 4, we have, on any sphere S = S(u, r) of (ext) M,

for k ≤ k * -3, d / k L / T B L ∞ (S) r D • L / T B =1 + 0 r -3-δ u -1-δ dec r -1 d / ≤1 L / T B L ∞ (S) + 0 r -3-δ u -1-δ dec .
Since r ≥ r 0 on (ext) M, for r 0 sufficiently large, we may absorb the first term on the RHS. We deduce, for every sphere S = S(u, r) in (ext) M,

d / ≤k * -3 L / T B L ∞ (S) 0 r -3-δ u -1-δ dec .
Together with the estimates for L / 2 T B of Step 2, we infer

(L / T , d /) ≤k * -3 L / T B L ∞ (S) 0 r -3-δ u -1-δ dec .
Finally, recalling the transport equation for ∇ 4 L / T B which yields

∇ 4 L / T B = - 4 q L / T B + O(r -1 )d ≤1 ∇ 3 A + O(r -2 )d ≤2 A + r -1 d ≤1 (Γ b )d ≤1 (A, B) +Γ g ∇ 3 (A, B),
and together with the control of A and ∇ 3 A provided by Ref 2, and the bootstrap assumptions in Ref 1, we obtain

(r∇ 4 , L / T , d /) ≤k * -3 L / T B L ∞ (S) 0 r -3-δ u -1-δ dec .
Together with the fact that e 3 is spanned by T, e 4 and (e 1 , e 2 ), we infer, for all k ≤ k * -3,

r 0 ≤ r ≤ r * and 1 ≤ u ≤ u * , r 3+δ L / T B ∞,k (u, r) 0 u -1-δ dec (6.4.13)
as stated.

Step 7. Next, we estimate L / T q P with the help of the equation

∇ 4 q P + 3 q q P = 1 2 D • B - aq 2|q| 2 J • B + O(r -3 ) } trX + Γ b • A + r -1 Γ g • Γ g .
We commute with L / T using, see Lemma 6.1.23,

[∇ 4 , L / T ] = r -1 d ≤1 (Γ b )d ≤1 , [L / T , ∇] = r -1 d ≤1 (Γ b )d ≤1 ,
and use also the fact that ∇ 3 (Γ g ) = r -1 d ≤1 Γ b and T(q) ∈ rΓ b . We obtain

∇ 4 L / T q P + 3 q L / T q P = 1 2 D • L / T B - aq 2|q| 2 J • L / T B + O(r -3 )d ≤1 } trX +d ≤1 (Γ b • (A, B)) + r -2 d ≤1 (Γ b ) • d ≤1 (Γ g ).
We now make use of Proposition 6.4.2 and deduce, for all r 0 ≤ r ≤ r * and 1 ≤ u ≤ u * ,

r 3 L / T q P ∞,k (u, r) r 3 * L / T q P ∞,k (u, r * ) + r * r λ 3 F ∞,k (u, λ)dλ 392CHAPTER 6. DECAY ESTIMATES ON THE REGION (EXT ) M (THEOREM M4) with F = 1 2 D • L / T B - aq 2|q| 2 J • L / T B + O(r -3 )d ≤1 } trX + d ≤1 (Γ b • (A, B)) +r -2 d ≤1 (Γ b ) • d ≤1 (Γ g ).
Hence, using the estimates for L / T B derived in Step 6, the estimate for } trX of Proposition 6.4.5, the bootstrap assumptions in Ref 1, and the estimate for L / T q P on Σ * , we deduce, for all k ≤ k * -4, r 0 ≤ r ≤ r * and 1 ≤ u ≤ u * ,

L / T q P ∞,k (u, r) 0 r -3 u -1-δ dec (6.4.14)
as stated.

Step 8. Finally, we estimate L / T q Z. Recall

∇ 4 q Z + 2 q q Z = - aq |q| 2 J • X -B + O(r -2 ) } trX + Γ g • Γ g . We commute with L / T . Using again [∇ 4 , L / T ] = r -1 d ≤1 (Γ b )d ≤1 , and 
T(q) = T(r) + iaT(cos θ) ∈ rΓ b , L / T J = } ∇ 3 J + O(r -1 ) | ∇J + r -1 d(Γ b )J ∈ r -1 d ≤1 Γ b ,
we infer

∇ 4 L / T q Z + 2 q L / T q Z = - aq |q| 2 J • L / T X -L / T B + O(r -2 )d ≤1 } trX + d ≤1 (Γ g ) • d ≤1 (Γ g ) = O(r -2 )L / T X -L / T B + O(r -2 )d ≤1 } trX + d ≤1 (Γ g ) • d ≤1 (Γ g ).
Proceeding as before with the help of Proposition 6.4.2, using the estimates for L / T X derived in Step 1, the estimates for L / T B derived in Step 6, the estimate for } trX of Proposition 6.4.5, the bootstrap assumptions in Ref 1, and the estimate for L / T q Z on Σ * , we deduce, for all k ≤ k * -3, r 0 ≤ r ≤ r * and 1 ≤ u ≤ u * ,

L / T q Z ∞,k (u, r) 0 r -2 u -1-δ dec (6.4.15)
as stated. This concludes the proof of Proposition 6.4.7.

6.5 Improved decay estimates for B, q P , X, q Z, q H, and D cos θ 6.5.1 Conditional control of B, q P , X, q Z, q H, and D cos θ

The goal of this section is to prove the following proposition.
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r |d ≤k B| + |d ≤k q P | + |d ≤k X| + |d ≤k q Z| r 2 |(D • B) =1 | + 0 r -1-δ u -1-δ dec (6.5.1)
and

|d ≤k q H| + |d ≤k D cos θ| r 2 |(D • B) =1 | + 0 r -1 u -1-δ dec . (6.5.2)
In addition we prove the following preliminary estimate 16 for B

|d ≤k * -2 B| r|(D • B) =1 | + r -3-δ u -1/2-δ dec . (6.5.3)
Proof. We will repeatedly make use of the notation introduced in Definition 6.1.4, i.e.

U ∈ r -p Good k if U satisfies |d ≤k U | 0 r -p u -1-δ dec .
Step 1. In view of Ref 2 and Proposition 6.4.5, we have on

(ext) M A ∈ r -2-δ Good k * , ∇ 3 A ∈ r -3-δ Good k * -1 , } trX ∈ r -2 Good k * -1 . (6.5.4) 
Also, in view of Lemma 6.4.6, we have on

(ext) M [ q H] ren , [ D cos θ] ren ∈ r -1 Good k * , [ | M ] ren ∈ r -3 Good k * -1 , (6.5.5) 
where we recall

q[ q H] ren = q q H -q q Z + 1 3 -q 2 + |q| 2 B + a 2 (q -q)J • X, q[ D cos θ] ren = q D cos θ + i 2 |q| 2 J • X, qq 2 [ | M ] ren = q D • q 2 q Z + - a 2 q 2 - a 2 |q| 2 J • X + 2q 3 q P -2aq 2 J • q Z + - 1 3 q 2 q 2 - 1 3 qq 3 + 2 3 q 4 D • B + a q 2 q + 2 3 qq 2 - 13 6 q 3 J • B + a 2 (q 2 + |q| 2 )J • X • J.
Since q = r + O(1), q = r + O(1), -q 2 + |q| 2 = O(r), and 16 A stronger estimate, i.e. with replaced by 0 , will be proved later.

- 1 3 q 2 q 2 - 1 3 qq 3 + 2 3 q 4 = O(r 3 ),
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we infer

q H = q Z + O(r -1 ) q Z + O(1)B + O(r -2 ) X + r -1 Good k * , D cos θ = - i 2 r J • X + O(r -1 ) X + r -1 Good k * , rD • q Z = -2r q P + O(r -1 ) q Z + O(r -1 ) d / ≤1 X + O(1) q P + O(1) d / ≤1 B + r -2 Good k * -1 . (6.5.6)
Step 2. Recall the linearized Codazzi for X

1 2 D • X = 1 q q Z -B + O(r -2 ) X + O(r -2 ) q H + O(r -1 ) d / ≤1 } trX +O(r -2 ) D(cos θ) + Γ b • Γ g .
In view of the assumptions Ref 1 and the estimate for } trX in (6.5.4), we obtain

D • X = 2 r q Z -2B + O(r -2 ) q Z + O(r -2 ) X + O(r -2 ) q H + O(r -2 ) D(cos θ) +r -3 Good k * -1 .
Eliminating q H and D(cos θ) on the RHS with the help of the two first equations of (6.5.6), we infer

D • X = 2 r q Z -2B + O(r -2 ) q Z + O(r -2 ) X + O(r -2 )B + r -3 Good k * -1 .
(6.5.7)

Step 3. Starting with the Bianchi identity

∇ 3 A - 1 2 D ⊗B = - 1 2 trXA + 4ωA + 1 2 (Z + 4H) ⊗B -3P X,
we have

D ⊗B = 2∇ 3 A + O(r -1 )A + O(r -2 )B + O(r -3 ) X + r -1 Γ g • Γ g + Γ b • (A, B)
and hence, using the estimates for ∇ 3 A and A in (6.5.4), as well as Ref 1 for the nonlinear terms, we deduce

D ⊗B = O(r -2 )B + O(r -3 ) X + r -3-δ Good k * -1 . (6.5.8)
Step 4. Starting with the linearized Bianchi identity

∇ 3 B -D q P = 2 r B + O(r -2 )B + O(r -2 ) q P + O(r -3 ) q H + O(r -4 ) D(cos θ) +r -1 Γ b • Γ g , 6.
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D q P = ∇ 3 B - 2 r B + O(r -2 )B + O(r -2 ) q P + O(r -3 ) q H + O(r -4 ) D(cos θ) + r -1 Γ b • Γ g .
(6.5.9)

Using the identity

L / T = 1 2 ∇ 3 + 1 2 ∆ |q| 2 ∇ 4 + O(r -2 ) d / ≤1 + Γ b ,
we write

∇ 3 B = 2L / T B - ∆ |q| 2 ∇ 4 B + O(r -2 ) d / ≤1 B + r -1 Γ b • Γ g .
Also, using the linearized Bianchi identity

∇ 4 B + 4 q B = 1 2 D • A + aq 2|q| 2 J • A + Γ g • (B, A),
we have

∇ 4 B = - 4 r B + O(r -2 )B + O(r -1 ) d / ≤1 A + r -1 Γ g • Γ g . Hence ∇ 3 B = 4 r B + 2L / T B + O(r -2 ) d / ≤1 B + O(r -1 ) d / ≤1 A + r -1 Γ b • Γ g .
Back to (6.5.9) we substitute ∇ 3 B to deduce

D q P = 2 r B + 2L / T B + O(r -2 ) d / ≤1 B + O(r -2 ) q P + O(r -3 ) q H + O(r -4 ) D(cos θ) +O(r -1 ) d / ≤1 A + r -1 Γ b • Γ g .
In view of (6.5.4) for A and the control of L / T B in Proposition 6.4.7, we deduce

D q P = 2 r B + O(r -2 ) d / ≤1 B + O(r -2 ) q P + O(r -3 ) q H + O(r -4 ) D(cos θ) +r -3-δ Good k * -3 .
Using the first two equations of (6.5.6) to eliminate q H and D(cos θ)

D q P = 2 r B + O(r -2 ) d / ≤1 B + O(r -2 ) q P + O(r -3 ) q Z + O(r -4 ) X + r -3-δ Good k * -3 .
(6.5.10)

Step 8. Using the last equation of (6.5.6), i.e.

rD • q Z = -2r q P + O(r -1 ) q Z + O(r -1 ) d / ≤1 X + O(1) q P + O(1) d / ≤1 B + r -2 Good k * -1 ,
and r ≥ r 0 sufficiently large, we have for all k ≤ k * -1

d / ≤k-1 q P L 2 (S(u,r)) r -1 d / ≤k q Z L 2 (S(u,r)) + r -2 d / ≤k X L 2 (S(u,r)) +r -1 d / ≤k B L 2 (S(u,r)) + 0 r -2 u -1-δ dec .
Also, recall (6.5.10)

D q P = 2 r B + O(r -2 ) d / ≤1 B + O(r -2 ) q P + O(r -3 ) q Z + O(r -4 ) X + r -3-δ Good k * -3 .
Together with the previous estimate, we infer for all k ≤ k * -3,

d / ≤k q P L 2 (S(u,r)) r -1 d / ≤k q Z L 2 (S(u,r)) + d / ≤k B L 2 (S(u,r)) + r -2 d / ≤k X L 2 (S(u,r)) + 0 r -1-δ u -1-δ dec .
Thus, for all S = S(u, r)

⊂ (ext) M, d / ≤k * -3 q P L 2 (S) r -1 d / ≤k * -3 q Z L 2 (S) + d / ≤k * -3 B L 2 (S)
+ r -2 d / ≤k * -3 X L 2 (S) + 0 r -1-δ u -1-δ dec .

(6.5.15)

Step 9. So far we have established, see (6.5.14) and (6.5.15),

r d / ≤k * -3 B L 2 (S) + d / ≤k * -3 q Z L 2 (S) r 3 |(D • B) =1 | + r -1 d / ≤k * -2 X L 2 (S) + d / ≤k * -3 q P L 2 (S) + 0 r -δ u -1-δ dec d / ≤k * -3 q P L 2 (S) r -1 d / ≤k * -3 q Z L 2 (S) + d / ≤k * -3 B L 2 (S) + r -2 d / ≤k * -3 X L 2 (S) + 0 r -1-δ u -1-δ dec .
Combining we deduce

r d / ≤k * -3 B L 2 (S) + d / ≤k * -3 q Z L 2 (S) r 3 |(D • B) =1 | + r -1 d / ≤k * -2 X L 2 (S) + d / ≤k * -3 q P L 2 (S) + 0 r -δ u -1-δ dec r 3 |(D • B) =1 | + r -1 d / ≤k * -2 X L 2 (S) + 0 r -δ u -1-δ dec +r -1 d / ≤k * -3 q Z L 2 (S) + d / ≤k * -3 B L 2 (S) + r -2 d / ≤k * -3 X L 2 (S) + 0 r -1 u -1-δ dec .
Hence, for r ≥ r 0 sufficiently large, we derive

r d / ≤k * -3 B L 2 (S) + d / ≤k * -3 q Z L 2 (S) r 3 |(D • B) =1 | + r -1 d / ≤k * -2 X L 2 (S) + 0 r -δ u -1-δ dec .
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Back to (6.5.15), we deduce

d / ≤k * -3 q P L 2 (S)) r 2 |(D • B) =1 | + r -2 d / ≤k * -2 X L 2 (S)) + 0 r -1-δ u -1-δ dec .
Combining the two estimates, we infer

r d / ≤k * -3 B L 2 (S) + | d / ≤k * -3 q P L 2 (S) + d / ≤k * -3 q Z L 2 (S) r 3 |(D • B) =1 | + r -1 d / ≤k * -2 X L 2 (S) + 0 r -δ u -1-δ dec . (6.5.16)
It thus remains to estimate X.

Step 10. Recall (6.5.7)

D • X = 2 r q Z -2B + O(r -2 ) q Z + O(r -2 ) X + O(r -2 )B + r -3 Good k * -1 .
Using formula (6.5.11) to pass to the prime frame, as well as the control of L / T X provided by Proposition 6.4.7, we deduce

rD • X = 2 q Z -2rB + O(r -1 ) q Z + O(r -1 ) X + O(r -1 )B + r -2 Good k * -2 .
Using the third elliptic estimate of Corollary 6.2.14, we infer

( d /) ≤k * -2 X L 2 (S(u,r)) ( d /) ≤k * -3 q Z L 2 (S(u,r)) + r ( d /) ≤k * -3 B L 2 (S(u,r))
+r -1 ( d /) ≤k * -3 X L 2 (S(u,r)) + 0 r -1 u -1-δ dec .

Passing back to the un-primed frame, and using again the control of L / T X provided by Proposition 6.4.7, we deduce

( d /) ≤k * -2 X L 2 (S(u,r)) ( d /) ≤k * -3 q Z L 2 (S(u,r)) + r ( d /) ≤k * -3 B L 2 (S(u,r)) +r -1 ( d /) ≤k * -3 X L 2 (S(u,r)) + 0 r -1 u -1-δ dec .
Since r ≥ r 0 on (ext) M, we infer, for r 0 large enough,

d / ≤k * -2 X L 2 (S(u,r)) d / ≤k * -3 q Z L 2 (S(u,r)) + r d / ≤k * -3 B L 2 (S(u,r))
+ 0 r -1 u -1-δ dec . (6.5.17)

Step 11. We combine (6.5.16) with (6.5.17). Thus for any S = S(u, r) ⊂ (ext) M, we have

r d / ≤k * -3 B L 2 (S) + | d / ≤k * -3 P L 2 (S) + d / ≤k * -3 q Z L 2 (S) r 3 |(D • B) =1 | + r -1 d / ≤k * -2 X L 2 (S) + 0 r -δ u -1-δ dec r 3 |(D • B) =1 | + r -1 d / ≤k * -3 q Z L 2 (S) + d / ≤k * -3 B L 2 (S) + 0 r -δ u -1-δ dec . 400CHAPTER 6. DECAY ESTIMATES ON THE REGION (EXT ) M (THEOREM M4)
Thus, absorbing the terms in B and q Z on the RHS, we obtain

r d / ≤k * -3 B L 2 (S) + | d / ≤k * -3 P L 2 (S) + d / ≤k * -3 q Z L 2 (S) r 3 |(D • B) =1 | + 0 r -δ u -1-δ dec ,
and

d / ≤k * -2 X L 2 (S) r 3 |(D • B) =1 | + 0 r -δ u -1-δ dec .
We infer

r d / ≤k * -3 B L 2 (S) + | d / ≤k * -3 P L 2 (S) + d / ≤k * -3 q Z L 2 (S) + d / ≤k * -2 X L 2 (S(u,r)) r 3 |(D • B) =1 | + 0 r -δ u -1-δ dec .
By Sobolev, we deduce

r | d / ≤k * -5 B| + | d / ≤k * -5 q P | + | d / ≤k * -5 X| + | d / ≤k * -5 q Z| r 2 |(D • B) =1 | + 0 r -1-δ u -1-δ dec .
It remains to estimate the derivatives in ∇ 4 , ∇ 3 . In view of the equations

∇ 4 X = -A + O(r -1 ) X + Γ g • Γ g , ∇ 4 q Z = -B + O(r -1 ) q Z + O(r -2 ) X + O(r -2 ) } trX + Γ g • Γ g , ∇ 4 B = O(r -1 ) d / ≤1 A + O(r -1 )B + Γ g • (B, A), ∇ 4 q P = O(r -1 ) d / ≤1 B + O(r -1 ) q P + O(r -3 ) } trX + r -1 Γ g • Γ g + Γ b • A,
and the control of A and } trX in (6.5.4), we infer from the previous estimate

r |(r∇ 4 , d /) ≤k * -5 B| + |(r∇ 4 , d /) ≤k * -5 q P | + |(r∇ 4 , d /) ≤k * -5 X| + |(r∇ 4 , d /) ≤k * -5 q Z| r 2 |(D • B) =1 | + 0 r -1-δ u -1-δ dec .
Together with the control of L / T B, L / T q P , L / T X and L / T q Z provided by Proposition 6.4.7, we deduce

r |(r∇ 4 , d /, L / T ) ≤k * -5 B| + |(r∇ 4 , d /, L / T ) ≤k * -5 q P | +|(r∇ 4 , d /, L / T ) ≤k * -5 X| + |(r∇ 4 , d /, L / T ) ≤k * -5 q Z| r 2 |(D • B) =1 | + 0 r -1-δ u -1-δ dec .
Finally, since

∇ 3 = 2L / T -1 + O(r -2 ) ∇ 4 + O(r -1 )∇ + O(r -3
) + Γ b , see Corollary 6.1.25, we infer that r |d ≤k * -5 B| + |d ≤k * -5 q P | + |d ≤k * -5 X| + |d ≤k * -5 q Z| r 2 |(D • B) =1 | + 0 r -1-δ u -1-δ dec 6.5. IMPROVED DECAY ESTIMATES FOR B, q P , X, q Z, q H, AND D COS θ 401 which is precisely the estimate (6.5.1) of Proposition 6.5.1.

Step 12. We are now ready to prove the estimate (6.5.2). Indeed, combining the first two equations of (6.5.6) with the estimate (6.5.1) proved in Step 11, we obtain

|d ≤k * -5 q H| + |d ≤k * -5 D cos θ| r 2 |(D • B) =1 | + 0 r -1 u -1-δ dec
which is the estimate (6.5.2) of Proposition 6.5.1.

Step 13. It remains to prove the auxiliary estimate (6.5.3), i.e.

|d ≤k * -2 B| r|(D • B) =1 | + r -3-δ u -1/2-δ dec .
To do that, we start with the equation

D ⊗B + (Z + 4H) ⊗B = ∇ 3 A + 1 2 trX -4ω A + 3P X from which we deduce, making use of Ref 1-2, for k ≤ k * -1, d k D ⊗B L 2 (S) r -2 d ≤k B L 2 (S) + 0 r -3-δ u -1 2 -δ dec + r -3 d ≤k X L 2 (S) r -2 d ≤k B L 2 (S) + 0 r -3-δ u -1 2 -δ dec + r -4 u -1 2 -δ dec
and hence, for k ≤ k * -1,

d k D ⊗B L 2 (S) r -2 d ≤k B L 2 (S) + r -3-δ u -1 2 -δ dec .
Using once more (6.5.11) to pass the prime frame, and the estimates for L / T B provided by Proposition 6.4.7, we deduce, for k ≤ k * -1,

(d ) k D ⊗B L 2 (S) r -2 d ≤k B L 2 (S) + r -3-δ u -1 2 -δ dec .
Applying the first estimate of Corollary 6.2.14, we deduce, for all k ≤ k * -1,

( d / ) ≤k+1 B L 2 (S) r ( d / ) ≤k D ⊗B L 2 (S) + r 2 D • B =1 r -1 d ≤k B L 2 (S) + r 2 D • B =1 + r -2-δ u -1 2 -δ dec .
Passing back to the un-prime frame and absorbing the B term on the RHS, we obtain, for all k ≤ k * -1,

d / ≤k+1 B L 2 (S) r 2 D • B =1 + r -2-δ u -1 2 -δ dec .
Thus, by Sobolev,

d / ≤k * -2 B L ∞ (S) r D • B =1 + r -3-δ u -1 2 -δ dec .
The estimates for ∇ 4 , ∇ 3 derivatives can then be recovered as in Step 11. Thus, we finally obtain

|d ≤k * -2 B| r|(D • B) =1 | + r -3-δ u -1 2 -δ dec
as stated in (6.5.3). This concludes the proof of Proposition 6.5.1.

6.5.2 O(u -1-δ dec ) type decay estimates for B, q P , X, q Z, q H, D cos θ

The goal of this section is to prove the following proposition.

Proposition 6.5.2. We have on

(ext) M r |d ≤k * -5 B| + |d ≤k * -5 q P | + |d ≤k * -5 X| + |d ≤k * -5 q Z| 0 r -1-δ u -1-δ dec , |d ≤k * -5 q H| + |d ≤k * -5 D cos θ| 0 r -1 u -1-δ dec , |(D • B) =1 | ≤ 0 r -4-δ u -1-δ dec .
(6.5.18) Also, we have on (ext) M r|d ≤k * -6 ∇ 3 B| + r|d ≤k * -6 ∇ 3 q P | + |d ≤k * -6 ∇ 3 X| + |d ≤k * -6 ∇ 3 q Z| 0 r -2 u -1-δ dec .(6.5.19) Remark 6.5.3. The above r -δ gain for B, q P , X and q Z in (6.5.18) will be crucial to derive O(u -1-δ dec ) type decay estimates without log-loss in r in particular for } trX, B, | Du, } Dϕ, D ⊗J and D • J.

Proof. Recall from Proposition 6.5.1 that we have on

(ext) M r |d ≤k * -5 B| + |d ≤k * -5 q P | + |d ≤k * -5 X| + |d ≤k * -5 q Z| r 2 |(D • B) =1 | + 0 r -1-δ u -1-δ dec , |d ≤k * -5 q H| + |d ≤k * -5 D cos θ| r 2 |(D • B) =1 | + 0 r -1 u -1-δ dec .
(6.5.20)

Thus, to conclude the control of B, q P , X, q Z, q H and D cos θ in (6.5.18), we need to control (D • B) =1 , which is the focus of Steps 1 and 2 below. Then, (6.5. [START_REF] Dafermos | Linear stability of the Schwarzschild solution to gravitational perturbations[END_REF]) is proved in Step 3.
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Step 1. We derive transport equations in e 4 for the following scalars h (p) , for p = 0, +, -,

h (p) = S(u,r) rJ (p) Σ [D•] ren r 4 [B] ren = S(u,r) rJ (p) Σ D • - a 2 J • ∇ 4 - a 2 J • ∇ 3 r 4 B - 3a 2 q P J - a 4 J • A . (6.5.21)
To this end, we rely on the crucial identities (6.3.4) and (6.3.5) of Proposition 6.3.4, which we rewrite below in the following form

e 4 (h (0) ) = O(1)d ≤1 X + O(r)d ≤2 B + O(r 2 )d ≤1 ∇ 3 B + O(r)d ≤2 q P + O(1)d ≤1 } trX + O(r 2 )d ≤1 ∇ 3 A + O(r)d ≤2 A + r 4 d ≤1 Γ g • (B, A) + r 4 d ≤1 Γ b • ∇ 3 A + r 2 d ≤2 Γ g • Γ g + O r 2 u 1 2 +δ dec d ≤1 A, B, r -1 q P , (6.5.22) 
and

e 4 (h (±) ) ∓ a r 2 h (∓) = O(1)d ≤1 X + O(r)d ≤2 B + O(r 2 )d ≤1 ∇ 3 B + O(r)d ≤2 q P + O(1)d ≤1 } trX + O(r 2 )d ≤1 ∇ 3 A + O(r)d ≤2 A + r 4 d ≤1 Γ g • (B, A) + r 4 d ≤1 Γ b • ∇ 3 A + r 2 d ≤2 Γ g • Γ g + O r 2 u 1 2 +δ dec d ≤1 A, B, r -1 q P . (6.5.23) 
In view of the definition of (D • B) =1 and h (p) , and since Σ = r 2 + O(1), we have

(h (0) , h (+) , h (-) ) = r 5 (D • B) =1 + O(r 3 )d ≤1 (B, q P , A). (6.5.24)
Together with the first equation in (6.5.20) we deduce

r |d ≤k * -5 B| + |d ≤k * -5 q P | + |d ≤k * -5 X| + |d ≤k * -5 q Z| r -3 |(h (0) , h (+) , h (-) )| + O(1)d ≤1 (B, q P , A) + 0 r -1-δ u -1-δ dec .
Since r ≥ r 0 on (ext) M, we infer, for r 0 large enough,

r |d ≤k * -5 B| + |d ≤k * -5 q P | + |d ≤k * -5 X| + |d ≤k * -5 q Z| r -3 |(h (0) , h (+) , h (-) )| + O(1)d ≤1 A + 0 r -1-δ u -1-δ dec . (6.5.25)
Similarly, from the second equation in (6.5.20) Together with (6.5.25) and (6.5.26), we deduce 17 from (6.5.22) and (6.5.23)

|d ≤k * -5 q H| + |d ≤k * -5 D cos θ| r -3 |(h (0) , h (+) , h (-) )| + O(1)d ≤1 A + 0 r -1 u -1-δ dec . ( 6 
e 4 h (0) = O(r -3 )|(h (0) , h (+) , h (-) )| + O(1)d ≤1 } trX +O(r 2 )d ≤1 ∇ 3 A + O(r)d ≤2 A + r 4 d ≤1 Γ g • (B, A) + r 4 d ≤1 Γ b • ∇ 3 A +r 2 d ≤2 Γ g • Γ g + O r 2 u 1 2 +δ dec d ≤1 A, B, r -1 q P + O 0 r -1-δ u -1-δ dec , e 4 h (+) = a r 2 h (-) + O(r -3 )|(h (0) , h (+) , h (-) )| + O(1)d ≤1 } trX +O(r 2 )d ≤1 ∇ 3 A + O(r)d ≤2 A + r 4 d ≤1 Γ g • (B, A) + r 4 d ≤1 Γ b • ∇ 3 A +r 2 d ≤2 Γ g • Γ g + O r 2 u 1 2 +δ dec d ≤1 A, B, r -1 q P + O 0 r -1-δ u -1-δ dec ,
and

e 4 h (-) = - a r 2 h (+) + O(r -3 )|(h (0) , h (+) , h (-) )| + O(1)d ≤1 } trX +O(r 2 )d ≤1 ∇ 3 A + O(r)d ≤2 A + r 4 d ≤1 Γ g • (B, A) + r 4 d ≤1 Γ b • ∇ 3 A +r 2 d ≤2 Γ g • Γ g + O r 2 u 1 2 +δ dec d ≤1 A, B, r -1 q P + O 0 r -1-δ u -1-δ dec .
Using the control of A in Ref 2, the bootstrap assumptions Ref 1, and the control of } trX derived in Proposition 6.4.5, we infer

e 4 h (0) = O(r -3 )|(h (0) , h (+) , h (-) )| + O r 2 u 1 2 +δ dec d ≤1 B + O 0 r -1-δ u -1-δ dec , e 4 h (+) = a r 2 h (-) + O(r -3 )|(h (0) , h (+) , h (-) )| + O r 2 u 1 2 +δ dec d ≤1 B + O 0 r -1-δ u -1-δ dec ,
and

e 4 h (-) = - a r 2 h (+) + O(r -3 )|(h (0) , h (+) , h (-) )| + O r 2 u 1 2 +δ dec d ≤1 B + O 0 r -1-δ u -1-δ dec .
In order to estimate the term involving d ≤1 B on the RHS, we rely on the estimate (6.5.3) in Proposition 6.5.1, i.e.

|d ≤k * -2 B| r|(D • B) =1 | + r -3-δ u -1/2-δ dec .
17 To bound the terms O(r 2 )d ≤1 ∇ 3 B on the RHS, we also use the following consequence of Bianchi

∇ 3 B = O(r -1 ) d / ≤1 q P + O(r -1 )B + O(r -3 ) q H + O(r -4 ) D cos θ + r -1 Γ b • Γ g .
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Together with (6.5.24), we deduce e 4 h (p) = O(r -2 )|(h (0) , h (+) , h (-) )| + O 0 r -1-δ u -1-δ dec , p = 0, +, -. (6.5.27)

Step 2. Using the estimate sup

Σ * r 5 u 1+δ dec ([D] ren • [B] ren ) =1 0
of Proposition 6.4.3, and recalling that

h (p) = S(u,r) rJ (p) Σ [D•] ren r 4 [B] ren ,
we easily deduce on Σ * , using also Σ = r 2 + O(1) and the definition of = 1 modes,

|(h (0) , h (+) , h (-) )| 0 u 1+δ dec .
Thus, integrating the transport equations in e 4 of (6.5.27) from the last slice Σ * , we obtain on

(ext) M |(h (0) , h (+) , h (-) )| 0 u 1+δ dec .
Plugging these in (6.5.25) and (6.5.26), we deduce r |d ≤k * -5 B| + |d ≤k * -5 q P | + |d ≤k * -5 X| + |d ≤k * -5 q Z| O(1)

d ≤1 A + O 0 r -1-δ u -1-δ dec , |d ≤k * -5 q H| + |d ≤k * -5 D cos θ| O(1)d ≤1 A + O 0 r -1 u -1-δ dec .
Also, from (6.5.24),

|(D • B) =1 | r -2 |d ≤1 (B, q P , A)| + 0 r 5 u 1+δ dec .
Thanks to the control of A in Ref 2, we thus have obtained on (ext) M r |d ≤k * -5 B| + |d ≤k * -5

q P | + |d ≤k * -5 X| + |d ≤k * -5 q Z| 0 r -1-δ u -1-δ dec , |d ≤k * -5 q H| + |d ≤k * -5 D cos θ| 0 r -1 u -1-δ dec , |(D • B) =1 | 0 r -4-δ u -1-δ dec
, as stated in (6.5.18).

Step 3. It remains to prove the estimate (6.5.19) for ∇ 3 B, ∇ 3 q P , ∇ 3 X and ∇ 3 q Z. This follows easily by relying on the formula, see Corollary 6.1.25,

∇ 3 = 2L / T + O(r -1 )d ≤1 + Γ b ,
the control of L / T (B, q P , X, q Z) provided by Proposition 6.4.7, and the estimates (6.5.18) derived in Step 2 above. This concludes the proof of Proposition 6.5.2.

O(u -1

2 -δ dec ) type decay estimates for B, q P , X and q Z

The goal of this section is to prove the following proposition. Proposition 6.5.4. We have on (ext) M

r|d ≤k * -6 q P | + |d ≤k * -6 X| + |d ≤k * -6 q Z| 0 r -2 u -1/2-δ dec , |d ≤k * -6 B| 0 min r -7 2 -δ dec , r -3-δ u -1/2-δ dec .
Proof. As mentioned in Section 6.4.3, the proof of these estimates is much easier than the ones derived so far. We sketch the main steps below.

Step 1. To get the estimate for X we apply Proposition 6.4.2 to the equation

∇ 4 X + 2r |q| 2 X = -A + Γ g • Γ g .
Thus, using the assumptions Ref 1-2, and the estimates for X on Σ * in Proposition 6.4.3, we derive, for all r 0 ≤ r ≤ r * and 1

≤ u ≤ u * , r 2 d ≤k * X(r, u) r 2 * d ≤k * X(r * , u) + 0 r -δ u -1/2-δ dec 0 u -1/2-δ dec as stated.
Step 2. To get the estimate for B we proceed exactly as in the proof for the auxiliary estimate (6.5.3) of Proposition 6.5.1. More precisely we start with

D ⊗B + (Z + 4H) ⊗B = ∇ 3 A + 1 2 trX -4ω A + 3P X
from which we deduce, making use of Ref 1-2, and the above estimate for X,

for k ≤ k * , d / k D ⊗B L 2 (S) r -2 d / ≤k B L 2 (S) + 0 min r -7 2 -δ dec , r -3-δ u -1/2-δ dec + r -3 d / ≤k X L 2 (S) r -2 d / ≤k B L 2 (S) + 0 min r -7 2 -δ dec , r -3-δ u -1/2-δ dec + 0 r -4 u -1/2-δ dec ,
which we write in the form

d / k D ⊗B L 2 (S) r -2 d / ≤k B L 2 (S) + 0 min r -7 2 -δ dec , r -3-δ u -1/2-δ dec .
We then proceed exactly as for the proof of (6.5.3) and deduce, for all r 0 ≤ r ≤ r * and 1 ≤ u ≤ u * , |d ≤k * -4 B| 0 min r -7 2 -δ dec , r -3-δ u -1/2-δ dec as stated.

Step 3. To get the estimate for q Z, we apply Proposition 6.4.2 to the equation

∇ 4 q Z + 2 q q Z = -B + O(r -2 ) X + O(r -2 ) } trX + Γ g • Γ g .
Using the estimate already derived for X, B, } trX, assumption Ref 1, and the estimate on the last slice for q Z, we easily derive, for all r 0 ≤ r ≤ r * and 1 ≤ u ≤ u * ,

r 2 d ≤k * -4 q Z(u, r) r 2 * d ≤k * -4 q Z(u, r * ) + 0 r -δ u -1/2-δ dec 0 u -1/2-δ dec as stated.
Step 4. To get the estimate for q P , we apply Proposition 6.4.2 to the equation

∇ 4 q P + 3 q q P = O(r -1 ) d / ≤1 B + O(r -3 ) } trX + r -1 Γ g • Γ g + Γ b • A.
Using the estimates already derived for B and } trX, assumption Ref 1, and the estimate for q P on the last slice, we easily deduce, for all r 0 ≤ r ≤ r * and 1 ≤ u ≤ u * ,

r 3 d ≤k * -5 q P (u, r) r 3 * d ≤k * -5 q P (u, r * ) + 0 r -δ u -1/2-δ dec 0 u -1/2-δ dec
as stated. This concludes the proof of Proposition 6.5.4.

6.6 End of the proof of Proposition 6.4.4

Remark 6.6.1. We summarize the estimates proved so far:

1. According to Proposition 6.4.5, we have

d ≤k * } trX 0 r -2 u -1-δ dec .
2. According to Proposition 6.5.2, we have r |d ≤k * -5 B| + |d ≤k * -5 q P | + |d ≤k * -5 X| + |d ≤k * -5 q Z| 0 r -1-δ u -1-δ dec , |d ≤k * -5 q H| + |d ≤k * -5 D cos θ| 0 r -1 u -1-δ dec , and r|d ≤k * -6 ∇ 3 B| + r|d ≤k * -6 ∇ 3 q P | + |d ≤k * -6 ∇ 3 X| + |d ≤k * -6 ∇ 3 q Z| 0 r -2 u -1-δ dec . 408CHAPTER 6. DECAY ESTIMATES ON THE REGION (EXT ) M (THEOREM M4)

3. According to Proposition 6.5.4, we have

r|d ≤k * -6 q P | + |d ≤k * -6 X| + |d ≤k * -6 q Z| 0 r -2 u -1/2-δ dec , |d ≤k * -6 B| 0 min r -7 2 -δ dec , r -3-δ u -1/2-δ dec .
This provides the desired Γ g estimates of Theorem M4 for the quantities } trX, X, q Z, rB, r q P , as well as the desired Γ b estimates for the quantities q H, D cos θ.

We now recover the remaining components of the outgoing PG structure of (ext) M. They are stated in the following proposition.

Proposition 6.6.2. The following estimates hold true on

(ext) M |d ≤k * -7 } trX| + |d ≤k * -6 X| + |d ≤k * -7 Ξ| + |d ≤k * -6 q ω| + |d ≤k * -7 A| 0 r -1 u -1-δ dec , |d ≤k * -6 B| + |d ≤k * -8 ∇ 3 } trX| 0 r -2 u -1-δ dec , |d ≤k * -7
} trX| 0 r -2 u -1/2-δ dec , (6.6.1)

|d ≤k * -6 ẽ3 (r)| + |d ≤k * -6 ẽ3 (u)| 0 u -1-δ dec , |d ≤k * -6 e 3 (cos θ)| + |d ≤k * -6 | Du| 0 r -1 u -1-δ dec , (6.6.2) 
|d ≤k * -6 D • J| + |d ≤k * -6 D ⊗J| + |d ≤k * -6 } ∇ 3 J| 0 r -2 u -1-δ dec , (6.6.3 
)

|d ≤k * -6 D • J ± | + |d ≤k * -6 D ⊗J ± | + |d ≤k * -6 ∇ 3 J ± | 0 r -2 u -1-δ dec , (6.6.4) 
and

|d ≤k * -6 D(J (±) )| + |d ≤k * -6 e 3 (J (±) )| 0 r -1 u -1-δ dec . (6.6.5)
Proof. We proceed in steps as follows.

Step 1. We first derive the estimates for D ⊗J, D • J, D ⊗J ± and D • J ± in (6.6.3), (6.6.4), with the help of their transport equations, see Lemma 6.1.17, and their estimates on the last slice Σ * , see Proposition 6.4.3. Recall from Lemma 6.1.17 that we have

∇ 4 (D ⊗J) + 2 q D ⊗J = O(r -1 )B + O(r -2 ) } trX + O(r -2 ) X + O(r -2 ) q Z +O(r -3 ) D(cos θ) + r -1 Γ b • Γ g , ∇ 4 D • J + 2 q D • J = O(r -1 )B + O(r -2 ) } trX + O(r -2 ) X + O(r -2 ) q Z +O(r -3 ) D(cos θ) + r -1 Γ b • Γ g , ∇ 4 (D ⊗J ± ) + 2 q D ⊗J ± = O(r -1 )B + O(r -2 ) } trX + O(r -2 ) X + O(r -2 ) q Z +O(r -3 ) D(cos θ) + r -1 Γ b • Γ g , ∇ 4 D • J ± + 2 q D • J ± = O(r -1 )B + O(r -2 ) } trX + O(r -2 ) X + O(r -2 ) q Z +O(r -3 ) D(cos θ) + r -1 Γ b • Γ g .
Let F denote the schematic right hand side of these transport equations, i.e.

F = O(r -1 )B + O(r -2 ) } trX + O(r -2 ) X + O(r -2 ) q Z + O(r -3 ) D(cos θ) + r -1 Γ b • Γ g .
In view of the estimates already derived for B, } trX, q Z, D(cos θ), see Remark 6.6.1, and using Ref 1 for the nonlinear terms, we have on (ext) M d ≤k * -6 F ∞ (u, r) 0 r -3-δ u -1-δ dec + 0 r -4 u -1-δ dec .

Thus, applying Proposition 6.4.2 and making use of the estimates on the last slice Σ * , we deduce

r 2 d ≤k * -6 D ⊗J + r 2 d ≤k * -6 D • J 0 u -1-δ dec , r 2 d ≤k * -6 D ⊗J ± + r 2 d ≤k * -6 D • J ± 0 u -1-δ dec ,
as stated in (6.6.3), (6.6.4).

Step 2. Next, we estimate } trX with the help of the following equation, see Lemma 6.1.15,

∇ 4 } trX + 1 q } trX = F,
where

F = -D • q Z + 2 q P + O(r -2 ) q Z + O(r -1 ) } trX + O(r -1 ) D • J + O(r -3 ) D(cos θ) + Γ b • Γ g . 410CHAPTER 6. DECAY ESTIMATES ON THE REGION (EXT ) M (THEOREM M4)
In view of the estimates already derived for q Z, } trX, D(cos θ), q P , see Remark 6.6.1, and the estimate for D • J obtained in Step 1 above, we have on (ext) M

d ≤k * -7 F 0 min{r -3 u -1/2-δ dec , r -2-δ u -1-δ dec }.
Thus, applying Proposition 6.4.2, we infer on

(ext) M r d ≤k * -7 } trX ∞ (u, r) r * d ≤k * -7 } trX ∞ (u, r * ) + 0 min r -1 u -1/2-δ dec , r -δ u -1-δ dec .
Hence, making use of the estimates for } trX on Σ * , we derive

d ≤k * -7 } trX 0 min r -2 u -1/2-δ dec , r -1 u -1-δ dec
as stated in (6.6.1).

Step 3. Next, we derive the desired estimate for X using the following equation

∇ 4 X + 1 q X = - 1 2 D ⊗ q Z + O(r -2 ) q Z + O(r -1 ) X + O(r -1 )D ⊗J + O(r -3 ) D(cos θ) +Γ b • Γ g .
Denoting the right hand side by F and using the estimates already derived for q Z, } trX, D(cos θ), q P , see Remark 6.6.1, and the estimate for D ⊗J obtained in Step 1 above, we have on (ext) M

d ≤k * -6 F 0 r -2-δ u -1-δ dec .
Thus, applying Proposition 6.4.2, we infer on

(ext) M r d ≤k * -6 X ∞ (u, r) r * d ≤k * -6 X ∞ (u, r * ) + 0 u -1-δ dec .
Hence, using the estimates on the last slice Σ * for X, we obtain

d ≤k * -6 X 0 r -1 u -1-δ dec
as stated in (6.6.1).

Step 4. Next, we estimate q ω using the following equation, see Lemma 6.1.15,

∇ 4 (q ω) = ( q P ) + O(r -2 ) q Z + O(r -2 ) q H + Γ b • Γ g .
Denoting the right hand side by F and using the estimates already derived for q Z, q P , q H, see Remark 6.6.1, we have on (ext) M

d ≤k * -6 F 0 r -2-δ u -1-δ dec .
Hence, applying Proposition 6.4.2, and making use of the estimates on the last slice Σ * for q ω, we deduce

d ≤k * -6 q ω (r, u) 0 r -1 * u -1-δ dec + 0 r -1-δ u -1-δ dec , (6.6.6) 
which implies the estimate for q ω in (6.6.1).

Step 5. Next, we estimate Ξ using the following equation, see Lemma 6.1.15,

∇ 4 Ξ + 1 q Ξ = O(r -1 ) d / ≤1 (q ω) + O(r -2 ) q Z + O(r -2 ) q H + O(r -2 ) } trX +O(r -3 ) D(cos θ) + Γ b • q ω, Γ g .
Denoting the right hand side by F and using the estimates already derived for q Z, q H, D(cos θ), see Remark 6.6.1, as well as the estimate (6.6.6) for q ω, and the estimate for } trX of Step 2 above, we derive on (ext) M

d ≤k * -7 F 0 r -1 r -1 * u -1-δ dec + 0 r -2-δ u -1-δ dec .
Applying Proposition 6.4.2, and making use of the estimate for Ξ on the last slice, we deduce

r d ≤k * -7 Ξ (r, u) r * d ≤k * -7 Ξ (r * , u) + (r * -r) 0 r * u 1+δ dec + 0 u 1+δ dec 0 u -1-δ dec .
Consequently, we obtain d ≤k * -7 Ξ (r, u) 0 r -1 u -1-δ dec (6.6.7) as stated.

Step 6. To estimate B, we make use of the following equation

∇ 4 B + 2 q B = -D q P + O(r -2 ) q P + O(r -3 ) q Z + O(r -4 ) D(cos θ) + r -1 Γ b • Γ g .
Denoting the right hand side by F and making use of the estimates already derived for q P , q Z, D(cos θ), see Remark 6.6.1, we have on (ext) M

d ≤k * -6 F 0 r -3-δ u -1-δ dec .
Thus, integrating with the help of Proposition 6.4.2, and making use of the estimate for B on the last slice, we deduce
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as stated in (6.6.1).

Step 7. To estimate A, we make use of the following equation, see Proposition 6.1.9,

∇ 4 A + 1 2 D ⊗B = - 1 2 trXA + 5 2 Z ⊗B -3P X,
which yields

∇ 4 A + 1 q A = O(r -1 ) d / ≤1 B + O(r -3 ) X + Γ g • Γ b .
Denoting the right hand side by F and making use of the estimates already derived for B and X, we have on (ext) M d ≤k * -7 F 0 r -3 u -1-δ dec . Thus, integrating with the help of Proposition 6.4.2, and making use of the estimate for A on the last slice, we deduce d ≤k * -7 A 0 r -1 u -1-δ dec as stated in (6.6.1).

Step 8. Next, we estimate ẽ3 (r) using the following equation, see Lemma 6.1.16, e 4 ẽ3 (r) = -2q ω.

Integrating, and using the estimate (6.6.6) for q ω derived above, we deduce

d ≤k * -6 ẽ3 (r) (r, u) d ≤k * -6 ẽ3 (r) (r * , u) + (r * -r) 0 r * u 1+δ dec + 0 u 1+δ dec 0 u 1+δ dec .
Hence

d ≤k * -6 ẽ3 (r) 0 u -1-δ dec
as stated in (6.6.2).

Step 9. Next, we derive estimates for D cos θ, ẽ3 (u), and e 3 (cos θ) by relying on the following equations, see Lemma 6.1.16,

∇ 4 | Du + 1 q | Du = O(r -1 ) } trX + O(r -1 ) X + Γ b • Γ g , e 4 ẽ3 (u) = O(r -1 ) q H + O(r -1 ) q Z + O(r -2 ) | Du + Γ b • Γ b , e 4 (e 3 (cos θ)) = O(r -1 ) q H + O(r -1 ) q Z + O(r -2 ) D cos θ + Γ b • Γ b .
Note that the right side F 1 of the first equation verifies

d ≤k * -6 F 1 0 r -2-δ u -1-δ dec .
Proceeding exactly as before, we infer

r d ≤k * -6 | Du L ∞ (u, r) r * d ≤k * -6 | Du L ∞ (u, r * ) + 0 r -δ u -1-δ dec 0 u -1-δ dec .
Thus,

d ≤k * -6 | Du 0 r -1 u -1-δ dec
as stated in (6.6.2).

Also, the right hand side F 2 of the second equation verifies

d ≤k * -6 F 2 0 r -2 u -1-δ dec .
Hence, by integration, in the same manner, we obtain

d ≤k * -6 ẽ3 (u) L ∞ (u, r) d ≤k * -6 ẽ3 (u) L ∞ (u, r * ) + 0 r -1 u -1-δ dec .
Thus, according to the estimate on the last slice for ẽ3 (u), see Proposition 6.4.3, we deduce

d ≤k * -6 ẽ3 (u) 0 u -1-δ dec
as stated in (6.6.2). The estimate (6.6.2) for e 3 (cos θ) follows exactly in the same manner. This ends the proof of the estimates (6.6.2).

Step 10. Next, we estimate ∇ 3 } trX. In view of Proposition 2.1.8, we have

∇ 3 trX = - 1 2 (trX) 2 -2ωtrX + O(r -1 ) d / ≤1 Ξ + Γ b • Γ b which implies ∇ 3 } trX = O(r -1 ) d / ≤1 Ξ + O(r -1 ) } trX + O(r -1 )q ω + O(r -2 ) ẽ3 (r) + O(r -2 )e 3 (cos θ) +Γ b • Γ b .
We deduce from the above estimates for Ξ, } trX, q ω, ẽ3 (r) and e 3 (cos θ) that

d ≤k * -8 ∇ 3 } trX 0 r -2 u -1-δ dec .
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Step 11. Next, we estimate } ∇ 3 J and ∇ 3 J ± . According to Lemma 6.1.17, we have

∇ 4 } ∇ 3 J + 1 q } ∇ 3 J = O(r -3 ) ẽ3 (r) + O(r -3 )e 3 (cos θ) + O(r -2 )q ω + O(r -2 ) q H +O(r -2 ) q Z + O(r -2 ) | ∇J + O(r -1 ) q P + r -1 Γ b • Γ g , ∇ 4 ∇ 3 J ± + 1 q ∇ 3 J ± = O(r -3 ) ẽ3 (r) + O(r -3 )e 3 (cos θ) + O(r -2 )q ω + O(r -2 ) q H +O(r -2 ) q Z + O(r -2 ) | ∇J + O(r -1 ) q P + r -1 Γ b • Γ b .
Denoting the right hand sides by F , we easily check, using the previously derived estimates,

d ≤k * -6 F 0 r -3 u -1-δ dec .
Proceeding exactly as before, we infer

r d ≤k * -6 ∇ 3 (J, J ± ) L ∞ (u, r) r * d ≤k * -6 } ∇ 3 J L ∞ (u, r * ) + 0 r -1 u -1-δ dec 0 r -1 u -1-δ dec .
Hence

d ≤k * -6 } ∇ 3 J 0 r -2 u -1-δ dec , d ≤k * -6 ∇ 3 J ± 0 r -2 u -1-δ dec ,
as stated. This ends the proof of the estimates (6.6.3) and (6.6.4).

Step 12. It only remains to prove the estimates (6.6.5) for J (±) . We make use of Lemma 6.1.18 according to which

∇ 4 D(J (±) ) + 1 q D(J (±) ) = O(r -1 ) } trX + O(r -1 ) X + Γ b • Γ g , ∇ 4 ∇ 3 J (±) = O(r -2 ) D(J (±) ) + O(r -1 ) q Z + O(r -1 ) q H + Γ b • Γ b .
From the first equation we easily derive, using the estimates for } trX and X derived before,

r d ≤k * -6 DJ (±) L ∞ (u, r) r * d ≤k * -6 DJ (±) L ∞ (u, r * ) + 0 r -δ u -1-δ dec 0 u -1-δ dec .
Thus, we obtain

d ≤k * -6 DJ (±) 0 r -1 u -1-δ dec
as stated. Finally integrating the equation for ∇ 4 ∇ 3 J (±) we derive

d ≤k * -6 ∇ 3 J (±) 0 r -1 u -1-δ dec .
This ends the proof of (6.6.5) and concludes the proof of Proposition 6.6.2.

The estimates in Remark 6.6.1, together with the ones of Proposition 6.6.2, conclude the proof of Proposition 6.4.4. Also, recalling from (6.0.1) that k * = k small +60 in this chapter, this concludes the proof of Theorem M4 as stated in Section 3.7.1.

substitutions u → u, r → r, θ → θ, ϕ → ϕ, e 4 → e 3 , e 3 → e 4 , e a → e a , α → α, β → -β, ρ → ρ, * ρ → - * ρ, β → -β, α → α, ξ → ξ, ω → ω, χ → χ, η → η, η → η, ζ → -ζ, χ → χ, ω → ω, ξ → ξ, J (p) → J (p) , J → J, J ± → J ± .
In view of Remark 7.1.1, the following lemma can be easily obtained from its analog for the outgoing case in Lemma 6.1.15.

Lemma 7.1.2. The linearized null structure equations in the e 3 direction are

∇ 3 ( } trX) - 2 q } trX = Γ b • Γ b , ∇ 3 X - 2r |q| 2 X = -A + Γ b • Γ b , ∇ 3 q Z - 2 q q Z = -B + O(r -2 ) X + O(r -2 ) } trX + Γ b • Γ g , ∇ 3 | H - 1 q | H = B + O(r -1 ) q Z + O(r -2 ) X + O(r -2 ) } trX + Γ b • Γ g , ∇ 3 } trX - 1 q } trX = D • q Z + 2 q P + O(r -2 ) q Z + O(r -1 ) } trX +O(r -1 ) D • J + O(r -3 ) D(cos θ) + Γ b • Γ g , ∇ 3 X - 1 q X = 1 2 D ⊗ q Z + O(r -2 ) q Z + O(r -1 ) X + O(r -1 )D ⊗J + O(r -3 ) D(cos θ) +Γ b • Γ g , ∇ 3 (q ω) = ( q P ) + O(r -2 ) q Z + O(r -2 ) | H + Γ b • Γ g , ∇ 3 Ξ - 1 q Ξ = O(r -1 ) d / ≤1 (q ω) + O(r -2 ) q Z + O(r -2 ) | H + O(r -2 ) } trX +O(r -3 ) D(cos θ) + Γ b • q ω, Γ g .
The linearized Bianchi equations for B, P, B are

∇ 3 B - 4 q B = 1 2 D • A + O(r -2 )A + Γ b • (B, A), ∇ 3 q P + 1 2 D • B = 3 q q P + O(r -2 )B + O(r -3 ) } trX + r -1 Γ b • Γ g + Γ g • A, ∇ 3 B -D q P = 2 q B + O(r -2 ) q P + O(r -3 ) q Z + O(r -4 ) D(cos θ) + r -1 Γ b • Γ g .
In view of Remark 7.1.1, the following lemma can be easily obtained from its analog for the outgoing case in Lemma 6.1.16.

Lemma 7.1.3. We have

e 3 ẽ4 (r) = -2q ω, ∇ 3 | Du - 1 q | Du = O(r -1 ) } trX + O(r -1 ) X + Γ b • Γ b , e 3 ẽ4 (u) = O(r -1 ) | H + O(r -1 ) q Z + O(r -2 ) | Du + Γ g • Γ g , ∇ 3 D cos θ - 1 q D cos θ = i 2 J • X + O(r -1 ) } trX + Γ b • Γ b , e 3 (e 4 (cos θ)) = O(r -1 ) | H + O(r -1 ) q Z + O(r -2 ) D cos θ + Γ g • Γ g .
In view of Remark 7.1.1, the following lemma can be easily obtained from its analog for the outgoing case in Lemma 6.1.17.

Lemma 7.1.4. The following equations hold for the tensors J, J ± .

1. We have

∇ 3 (D ⊗J) - 2 q D ⊗J = O(r -1 )B + O(r -2 ) } trX + O(r -2 ) X +O(r -2 ) q Z + O(r -3 ) D(cos θ) + r -1 Γ b • Γ b , ∇ 3 D • J - 2 q D • J = O(r -1 )B + O(r -2 ) } trX + O(r -2 ) X + O(r -2 ) q Z +O(r -3 ) D(cos θ) + r -1 Γ b • Γ b , ∇ 3 } ∇ 4 J - 1 q } ∇ 4 J = O(r -3 ) ẽ4 (r) + O(r -3 )e 4 (cos θ) + O(r -2 )q ω +O(r -2 ) | H + O(r -2 ) q Z + O(r -2 ) | ∇J + O(r -1 ) q P +r -1 Γ b • Γ g .
2. We also have

∇ 3 (D ⊗J ± ) - 2 q D ⊗J ± = O(r -1 )B + O(r -2 ) } trX + O(r -2 ) X +O(r -2 ) q Z + O(r -3 ) D(cos θ) + r -1 Γ b • Γ b , ∇ 3 D • J ± - 2 q D • J ± = O(r -1 )B + O(r -2 ) } trX + O(r -2 ) X + O(r -2 ) q Z +O(r -3 ) D(cos θ) + r -1 Γ b • Γ b , ∇ 3 ∇ 4 J ± - 1 q ∇ 4 J ± = O(r -3 ) ẽ4 (r) + O(r -3 )e 4 (cos θ) + O(r -2 )q ω +O(r -2 ) | H + O(r -2 ) q Z + O(r -2 ) | ∇J + O(r -1 ) q P +r -1 Γ b • Γ g .
In view of Remark 7.1.1, the following lemma can be easily obtained from its analog for the outgoing case in Lemma 6.1.18.

Lemma 7.1.5. The following equations hold true 1 .

∇ 3 D(J (±) ) - 1 q D(J (±) ) = O(r -1 ) } trX + O(r -1 ) X + Γ b • Γ g , ∇ 3 ∇ 4 J (±) = O(r -2 ) D(J (±) ) + O(r -2 ) q Z + O(r -2 ) | H + Γ b • Γ g . (7.1.1) 
7.2 Decay estimates for the PG structure of (int) M on T

To simplify the notations, in this section, we denote

• by (e 4 , e 3 , e 1 , e 2 ) the outgoing PG frame of (ext) M, with all quantities associated to the outgoing PG structure of (ext) M being unprimed,

• by (e 4 , e 3 , e 1 , e 2 ) the ingoing PG frame of (int) M, with all quantities associated to the ingoing PG structure of (int) M being primed.

Recall that (ext) M ∩ (int) M = T = {r = r 0 }. In view of the above notations, and the initialization of the ingoing PG structure of (int) M from the outgoing PG structure of (ext) M on T , see Section 3.2.5, we have u = u, r = r, J (p) = J (p) , p = 0, +, -, J = J, J ± = J ± on T , (7. where λ is given by

λ = ∆ |q| 2 . (7.2.3)
In order to derive decay estimates for the ingoing PG structure of (int) M on T , we will rely on the following lemma.

Lemma 7.2.1. We have on T

A = λ 2 A, B = λB, q P = q P , B = λ -1 B, A = λ -2 A, Ξ = 0, ω = 0, H = Z , } trX = λ } trX, X = λ X, } trX = λ -1 } trX, X = λ -1 X, e 3 (r ) = -1, ∇ (r ) 
= 0, e 3 (u) = 0, e 3 (J (p) ) = 0, p = 0, +, -, 

∇ 3 J = 1 q J , ∇ 3 J ± = 1 q J ± , ∇ (u) = ∇(u), ∇ (J (p) ) = ∇(J (p) ), p = 0, +, -, D • J = D • J, D ⊗J = D ⊗J, D • J ± = D • J ± , D ⊗J ± = D ⊗J ± , q Z = q Z + 1 q D(q) + 1 q D(q), | H = -q Z - 1 e 3 (r) Ξ, Ξ = λ 2 e 3 (r) q Z + 1 q D(q) + 1 q D(q) -q H , q ω = λ e 3 (r) q ω + 1 2e 3 (r) ∂ r ∆ |q| 2 ẽ3 (r) -
ẽ 4 (u) = - λ e 3 (r) ẽ3 (u) - 2(r 2 + a 2 ) e 3 (r)|q| 2 ẽ3 (r), e 4 (J (0) ) = - λ e 3 (r) e 3 (J (0) ), e 4 (J (±) ) = - λ e 3 (r) e 3 (J (±) ) ± 2a |q| 2 e 3 (r) J (∓) ẽ3 (r), ∇ e 4 J = - λ e 3 (r) } ∇ 3 J, ∇ e 4 J ± = - λ e 3 (r) ∇ e 3 J ± ± 2a |q|e 3 (r) ẽ3 (r)J ∓ ,
where the definition of the linearized quantities for the outgoing PG structure of (ext) M can be found in Definition 2.6.6, while definition of the linearized quantities for the ingoing PG structure of (int) M can be found in Definition 2.7.2.

Proof. The identities for Ξ , ω , H -Z , e 3 (r ), e 3 (u), e 3 (J (p) ), ∇ 3 J and ∇ 3 J ± come from the ingoing PG structure assumption on (int) M. Also, the identities for A , B , B , A , X and X follow immediately from the change of frame formulas of Proposition 2.2.3 with coefficients (f = 0, f = 0, λ) and the fact that (e 1 , e 2 ) are tangent to T . Also, the identities for q P , } trX and } trX , follow immediately from the change of frame formulas of Proposition 2.2.3 with coefficients (f = 0, f = 0, λ), the explicit choice for λ, the fact that q = q on T , and the fact that (e 1 , e 2 ) are tangent to T . Also, the identities for

∇ (r ), ∇ (u), ∇ (J (p) ), D • J , D ⊗J , D • J ± ,
and D ⊗J ± , follow immediately from the fact that we have, on T , ∇ = ∇, r = r, u = u, J (p) = J (p) , J = J, J ± = J ± , together with the fact that ∇ is tangent to T .

It remains to derive the identities for q Z , Ξ , ω , | H , ẽ 4 (r), ẽ 4 (u), e 4 (J (0) ), e 4 (J (±) ), ∇ 4 J and ∇ 4 J ± . We start with Z . In view of the change of frame formulas of Proposition 2.2.3 with coefficients (f = 0, f = 0, λ), and the fact that (e 1 , e 2 ) are tangent to T , we have

Z = Z -D (log λ).
Since D = D, and using the explicit form of λ, as well as ∇(r) = 0, we infer

Z = Z -D log ∆ |q| 2 = Z + 1 |q| 2 D(|q| 2 ) = Z + 1 q D(q) + 1 q D(q)
which yields, together with the fact that J = J and q = q on T , in view of the linearization of the various quantities, and taking the different linearization for Z (ingoing PG structure) and Z (outgoing PG structure) into account,

q Z = q Z + 1 q D(q) + 1 q D(q)
as desired.

Next, since e In view of the lineraizations for ingoing and outgoing PG structures, the fact that J = J and q = q on T , and the above identity for q Z , we obtain

| H = -q Z - 1 e 3 (r) Ξ, Ξ = λ 2 e 3 (r) q Z + 1 q D(q) + 1 q D(q) -q H , q ω = λ e 3 (r) q ω + 1 2 ∂ r ∆ |q| 2 1 + λ e 3 (r)
+ 2λ e 3 (r) (e 3 -e 3 (r)e 4 ) log(λ).

These are the desired identities for | H and Ξ . For q ω , we note that, in view of the formula for λ, we have e 3 (r) = -λ + ẽ3 (r). Also, (e 3 -e 3 (r)e 4 )(∆) = 0 and e 4 (θ) = 0. Hence

1 2 ∂ r ∆ |q| 2 1 + λ e 3 (r) + 2λ e 3 (r) (e 3 -e 3 (r)e 4 ) log(λ) = 1 2e 3 (r) ∂ r ∆ |q| 2 ẽ3 (r) - 4a 2 λ cos θ e 3 (r)|q| 2 e 3 (cos θ)
which yields

q ω = λ e 3 (r) q ω + 1 2e 3 (r) ∂ r ∆ |q| 2 ẽ3 (r) - 4a 2 λ cos θ e 3 (r)|q| 2 e 3 (cos θ)
as desired.

It remains to derive the identities for ẽ 4 (r), ẽ 4 (u), e 4 (J (0) ), e 4 (J (±) ), ∇ 4 J and ∇ 4 J ± . Since we have r = r, u = u, J (p) = J (p) , J = J and J ± = J on T , and since e 3 -e 3 (r)e 4 is tangent to T , we have Using the fact that e 4 = λe 4 and e 3 = λ -1 e 3 on T , and since e 3 (r ) = -1, e 3 (u) = 0, e 3 (J (p) ) = 0, p = 0, +, -, ∇ 3 J = 1 q J , ∇ 3 J ± = 1 q J ± , e 4 (r) = 1, e 4 (u) = 0, e 4 (J (p) ) = 0, p = 0, +, -, ∇ 4 J = -

1 q J, ∇ 4 J ± = - 1 q J ± ,
we infer

e 4 (r ) = - λ 2 e 3 (r) , e 4 (u) = - λ e 3 (r) e 3 (u), e 4 (J (p) ) = - λ e 3 (r) e 3 (J (p) ), p = 0, +, -, ∇ e 4 J = - λ e 3 (r) ∇ e 3 J + e 3 (r) q J - λ q J , ∇ e 4 J ± = - λ e 3 (r) ∇ e 3 J ± + e 3 (r) q J ± - λ q J ± .
Since r = r, q = q, J (p) = J (p) , J = J and J ± = J ± on T , and since e 3 (r) = -λ + ẽ3 (r), we deduce, in view of the linerizations for ingoing and outgoing PG structures,

ẽ 4 (r ) = - λ e 3 (r) ẽ3 (r), ẽ 4 (u) = - λ e 3 (r) ẽ3 (u) - 2(r 2 + a 2 ) e 3 (r)|q| 2 ẽ3 (r), e 4 (J (0) ) = - λ e 3 (r) e 3 (J (0) ), e 4 (J (±) ) = - λ e 3 (r) e 3 (J (±) ) ± 2a |q| 2 e 3 (r) J (∓) ẽ3 (r), ∇ e 4 J = - λ e 3 (r) } ∇ 3 J, ∇ e 4 J ± = - λ e 3 (r) ∇ e 3 J ± ± 2a |q|e 3 (r) ẽ3 (r)J ∓ ,
as desired. This concludes the proof of the lemma.

We are now ready to derive decay estimates for the ingoing PG structure of (int) M on T .

Lemma 7.2.2. The following decay estimates hold on T for the ingoing PG structure of

(int) M sup T r u 1+δ dec |d ≤k small +40 (Γ g , Γ b )| 0 . (7.2.4)
Proof. In view of the control of outgoing PG structure of (ext) M established in Theorem M4 and the fact that T ⊂ (ext) M, we have sup

T ru 1+δ dec |d ≤k small +40 (Γ g , Γ b )| 0 .
Note that the tangential derivatives to T = {r = r 0 } are generated by ∇ and ∇ 3 -e 3 (r)∇ 4 . We introduce the following notation for r-weighted tangential derivatives to T d := ∇ 3 -e 3 (r)∇ 4 , r∇ .

From the above estimate for (Γ g , Γ b ), together the identities of Lemma 7.2.1 on T and the fact that r = r and u = u on T , we infer

sup T r u 1+δ dec | d ≤k small +40 (Γ g , Γ b )| 0 .
Finally, since d is generated by e 3 and d, the previous estimate and the control of e 3 derivatives provided by the null structure equations and Bianchi identities of the ingoing PG structure of (int) M immediately imply sup T r u 1+δ dec |d ≤k small +40 (Γ g , Γ b )| 0 as stated.

Decay estimates for A in (int) M

In this section, we initiate the proof of the part of Theorem M5 concerning (int) M, i.e. to derive decay estimates for the ingoing PG structure of (int) M, by first controlling A in (int) M. This is done in the following proposition.

Proposition 7.3.1. Relative to to the ingoing PG structure of (int) M, A verifies the following estimate in (int) M sup

(int) M u 1+δ dec |d ≤k small +33 A| 0 . (7.3.1) 
Proof. The proof proceeds in the following steps.

Step 1. Construction of a frame on part of (int) M for which Ξ = 0.

Recall from Lemma 7.2.2 that we control the ingoing PG frame of (int) M, and in particular A, on T . We would like to propagate this control for A from T to part of (int) M by making use of the Teukolsky-Starobinsky (TS) formula, derived in Proposition 5.4.1 of [START_REF] Giorgi | Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes[END_REF], which relates (c) ∇ 4 + 2trX 4 A to d ≤4 A up to quadratic and higher order terms, where the notation (c) ∇ 4 has been introduced in section 2.2.9 of [START_REF] Giorgi | Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes[END_REF] and is given, for a horizontal tensor U , by

(c) ∇ 4 U := ∇ 4 U + 2sωU, s = signature(U ), (7.3.2) 
i.e. the coefficient in front of ω depends on the signature of U . However, Proposition 5.4.1 of [START_REF] Giorgi | Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes[END_REF] holds true in a frame for which Ξ = 0. We have thus to construct, first, a new frame (e 3 , e 4 , e 1 , e 2 ), which coincides with that of (int) M on T , and which satisfies Ξ = 0. This is the goal of this first step.

In order to construct the above mentioned frame, we look for a frame transformation of the form (2.2.1), see section 2.2.1, in the particular case where the transition coefficients (f, f , λ) satisfy f = 0, λ = 1, i.e. We also define u such that e 4 (u ) = 0 and initialize both f and u on T such that

f T = 0, (u -u)| T = 0.
Moreover, we introduce the following subregion of (int) M

(int) M 1 := (int) M(r ≥ r + (1 + δ red )) ∩ {u ≤ u * },
where δ red > 0 is a sufficiently small constant.

According to Proposition 2.2.3, and given that the transformation satisfies λ = 1 and f = 0, ξ transforms as follows

ξ = ξ + 1 2 ∇ 4 f + 1 4 (tr χf -(a) trχ * f ) + ωf + Err(ξ, ξ ), Err(ξ, ξ ) = 1 2 f • χ + 1 4 |f | 2 η + 1 2 (f • ζ) f - 1 4 |f | 2 η + 1 2 (f • ξ ) f + 1 2 (f • f ) ξ + O(f 3 )Γ + O(f 2 )Γ b .
To enforce ξ = 0 is equivalent to require that f satisfies the following transport equation

∇ 4 f + 1 2 (tr χf -(a) trχ * f ) + 2ωf = Γ g + f • Γ g + O(f 2 )Γ + O(f 2 )Γ b .
Introducing the anti-selfdual 1-from F given by

F := f + i * f,
this transport equation is equivalent to

∇ 4 F + 1 2 trXF + 2ωF = Γ g + f • Γ g + O(f 2 )Γ + O(f 2 )Γ b , F T = 0,
which we rewrite as

∇ 4 F + 1 q ∆ |q| 2 -∂ r ∆ |q| 2 F = h, F T = 0, (7.3.3)
where the initialization of F on T comes from the one of f , and where h has the following schematic form

h = Γ g + f • Γ g + O(f 2 )Γ + O(f 2 )Γ b . (7.3.4)
Step 2. Control of the change of frame.

Next, we estimate f by relying on the transport equation (7.3.3). To this end, we assume the following local bootstrap assumption in

(int) M 1 |d k small +40 f | ≤ √ u 1+ δ dec 2 on r 1 ≤ r ≤ r 0 , (7.3.5) 
where

r + (1 + δ red ) ≤ r 1 < r 0 .
Since f = 0 on T = {r = r 0 }, (7.3.5) holds for r 1 close enough to r 0 , and our goal is to prove that we may in fact choose r 1 = r + (1 + δ red ) and replace √ with in (7.3.5).

Interpolating between the bootstrap assumptions on energy and on decay, we have on (int) M, for all k ≤ k small + 40, 

|d k (Γ b , Γ g )| u -1-δ dec 2 , (7.3 
|d k h| u 1+ δ dec 2 1 + |d ≤k f | + |d ≤k f | 2 . (7.3.7)
Next, we rewrite (7.3.3) as

∇ 4 q ∆ |q| 2 -1 F = q ∆ |q| 2 -1 h + 1 q ∆ |q| 2 -∂ r ∆ |q| 2 ∆ |q| 2 -1 Γ g , F T = 0.
Integrating this transport equation from T , and using (7.3.5), (7.3.7), and the fact that

r 1 ≥ r + (1 + δ red ) so that ∆ |q| 2 δ red > 0, we deduce 2 |f | ≤ u 1+ δ dec 2 on r 1 ≤ r ≤ r 0 .
Similarly, commuting (7.3.3) with L / T and ∇ 3 , proceeding as above, and using (7.3.3) to recover ∇ 4 derivatives, we obtain, for all k ≤ k small + 40,

|d k f | ≤ u 1+ δ dec 2 on r 1 ≤ r ≤ r 0 .
This is an improvement of the local bootstrap assumption (7.3.5) and we may thus choose r 1 = r + (1 + δ red ) and replace √ with in (7.3.5), i.e. we have obtained

|d k small +40 f | ≤ u 1+ δ dec 2 on (int) M 1 . (7.3.8) Remark 7.3.2.
In view of (7.3.8), the second frame (e 3 , e 4 , e 1 , e 2 ) is defined everywhere on (int) M 1 . Also, by the choice of the transport equation for f in Step 1, it satisfies Ξ = 0 on (int) M 1 as desired. Finally, note from the transformation formula for α in Proposition 2.2.3 and the fact that f = 0 and λ = 1 that the following identity holds

A = A on (int) M 1 .
We conclude this step by deriving two consequences on the estimate (7.3.8). First, as en immediate consequence of the control of (Γ g , Γ b ) in (int) M provided by (7.3.6), the control of f provided by (7.3.8), and the change of frame formulas of Proposition 2.2.3, we have on (int) M 1 , for all k ≤ k small + 39,

|d k (Γ b , Γ g )| u -1-δ dec 2 . (7.3.9)
Second, note that we have in

(int) M 1 e 4 (u) = e 4 (u) + f • ∇(u) + 1 4 |f | 2 e 3 (u) = 2(r 2 + a 2 ) |q| 2 + Γ g + O(f )
which together with (7.3.8) and (7.3.6) implies

|e 4 (u -u )| 1 on (int) M 1 ,
where we also used the fact that e 4 (u ) = 0. Since u = u = u on T , since r + (1 + δ red ) ≤ r ≤ r 0 on (int) M 1 , and since e 4 (r) δ red on (int) M 1 , we infer

|u -u| ≤ c δ red (7.3.10)
for a constant c δ red > 0 depending on δ red . In particular, in view of the definition of (int) M 1 , we deduce

(int) M(r ≥ r + (1 + δ red )) ∩ {u ≤ u * -c red } ⊂ (int) M 1 . (7.3.11)
Step 3. Estimates for A in (int) M 1 .

We use the Teukolsky-Starobinsky identity for A in (int) M 1 and the fact that we have complete control for A = A on T to derive estimates for A in (int) M 1 . The precise TS formula we need is as follows. We apply (7.3.12) in the new prime frame of Step 1 for which Ξ = 0, in the subregion (int) M 1 of (int) M. We thus obtain in that frame

(c) ∇ 4 + 2trX 4 A = h (7.3.13)
where the RHS h is given schematically by

h = r -4 d ≤4 A + d ≤3 Γ b • Γ g .
In view of (7.3.9), we have on (int) M 1 , for k ≤ k small + 36,

|d k h| |d ≤4 A | + 2 u 2+δ dec .
Using the transformation formula for α in Proposition 2.2.3, the fact that f = 0 and λ = 1, the control for f provided by (7.3.8), and the control for (Γ b , Γ g ) in (7.3.6), we infer on (int) M 1 , for k ≤ k small + 36,

|d k h| |d ≤4 A| + 2 u 2+δ dec .
Together with the control for A derived in Theorem M1, we deduce on (int) M 1 , for k ≤ k small + 36,

|d k h| 0 u 1+δ dec . (7.3.14)
Next, we integrate the fourth order transport equation (7.3.13) in e 4 from T using:

• the control of the RHS h provided by (7.3.14),

• the control of A on T provided by Lemma 7.2.2, and the fact that A = A, and obtain on

(int) M 1 |A | 0 u 1+δ dec .
Differentiating (7.3.13) w.r.t. L / T and ∇ 3 , using (7.3.13) to recover e 4 derivatives, and proceeding as above, we deduce on (int) M 1 , for k ≤ k small + 36,

|d k A | 0 u 1+δ dec .
Since A = A on (int) M 1 in view of Remark 7.3.2, we infer

d ≤k small +36 A 0 u -1-δ dec on (int) M 1 .
In view of (7.3.11), this implies

d ≤k small +36 A 0 u -1-δ dec on (int) M(r ≥ r + (1 + δ red )) ∩ {u ≤ u * -c red }. (7.3.15)
Step 4. Extension of (7.3.15) to (int) M ∩ {u ≤ u * -c red }.

In view of (7.3.15), we still need to control A in the region

(int) M(r ≤ r + (1 + δ red )) ∩ {u ≤ u * -c red }.
This is done by making use of the general red shift estimates of Proposition 9.4.2 in [START_REF] Giorgi | Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes[END_REF] applied to the Teukolsky equation for A. More precisely, in view of Lemma 5.3.3. in [START_REF] Giorgi | Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes[END_REF], the Teukolsky equation for A can be written in the following form

˙ 2 A = -4ω∇ 3 A + O(r -1 )∇ 4 A + O(ar -2 )∇A + O(r -2 )A + N, N = r -2 d ≤1 Γ b • Γ b + Γ b • Γ b • Γ g . (7.3.16)
We introduce the following notations

ψ := e c 0 τ A, τ | (int) M := u + m 2 r , c 0 = r + -m r 2 + + a 2 > 0, (7.3.17) 
and note from section D.3 that τ can be extended to M such that its level sets are spacelike. In view of (7.3.16), and using the fact that ω = -

1 2 ∂ r ∆ |q| 2 + q ω, e 4 (τ ) = e 4 (u) - m 2 r 2 e 4 (r) = 2(r 2 + a 2 ) |q| 2 - m 2 r 2 ∆ |q| 2 + ẽ4 (u) - m 2 r 2 ẽ4 (r),
as well as the definition of ψ, we infer in the red shift region

| r r + -1| ≤ 2δ red ˙ 2 ψ -V ψ = C + + O r r + -1 ∇ 3 ψ + O(1)∇ψ + O(1)∇ 4 ψ + O(1)ψ +e c 0 τ N, (7.3.18) 
where V = 4∆ (r 2 +a 2 )|q| 2 , where N has the same structure as in (7.3.16), and where C + is a function of cos θ given by

C + := 2∂ r ∆ |q| 2 |r=r + -c 0 2(r 2 + a 2 ) |q| 2 - m 2 r 2 ∆ |q| 2 |r=r +
which together with the choice of the constant c 0 implies

C + = 4(r + -m) -2c 0 (r 2 + + a 2 ) r 2 + + a 2 (cos θ) 2 = 2(r + -m) r 2 + + a 2 (cos θ) 2 > 0 so that C + is a positive function.
We then appeal to the following version of the red shift estimates. Proposition 7.3.4 (Redshift estimates). Let ψ a solution of a wave equation which, in the red shift region | r r + -1| ≤ 2δ red , takes the form (7.3.18) where C + is a positive function. Then, for |a| < m, there exists a small enough constant δ red > 0 such that δ red = δ red (m-|a|) with δ red ≥ δ H , such that the following estimate holds true in M(τ 1 , τ 2 ), for all s ≤ k small + 40,

E s r≤r + (1+δ red ) [ψ](τ 2 ) E s r≤r + (1+2δ red ) [ψ](τ 1 ) + δ -1 red Mor s r + (1+δ red )≤r≤r + (1+2δ red ) [ψ](τ 1 , τ 2 ) + M(τ 1 ,τ 2 )∩{r≤r + (1+2δ red )} e 2c 0 τ |d ≤s N | 2 , (7.3.19) 
where

E[ψ](τ ) = Σ(τ ) |∇ 4 ψ| 2 + r -2 |∇ 3 ψ| 2 + |∇ψ| 2 + r -2 |ψ| 2 , E s [ψ] = E[d ≤s ψ],(7.3.20)
and5 

Mor s r + (1+δ red )≤r≤r

+ (1+2δ red ) [ψ](τ 1 , τ 2 ) τ 2 τ 1 E s r + (1+δ red )≤r≤r + (1+2δ red ) [ψ](τ )dτ. (7.3.21)
Proof. See Proposition 9.4.2 of [START_REF] Giorgi | Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes[END_REF].

Since u ≤ τ in (int) M in view of (7.3.17), we have

(int) M(r ≥ r + (1 + δ red )) ∩ {τ ≤ u * -c red } ⊂ (int) M(r ≥ r + (1 + δ red )) ∩ {u ≤ u * -c red }
which together with (7.3.15) implies 6

E k small +35 r + (1+δ red )≤r≤r 0 [A](τ ) 0 τ -1-δ dec for τ ≤ u * -c red . (7.3.22)
Since ψ = e c 0 τ A, we have in view of Proposition 7.3.4 and (7.3.22), using also the bootstrap assumptions to control N , for 1 ≤ τ ≤ u * -c red ,

E k small +35 r≤r + (1+δ red ) [A](τ ) e -2c 0 τ E k small +35 r≤r + (1+2δ red ) [ψ](1) + e -2c 0 τ τ 1 e 2c 0 τ 2 0 τ -2-2δ dec dτ , 2 0 τ -2-2δ dec
where we used the fact that c 0 > 0. Together with (7.3.22), we deduce

E k small +35 r≤r 0 [A](τ ) 2 0 τ -2-2δ dec for 1 ≤ τ ≤ u * -c red . (7.3.23)
Using Sobolev and the fact that τ ∼ u on (int) M, we deduce, for all k ≤ k small + 33,

|d k A| 0 u -1-δ dec on (int) M(τ ≤ u * -c red ). (7.3.24)
Step 5. In view of (7.3.24), we still need to control A on (int) M(τ ≥ u * -c red ). To this end, we denote with primes quantities with respect to the global frame of Proposition 3.6.9, and we use:

• the control of the change of frame from the frame of (int) M and the frame of (ext) M to the one of Proposition 3.6.9 provided by property (f) of that proposition and (3.6.5),

• the change of frame formula for A provided by Proposition 2.2.3,

• the control of A in (ext) M provided by Theorem M4 7 ,

• the control of A in (int) M provided by (7.3.23),

to deduce

E k small +35 [A ](τ ) 2 0 τ -2-2δ dec for 1 ≤ τ ≤ u * -c red . (7.3.25) 
Next, notice that M(τ ≥ u * -c red ) is in fact a local existence type region. Starting from (7.3.25), we may thus rely on standard local energy decay estimates applied to the Teukolsky equation for A . This can be done exactly as in the end of section 12.4.3 of [START_REF] Giorgi | Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes[END_REF], see Steps 3-5. We leave the details to the reader. We derive

E k small +35 [A ](τ ) 2 0 τ -2-2δ dec for τ ≥ u * -c red ,
which together with (7.3.23) implies

E k small +35 [A ](τ ) 2 0 τ -2-2δ dec for τ ≥ 1. (7.3.26)
Using again the control of the change of frame from the frame of (int) M to the one of Proposition 3.6.9 provided by property (f) of that proposition, and the change of frame formula for A provided by Proposition 2.2.3, we deduce from (7.3.26)

E k small +35 r≤r 0 [A](τ ) 2 0 τ -2-2δ dec for τ ≥ 1.
Using Sobolev and the fact that τ ∼ u on (int) M, we deduce, for all k ≤ k small + 33,

|d k A| 0 u -1-δ dec on (int) M.
as stated. This ends the proof of Proposition 7.3.1.

Decay estimates in (int) M

In this section, all quantities appearing correspond to the ingoing PG structure of (int) M.

We are now ready to prove the part of Theorem M5 concerning (int) M, i.e. to derive decay estimates for the ingoing PG structure of (int) M. To this end, recall first that A has already been estimated in Proposition 7.3.1, see (7.3.1).

Relying on the estimates of the ingoing PG structure of (int) M on T derived in Lemma 7.2.2, we propagate these estimates to (int) M thanks to the linearized transport equations in the e 3 direction of Section 7.1 for ingoing PG structures. Recalling that A has already been estimated, see (7.3.1), the other quantities are recovered in the following order:

1. We recover } trX, with a control of k small + 40 derivatives, from

∇ 3 ( } trX) - 2 q } trX = Γ b • Γ b .
2. We recover X, with a control of k small + 33 derivatives, from

∇ 3 X - 2r |q| 2 X = -A + Γ b • Γ b .
3. We recover B, with a control of k small + 32 derivatives, from

∇ 3 B - 4 q B = 1 2 D • A + O(r -2 )A + Γ b • (B, A).
4. We recover q Z, with a control of k small + 32 derivatives, from

∇ 3 q Z - 2 q q Z = -B + O(r -2 ) X + O(r -2 ) } trX + Γ b • Γ g .

5.

We recover H, with a control of k small + 32 derivatives, from

∇ 3 | H - 1 q | H = B + O(r -1 ) q Z + O(r -2 ) X + O(r -2 ) } trX + Γ b • Γ g .
6. We recover D cos θ, with a control of k small + 33 derivatives, from

∇ 3 D cos θ - 1 q D cos θ = i 2 J • X + O(r -1 ) } trX + Γ b • Γ g .

7.

We recover D ⊗J, with a control of k small + 32 derivatives, from

∇ 3 (D ⊗J) - 2 q D ⊗J = O(r -1 )B + O(r -2 ) } trX + O(r -2 ) X +O(r -2 ) q Z + O(r -3 ) D(cos θ).
8. We recover D • J, with a control of k small + 32 derivatives, from

∇ 3 D • J - 2 q D • J = O(r -1 )B + O(r -2 ) } trX + O(r -2 ) X + O(r -2 ) q Z +O(r -3 ) D(cos θ).

9.

We recover e 4 (cos θ), with a control of k small + 32 derivatives, from

e 3 (e 4 (cos θ)) = O(r -1 ) | H + O(r -1 ) q Z + O(r -2 ) D cos θ + Γ b • Γ b .
10. We recover q P , with a control of k small + 31 derivatives, from

∇ 3 q P - 3 q q P = - 1 2 D • B + O(r -2 )B + O(r -3 ) } trX + r -1 Γ b • Γ g + Γ g • A.
11. We recover } trX, with a control of k small + 31 derivatives, from

∇ 3 } trX - 1 q } trX = D • q Z + 2 q P + O(r -2 ) q Z + O(r -1 ) } trX +O(r -1 ) D • J + O(r -3 ) D(cos θ) + Γ b • Γ g .
12. We recover X, with a control of k small + 31 derivatives, from

∇ 3 X - 1 q X = 1 2 D ⊗ q Z + O(r -2 ) q Z + O(r -1 ) X + O(r -1 )D ⊗J + O(r -3 ) D(cos θ) +Γ b • Γ g .
13. We recover ω, with a control of k small + 31 derivatives, from

∇ 3 (q ω) = ( q P ) + O(r -2 ) q Z + O(r -2 ) | H + Γ b • Γ g .
14. We recover ẽ4 (r), with a control of k small + 31 derivatives, from e 3 ẽ4 (r) = -2q ω.

15. We recover } ∇ 4 J, with a control of k small + 31 derivatives, from

∇ 3 } ∇ 4 J - 1 q } ∇ 4 J = O(r -3 ) ẽ4 (r) + O(r -3 )e 4 (cos θ) + O(r -2 )q ω +O(r -2 ) | H + O(r -2 ) q Z + O(r -2 ) | ∇J + O(r -1 ) q P .
16. We recover B, with a control of k small + 30 derivatives, from

∇ 3 B - 2 q B = -D q P + O(r -2 ) q P + O(r -3 ) q Z + O(r -4 ) D(cos θ) + r -1 Γ b • Γ g .
17. We recover Ξ, with a control of k small + 30 derivatives, from

∇ 3 Ξ - 1 q Ξ = O(r -1 ) d / ≤1 (q ω) + O(r -2 ) q Z + O(r -2 ) | H + O(r -2 ) } trX +O(r -3 ) D(cos θ) + Γ b • q ω, Γ g .

18.

We recover A, with a control of k small + 29 derivatives, from

∇ 3 A - 1 q A = 1 2 D ⊗B + O(r -2 )B + O(r -3 ) X.
19. We recover | Du, with a control of k small + 33 derivatives, from

∇ 3 | Du - 1 q | Du = O(r -1 ) } trX + O(r -1 ) X + Γ b • Γ g .

20.

We recover ẽ4 (u), with a control of k small + 32 derivatives, from

e 3 ẽ4 (u) = O(r -1 ) | H + O(r -1 ) q Z + O(r -2 ) | Du + Γ b • Γ b .
21. We recover D ⊗J ± , with a control of k small + 32 derivatives, from

∇ 3 (D ⊗J ± ) - 2 q D ⊗J ± = O(r -1 )B + O(r -2 ) } trX + O(r -2 ) X +O(r -2 ) q Z + O(r -3 ) D(cos θ).
22. We recover D • J ± , with a control of k small + 32 derivatives, from

∇ 3 D • J ± - 2 q D • J ± = O(r -1 )B + O(r -2 ) } trX + O(r -2 ) X + O(r -2 ) q Z +O(r -3 ) D(cos θ).
23. We recover ∇ 4 J ± , with a control of k small + 31 derivatives, from

∇ 3 ∇ 4 J ± - 1 q ∇ 4 J ± = O(r -3 ) ẽ4 (r) + O(r -3 )e 4 (cos θ) + O(r -2 )q ω +O(r -2 ) | H + O(r -2 ) q Z + O(r -2 ) | ∇J + O(r -1 ) q P .
24. We recover D(J (±) ), with a control of k small + 33 derivatives, from

∇ 3 D(J (±) ) - 1 q D(J (±) ) = O(r -1 ) } trX + O(r -1 ) X + Γ b • Γ g .

25.

We recover ∇ 4 J (±) , with a control of k small + 32 derivatives, from

∇ 3 ∇ 4 J (±) = O(r -2 ) D(J (±) ) + O(r -2 ) q Z + O(r -2 ) | H + Γ b • Γ b .
As the estimates are significantly simpler to derive8 and in the same spirit as the corresponding ones in Theorem M4, we leave the details to the reader. This concludes the proof of Theorem M5 for the part of (int) M.

7.5 Decay estimates for the PG structure of (top) M on {u = u * }

To simplify the notations, in this section, we denote

• by (e 4 , e 3 , e 1 , e 2 ) the outgoing PG frame of (ext) M, with all quantities associated to the outgoing PG structure of (ext) M being unprimed,

• by (e 4 , e 3 , e 1 , e 2 ) the ingoing PG frame of (top) M, with all quantities associated to the ingoing PG structure of (top) M being primed.

Remark 7.5.1. Note that in (top) M, we do not need to define ϕ , J (±) and J ± . In particular, recall from Remark 3.3.10 that the quantities Γ g , Γ b in (top) M correspond to the ones in Definition 2.7.3 where all linearized quantities based on J (±) and J ± have been removed.

Recall that (ext) M ∩ (top) M = {u = u * }. In view of the above notations, and the initialization of the ingoing PG structure of (top) M from the outgoing PG structure of (ext) M on {u = u * }, see Section 3.2.5, we have r = r, J (0) = J (0) , p = 0, +, -, J = J, (7.5.1) In order to derive decay estimates for the ingoing PG structure of (top) M on {u = u * }, we will rely on the following lemma.

u = u + 2 r r 0 r2 + a 2 r2 -2mr + a 2 dr, ( 7 
Lemma 7.5.2. We have on {u = u * }

A = λ 2 A + Γ b • B + r -3 Γ b • Γ b , B = λB + r -3 Γ b , q P = q P + r -1 Γ b • Γ b , B = λ -1 B + r -3 Γ b , A = λ -2 A, Ξ = 0, ω = 0, H = Z , Ξ = r -1 d ≤1 Γ b , ω = - 1 2 ∂ r ∆ |q| 2 + r -1 d ≤1 Γ b , | H = -q Z + r -1 Γ b , e 3 (r ) = -1, ∇ (r ) = 0, e 3 (u) = 0, e 3 (J (0) ) = 0, ∇ 3 J = 1 q J , ẽ 4 (r ) = Γ b • Γ b , ẽ 4 (u) = r -1 Γ b , e 4 (J (0) ) = r -1 Γ b , ∇ e 4 J = r -2 Γ b , 440 CHAPTER 7. DECAY ESTIMATES ON (IN T ) M AND (T OP ) M (THEOREM M5) ∇ (u) = ∇(u) + Γ b , ∇ (J (0) ) = ∇(J (0) ) + r -1 Γ b , D ⊗J = D ⊗J + r -2 Γ b , D • J = D • J + r -2 Γ b , } trX = λ } trX + r -1 d ≤1 Γ b , X = λ X + r -1 d ≤1 Γ b , } trX = λ -1 } trX + r -1 Γ b , X = λ -1 X + r -1 Γ b , and 
q Z = q Z + 1 q D(q) + 1 q D(q) + r -1 d ≤1 Γ b ,
where the definition of the linearized quantities for the outgoing PG structure of (ext) M can be found in Definition 2.6.6, while definition of the linearized quantities for the ingoing PG structure of (top) M can be found in Definition 2.7.2.

Proof. The identities for Ξ , ω , H -Z , e 3 (r ), e 3 (u), e 3 (J (0) ) and ∇ 3 J come from the ingoing PG structure assumption on (top) M. Also, the identities for A , B , B and A follow immediately from the change of frame formulas of Proposition 2.2.3 with coefficients (f, f = 0, λ) and the fact that f ∈ Γ b , and the identity for q P follows using additionally the fact that q = q on {u = u * }.

Next, note that we have In particular, since f ∈ Γ b , we infer 

e 4 = λ -1 e 4 + r -1 Γ b • d.
λ -2 Ξ = Ξ + r -1 d ≤1 Γ b , λ -1 ω = ω - 1 2 λ -1 e 4 (λ) + r -1 d ≤1 Γ b , H = H + r -1 Γ b .
Together with the explicit choice for λ, the fact that Ξ = ω = 0 and H = -Z, and the fact that q = q and J = J on {u = u * }, this immediately yields the identities for Ξ , q ω and | H . Also, the identities for ẽ 4 (r ), ẽ 4 (u), e 4 (J (0) ) and ∇ e 4 J follow immediately from the fact that we have, on {u = u * }, e 4 = λ -1 e 4 + r -1 Γ b • d, r = r, J (0) = J (0) , J = J, and

u = u + 2 r r 0 r2 + a 2 r2 -2mr + a 2 dr,
together with the fact that e 4 is tangent to {u = u * }, and the fact that e 4 (r) = 1, e 4 (u) = 0, e 4 (J (0) ) = 0 and ∇ 4 J = -1 q J.

It remains to derive the identities for

∇ (r ), q Z , } trX , X , } trX , X , ∇ (u), ∇ (J (0) ), D • J and D ⊗J . Since, ∇ -1 e 3 (u) ∇(u)∇ 3 is tangent to {u = u * } and since ∇ - 1 e 3 (u) ∇(u)∇ 3 = ∇ - 1 2 f λ∇ e 3 - 1 e 3 (u) ∇(u)∇ λe 3 , we have on {u = u * } ∇ - 1 2 f λ∇ e 3 - 1 e 3 (u) ∇(u)∇ λe 3 r = ∇ - 1 e 3 (u) ∇(u)∇ 3 r.
Since ∇(r) = 0 and e 3 (r ) = -1, we infer, using also e 3 (r) = -λ + ẽ3 (r),

∇ (r ) + λ 2 f = - ẽ3 (r) e 3 (u) ∇(u).
Now, recall that we have chosen f = h ẽ3 (r)∇(u). We infer

∇ (r ) = - λ 2 h + 2 λe 3 (u) ẽ3 (r)∇(u).
Since h = -2 λe 3 (u) , we infer ∇ (r ) = 0 as desired.

Next, using f ∈ Γ b , note that we have

∇ - 1 e 3 (u) ∇(u)∇ 3 = ∇ - 1 2 f λ∇ e 3 - 1 e 3 (u) ∇(u)∇ λe 3 = ∇ - λ e 3 (u) ∇(u)∇ e 3 + Γ b • ∇ e 3 .
Together with the fact that that we have, on {u = u * }, J (0) = J (0) , J = J, and

u = u + 2 r r 0 r2 + a 2 r2 -2mr + a 2 dr,
and together with the fact that ∇ -1 e 3 (u) ∇(u)∇ 3 is tangent to {u = u * }, we infer

∇ - λ e 3 (u) ∇(u)∇ e 3 + Γ b • ∇ e 3 u = ∇ - 1 e 3 (u) ∇(u)∇ 3 u + 2 r r 0 r2 + a 2 r2 -2mr + a 2 dr , ∇ - λ e 3 (u) ∇(u)∇ e 3 + Γ b • ∇ e 3 J (0) = ∇ - 1 e 3 (u) ∇(u)∇ 3 J (0) , ∇ - λ e 3 (u) ∇(u)∇ e 3 + Γ b • ∇ e 3 J = ∇ - 1 e 3 (u) ∇(u)∇ 3 J + r -2 Γ b .
Using the fact that q = q on {u = u * }, and since e 3 (r ) = -1, e 3 (u) = 0, e 3 (J (0) ) = 0, ∇ 3 J = 1 q J , ∇(r) = 0, we infer

∇ (u) = ∇(u) - 1 e 3 (u) ∇(u) e 3 (u) + 2e 3 (r) r 2 + a 2 ∆ = ∇(u) + Γ b , ∇ (J (0) ) = ∇(J (0) ) + r -1 Γ b , ∇ J - λ e 3 (u)q ∇(u)J = ∇ - 1 e 3 (u) ∇(u)∇ 3 J + r -2 Γ b ,
and hence, since q = q and J = J on {u = u * }, we obtain

∇ (u) = ∇(u) + Γ b , ∇ (J (0) ) = ∇(J (0) ) + r -1 Γ b , D ⊗J = D ⊗J + r -2 Γ b , D • J = D • J + r -2 Γ b ,
as stated.

It remains to derive the identities for q Z , } trX , X , } trX and X . In view of 

e a = e a - 1 
+ r -1 d ≤1 Γ b , χ ab - 2λ e 3 (u) e a (u)ξ b = λ -1 χ ab - 2λ -1 e 3 (u) e a (u)ξ b + r -1 Γ b .
Since ξ = 0, ω = 0 and η = ζ , and since ξ ∈ Γ b and q ω ∈ Γ b , we deduce on {u = u * }

2ζ a = -2 e a - 1 e 3 (u) e a (u)e 3 log λ + 2ζ a + 2 e 3 (u) e a (u)∂ r ∆ |q| 2 + r -1 d ≤1 Γ b , χ ab - 2λ e 3 (u) e a (u)ζ b = λχ ab - 2λ e 3 (u) e a (u)η b + r -1 d ≤1 Γ b , χ ab = λ -1 χ ab + r -1 Γ b .
In particular, since q = q on {u = u * }, we have

} trX = λ -1 } trX + r -1 Γ b , X = λ -1 X + r -1 Γ b ,
as stated. Also, since we have

-2 - 1 e 3 (u) e a (u)e 3 log λ + 2 e 3 (u) e a (u)∂ r ∆ |q| 2 = r -1 Γ b ,
we infer from the first identity

Z = Z -D(log λ) + r -1 d ≤1 Γ b .
Using the explicit for of λ, as well as ∇(r) = 0, we infer on {u = u * }

Z = Z -D log ∆ |q| 2 + r -1 Γ b = Z + 1 q D(q) + 1 q D(q) + r -1 Γ b ,
which yields, together with the fact that J = J and q = q on {u = u * }, in view of the linearization of the various quantities, and taking the different linearization for Z (ingoing PG structure) and Z (outgoing PG structure) into account,

q Z = q Z + 1 q D(q) + 1 q D(q) + r -1 d ≤1 Γ b as desired.
Finally, coming back to

χ ab - 2λ e 3 (u) e a (u)ζ b = λχ ab - 2λ e 3 (u) e a (u)η b + r -1 d ≤1 Γ b
and since we have in view of the above on {u = u * }

Z -H = Z -D(log λ) -H + r -1 d ≤1 Γ b = Z + 1 q D(q) + 1 q D(q) -H + r -1 d ≤1 Γ b = q Z + 1 q D(q) + 1 q D(q) -q H + r -1 d ≤1 Γ b = d ≤1 Γ b ,
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we deduce

} trX = λ } trX + r -1 Γ b , X = λ X + r -1 d ≤1 Γ b ,
as desired. This concludes the proof of the lemma.

We are now ready to derive decay estimates for the ingoing PG structure of (top) M on {u = u * }. 

ru 1+δ dec + r 2 u 1 2 +δ dec |d ≤k small +40 Γ g | + sup {u=u * } ru 1+δ dec |d ≤k small +40 Γ b | 0 .
Note that the tangential derivatives to {u = u * } are generated by e 4 and ∇-1 e 3 (u) ∇(u)∇ 3 . We introduce the following notation for r-weighted tangential derivatives to {u = u * }

d := r ∇ - 1 e 3 (u) ∇(u)∇ 3 , r∇ 4 .
From the above estimate for (Γ g , Γ b ), together the identities of the previous lemma on {u = u * }, we infer

sup {u=u * } ru 1+δ dec + r 2 u 1 2 +δ dec | d ≤k small +39 Γ g | + sup {u=u * } ru 1+δ dec | d ≤k small +39 Γ b | 0 .
Finally, since d is generated by e 3 and d, the previous estimate and the control of e 3 derivatives provided by the null structure equations and Bianchi identities of the ingoing PG structure of Proof. The proof proceeds in the following steps.

Step 1. We denote with primes quantities with respect to the global null frame of Proposition 3.6.9. Recall from (7.3.26) that we have obtained the following estimate for

A on M E k small +35 [A ](τ )
2 0 τ -2-2δ dec for τ ≥ 1, see (7.3.20) for the definition of the energy.

We then use the following lemma.

Lemma 7.6.2. We have the estimate

r -1 S(τ,r) |d s ψ| 2 E s [ψ](τ ).
Proof. See section 5.4.4 in [START_REF] Klainerman | Global Non-Linear Stability of Schwarzschild Spacetime under Polarized Perturbations[END_REF].

In view of the above lemma, we infer on M, for k ≤ k small + 35,

r -1 S(τ,r) |d k A | 2 2 0 τ -2-2δ dec .
We now restrict the estimate to (top) M and deduce using Sobolev, for k ≤ k small + 33,

|d k A | 0 r -1 2 τ -1-δ dec .
Using the control of the change of frame from the frame of (top) M to the one of Proposition 3.6.9 provided by property (f) of that proposition, and the change of frame formula for A provided by Proposition 2.2.3, we deduce, for k ≤ k small + 33,

|d k A| 0 r -1 2 τ -1-δ dec . (7.6.2)
Step 2. Since τ ∼ u for r ≤ r 0 and τ ∼ u for r ≥ r 0 , the estimate (7.6.2) has a loss of r

1 2
compared to the desired estimate for A in (top) M(r ≥ r 0 ). In order to improve it, we first derive estimates for ( X, B) with a loss of r 1 2 using the linearized null structure equations of Lemma 7.1.2

∇ 3 X - 2r |q| 2 X = -A + Γ b • Γ b , ∇ 3 B - 4 q B = 1 2 D • A + O(r -2 )A + Γ b • (B, A).
Integrating these transport equations from {u = u * } and using:

• the control of B and X on {u = u * } provided by Lemma 7.5.3,

• the control of A in (top) M provided by (7.6.2),

• the bootstrap assumptions on decay and energy, we easily infer9 on (top) M(r ≥ r 0 ), for k ≤ k small + 32,

|d s X| 0 r -1 2 τ -1-δ dec , |d s B| 0 r -3 2 τ -1-δ dec .
(7.6.3)

Step 3. Notice that (7.6.2) yields the desired estimate for A in (top) M(r ≤ r 0 ). It thus remains to improve (7.6.2) in (top) M(r ≥ r 0 ) by r -1 2 . To this end, we rely on the following Bianchi identity of Proposition 2.1.9

∇ 4 A + 1 2 D ⊗B = - 1 2 trXA + 4ωA + 1 2 (Z -4 H) ⊗B -3P X
which we rewrite in (top) M(r ≥ r 0 ) under the following form

∇ 4 (qA) = O(r -1 )A + O(1) d / ≤1 B + O(r -2 ) X + rΓ g • Γ b .
Using the bootstrap assumptions on decay and energy, the control of A in (top) M provided by (7.6.2), and the control of ( X, B) in (top) M provided by (7.6.3), we deduce in

(top) M(r ≥ r 0 ) ∇ 4 (qA) = h, |d k h| 0 r -3 2 τ -1-δ dec for k ≤ k small + 31.
Integrating this transport equation forward from (top) M ∩ {r = r 0 } where A is under control in view of (7.6.2), we infer on (top) M(r ≥ r 0 ), for k ≤ k small + 31,

|d k A| 0 r -1 τ -1-δ dec .
Since τ ∼ u for r ≤ r 0 and τ ∼ u for r ≥ r 0 , we deduce from (7.6.2) and the above estimate that A verifies the following estimate in

(top) M sup (top) M(r≤r 0 ) u 1+δ dec |d ≤k small +31 A| + sup (top) M(r≥r 0 )
ru 1+δ dec |d ≤k small +31 A| 0 as stated. This concludes the proof of Proposition 7.6.1.

Decay estimates in (top) M

We are now ready to prove the part of Theorem M5 concerning (top) M, i.e. to derive decay estimates for the ingoing PG structure of (top) M. To this end, recall first that A has already been estimated on (top) M in Proposition 7.6.1, see (7.6.1). Relying on the estimates of the ingoing PG structure of (top) M on {u = u * } derived in Lemma 7.5.3, we propagate these estimates to (top) M thanks to the linearized transport equations in the e 3 direction of Section 7.1 for ingoing PG structures. Recalling that A has already been estimated in (7.6.1), the other quantities are recovered following the same scheme 10 as the one for (int) M outlined in Section 7.4.

As the estimates are significantly simpler to derive 11 and in the same spirit as the corresponding ones in Theorem M4, we leave the details to the reader. This concludes the proof of Theorem M5 for (top) M. Together with the proof of Theorem M5 for (int) M in Section 7.4, this concludes the proof of Theorem M5.

Chapter 8

Initialization and extension (Theorems M0, M6 and M7)

The goal of this chapter is to prove Theorems M0, M6, and M7. To this end, we first review our GCM procedure in Section 8.1, and construct an auxiliary outgoing geodesic foliation in the part (ext) L 0 of the initial data layer in Section 8.2. Theorems M0, M6, and M7 are then proved respectively in Sections 8.3, 8.4 and 8.5.

GCM procedure

In this section, we review the main results on the existence of GCM spheres in [START_REF] Klainerman | Construction of GCM spheres in perturbations of Kerr[END_REF] [41] and on the existence of GCM hypersurfaces in [START_REF] Shen | Construction of GCM hypersurfaces in perturbations of Kerr[END_REF]. These results will be used repeatedly in the proof of Theorems M0, M6 and M7.

Background spacetime

Our GCM results hold true in a vacuum spacetime region, denoted R, foliated by two functions (u, s) such that:

1. On R, (u, s) is a geodesic foliation of lapse ς, i.e.

-u is an optical function, L = -g αβ ∂ β u∂ α u, and L(ς) = 1, -e 4 = ςL and L(s) = 1, -e 3 is the correspond null companion to e 4 , perpendicular to the surfaces S(u, s) induced by the level surfaces of (u, s), and such that g(e 3 , e 4 ) = -2.

In particular, it follows from the above that

(a) trχ = (a) trχ = 0, ω = ξ = 0, η = -ζ, ς = 2 e 3 (u)
.

2. We define the following renormalized quantities

} tr χ := tr χ - 2 r , } tr χ := tr χ + 2Υ r , q ω := ω - m r 2 , q K := K - 1 r 2 , q ρ := ρ + 2m r 3 , q µ := µ - 2m r 3 , q Ω := Ω + Υ, q ς := ς -1,
where

Ω := e 3 (s), Υ := 1 - 2m r ,
and group them in the sets Γ g and Γ b defined as follows Γ g := } tr χ, χ, ζ, } tr χ, rq µ, rq ρ, r * ρ, rβ, rα, r q K, r -1 e 4 (r) -1 , r -1 e 4 (m) , Γ b := η, χ, q ω, ξ, rβ, α, r -1 q Ω, r -1 q ς, r -1 (e 3 (r) + Υ , r -1 e 3 (m) . (d) In R Eq , the transition functions between the two coordinate systems are given by the smooth functions ϕ SN and ϕ N S = ϕ -1 SN .

5. The metric coefficients for the two coordinate systems are given by

g = -2ςduds + ς 2 Ωdu 2 + g N ab dy a N -ςB a N du dy b N -ςB b N du , g = -2ςduds + ς 2 Ωdu 2 + g S ab dy a S -ςB a S du dy b S -ςB b S du ,
where

Ω = e 3 (s), B a N = 1 2 e 3 (y a N ), B a S =
1 2 e 3 (y a S ).

6. We restrict the region R such that, for • sufficiently small,

• r the area radius of S(

• u, • s) sufficiently large, i.e • m 0 • r, R := |u - • u| ≤ • , |s - • s| ≤ • . (8.1.2)
7. We assume that on R the following assumptions are verified, for an integer s max sufficiently large A3. In the region of their respective validity 1 we have

A1. For k ≤ s max Γ g k,∞ ≤ • r -2 , Γ b k,∞ ≤ • r -1 . ( 8 
B a N , B a S ∈ r -1 Γ b , (8.1.5) 
and

r -2 q g N ab , r -2 q g S ab ∈ rΓ g , (8.1.6) 
where

q g N ab = g N ab - 4r 2 1 + (y 1 N ) 2 + (y 2 N ) 2 ) δ ab , q g S ab = g S ab - 4r 2 (1 + (y 1 S ) 2 + (y 2 S ) 2 ) δ ab .
1 That is the quantities on the left verify the same estimates as those for Γ b , respectively Γ g .
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A4. We assume the existence of a smooth family of scalar functions J (p) : R → R, for p = 0, +, -, verifying the following properties (a) On the sphere • S of the background foliation, there holds

( • r) 2 • ∆ + 2 J (p) = O( • ), p = 0, +, -, 1 
| • S| • S J (p) J (q) = 1 3 δ pq + O( • ), p, q = 0, +, -, 1 
| • S| • S J (p) = O( • ), p = 0, +, -. (8.1.7) (b) We extend J (p) from • S to R by ∂ s J (p) = ∂ u J (p) = 0, i.e. J (p) (u, s, y 1 , y 2 ) = J (p) ( • u, • s, y 1 , y 2 ). (8.1.8)

Deformations of surfaces

We review the results in [START_REF] Klainerman | Construction of GCM spheres in perturbations of Kerr[END_REF] on deformations of surfaces that will be useful in this chapter. 

Ψ( • u, • s, y 1 , y 2 ) = • u + U (y 1 , y 2 ),
• s + S(y 1 , y 2 ), y 1 , y 2 . (8.1.9) Definition 8.1.2. Given a deformation Ψ :

• S → S we say that a new frame (e 3 , e 4 , e 1 , e 2 ) on S, obtained from the standard frame (e 3 , e 4 , e 1 , e 2 ) via the general frame transformation (2.2.1), is S-adapted if the horizontal vectorfields e 1 , e 2 are tangent to S.

The following result combines Lemma 5.8, Corollary 5.9 and Corollary 5.17 in [START_REF] Klainerman | Construction of GCM spheres in perturbations of Kerr[END_REF]. 2. We have

L ∞ ( • S) + r • ∇(U, S) L ∞ ( • S) + r 2 • ∇ 2 (U, S) L ∞ ( • S) • δ. ( 8 
r S • r = 1 + O(r -1 • δ) (8.1.12)
where r S is the area radius of S and 

For an arbitrary scalar function

f on R, S f -• S f • δ • r sup R |f | + • r sup R |∂ u f | + |∂ s f | .
The following results combine Lemma 7.3 with Corollary 7.7 in [START_REF] Klainerman | Construction of GCM spheres in perturbations of Kerr[END_REF].

Lemma 8.1.4. Let Ψ :

• S → S be a deformation defined by (U, S), as in Definition 8.1.1 with (f, f ) the transition function of the frame transformation from the frame of R to that adapted to S, as in Definition 8.1.2. There exists a small enough constant δ 1 such that for given f, f on R satisfying f hs max (S) + (r S ) -1 f hs max (S) ≤ δ 1 , the following holds 1. We have

( • r ) -1 U h smax+1 ( • S) + ( • r ) -2 S h smax+1 ( • S) δ 1 .
In particular, we have 3. We have

r S • r -1 + sup S r S r -1 δ 1 .
4. The following estimate holds true for an arbitrary scalar function h on R,

h # -h δ 1 sup R |dh|.

The following estimate holds true for an arbitrary scalar function

h on R, S h -• S h δ 1 ( • r) 2 sup R |f | + |∂ u f | + • r sup R |∂ s f | .
6. If V ∈ h s (S) and V # is its pull-back by Ψ, we have for all 0 ≤ s ≤ s max , 

V hs(S) = V # hs( • S, g S,# ) = V # hs( • S, • g) 1 + O(δ 1 ) . ( 8 
(Γ S,# ) c ab -( • Γ) c ab h smax-1 ( • S) r 2 δ 1 . (8.1.15)
9. We also have, for

• m the Hawking mass of

• S, |m S - • m| δ 1 + ( • ) 2 .

Existence of intrinsic GCM spheres

We review in this section the results of [START_REF] Klainerman | Effective results in uniformization and intrinsic GCM spheres in perturbations of Kerr[END_REF] useful for this chapter. We start with the following definition of canonical = 1 modes on a deformed sphere S. 

J (p,S) = J (p,S 2 ) • Φ -1 (8.1.16)
with J (p,S 2 ) denoting the = 1 spherical harmonics of S 2 .

Consider as before a vacuum spacetime region R verifying the assumptions A1-A4. In addition we make the following stronger assumptions on A1 and A4.

A1-Strong. For k ≤ s max , and for a small enough constant δ 1 > 0, with

δ 1 ≥ • , (Γ g , Γ b ) k,∞ δ 1 r -2 , ∇ 3 Γ g k,∞ δ 1 r -3 . (8.1.17) 
A4-Strong. We assume the existence of a smooth family of scalar functions J (p) : R → R, for p = 0, +, -, verifying the following properties 1. On the sphere • S of the background foliation, there holds the following stronger version of (8.1.7) 

( • r) 2 • ∆ + 2 J (p) = O( • r -1 ), p = 0, +, -, 1 |S| S J (p) J (q) = 1 3 δ pq + O( • r -1 ), p, q = 0, +, -, 1 |S| S J (p) = O( • r -1 ), p = 0, +, -. (8 
(p) = ∂ u J (p) = 0.
We state below the results of Corollary 7.2. in [START_REF] Klainerman | Effective results in uniformization and intrinsic GCM spheres in perturbations of Kerr[END_REF]. We state below Theorem 7.3. in [START_REF] Klainerman | Effective results in uniformization and intrinsic GCM spheres in perturbations of Kerr[END_REF], which is the main result in that paper, concerning the construction of intrinsic GCM spheres. Recall, see Definition 2.6.1, that the = 1 modes of a scalar function f are defined to be the triplet2 

(f ) =1 = 1 |S| S f J (0) , 1 |S| S f J (+) , 1 |S| S f J (-) .
Theorem 7.3. in [START_REF] Klainerman | Effective results in uniformization and intrinsic GCM spheres in perturbations of Kerr[END_REF] holds for spacetime regions R verifying, in addition to A1-A4,

κ = 2 r + κ, κ = - 2Υ r + C 0 + p C (p) J (p) + κ, µ = 2m r 3 + M 0 + p M (p) J (p) + μ, (8.1.22)
where the scalar functions

C 0 = C 0 (u, s), C (p) = C (p) (u, s), M 0 = M 0 (u, s) and M (p) = M (p) (u, s)
, defined on the spacetime region R, depend only on the coordinates (u, s), and where κ, κ and μ satisfy the following estimates sup [START_REF] Dafermos | A new physical-space approach to decay for the wave equation with applications to black hole spacetimes[END_REF]. We further assume that, relative to the = 1 modes of the background foliation,

R d / ≤smax ( κ, κ)| r -2 • δ, sup R d / ≤smax μ| r -3 • δ. ( 8 
(div β) =1 = O( • δr -5 ), ( } tr χ) =1 = O( • δr -3 ), ( } tr χ) =1 = O( • δr -3 ). (8.1.24)
Then, there exist unique constants M (S,p) , p ∈ {-, 0, +}, such that 2. The parameter functions U, S of the deformation verify (U, S)

κ S = 2 r S , κ S = - 2 r S Υ S , µ S = 2m S (r S ) 3 + p M (S,p) J (p,S) , ( 8 
h smax+1 ( • S) r • δ.
3. The Hawking mass m S of S verifies the estimate

m S - • m • δ.
4. The well defined 3 Ricci and curvature coefficients of S verify,

Γ S g hs max (S) • r -1 , Γ S b hs max (S)
• .

3 Note that while the Ricci coefficients κ S , κ S , χ S , χ S , ζ S as well as all curvature components and mass aspect function µ S are well defined on S, this in not the case of η S , η S , ξ S , ξ S , ω S , ω S which require the derivatives of the frame in the e S 3 and e S 4 directions.

The following corollary is Corollary 7.7 in [START_REF] Klainerman | Effective results in uniformization and intrinsic GCM spheres in perturbations of Kerr[END_REF]. • either, for any choice of a canonical = 1 basis of S,

(curl S β S ) =1 = 0,
• or there exists a canonical basis of = 1 modes of S such that

S curl S β S J (±,S) = 0, S curl S β S J (0,S) = 0. (8.1.27)
We then define the angular parameter a S on S by the formula

a S := (r S ) 3 8πm S S curl S β S J (0,S) . (8.1.28)
With this definition, we have a S = 0 in the first case, while a S = 0 in the second case.

Remark 8.1.9. In the case a S = 0, with a S given by (8.1.28), let a canonical basis J (p,S) satisfying the condition (8.1.27). Then, J (0,S) is unique, see Remark 7.8 in [START_REF] Klainerman | Effective results in uniformization and intrinsic GCM spheres in perturbations of Kerr[END_REF]. Thus, on an intrinsic GCM sphere S,

• a S given by (8.1.28) is a well defined notion of angular momentum,

• the condition (8.1.27) is a canonical way to define a notion of axis4 when a S = 0.

Finally we state below the results of Proposition 8.1 in [START_REF] Klainerman | Effective results in uniformization and intrinsic GCM spheres in perturbations of Kerr[END_REF].

Proposition 8.1.10. Let a fixed spacetime region R verifying assumptions A1-A4 and (8.1.22) (8.1.23), as well as, for any background sphere S of R,

|(div β) =1 | r -4 • δ, |(q κ) =1 | r -2 • δ. (8.1.29)
Assume that S is a deformed sphere in R which verifies the GCM conditions

κ S = 2 r S , κ S = - 2 r S Υ S + C S 0 + p C (S,p) J (p) , µ S = 2m S (r S ) 3 + M S 0 + p M (S,p) J (p) , (8.1.30)
for some basis 5 of = 1 modes J (p) on S, such that for a small enough constant δ 1 > 0,

• The transition coefficients (f, f , λ) from the background frame of R to that of S verifies, for some 4 ≤ s ≤ s max , the bound

f hs(S) + (r S ) -1 (f , • λ ) hs(S) ≤ δ 1 , (8.1.31)
• The difference between the basis of = 1 modes J (p) on S and the basis of = 1 modes of the background foliation

J (p) verifies r -1 J (p) -J (p) hs(S) ≤ δ 1 . (8.1.32)
Assume in addition that we have, with respect to the basis of = 1 modes J (p) on S,

|(div S β S ) =1 | r -4 • δ, |(q κ S ) =1 | r -2 • δ. (8.1.33) Then (f, f , λ = 1 + • λ ) verify the estimates (f, f , • λ S ) h s+1 (S) r • δ + r( • ) 2 + rδ 1 1 • r + • + δ 1 and r| • λ S | r • δ + r( • ) 2 + rδ 1 1 • r + • + δ 1 + sup S |r -r S |.

Existence of GCM hypersurfaces

In this section, we review the results on the construction of GCM hypersurfaces (GCMH) from [START_REF] Shen | Construction of GCM hypersurfaces in perturbations of Kerr[END_REF]. We state below Theorem 4.1 in [START_REF] Shen | Construction of GCM hypersurfaces in perturbations of Kerr[END_REF] on the construction of GCM hypersurfaces. denotes the weighted derivatives tangential to the level hypersurfaces of u + s. In addition, we assume on

R sup R d ≤smax ( κ, κ)| r -2 • δ, sup R d ≤smax μ| r -3 • δ, (8.1.35)
where κ, κ and μ are given by (8.1.22), and as well as the existence of a constant m (0) such that we have on R

|(div η) =1 | • δ, |(div ξ) =1 | • δ, ( 8 
e 3 (u) + e 3 (s) -1 - 2m (0) r • δ, (8.1.38) 
where e 3 (u) + e 3 (s) denotes the average of e 3 (u) + e 3 (s) on the spheres of the background foliation.

Let S 0 be a fixed sphere included in the region R, let a pair of triplets Λ 0 , Λ 0 ∈ R 3 such that

|Λ 0 | + |Λ 0 | r -2 • δ, (8.1.39)
and let J (p) [S 0 ] a basis of = 1 modes on S 0 , such that we have on S 0

κ S 0 = 2 r S 0 , κ S 0 = - 2Υ S 0 r S 0 + C S 0 0 + p C (S 0 ,p) J (p) [S 0 ], µ S 0 = 2m S (r S 0 ) 3 + M S 0 0 + p M (p,S 0 ) J (p) [S 0 ], (8.1.40)
as well as

(div f 0 ) =1 = Λ 0 , (div f 0 ) =1 = Λ 0 , (8.1.41)
with (f 0 , f 0 ) corresponding to the coefficients from the background frame to the frame adapted to S 0 , and the = 1 modes being taken w.r.t. the basis J (p) [S 0 ], and where

J (p) [S 0 ] -J (p) h smax+1 (S 0 ) r • δ.
Then, there exists a unique, local, smooth, space like hypersurface Σ 0 passing through S 0 , a scalar function u S defined on Σ 0 , whose level sets a topological spheres denoted by S, a smooth collection of constants Λ S , Λ S and a triplet of functions J (p) [S] defined on Σ 0 verifying

Λ S 0 = Λ 0 , Λ S 0 = Λ 0 , J (p) [S] S 0 = J (p) [S 0 ],
such that the following conditions are verified:

1. The following GCM conditions hold on Σ 0 6. In view of (8.1.47), the Ricci coefficients η S and ξ S are well defined on Σ 0 . They verify on Σ 0 (div S η S ) =1 = 0, (div S ξ S ) =1 = 0, (8.1.48) where the = 1 modes are taken w.r.t.

κ S = 2 r S , κ S = - 2Υ S r S + C S 0 + p C (S,p) J (p) [S], µ S = 2m S (r S ) 3 + M S 0 + p M (S,p) J (p) [S]. ( 8 
J (p) [S].
7. The transition coefficients (f, f , λ) from the background foliation to that of Σ 0 verify 

(f, f , λ -1) h smax+1 (S) + d(f, f , λ -1) h smax(S) • δ. ( 8 
| d ≤smax (div η) =1 | • δ, | d ≤smax (div ξ) =1 | • δ, ( 8 
κ S = 2 r S , κ S = - 2 r S Υ S + C S 0 + p C (S,p) J (p) [S], µ S = 2m S (r S ) 3 + M S 0 + p M (S,p) J (p) [S], (8.1.52)
and

(div S η S ) =1 = 0, (div S ξ S ) =1 = 0, (8.1.53)
where the triplet of functions J (p) [S] verifies on Σ 0 ν S (J (p) [S]) = 0, p = 0, +, -. (8.1.54)

1. If we assume in addition that for a given sphere S 0 on Σ 0 the transition coefficients (f, f , λ) from the background foliation to S 0 verify

(f, f , λ -1) h smax+1 (S 0 ) • δ, (8.1.55) then d ≤smax+1 (f, f , λ -1) L 2 (S 0 ) • δ. (8.1.56)
2. If we assume in addition that for a given sphere S 0 on Σ 0 the transition coefficients (f, f , λ) from the background foliation to S 0 verify

f h smax+1 (S 0 ) + (r S 0 ) -1 (f , λ -1) h smax+1 (S 0 ) • δ, (8.1.57) then d ≤smax+1 f L 2 (S 0 ) + (r S 0 ) -1 d ≤smax+1 (f , λ -1) L 2 (S 0 ) + d ≤smax ∇ S ν S (f , λ -1) L 2 (S 0 ) • δ. (8.1.58)
We conclude this section with the following simple consequence of Lemma 4.19 in [START_REF] Shen | Construction of GCM hypersurfaces in perturbations of Kerr[END_REF].

Lemma 8.1.13. Assume given a hypersurface Σ 0 ⊂ R foliated by hypersurfaces S such that

sup S⊂Σ 0 d ≤smax (f, f , λ -1) L 2 (S) • δ,
where ν S = e S 3 + b S e S 4 is tangent to Σ 0 , and where (f, f , λ) denote the coefficients of the change of frame from the background frame to the frame adapted to the spheres S. Then, we have, for any scalar function h on R and for any 1 ≤ j ≤ s max ,

(ν S ) j h h smax-j (S) r sup R | d ≤smax h| + • δ|d ≤smax h| + j-1 l=0 ∇ l ν S (b S + e 3 (u) + e 3 (r)) h smax-l (S) sup R |d ≤smax h|.
8.2 An auxiliary geodesic foliation in (ext) L 0 Recall from Section 3.1 that the initial data layer L 0 is given by L 0 = (int) L 0 ∪ (ext) L 0 , with (int) L 0 and (ext) L 0 covered by PG structures. The goal of this section is to construct and control an auxiliary outgoing geodesic foliation in (ext) L 0 that will be used in the proof of Theorem M0 and Theorem M6. To this end:

• We recall basic properties of the outgoing PG structure of (ext) L 0 in Section 8.2.1.

• We construct an auxiliary outgoing geodesic foliation in (ext) L 0 in Section 8.2.2.

• We use the transformation formulas to compare the Ricci coefficients and curvature components of the auxiliary outgoing geodesic foliation to the Ricci coefficients and curvature components of the outgoing PG structure of (ext) L 0 in Section 8.2.3.

• Finally, we control the auxiliary outgoing geodesic foliation of (ext) L 0 in Section 8.2.4, see Proposition 8.2.7.

Preliminaries

In Section 8.2, we concentrate to the region (ext) L 0 . To ease notations, throughout Section 8.2, we denote:

• (a, m) instead of (a 0 , m 0 ),

• by (u, r, θ, ϕ) the PG coordinates of (ext) L 0 ,

• by E = (e 1 , e 2 , e 3 , e 4 ) the outgoing PG frame of (ext) L 0 ,

• by χ, χ, ζ, η, η, ξ, ξ, ω, ω, and α, α, β, β, ρ, * ρ the Ricci and curvature coefficients of the outgoing PG structure of (ext) L 0 .

Recall that the PG structure of (ext) L 0 verifies the following identities e 4 (r) = 1, e 4 (u) = e 4 (θ) = e 4 (ϕ) = 0, e 1 (r) = e 2 (r) = 0, as well as

ξ = 0, ω = 0, η = -ζ.
Moreover, (ext) L 0 is also endowed with a complex 1-form J verifying

∇ e 4 (rJ) = 0, * J = -iJ, (J) 2 = (sin θ) 2 |q| 2 .
Also, we define the linearized quantities for the outgoing PG structure of (ext) L 0 as in Definition 2.6.6, and the corresponding quantities Γ g , Γ b as in Definition 2.6.7. Since u is bounded in (ext) L 0 , we simply write Γ g = r -1 Γ b . Our initial data control, see (3.4.7), implies in particular the bounds

(ext) I k large +10 ≤ 0 , (ext) I 3 ≤ 2 0 , (8.2.1)
where, see Section 3.3.6,

(ext) I k = sup (ext) L 0 r|d ≤k Γ b | + r 7 2 + δ B 2 |d ≤k A| + |d ≤k B| .
We make the additional assumption

ẽ3 (u) ∈ Γ b . (8.2.2)
Remark 8.2.1. To justify the above additional assumption in (ext) L 0 , we recall the following equation, see Lemma 6.1.16,

e 4 ẽ3 (u) = O(r -1 ) q H + O(r -1 ) q Z + O(r -2 ) | Du + Γ b • Γ b ∈ r -1 Γ b . (8.2.3)
Thus, the assumption (8.2.2) follows from integrating backwards the transport equation e 4 ẽ3 (u) ∈ r -1 Γ b , and from using fact that ẽ3 (u) → 0 as r → ∞.

Finally, note that we have, in view of Definitions 2.6.6 and 2.6.7,

e 3 (u) = 2 + 2a 2 sin 2 θ r 2 + Γ b + O(r -4 ), ∇u = a (J) + Γ b , e 3 (r) = -Υ + rΓ b + O(r -2 ), ∇(cos θ) = ∇(J (0) ) = -(J) + Γ b , e 3 (cos θ) = Γ b ,
where Υ = 1 -2m r .

Construction and asymptotic of the geodesic foliation

We look for an optical function u such that u ∼ u as r → ∞. Its existence is provided by the following lemma.

Lemma 8.2.2. There exists a unique optical function u defined in (ext) L 0 and verifying

u = u - a 2 (sin θ) 2 2r + h, h = Γ b + O(r -3 ). ( 8 

.2.4)

Proof. Let

u 0 := u - a 2 (sin θ) 2 2r .
We calculate

g αβ ∂ α u∂ β u = -e 3 (u)e 4 (u) + |∇u| 2 = |∇u| 2 = a (J) + Γ b 2 = a 2 sin 2 θ |q| 2 + r -1 Γ b = a 2 sin 2 θ r 2 + O(r -4 ) + r -1 Γ b .
Hence, since e 4 (u) = 0, and in view of the definition of u 0 , we infer

g αβ ∂ α u 0 ∂ β u 0 = g αβ ∂ α u∂ β u -2g αβ ∂ α u∂ β a 2 (sin θ) 2 2r + g αβ ∂ α a 2 (sin θ) 2 2r ∂ β a 2 (sin θ) 2 2r = a 2 sin 2 θ r 2 + O(r -4 ) + r -1 Γ b + e 3 (u)e 4 a 2 (sin θ) 2 2r -2∇(u) • ∇ a 2 (sin θ) 2 2r -e 4 a 2 (sin θ) 2 2r e 3 a 2 (sin θ) 2 2r + ∇ a 2 (sin θ) 2 2r 2 .
Note that

e 3 (u)e 4 a 2 (sin θ) 2 2r -2∇(u) • ∇ a 2 (sin θ) 2 2r -e 4 a 2 (sin θ) 2 2r e 3 a 2 (sin θ) 2 2r + ∇ a 2 (sin θ) 2 2r 2 = -2 + Γ b + O(r -2 ) a 2 (sin θ) 2 2r 2 + 4 a (J) + Γ b • a 2 cos θ 2r -(J) + Γ b +O(r -4 ) + r -2 Γ b = - a 2 (sin θ) 2 r 2 + O(r -4 ) + r -2 Γ b
where we used the fact that (J) • (J) = 0 since (J) = * (J). Hence, we infer

g αβ ∂ α u 0 ∂ β u 0 = O(r -4 ) + r -1 Γ b .
Thus, since u = u 0 + h, we deduce

g αβ ∂ α u∂ β u = g αβ ∂ α ( u 0 + h)∂ β ( u 0 + h) = 2g αβ ∂ α u 0 ∂ β h + g αβ ∂ α h∂ β h + O(r -4 ) + r -1 Γ b = -e 3 ( u 0 )e 4 (h) -e 4 ( u 0 )e 3 (h) + 2∇( u 0 ) • ∇(h) + g αβ ∂ α h∂ β h +O(r -4 ) + r -1 Γ b .
Now, we have

e 3 ( u 0 ) = e 3 (u) + a 2 sin 2 θ 2r 2 e 3 (r) + r -1 Γ b = 2 + O(r -2 ) + Γ b , e 4 ( u 0 ) = e 4 (u) + a 2 sin 2 θ 2r 2 = a 2 sin 2 θ 2r 2 , ∇( u 0 ) = ∇(u) + O(r -2 ) + r -1 Γ b = a (J) + O(r -2 ) + Γ b ,
and hence

g αβ ∂ α u∂ β u = -2 + O(r -2 ) + Γ b e 4 (h) + O(r -2 )e 3 (h) +2 a (J) + O(r -2 ) + Γ b • ∇(h) + g αβ ∂ α h∂ β h + O(r -4 ) + r -1 Γ b .
Since u is an optical function, we are thus led to solve the following equation for h ), h satisfies in particular |d ≤1 h| 0 r -1 + r -3 , and the uniqueness follows immediately from backward integration of (8.2.5) and the initialization (8.2.6). Also, commuting (8.2.5), using (8.2.1) to estimate the RHS of (8.2.5), integrating backward, and using the initialization (8.2.6), we easily obtain the following a priori bounds for h

1 + O(r -2 ) + Γ b e 4 (h) + O(r -2 )e 3 (h) -a (J) + O(r -2 ) + Γ b • ∇(h) + g αβ ∂ α h∂ β h = O(r -4 ) + r -1 Γ b , (8.2 
d ≤k large +10 h 0 r -1 + r -3 , d ≤3 h 2 0 r -1 + r -3 .
These bounds yield h = Γ b + O(r -3 ), and can be used to prove the existence of h. Thus, there exists a unique solution h of (8.2.5) defined on (ext) L 0 , such that h → 0 as r → ∞ and h = Γ b + O(r -3 ). This concludes the proof of the lemma.

Definition 8.2.3. Let u the outgoing optical function of Lemma 8.2.2. Then, we define the following:

• Let e 4 := -g αβ ∂ α u∂ β the null outgoing geodesic vectorfield associated to u.

• Let s be the associated affine parameter, i.e. e 4 ( s) = 1, with s normalized such that s = r as r → ∞.
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• We define the region (ext) L 0 ⊂ (ext) L 0 to be the region6 

(ext) L 0 := 0 ≤ u ≤ 2, s ≥ δ * 2 -1 0 , (8.2.7)
with δ * > 0 the small constant introduced in Section 3.4.1. See Figure 8.1 below where (ext) L 0 is sketched in red inside the initial data layer L 0 .

• We denote by r the area radius of the spheres S( u, s).

• The foliation induced by ( u, s) is called the outgoing geodesic foliation of (ext) L 0 normalized at infinity. We denote by E = ( e 4 , e 3 , e 1 , e 2 ) the corresponding null frame.

• We denote by (f, f , λ) the transition coefficients of the frame transformation which takes the outgoing PG frame of (ext) L 0 , denoted E, into E. 1. The transition functions (f, f , λ) are given by the formulas

λ = 1 + 3a 2 (sin θ) 2 4r 2 + O(r -3 ) + r -1 d ≤1 Γ b , f = -a (J) + a 2 cos θ r (J) + O(r -3 ) + d ≤1 Γ b , f = -aΥ (J) - a 2 cos θ r (J) + O(r -3 ) + d ≤2 Γ b .
(8.2.8)

Using complex notations, F = f + i * f and F = f + i * f satisfy F = -a 1 + i a cos θ r J + O(r -3 ) + d ≤1 Γ b = - aq r J + O(r -3 ) + d ≤1 Γ b , F = -a Υ -i a cos θ r J + O(r -3 ) + d ≤1 Γ b = - aΥq r J + O(r -3 ) + d ≤2 Γ b .
2. The function s behaves as follows

s = r + a 2 sin 2 θ 2r + O(r -2 ) + d ≤1 Γ b . (8.2.9)
Proof. The proof proceeds in several steps.

Step 1. We start with the control of f . To this end, we rely on the formula

e 4 = λ e 4 + f a e a + 1 4 |f | 2 e 3 .
On the other hand, in view of the definition of e 4 , we have

e 4 = -g αβ ∂ α ( u)∂ β = 1 2 e 3 ( u)e 4 + 1 2 e 4 ( u)e 3 -e a ( u)e a .
Hence

λ = 1 2 e 3 ( u), f = - 2 e 3 ( u) ∇( u).
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We calculate, using e 3 (r

) = -Υ + O(r -2 ) + rΓ b , e 3 (u) = 2 + 2a 2 sin 2 θ r 2 + O(r -4 ) + Γ b , e 3 (cos θ) = Γ b , u = u -a 2 (sin θ) 2 2r + h and h = O(r -3 ) + Γ b , e 3 ( u) = e 3 u - a 2 (sin θ) 2 2r + h = 2 + 2a 2 sin 2 θ r 2 + O(r -4 ) + Γ b + a 2 (sin θ) 2 2r 2 e 3 (r) + a 2 r cos θe 3 (cos θ) + e 3 (h) = 2 + 3a 2 sin 2 θ 2r 2 + O(r -3 ) + d ≤1 Γ b .
Also, since ∇u = a (J) + Γ b and ∇(cos θ) = -(J) + Γ b , we have

∇( u) = ∇ u - a 2 (sin θ) 2 2r + h = a (J) + Γ b + a 2 cos θ r ∇(cos θ) + ∇(h) = a (J) - a 2 cos θ r (J) + O(r -4 ) + d ≤1 Γ b .
We deduce,

λ = 1 2 e 3 ( u) = 1 + 3a 2 sin 2 θ 4r 2 + O(r -3 ) + d ≤1 Γ b , f = - 2 e 3 ( u) ∇( u) = -a (J) + a 2 cos θ r (J) + O(r -3 ) + d ≤1 Γ b ,
which is the desired estimate for f , but not for λ.

Step 2. Next, we derive the desired estimate for λ. To this end, we need to improve the estimate for λ of Step 1. This improvement will be needed to get the correct asymptotic for s.

Lemma 8.2.5. We have

λ = 1 + 3a 2 sin 2 θ 4r 2 + O(r -3 ) + r -1 d ≤1 Γ b .
Proof. Recall the transport equation for e 4 (log λ) in Corollary 2.2.4, which, in view of that fact that ω = 0 and η = -ζ, takes the following form

λ -1 ∇ e 4 (log λ) = 2f • ζ + E 2 (f, Γ), E 2 (f, Γ) = - 1 2 |f | 2 ω - 1 4 tr χ|f | 2 + O(f 3 Γ + f 2 χ).
Using in particular the form of f in Step 1, note that

E 2 (f, Γ) = - 1 4 tr χ|f | 2 + O(r -4 ) + r -2 d ≤1 Γ b .
We deduce

e 4 (log λ) = 2f • ζ - 1 4 tr χ|f | 2 + O(r -4 ) + r -2 d ≤1 Γ b = (F • Z) - 1 4 tr χ|f | 2 + O(r -4 ) + r -2 d ≤1 Γ b .
Next, recall that

Z = aq |q| 2 J + Γ g , tr χ = - 2Υ r + O(r -3 ) + Γ g .
Thus, together with the form of f in Step 1, we infer

F • Z = - aq r J + O(r -3 ) + d ≤1 Γ b • aq |q| 2 J + Γ g = - aq r J • aq |q| 2 J + O(r -4 ) + r -2 d ≤1 Γ b = - 2a 2 sin 2 θ r 3 + O(r -4 ) + r -2 d ≤1 Γ b , |f | 2 = -a (J) + a 2 cos θ r (J) + O(r -3 ) + d ≤1 Γ b 2 = a 2 sin 2 θ r 2 + O(r -3 ) + r -1 d ≤1 Γ b , and 
1 4 tr χ|f | 2 = - Υ 2r + O(r -3 ) + Γ g a 2 sin 2 θ r 2 + O(r -3 ) + r -1 d ≤1 Γ b = - a 2 sin 2 θ 2r 3 + O(r -4 ) + r -2 d ≤1 Γ b .
We deduce

e 4 (log λ) = (F • Z) - 1 4 tr χ|f | 2 + O(r -4 ) + r -2 d ≤1 Γ b = - 2a 2 sin 2 θ r 3 + a 2 sin 2 θ 2r 3 + O(r -4 ) + r -2 d ≤1 Γ b = - 3 2 a 2 sin 2 θ r 3 + O(r -4 ) + r -2 d ≤1 Γ b . 472CHAPTER 8.
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Integrating backwards from r → +∞, and noticing that log(λ) = 0 at r = +∞ in view of the control for λ derived in Step 1, we obtain

log λ = 3 4 a 2 sin 2 θ r 2 + O(r -3 ) + r -1 d ≤1 Γ b i.e. λ = 1 + 3 4 a 2 sin 2 θ r 2 + O(r -3 ) + r -1 d ≤1 Γ b
as stated. This concludes the proof of Lemma 8.2.5.

Step 3. We look for s in the form

s = r + s 0 , lim r→+∞ s 0 = 0. ( 8 

.2.10)

To have e 4 ( s) = 1 we thus need to solve the following transport equation for s 0 e 4 ( s 0 ) = 1 -e 4 (r). (8.2.11) Since e a (r) = 0 and (J)

2 = (sin θ) 2 |q| 2 = (sin θ) 2 r 2
+ O(r -4 ), we have

e 4 (r) = λ e 4 + f a e a + 1 4 |f | 2 e 3 r = λ + 1 4 λ|f | 2 e 3 (r) = λ + 1 4 λ|f | 2 -Υ + rΓ b + O(r -2 ) = λ - 1 4 |f | 2 + O(r -3 ) + r -1 d ≤1 Γ b .
Using the improved asymptotic for λ and the asymptotic of f derived above

λ - 1 4 |f | 2 = 1 + 3 4 a 2 sin 2 θ r 2 + O(r -3 ) + r -1 d ≤1 Γ b - 1 4 -a (J) + a 2 cos θ r (J) + O(r -3 ) + d ≤1 Γ b 2 = 1 + 3 4 a 2 sin 2 θ r 2 - 1 4 
a 2 sin 2 θ r 2 + O(r -3 ) + r -1 d ≤1 Γ b = 1 + a 2 sin 2 θ r 2 + O(r -3 ) + r -1 d ≤1 Γ b .
Hence

e 4 (r) = λ - 1 4 |f | 2 + O(r -3 ) + r -1 d ≤1 Γ b = 1 + a 2 sin 2 θ r 2 + O(r -3 ) + r -1 d ≤1 Γ b
and we deduce

e 4 ( s 0 ) = 1 -e 4 (r) = - a 2 sin 2 θ r 2 + O(r -3 ) + r -1 d ≤1 Γ b .
Integrating backwards from r → +∞, and since s 0 = 0 at r = +∞, we infer

s 0 = a 2 sin 2 θ r + O(r -2 ) + d ≤1 Γ b .
Therefore

s = r + s 0 = r + a 2 sin 2 θ r + O(r -2 ) + d ≤1 Γ b
as stated.

Step 4. In this last step, we control f . To this end, we recall the formula

e a = δ b a + 1 2 f a f b e b + 1 2 f a e 4 + 1 2 f a + 1 8 |f | 2 f a e 3 .
Since e a (r) = 0, s = r

+ a 2 sin 2 θ 2r + O(r -2 ) + d ≤1 Γ b and f = O(r -1
), we derive

∇( s) = ∇ a 2 sin 2 θ 2r + O(r -3 ) + r -1 d ≤2 Γ b = - a 2 r cos θ∇(cos θ) + O(r -3 ) + r -1 d ≤2 Γ b = - a 2 r cos θ -(J) + Γ b + O(r -3 ) + r -1 d ≤2 Γ b = a 2 r cos θ (J) + O(r -3 ) + r -1 d ≤2 Γ b , e 3 ( s) = 1 - a 2 sin 2 θ 2r 2 -Υ + rΓ b + O(r -3 ) + d ≤2 Γ b = -Υ + a 2 sin 2 θ r 2 + O(r -3 ) + rd ≤2 Γ b , e 4 ( s) = 1 - a 2 sin 2 θ 2r 2 + O(r -3 ) + r -1 d ≤2 Γ b . Therefore, since e a ( s) = 0, 0 = ∇( s) + 1 2 (f • ∇( s))f + 1 2 f e 4 ( s) + 1 2 f + 1 8 |f | 2 f e 3 ( s) = ∇( s) + 1 2 f e 4 ( s) + 1 2 f e 3 ( s) + O(r -3 ) + r -1 d ≤2 Γ b = a 2 r cos θ (J) + O(r -3 ) + r -1 d ≤2 Γ b + 1 2 f 1 - a 2 sin 2 θ 2r 2 + O(r -3 ) + d ≤2 Γ b + 1 2 f -Υ + a 2 sin 2 θ r 2 + O(r -3 ) + rd ≤2 Γ b + O(r -3 ) + r -1 d ≤2 Γ b . 474CHAPTER 8.
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We deduce,

0 = a 2 r cos θ (J) + 1 2 f - 1 2 Υf + O(r -3 ) + d ≤2 Γ b i.e. f = Υf - 2a 2 cos θ r (J) + O(r -3 ) + d ≤2 Γ b = Υ -a (J) + a 2 cos θ r (J) + O(r -3 ) + d ≤2 Γ b - 2a 2 cos θ r (J) + O(r -3 ) + d ≤2 Γ b = -aΥ (J) - a 2 cos θ r (J) + O(r -3 ) + d ≤2 Γ b
as stated. This ends the proof of Proposition 8.2.4.

8.2.3

Ricci and curvature coefficients in the geodesic frame of (ext) L 0 Lemma 8.2.6. The Ricci and curvature coefficients relative to the outgoing geodesic foliation of (ext) L 0 verify following:

1. The curvature coefficients satisfy

α = α + O(r -5 ) + r -3 d ≤2 Γ b , β = β + 3am r 3 (J) + O(r -5 ) + r -3 d ≤2 Γ b , ρ = - 2m r 3 + O(r -5 ) + r -3 d ≤2 Γ b , * ρ = 6am cos θ r 4 + O(r -5 ) + r -3 d ≤2 Γ b , β = β + O(r -5 ) + r -1 d ≤2 Γ b , α = α + r -1 d ≤2 Γ b + O(r -5 ).
(8.2.12)

The Ricci coefficients satisfy

7 tr χ = 2 r + O(r -3 ) + r -1 d ≤3 Γ b , χ = O(r -3 ) + r -1 d ≤3 Γ b , tr χ = - 2Υ r + O(r -3 ) + r -1 d ≤3 Γ b , χ = O(r -3 ) + r -1 d ≤3 Γ b , ζ = O(r -3 ) + r -1 d ≤3 Γ b , ξ = O r -3 + r -1 d ≤3 Γ b , ω = m r 2 + O r -3 + r -1 d ≤3 Γ b .
(8.2.13)

3. Let r be the area radius of S( u, s), i.e. 4π( r) 2 = |S( u, s)|. Then, we have

r = r + a 2 (sin θ) 2 2r + O(r -2 ) + rd ≤2 Γ b . (8.2.14) 4. Let } tr χ := tr χ - 2 r , } tr χ := tr χ + 2(1 -2m r ) r .
Then

} tr χ = O(r -4 ) + r -1 d ≤3 Γ b , } tr χ = O(r -4 ) + r -1 d ≤3 Γ b . (8.2.15)
5. Let the basis of = 1 modes J (p) of S( u, s) be given by ∇ e 4 J (p) = 0 and J (p) = J (p) as r → ∞. Then, we have

J (p) -J (p) = O(r -1 ) + d ≤1 Γ b , p = 0, +, -. (8 
.2.16)

6. We have

div β = O(r -6 ) + r -3 d ≤3 Γ b , curl β = 6a 0 m 0 r 5 J (0) + O(r -6 ) + r -3 d ≤3 Γ b . (8.2.17)
Proof. The proof proceeds in several steps.

Step 1. Recall from Proposition 8.2.4 that the transition coefficients (f, f , λ) from the frame E to the frame E are given by the formulas

λ = 1 + 3a 2 (sin θ) 2 4r 2 + O(r -3 ) + r -1 d ≤1 Γ b , f = -a (J) + a 2 cos θ r (J) + O(r -3 ) + d ≤1 Γ b , f = -aΥ (J) - a 2 cos θ r (J) + O(r -3 ) + d ≤2 Γ b .
To derive the formulas for the curvature and Ricci coefficients, it suffices to consider the simplified formulas

λ = 1 + O(r -2 ) + r -1 d ≤1 Γ b , f = -a (J) + O(r -2 ) + d ≤1 Γ b , f = -aΥ (J) + O(r -2 ) + d ≤2 Γ b .
Together with the transformation formulas of Proposition 2.2.3, this easily yields the formulas for the curvature and Ricci coefficients. Note that, modulo the terms in Γ b , the formulas are exactly the same as those in Lemma 2.4.27 regarding the Ricci and curvature coefficients for the integrable frame.

Step 2. Next, we derive more precise transformation formulas for tr χ, tr χ. In view of the transformation formulas of Proposition 2.2.3, and the fact that (a) trχ, ω = O(r -2 ) + Γ b and f, f = O(r -1 ), we have

λ -1 tr χ = tr χ + div f + f • η + f • ζ + Err(tr χ, tr χ), Err(tr χ, tr χ) = - 1 4 |f | 2 tr χ + O(r -4 ) + r -2 d ≤2 Γ b , λ tr χ = tr χ + div f + f • η -f • ζ + Err(tr χ, tr χ), Err(tr χ, tr χ) = 1 2 (f • f )tr χ - 1 4 |f | 2 tr χ + O(r -4 ) + r -1 d ≤2 Γ b ,
where (f, f , λ) are the transition coefficients from the frame E to the frame E. In view of

f = -a (J) + O(r -2 ) + d ≤1 Γ b , f = -a (J) + O(r -2 ) + d ≤2 Γ b , tr χ = 2 r - 2a 2 (cos θ) 2 r 3 + O(r -5 ) + Γ g , tr χ = - 2Υ r - 2a 2 r 3 + 4a 2 (cos θ) 2 r 3 + O(r -4 ) + Γ g , ζ = aq |q| 2 J + Γ g = a r (J) + O(r -3 ) + Γ g , η = aq |q| 2 J + Γ b = a r (J) + O(r -3 ) + Γ b ,
and η = -ζ, we deduce

λ -1 tr χ = 2 r - 2a 2 (cos θ) 2 r 3 - 3a 2 (sin θ) 2 2r 3 + div f + O(r -4 ) + r -1 d ≤2 Γ b , λ tr χ = - 2Υ r - 2a 2 r 3 + 4a 2 (cos θ) 2 r 3 + a 2 (sin θ) 2 2r 3 + div f + O(r -4 ) + r -1 d ≤3 Γ b .
Next, we compute div f and div f . Arguing similarly to Section 6.2.2, see in particular 6.2.5, and using f, f = O(r -1 ) and λ = 1 + O(r -2 ), we obtain

div f = div f + 1 2 f • (∇ 3 f ) + 1 2 f • (∇ 4 f ) + O(r -4 ) + r -1 d ≤2 Γ b , div f = div f + 1 2 f • (∇ 3 f ) + 1 2 f • (∇ 4 f ) + O(r -4 ) + r -1 d ≤3 Γ b .
Using again

f = -a (J) + a 2 cos θ r (J) + O(r -3 ) + d ≤1 Γ b , f = -aΥ (J) - a 2 cos θ r (J) + O(r -3 ) + d ≤2 Γ b , we infer div f = div -a (J) + a 2 cos θ r (J) + a 2 2 (J) • ∇ 3 (J) + a 2 2 (J) • ∇ 4 (J) +O(r -4 ) + r -1 d ≤2 Γ b , div f = div -aΥ (J) - a 2 cos θ r (J) + a 2 2 (J) • ∇ 3 (J) + a 2 2 (J) • ∇ 4 (J) +O(r -4 ) + r -1 d ≤3 Γ b . Note that 2 (J) • ∇ 3 (J) + 2 (J) • ∇ 4 (J) = ∇ e 3 +e 4 (| (J)| 2 ) = O(r -3 ) e 3 (r) + e 4 (r) + O(r -3 )e 3 (cos θ) = O(r -4 ) + r -2 Γ b
where we used e 4 (θ) = 0, e 3 (cos θ) ∈ Γ b , e 4 (r) = 1 and e 3 (r) = -1 + O(r -1 ) + rΓ b . This yields

div f = div -a (J) + a 2 cos θ r (J) + O(r -4 ) + r -1 d ≤2 Γ b , div f = div -aΥ (J) - a 2 cos θ r (J) + O(r -4 ) + r -1 d ≤3 Γ b .
Next, we use

D • J = 4i(r 2 + a 2 ) cos θ |q| 4 + r -1 Γ b which yields div ( (J)) = r -1 Γ b , div ( (J)) = 2 cos θ r 2 + O(r -4 ) + r -1 Γ b , and hence div f = 2a 2 (cos θ) 2 r 3 + a 2 r ∇(cos θ) • (J) + O(r -4 ) + r -1 d ≤2 Γ b , div f = - 2a 2 (cos θ) 2 r 3 - a 2 r ∇(cos θ) • (J) + O(r -4 ) + r -1 d ≤3 Γ b . Since ∇(cos θ) = -(J) + Γ b and | (J)| 2 = a 2 (sin θ) 2 |q| 2
, we obtain

div f = 2a 2 (cos θ) 2 r 3 - a 2 (sin θ) 2 |q| 2 + O(r -4 ) + r -1 d ≤2 Γ b , div f = - 2a 2 (cos θ) 2 r 3 + a 2 (sin θ) 2 |q| 2 + O(r -4 ) + r -1 d ≤3 Γ b .
Plugging in

λ -1 tr χ = 2 r - 2a 2 (cos θ) 2 r 3 - 3a 2 (sin θ) 2 2r 3 + div f + O(r -4 ) + r -1 d ≤2 Γ b , λ tr χ = - 2Υ r - 2a 2 r 3 + 4a 2 (cos θ) 2 r 3 + a 2 (sin θ) 2 2r 3 + div f + O(r -4 ) + r -1 d ≤2 Γ b , we infer λ -1 tr χ = 2 r - 5a 2 (sin θ) 2 2r 3 + O(r -4 ) + r -1 d ≤2 Γ b , λ tr χ = - 2Υ r - 2a 2 r 3 + 2a 2 (cos θ) 2 r 3 + 3a 2 (sin θ) 2 2r 3 + O(r -4 ) + r -1 d ≤3 Γ b . As λ = 1 + 3a 2 (sin θ) 2 4r 2 + O(r -3 ) + r -1 d ≤1 Γ b , we deduce tr χ = 2 r - a 2 (sin θ) 2 r 3 + O(r -4 ) + r -1 d ≤2 Γ b , tr χ = - 2Υ r + a 2 (sin θ) 2 r 3 + O(r -4 ) + r -1 d ≤3 Γ b ,
which is the precise form that will be used in Step 4 and Step 5.

Step 3. Next, we derive a first, non-sharp, asymptotic for r -r. Given coordinates8 (x 1 , x 2 ) on the spheres S(u, r) with e 4 (x A ) = 0, we consider the coordinates ( x 1 , x 2 ) on S( u, s) given by

x 1 = x 1 , x 2 = x 2 .
We introduce the vectorfields

X A = ∂ x A + 1 2 g( e 4 , ∂ x A ) e 3 + 1 2 g( e 3 , ∂ x A ) e 4 ,
which are tangent to the spheres S( u, s). We have 

X A ( x B ) = δ B A + 1 2 g( e 4 , ∂ x A ) e 3 ( x B ) + 1 2 g( e 3 , ∂ x A ) e 4 ( x B ). Since x A = x A , e 4 (x A ) = 0, e 3 (x A ) = O(r -2 ) + Γ b , e B (x A ) = O(
e 3 = λ -1 1 + 1 2 f • f + 1 16 |f | 2 |f | 2 e 3 + f b + 1 4 |f | 2 f b e b + 1 4 |f | 2 e 4 = λ -1 1 + O(r -2 ) e 3 + f b + O(r -3 ) e b + O(r -2 )e 4 ,
we infer

X A ( x B ) = δ B A + 1 2 g( e 4 , ∂ x A ) e 3 ( x B ) + 1 2 g( e 3 , ∂ x A ) e 4 ( x B ) = δ B A + 1 2 g e 4 + f c e c + O(r -2 )e 3 , ∂ x A 1 + O(r -2 ) e 3 + f b + O(r -3 ) e b (x B ) + 1 2 g 1 + O(r -2 ) e 3 + f b + O(r -3 ) e b + O(r -2 )e 4 , ∂ x A f c e c + O(r -2 )e 3 (x B ) = δ B A + O(r -2 ) + Γ b . Also, g( X A , X B ) = g ∂ x A + 1 2 g( e 4 , ∂ x A ) e 3 + 1 2 g( e 3 , ∂ x A ) e 4 , ∂ x B + 1 2 g( e 4 , ∂ x B ) e 3 + 1 2 g( e 3 , ∂ x B ) e 4 = g(∂ x A , ∂ x B ) + 1 2 g( e 4 , ∂ x A )g( e 3 , ∂ x B ) + 1 2 g( e 4 , ∂ x B )g( e 3 , ∂ x A ) = g AB + 1 2 g e 4 + f c e c + O(r -2 )e 3 , ∂ x A g 1 + O(r -2 ) e 3 + f b + O(r -3 ) e b + O(r -2 )e 4 , ∂ x B + 1 2 g e 4 + f c e c + O(r -2 )e 3 , ∂ x B g 1 + O(r -2 ) e 3 + f b + O(r -3 ) e b + O(r -2 )e 4 , ∂ x A = g AB + O(1),
where g AB denotes the induced metric on S(u, r). Denoting the induced metric on S( u, s) by g AB , we easily infer from the above computation of X A ( x B ) and g( X A , X B ), and from the fact that the vectorfields X 1 and X 2 are tangent to the spheres S( u, s), that In particular, we infer

g AB = g AB + O(1) + r 2 Γ b . 9 Note that ∂ x A = Y B A e B + z 3 A e 3 + z 4 A e 4 , with Y B A = O(r) and z 3 A e 3 (u) = -Y B A e B (u), z 4 A = -z 3 A e 3 (
|S( u, s)| = | g AB |d x A d x B = |g AB |dx A dx B + O(1) + r 2 Γ b = |S(u, r)| + O(1) + r 2 Γ b .
Together with the bound |S(u, r)| = 4πr 2 + O(1) which is a non-sharp consequence of Lemma A.3.2, we deduce

|S( u, s)| = 4πr 2 + O(1) + r 2 Γ b ,
and hence, since |S( u, s)| = 4π( r) 2 , we infer the following non-sharp bound for r -r r = r + O(r -1 ) + rΓ b .

Step 4. We now improve the bound for r -r of Step 3. Recall that, as ( u, s) is an outgoing geodesic foliation, we have

e 4 tr χ - 2 r = - 1 2 ( tr χ) 2 -| χ| 2 + 2 ( r) 2 r 2 tr χ S( u, s)
.

In view of the above decomposition of χ, we infer

e 4 tr χ - 2 r = - 1 2 ( tr χ) 2 + 1 r tr χ S( u, s) + O(r -6 ) + r -4 d ≤2 Γ b .
We infer

e 4 tr χ - 2 r S( u, s) = - 1 2 ( tr χ) 2 S( u, s) + 1 r tr χ S( u, s) + O(r -6 ) + r -4 d ≤2 Γ b .
Since, for any scalar function h, we have 

- 2 r = - 1 2 ( tr χ) 2 S( u, s) + 1 r tr χ S( u, s) + O(r -6 ) + r -4 d ≤2 Γ b + tr χ tr χ - 2 r S( u, s) -tr χ S( u, s) tr χ - 2 r S( u, s) = - 1 r tr χ S( u, s) - 2 r + 1 2 tr χ - 2 r 2 S( u, s) -tr χ S( u, s) - 2 r 2 + O(r -6 ) + r -4 d ≤2 Γ b
and hence -2 = 0.

e 4 r tr χ S( u, s) -2 = 1 2 r r tr χ -2 2 S( u, s) - 1 2 r r tr χ -2 S( u, s) 2 + O(r -5 ) + r -3 d ≤2 Γ b .
Integrating backwards from infinity, we infer

r tr χ S( u, s) -2 = O(r -4 ) + r -1 d ≤2 Γ b .
Plugging the precise asymptotic for tr χ of Step 2, we infer

r 2 r - a 2 (sin θ) 2 r 3 S( u, s) -2 = O(r -3 ) + d ≤2 Γ b which we rewrite r r + a 2 (sin θ) 2 2r S( u, s)
On the other hand, we have

∇ r + a 2 (sin θ) 2 2r = δ b a + 1 2 f a f b e b + 1 2 f a e 4 + 1 2 f a + 1 8 |f | 2 f a e 3 r + a 2 (sin θ) 2 2r = 1 2 f a + 1 2 f a + 1 8 |f | 2 f a e 3 (r) + e a a 2 (sin θ) 2 2r + O(r -3 ).
In view of the form of f , f , and the control of e 3 (r), we infer

∇ r + a 2 (sin θ) 2 2r = 1 2 -aΥ (J) - a 2 cos θ r (J) + 1 2 -a (J) + a 2 cos θ r (J) (-Υ) - a 2 cos θ r ∇(cos θ) + O(r -3 ) + d ≤2 Γ b = - a 2 cos θ r ∇(cos θ) + (J) + O(r -3 ) + d ≤2 Γ b . Since ∇(cos θ) = -(J) + Γ b , we obtain ∇ r + a 2 (sin θ) 2 2r = O(r -3 ) + d ≤2 Γ b .
Together with r r + a 2 (sin θ) 2 2r S( u, s)

-1 = O(r -3 ) + d ≤2 Γ b , we infer r = r + a 2 (sin θ) 2 2r + O(r -2 ) + rd ≤2 Γ b
which is the stated control of r.

Step 5. Next, recall the precise asymptotic for tr χ and tr χ derived in Step 2

tr χ = 2 r - a 2 (sin θ) 2 r 3 + O(r -4 ) + r -1 d ≤2 Γ b , tr χ = - 2Υ r + a 2 (sin θ) 2 r 3 + O(r -4 ) + r -1 d ≤3 Γ b .
In view of the control for r -r of Step 4, we deduce

tr χ = 2 r + O(r -4 ) + r -1 d ≤2 Γ b , tr χ = - 2 Υ r + O(r -4 ) + r -1 d ≤3 Γ b .
In view of the definition of } tr χ and } tr χ, we infer

} tr χ = O(r -4 ) + r -1 d ≤2 Γ b , } tr χ = O(r -4 ) + r -1 d ≤3 Γ b ,
as stated.

Step 6. Next, we control J (p) -J (p) for p = 0, +, -. Since e 4 ( J (p) ) = 0, we have

e 4 ( J (p) -J (p) ) = -e 4 (J (0) ) = -λ e 4 + f • ∇ + 1 4 |f | 2 e 3 J (p) = -λ f • ∇(J (p) ) + 1 4 |f | 2 e 3 (J (p) ) .
Using the control of λ and f , we infer

e 4 ( J (p) -J (p) ) = O(r -2 ) + r -1 d ≤1 Γ b .
Integrating backwards from r = +∞ where J (p) = J (p) , we infer

J (p) -J (p) = O(r -1 ) + d ≤1 Γ b , p = 0, +, -,
as desired.

Step 7. Finally, we derive precise asymptotic for div β and curl β. Recall that we have obtained in Step 1

β = β + 3am r 3 (J) + O(r -5 ) + r -3 d ≤2 Γ b . Since β ∈ r -2 Γ b , we infer β = 3am r 3 (J) + O(r -5 ) + r -2 d ≤2 Γ b and hence div β = div 3am r 3 (J) + O(r -6 ) + r -3 d ≤3 Γ b , curl β = curl 3am r 3 (J) + O(r -6 ) + r -3 d ≤3 Γ b . 484CHAPTER 8.
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One easily infers

div β = 3am r 3 div ( (J)) + O(r -6 ) + r -3 d ≤3 Γ b , curl β = 3am r 3 curl ( (J)) + O(r -6 ) + r -3 d ≤3 Γ b .
Next, we use

D • J = 4i(r 2 + a 2 ) cos θ |q| 4 + r -1 Γ b which yields div ( (J)) = r -1 Γ b , curl ( (J)) = 2 cos θ r 2 + O(r -4 ) + r -1 Γ b .
We infer, together with the control for r -r,

div β = O(r -6 ) + r -3 d ≤3 Γ b , curl β = 6am cos θ r 5 + O(r -6 ) + r -3 d ≤3 Γ b .
This is the desired control for div β. For curl β, we use in addition the following control derived in Step 6

J (0) -J (0) = O(r -1 ) + d ≤1 Γ b .
Plugging in the above, and since J (0) = cos θ, we infer

curl β = 6am J (0) r 5 + O(r -6 ) + r -3 d ≤3 Γ b
as desired. This ends the proof of Lemma 8.2.6.

Control of the geodesic foliation of (ext) L 0

We recall in what follows that the frame E, the scalar functions ( u, s) and the scalars J (p) , p = 0, +, -, correspond to the outgoing geodesic foliation of (ext) L 0 , while E, r, u, J (p) and J correspond to the outgoing PG structure of (ext) L 0 . We also recall that (f, f , λ) denote the transition coefficients from the frame E to E. In addition, we define

f 0 := r (J). ( 8 

.2.18)

We define the following norms on (ext) L 0 .

(ext) I k := (ext) I k + (ext) I k+1
where, for k = 0,

(ext) I 0 := sup (ext) L 0 r 7 2 +δ B | α| + β - 3a 0 m 0 r 4 f 0 + r 3 ρ + 2m 0 r 3 + r 2 | β| + r| α| + sup (ext) L 0 r 9 2 +δ B div β + curl β - 6a 0 m 0 r 5 J (0) + sup (ext) L 0 r 2 | χ| + tr χ - 2 r + | ζ| + tr χ + 2 1 -2m 0 r r + sup (ext) L 0 r | χ| + ω - m 0 r 2 + | ξ| + ∇ J (0) + 1 r * f 0 + ∇f 0 - J (0) r ∈ + sup (ext) L 0 e 3 ( r) + 1 - 2m 0 r + | e 3 ( u) -2| + | r -r| , (ext) I 0 := sup (ext) L 0 r f + a 0 r f 0 + f + a 0 1 -2m 0 r r f 0 + | log(λ)| + sup (ext) L 0 max p=0,+,- J (p) -J (p) + sup (ext) L 0 r J - 1 |q| (f 0 + * f 0 ) .
The higher derivative norms (ext) I , (ext) I are then defined by replacing each component with d ≤k of it.

The following proposition provides the control of the norm (ext) I k under the assumptions (8.2.1), i.e.

(ext) I k large +10 ≤ 0 , (ext) I 3 ≤ 2 0 .
Proposition 8.2.7. The following holds true:

1. Under the assumption (ext) I k large +10 ≤ 0 , we have

(ext) I k large+7 0 . (8.2.19)
2. If in addition the assumption (ext) I 3 ≤ 2 0 also holds true, then 

sup (ext) L 0 ∩{ r∼ -1 0 } r 5 div β + curl β - 6a 0 m 0 r 5 J (0) + sup (ext) L 0 ∩{ r∼ -1 0 } r 3 } tr χ + } tr χ 0 . ( 8 
(ext) I k sup (ext) L 0 r d ≤k ∇J (0) + 1 r * f 0 + d ≤k ∇f 0 - J (0) r ∈ + sup (ext) L 0 d ≤k+1 (f 0 -r (J)) + r -1 + r|d ≤k+3 Γ b | .
Together with the fact that f 0 = r (J), r|d ≤k+3 Γ b | J k+3 , and (ext) I k large +10 ≤ 0 , we infer, for k ≤ k large + 7,

(ext) I k sup (ext) L 0 r d ≤k ∇J (0) + * (J) + d ≤k r∇ (J) - J (0) r ∈ + 0 .
where we also used the fact that r -1 0 on (ext) L 0 , since by definition s -1 0 on (ext) L 0 , and since s ∼ r ∼ r in view of Proposition 8.2.4 and Lemma 8.2.6. Since we have, in view of Definitions 2.6.6 and 2.6.7,

∇J (0) = - * (J) + Γ b , ∇ (J) = J (0) r 2 ∈ +O(r -4 ) + r -1 Γ b ,
we deduce

(ext) I k large +7 0
which is the first stated estimate.

For the second estimate, we rely on the following identities in Lemma 8.2.6

} tr χ = O(r -4 ) + r -1 d ≤3 Γ b , } tr χ = O(r -4 ) + r -1 d ≤3 Γ b , div β = O(r -6 ) + r -3 d ≤3 Γ b , curl β = 6a 0 m 0 r 5 J (0) + O(r -6 ) + r -3 d ≤3 Γ b ,
which yields

r 5 div β + curl β - 6a 0 m 0 r 5 J (0) + r 3 } tr χ + } tr χ r -1 + r 2 |d ≤3 Γ b |.
We infer sup

(ext) L 0 ∩{ r∼ -1 0 } r 5 div β + curl β - 6a 0 m 0 r 5 J (0) + sup (ext) L 0 ∩{ r∼ -1 0 } r 3 } tr χ + } tr χ 0 + -1 0 (ext) I 3
and the second stated estimate follows from the assumption (ext) I 3 ≤ 2 0 . This concludes the proof of the proposition.

Proof of Theorem M0

We recall the reader, see also Remark 3.9.1, that Theorem M0 comes first in the sequence of steps, Theorems M0-M8, and therefore its proof can only rely on the assumption (3.4.7) of our main theorem 10

I k large +10 ≤ 0 , (ext) I 3 ≤ 2 0 ,
as well as the fact that the space M which we consider is a GCM admissible spacetime verifying our bootstrap assumptions BA made in Section 3.5.

Notation Since we will be using various frames in the proof it is important to recall the main definitions. The PG structure of (ext) M is denoted by the usual symbols {E, r, u, J, J} where E = {e 1 , e 2 , e 3 , e 4 }. The PG quantities of the initial layer L 0 are denoted with 0 indices, i.e. {E 0 , r 0 , u 0 , J, J 0 }. The quantities related to the outgoing geodesic frame of (ext) L 0 are denoted by tildes, i.e. { E, s, r, u, J}. We shall also make use of a second outgoing geodesic foliation in (ext) L 0 defined starting with the sphere S 1 , of the PG structure of (ext) M on Σ * , whose related quantities will be denoted by primes. At various stages of the proof, when only two foliations are needed, we will redefine notations accordingly.

The proof of Theorem M0 proceeds in 24 steps which we summarize below for convenience:

1. In Steps 1-7, we propagate from S * along Σ * the = 1 modes of div β, curl β, q ρ and q κ to arrive at the estimate (8.3.1) on S 1 . This sequence of steps makes use of the GCM assumptions on S * and the results of Section 5.4.1.

2. In Steps 8-16, we derive the control of m -m 0 , see (8.3.33) in Step 13, and a -a 0 , see (8.3.40) in Step 15 and (8.3.47) in Step 16. We also provide estimates for the transition coefficients between the auxiliary outgoing geodesic frame of (ext) L 0 , introduced in Section 8.2, and the frame of Σ * induced on the sphere S 1 = Σ * ∩{u = 1}. In particular, we show that the sphere S 1 of Σ * is contained in (ext) L 0 ⊂ (ext) L 0 .

3. In Steps 17-19, we control the change of frame coefficients from the outgoing PG frame of (ext) L 0 to the outgoing PG frame of (ext) M on the sphere S 1 in (8.3.57).

4. In steps 20-22, we propagate the control on the change of frame coefficients from the outgoing PG frame of (ext) L 0 to the outgoing PG frame of (ext) M from S 1 to {u = 1} in (8.3.66).

5. In step 23, we control on the change of frame coefficients from the ingoing PG frame of (int) L 0 to the ingoing PG frame of (int) M on {u = 1} in (8.3.68).

6. Finally, we conclude the proof of Theorem M0 in step 24 by using the control of the change of frame coefficients, the control of the initial data layer, and the change of frame formulas to infer the control of the curvature components of (ext) M on {u = 1} and of (int) M on {u = 1}.

Steps 1-7

We state the main result of Step 1-7 in the following 

r 5 |(div β) =1 | + r 5 |(curl β) =1,± | + r 5 (curl β) =1,0 - 2am r 5 0 , sup Σ * r 3 |(q ρ) =1 | + r 2 |(q κ) =1 | 0 , (8.3.1)
Step 2. On Σ * we assume the following local bootstrap assumptions sup

Σ * r 5 |(div β) =1 | + r 5 |(curl β) =1,± | + r 5 (curl β) =1,0 - 2am r 5 ≤ , sup Σ * r 3 u 1+δ dec |(q ρ) =1 | + r 2 u 1+δ dec |(q κ) =1 | ≤ , (8.3.5)
which will be improved in Steps 2-7.

We start with the control of (div ζ) =1 . Recall the following consequence of the Codazzi equation for χ

d / 2 χ = 1 r ζ -β + Γ g • Γ g .
Differentiating w.r.t. div , we infer

div d / 2 χ = 1 r div ζ -div β + r -1 d / ≤1 (Γ g • Γ g ).
Projecting on the = 1 modes, this yields

(div d / 2 χ) =1 = 1 r (div ζ) =1 -(div β) =1 + r -1 d / ≤1 (Γ g • Γ g ).
Next, we estimate ( d / 1 d / 2 χ) =1 . We have

(div d / 2 χ) =1,p = 1 |S| S div d / 2 χJ (p) = 1 |S| S χ • d * / 2 ∇J (p)
and hence

|(div d / 2 χ) =1 | | d * / 2 d * / 1 J (p) ||Γ g |.
We deduce

(div ζ) =1 = r(div β) =1 + r| d * / 2 d * / 1 J (p) Γ g | + d / ≤1 (Γ g • Γ g ).
Together with the local bootstrap assumption (8.3.5) for (div β) =1 , the control of Lemma Step 3. Next, we control of (div β) =1 . Recall the following consequence of the Codazzi equation for χ

div χ = 1 2 ∇q κ + Υ r ζ + β + Γ b • Γ g .
Differentiating w.r.t. div , we infer

div d / 2 χ = 1 2 ∆q κ + Υ r div ζ + div β + r -1 d / ≤1 (Γ b • Γ g ).
Projecting on the = 1 modes, this yields

(div d / 2 χ) =1 = 1 2 (∆q κ) =1 + Υ r (div ζ) =1 + (div β) =1 + r -1 d / ≤1 (Γ b • Γ g ).
As in Step 2, we have

|(div d / 2 χ) =1 | | d * / 2 d * / 1 J (p) ||Γ b |.
Also, we have

(∆q κ) =1,p = 1 |S| S ∆q κJ (p) = - 2 r 2 1 |S| S q κJ (p) + 1 |S| S q κ ∆ + 2 r 2 J (p)
and hence

|(∆q κ) =1 | r -2 |(q κ) =1 | + ∆ + 2 r 2 J (p) |Γ g |.
We deduce

|(div β) =1 | r -2 |(q κ) =1 | + r -1 |(div ζ) =1 | + ∆ + 2 r 2 J (p) |Γ g | +| d * / 2 d * / 1 J (p) ||Γ b | + r -1 | d / ≤1 (Γ b • Γ g )|.
Together with the local bootstrap assumption (8.3.5) for (q κ) =1 , the control for (div ζ) =1 of Step 2, the control of Lemma 8. Step 4. Recall from Corollary 5.2.12 the following transport along Σ * , for p = 0, +, -,

ν S ∆q κ + 2Υ r div ζ J (p) = O(r -3 ) S q κJ (p) + O(r -2 ) S div ζJ (p) + O(r -1 ) S div βJ (p) + O(r -2 ) S q ρJ (p) +O(r -1 ) S div βJ (p) + r ∆ + 2 r 2 J (p) d / ≤1 Γ b + d / ≤2 (Γ b • Γ b ), 492CHAPTER 8 

. INITIALIZATION AND EXTENSION (THEOREMS M0, M6 AND M7)

and

ν S q ρ - 1 2 χ • χ J (p) = - S div βJ (p) -(1 + O(r -1 )) S div βJ (p) +O(r -1 ) S q ρ - 1 2 χ • χ J (p) + O(r -3 ) S q κJ (p) +O(r -2 ) S div ζJ (p) + r ∆ + 2 r 2 J (p) Γ b +r d / ≤1 (Γ b • Γ b ),
where by d * / 1 J (p) , we mean d * / 1 (J (p) , 0) or d * / 1 (0, J (p) ). Together with the local bootstrap assumption (8.3.5) for (div β) =1 , (q κ) =1 , and (q ρ) =1 , the control for (div ζ) =1 of Step 2, the control for (div β) =1 of Step 3, the control of Lemma 8.3.2 for (∆ + 2 r 2 )J (p) , and the bootstrap assumptions for Γ b and Γ g , we infer on Σ * , for p = 0, +, -,

ν S ∆q κ + 2Υ r div ζ J (p) 2 r 2 u 2+2δ dec + r 3 u 1+δ dec + r 4 , ν S q ρ - 1 2 χ • χ J (p) 2 ru 2+2δ dec + r 2 u 1+δ dec + r 3 .
Using the dominance condition (3.4.5) on r on Σ * , we infer on Σ * , for p = 0, +, -,

ν S ∆q κ + 2Υ r div ζ J (p) 0 r 2 u 2+2δ dec , ν S q ρ - 1 2 χ • χ J (p) 0 ru 2+2δ dec .
Integrating from S * , and using the fact that ν(u) = 2 + O( ), we deduce on Σ * , for p = 0, +, -,

S ∆q κ + 2Υ r div ζ J (p) S * ∆q κ + 2Υ r div ζ J (p) + 0 r 2 u 1+δ dec , S q ρ - 1 2 χ • χ J (p) S * q ρ - 1 2 χ • χ J (p) + 0 ru 1+δ dec .
Now, since q κ = 0 on S * in view of our GCM conditions, and in view of the control (q ρ -1 2 χ • χ) =1 on S * provided by Lemma 8.3.3, and the control for (div ζ) =1 of Step 2, we have

S * ∆q κ + 2Υ r div ζ J (p) r|(div ζ) =1 | r 3 , S * q ρ - 1 2 χ • χ J (p) 0 ru 1+δ dec ,
and hence, we obtain on Σ * , for p = 0, +, -,

S ∆q κ + 2Υ r div ζ J (p) 0 r 2 u 1+δ dec + r 3 0 r 2 u 1+δ dec
where we used in the last inequality the dominance condition (3.4.5) on r on Σ * , and

S q ρ - 1 2 χ • χ J (p) 0 ru 1+δ dec .
We infer on Σ * , for p = 0, +, -,

S q κJ (p) r 2 S ∆ + 2 r 2 q κJ (p) + r S div ζJ (p) + 0 u 1+δ dec , S q ρJ (p) r 2 Γ b • Γ g + 0 ru 1+δ dec .
Together with the control for (div ζ) =1 of Step 2, the control of Lemma 8.3.2 for (∆ + 2 r 2 )J (p) , and the bootstrap assumptions for Γ b and Γ g , we infer on Σ * ,

r|(q ρ) =1 | + |(q κ) =1 | 0 r 2 u 1+δ dec + r 3 .
Using the dominance condition (3.4.5) on r on Σ * , we deduce sup

Σ * r 3 u 1+δ dec |(q ρ) =1 | + r 2 u 1+δ dec |(q κ) =1 | 0 . (8.3.8)
Step 5. Recall from Corollary 5.2.12 the following transport equation along Σ * , for p = 0, +, -,

ν S div βJ (p) = O(r -1 ) S div βJ (p) + O(r -2 ) S q ρJ (p) +r ∆ + 2 r 2 J (p) + d * / 2 d * / 1 J (p) Γ g + d / ≤1 (Γ b • Γ g ).
Together with the local bootstrap assumption (8.3.5) for (div β) =1 , the control for (q ρ) =1 of Step 4, the control of Lemma 8.3.2 for (∆ + 2 r 2 )J (p) and d * / 2 d * / 1 J (p) , and the bootstrap assumptions for Γ b and Γ g , we infer on Σ * , for p = 0, +, -, Integrating from S * , using the fact that ν(u) = 2 + O( ), and the GCM condition (div β) =1 = 0 on S * , we deduce on Σ * , for p = 0, +, -,

ν S div βJ (p) 0 + 2 r 3 u 1+δ dec + r 4 , 494CHAPTER 8 
sup Σ * r 5 |(div β) =1 | 0 . (8.3.9)
Step 6. Next, we control ( * ρ) =1 . To this end, we first control (curl ζ) =1 . Recall the following consequence of the Codazzi equation for χ

d / 2 χ = 1 r ζ -β + Γ g • Γ g . Differentiating w.r.t. curl , we infer curl d / 2 χ = 1 r curl ζ -curl β + r -1 d / ≤1 (Γ g • Γ g ).
Proceeding as for the control of (div ζ) =1 in Step 2, we infer

(curl ζ) =1 = r(curl β) =1 + r| d * / 2 d * / 1 J (p) |Γ g + d / ≤1 (Γ g • Γ g ).
Together with the local bootstrap assumption (8. Step 7. Recall from Corollary 5.2.12 the following transport along Σ * , for p = 0, +, -,

ν S curl βJ (p) = 4 r (1 + O(r -1 )) S curl βJ (p) + 2 r 2 (1 + O(r -1 )) S * ρJ (p) +r ∆ + 2 r 2 J (p) + d * / 2 d * / 1 J (p) Γ g + d / ≤1 (Γ b • Γ g ).
In the case p = ±, we have (curl β) =1,± = 0 on S * , so using Step 6 to control ( * ρ) =1,± , and arguing exactly as for the control of (div β) =1 in Step 5, we obtain the corresponding estimate, i.e.

sup

Σ * r 5 |(curl β) =1,± | 0 . (8.3.11)
Next, we focus on the case p = 0. We rewrite the above transport equation in this particular case

ν S curl βJ (0) = 4 r (1 + O(r -1 )) S curl βJ (0) + 2 r 2 (1 + O(r -1 )) S * ρJ (0) +r ∆ + 2 r 2 J (0) + d * / 2 d * / 1 J (0) Γ g + d / ≤1 (Γ b • Γ g ).
Since ν(r) = -2 + rΓ b , we have

ν r 3 S curl βJ (0) = r 3 ν S curl βJ (0) + 3r 2 ν(r) S curl βJ (0) = r 3 ν S curl βJ (0) -6r 2 S curl βJ (0) + r 5 Γ b (curl β) =1,0 ,
and hence

ν r 3 S curl βJ (0) -8πam = - 2 r r 3 (1 + O(r -1 )) S curl βJ (0) + 2r(1 + O(r -1 )) S * ρJ (0) +r 5 Γ b (curl β) =1,0 + r 4 ∆ + 2 r 2 J (0) + d * / 2 d * / 1 J (0) Γ g + r 3 d / ≤1 (Γ b • Γ g ).
In view of the local bootstrap assumption (8.3.5) for (curl β) =1,0 , the control of ( * ρ) =1 of Step 6, the control of Lemma 8. Thus, in view of the control for (q κ) =1 and (q ρ) =1 of Step 4, the control for (div β) =1 of

Step 5, and the control for (curl β) =1 of this step, we have finally obtained on Σ * the desired estimate (8.3.1), i.e.

sup

Σ * r 5 |(div β) =1 | + r 5 |(curl β) =1,± | + r 5 (curl β) =1,0 - 2am r 5 0 , sup Σ * r 3 u 1+δ dec |(q ρ) =1 | + r 2 u 1+δ dec |(q κ) =1 | 0 ,
thus improving the local bootstrap assumption (8.3.5), and concluding the proof of Proposition 8.3.1.

Steps 8-16

As a consequence of (8.3.1) we have, in particular on S 1 = Σ * ∩ {u = 1}, the estimate sup

S 1 r 2 |(q κ) =1 | + r 5 |(div β) =1 | 0 . (8.3.13)
On S 1 , we also have the GCM conditions

κ = 2 r , κ = - 2Υ r + C 0 + p C p J (p) , µ = 2m r 3 + M 0 + p M p J (p) . (8.3.14)
We introduce the following auxiliary construction.

Definition 8.3.4 (The outgoing cone C 1 ). Starting with the sphere S 1 we define the outgoing geodesic null cone C 1 emanating from S 1 in the direction of e 4 . We denote:

• by e 4 the geodesic extension of e 4 , and by s the corresponding affine parameter, i.e. e 4 (s ) = 1, normalized such that s = r on S 1 ,

• by S the spheres of constant s along C 1 and by r the corresponding area radius,

• by J (p) the basis of = 1 modes verifying e 4 (J (p) ) = 0 with J (p) = J (p) on S 1 , for p = 0, +, -.

We restrict C 1 to the region {δ * -1 0 ≤ r ≤ r(S 1 )}. With this restriction, we will show below, see (8.3.20), that C 1 ⊂ (ext) L 0 . Finally, we denote by (f, f , λ) the transition coefficients from the outgoing geodesic null frame of (ext) L 0 of Section 8.2 to the outgoing geodesic null frame of C 1 initialized on S 1 = S 1 .

Local Bootstrap Assumptions:

1. Along C 1 , we assume sup S ⊂C 1 f h 4 (S ) + (r ) -1 (f , log λ) h 4 (S ) ≤ . (8.3.15)
2. On S 1 = S 1 , we assume

f h k large (S 1 ) + r -1 (f , log(λ)) h k large (S 1 ) ≤ . (8.3.16)
3. In the case a 0 = 0, we make the following assumption 12 , on S 1 , on the difference between the basis of = 1 modes J (p) of Σ * , and the basis of = 1 modes J (p) of (ext) L 0 max p=0,+,- 

d ≤k large * (J (p) -J (p) ) L ∞ (S 1 ) ≤ . ( 8 
(±) (ext) L 0 -→ cos(ϕ 0 )J (±) (ext) L 0 ± sin(ϕ 0 )J (∓) (ext) L 0 , ϕ 0 ∈ [0, 2π),
which corresponds to the invariance ϕ (ext) L 0 → ϕ (ext) L 0 -ϕ 0 , and hence to the fact that Kerr is axially symmetric. We may thus use this freedom to choose the particular pair

J (±) (ext) L 0 such that S 1 J (+) (ext) L 0 J (-) = 0. (8.3.18)
This normalization will be needed to improve the bootstrap assumptions (8.3.17).

Assumption (8.3.15) allows to apply Lemma 7.3 in [START_REF] Klainerman | Construction of GCM spheres in perturbations of Kerr[END_REF] (recalled here in Lemma 8.1.4) with δ 1 = on each sphere14 S = S(s ) of C 1 . This allows us to deduce the following comparison estimate sup

C 1 r -1 |r -r| + |1 -u| + r -1 |s -s| . (8.3.19)
In particular, since r ≥ δ * -1

0 on C 1 , we infer sup C 1 | u -1| , inf C 1 s ≥ δ * 2 -1 0 . Since (ext) L 0 = {0 ≤ u ≤ 2, s ≥ δ * 2 -1 0 }, we deduce C 1 ⊂ (ext) L 0 . (8.3.20)
We note also that r, r, r are all comparable along C 1 .

Also, since the sphere S 1 = S 1 satisfies the following: 13 This holds true provided one also changes the quantities J (±)

(ext) L0 and J ±, (ext) L0 , associated to the part (ext) L 0 of the initial data layer, according to

J (±) (ext) L0 → cos(ϕ 0 )J (±) (ext) L0 ± sin(ϕ 0 )J (∓) (ext) L0 , J ±, (ext) L0 → cos(ϕ 0 )J ±, (ext) L0 ± sin(ϕ 0 )J ∓, (ext) L0 .
Note that these transformations leave invariant the linearized quantities in Definition 2.6.6, and hence (Γ b , Γ g ) in Definition 2.6.7. This corresponds to the fact that Kerr is axially symmetric.

• S 1 is a sphere of (ext) M in (ext) L 0 ,

• S 1 is a sphere of the GCM hypersurface Σ * ,

• the estimate (8.3.13) holds on S 1 ,

• the estimate (8.3.16) holds on S 1 ,

• the estimate (8.3.17) holds on S 1 , we can invoke Proposition 8.1 in [START_REF] Klainerman | Effective results in uniformization and intrinsic GCM spheres in perturbations of Kerr[END_REF] (restated here in Proposition 8.1.10) with the choice

• = • δ = 0 , δ 1 = , s max = k large ,
and with the background foliation being the outgoing geodesic foliation of the part (ext) L 0 of the initial data layer. We obtain . This, as well as the anomalous behavior of f mentioned in Remark 8.3.7, shows that the sphere S 1 is a large deformation, along the outgoing direction, of spheres of the initial data layer (ext) L 0 . This reflects the fact that S 1 (and Σ * ) captures the center of mass frame of the limiting Kerr solution, while the initial data layer foliation captures the center of mass frame of the initial Kerr solution. The behavior of s -s, as well as the one of f , is consistent with the presence of a large Lorentz boost between these two center of mass frames.

r -1 (f, f , λ -λ S 1 ) h k large +1 (S 1 ) 0 , ( 8 
Local Notation for Steps 8-18. In Steps 8-18 below, (f, f , λ) denote the transition coefficients from the frame E = (ẽ 1 , ẽ2 , ẽ3 , ẽ4 ) of (ext) L 0 to the prime one of C 1 . Also, we will only make use of the prime frame along C 1 and the geodesic frame of (ext) L 0 . Since we are not making reference here to the PG structure of (ext) L 0 and the one of (ext) M, we drop the tilde on the quantities associated to (ext) L 0 .

Step 8. We derive estimates for β and d * / 1 (-ρ , * ρ ) on S 1 with the help of transformation formulas of Proposition 2.2.3. To start with, we make use of 

β = λ β + 3 2 f ρ + * f * ρ + 1 2 α • f + l.o.t
ρ = ρ + f • β -f • β + 3 2 ρ(f • f ) - 3 2 * ρ(f ∧ f ) + l.o.t., * ρ = * ρ -f • * β -f • * β + 3 2 * ρ(f • f ) + 3 2 ρ(f ∧ f ) + l.o.t.
Differentiating the two equations w.r.t. e a , and using the decomposition of e a , we infer

e a (ρ ) = δ b a + 1 2 f a f b e b + 1 2 f a e 4 + 1 2 f a + 1 8 |f | 2 f a e 3 ρ +e a f • β -f • β + 3 2 ρ(f • f ) - 3 2 * ρ(f ∧ f ) + l.o.t. , e a ( * ρ ) = δ b a + 1 2 f a f b e b + 1 2 f a e 4 + 1 2 f a + 1 8 |f | 2 f a e 3 * ρ +e a -f • * β -f • * β + 3 2 * ρ(f • f ) + 3 2 ρ(f ∧ f ) + l.o.t. ,
and hence

e a (ρ ) = e a (ρ) + 1 2 f a e 4 (ρ) + 1 2 f a e 3 (ρ) +e a f • β -f • β + 3 2 ρ(f • f ) - 3 2 * ρ(f ∧ f ) + l.o.t., e a ( * ρ ) = e a (ρ) + 1 2 f a e 4 (ρ) + 1 2 f a e 3 ( * ρ) +e a -f • * β -f • * β + 3 2 * ρ(f • f ) + 3 2 ρ(f ∧ f ) + l.o.t.,
and hence

∇ (ρ ) = ∇(ρ) + 1 2 f e 4 (ρ) + 1 2 f e 3 (ρ) +∇ f • β -f • β + 3 2 ρ(f • f ) - 3 2 * ρ(f ∧ f ) + l.o.t., * ∇ ( * ρ ) = * ∇(ρ) + 1 2
* f e 4 (ρ) + 1 2

* f e 3 ( * ρ) 

+ * ∇ -f • * β -f • * β + 3 2 * ρ(f • f ) + 3 2 ρ(f ∧ f ) + l.o.t.
r 3 d / k d * / 1 (-ρ , * ρ ) L 2 (S 1 ) 0 . (8.3.24)
Step 9. Recall the definition of the mass aspect function

µ µ = -div ζ -ρ + 1 2 χ • χ
and the the null structure equation

curl ζ = * ρ - 1 2 χ ∧ χ .
Together with the GCM conditions for µ on Σ * , this yields on S 1 , recalling that S 1 ⊂ Σ * ,

d / 1 ζ = (-µ , 0) + (-ρ , * ρ ) + 1 2 χ • χ , -χ ∧ χ = -M 0 + p M p J (p) , 0 + (-ρ , * ρ ) + 1 2 χ • χ , -χ ∧ χ
and hence, since M 0 and M p are constant on S 1 , we infer 17 We also make use of a standard elliptic estimate on S 1 and the r dominance condition r * ∼ -1 0 , see (3.4.5), on Σ * .

d * / 2 d * / 1 d / 1 ζ = - p M p d * / 2 d * / 1 (J (p) , 0) + d * / 2 d * / 1 (-ρ , * ρ ) + 1 2 d * / 2 d * / 1 χ • χ , -χ ∧ χ .
where we have used the fact that (a) trχ = (a) trχ = 0 and (a) trχ = (a) trχ = 0 since both frame are outgoing geodesic and hence integrable, and also that ω = 0 and ξ = 0. Together with the above estimate for χ , the estimate (8.3.16) for (f, f , λ), and the estimates (3.4.7) for the Ricci coefficients of (ext) L 0 ⊂ (ext) L 0 , we infer max

k≤k large r d / k d * / 2 f L 2 (S 1 ) 0 + 2 0 .
Together with the Hodge elliptic estimates of Lemma 5.1.28, chapter 5, we infer max

k≤k large +1 d / k f L 2 (S 1 ) 0 + r 2 ( d / 1 f ) =1 . (8.3.26)
Step 11. Next, recall from Proposition 2.2.3 the transformation formula

λ -1 (a) trχ = (a) trχ + curl f + f ∧ η + f ∧ ζ + f ∧ ξ + 1 4 f ∧ f tr χ + (f • f ) (a) trχ +ωf ∧ f - 1 4 |f | 2 (a) trχ - 1 4 (f • f )λ -1 (a) trχ + 1 4 λ -1 (f ∧ f )tr χ + l.o.t.
Since (a) trχ = (a) trχ = 0 and (a) trχ = (a) trχ = 0 as both frame are outgoing geodesic and hence integrable, and also since ω = 0 and ξ = 0, we infer

curl f = -f ∧ η -f ∧ ζ - 1 4 f ∧ f κ - 1 4 λ -1 (f ∧ f )κ + l.o.t.
Together with the estimate (8.3.16) for (f, f , λ), and our estimates for the Ricci coefficients of (ext) L 0 , we deduce max

k≤k large +7 r d / k curl f L 2 (S 1 ) 0 .
Together with the estimate for f of Step 10, and since d / 1 = (div , curl ), we infer max

k≤k large +8 d / k f L 2 (S 1 ) 0 + r 2 (div f ) =1 . (8.3.27)
Step 12. In view of Step 11, it remains to control (div f ) =1 . We begin by making the following local bootstrap assumptions sup

C 1 r 2 | d / ≤5 (q κ , χ , ζ )| + r 2 | d / ≤4 ζ | + r 3 | d / ≤4 β | + r r -1 ≤ , (8.3.28)
where q κ = κ -2 r , and where we recall that C 1 denotes the portion of the past directed outgoing null cone initialized on the sphere S 1 and restricted to r ≥ δ * -1 0 . Recall also that C 1 ⊂ (ext) L 0 and that r denotes the area radius for the outgoing geodesic foliation of (ext) L 0 while r denotes the area radius of the spheres S ⊂ C 1 . The local bootstrap assumptions (8.3.28) will be improved in Step 14. The goal of this step is to prove the following. Proof. We proceed in four steps.

Step 12a. We start by deriving an estimate for ∇ log λ and f . In view of Corollary 2.2.4, since (a) trχ = 0 and ξ = ω = 0, we have

λ -1 e 4 (log λ) = 2f • ζ + E 2 (f, Γ)
and hence

∇ 4 (r ∇ log λ) = r ∇ (2λf • ζ + λE 2 (f, Γ)) + [∇ 4 , r ∇ ](log λ) = r ∇ (2λf • ζ + λE 2 (f, Γ)) + r - 1 2 (q κ -q κ )∇ -χ • ∇ log λ.
Together with the bootstrap assumptions (8.3.28) for q κ and χ , the bootstrap assumption (8.3.15) for (f, λ) along C 1 , and the estimates (3.4.7) for the Ricci coefficients of the part (ext) L 0 of the initial data layer, we infer along

C 1 |∇ 4 (r ∇ log λ)| 0 + 2 r 2 0 r 2 .
Integrating from S 1 where ∇ log λ verifies (8.3.21), we deduce along C 1 r |∇ λ| 0 .

Also, using the transformation formula for ζ , we derive

|f | r |∇ λ| + |ζ | + | χ | + |q κ | + |Γ g | + | d / ≤1 f | + l.o.t.,
and hence, together with the above estimate for ∇ λ, the bootstrap assumptions (8.3.28) for ζ , q κ and χ , the bootstrap assumption (8.3.15) for f , and the properties of the background foliation of (ext) L 0 , we infer along C 1 , recalling that r Step 12b. We derive next an estimate for (div β ) =1 along C 1 .

We start with the following identity for the outgoing geodesic foliation initialized on S 1

e 4 r 3 S div β J (p) = r 3 S e 4 div β + κ div β J (p) + 3e 4 (r )r 2 S div β J (p) = r 3 S div ∇ 4 β + [∇ 4 , div ]β + κ div β J (p) + 3 2 κ r 3 S div β J (p) .
Using the Bianchi identity for ∇ 4 β and the structure of the commutator, we infer

e 4 r 3 S div β J (p) = r 3 S div div α -2∇ κ • β + div (α • ζ ) - 1 2 κ ζ • β +|β | 2 -χ • ∇ β + ζ • χ • β J (p) - 3 2 (q κ -q κ )r 3 S div β J (p) ,
which yields, after integration by parts,

e 4 r 3 S div β J (p) = r 3 S α d * / 2 d * / 1 (J (p) , 0) + r 3 S -2∇ κ • β + div (α • ζ ) - 1 2 κ ζ • β + |β | 2 -χ • ∇ β + ζ • χ • β J (p) - 3 2 (q κ -q κ )r 3 S div β J (p) .
Together with the bootstrap assumptions (8.3.28) and the control of d * / 2 d * / 1 (J (p) , 0) provided by Lemma 8.3.2, we obtain along C 1 ,

e 4 r 3 S div β J (p) 2 r 3 2 0 r 3 2 
.

Transporting along C 1 from S 1 , and using the control of (div β ) =1 in (8.3.13) on S 1 , we infer sup

C 1 r 5 |(div β ) =1 | 0 .
In particular, consider the sphere S (δ * -1

0 ) = C 1 ∩ {r = δ * -1 0 }. Then r 5 |(div β ) =1 | 0 on S (δ * -1 0 ). (8.3.31)
Step 12c. We next use estimate (8.3.31) to derive an estimate for (div (f )) =1 on S (δ * -1 0 ), see (8.3.32).

To this end, we invoke again the transformation formula

β = λ β + 3 2 f ρ + * f * ρ + 1 2 α • f + l.o.t.
from which we derive

div β = λ div β + 3 2 div f ρ + * f * ρ + 1 2 div (α • f ) + l.o.t. +∇ λ • β + 3 2 f ρ + * f * ρ + 1 2 α • f + l.o.t. = div β + 1 2 f • ∇ 3 β + 1 2 f • ∇ 4 β - 3m r 3 div (f ) + 3m 1 r 3 - 1 r 3 div (f ) + 3 2 div (f ) ρ + 2m r 3 + curl (f ) * ρ + 3 2 f • ∇ρ + 1 2 f • (f ∇ 3 + f ∇ 4 )ρ + * f • ∇ * ρ + 1 2 * f • (f ∇ 3 + f ∇ 4 ) * ρ + 1 2 div (α • f ) + (λ -1) div β + 3 2 div (f )ρ + curl (f ) * ρ +∇ λ • β + 3 2 f ρ + * f * ρ + l.o.t.
Together with the bootstrap assumptions (8.3.15) for (f, f , λ), the bootstrap assumption (8.3.28) for r -r , and the control provided by Proposition 8.2.7 for (ext) L 0 , we infer

r 5 div β + 3m r 3 div (f ) -div β - 1 2 f • ∇ 3 β - 1 2 f • ∇ 4 β -∇ λ • β r 1 2 0 + 2 r 1 2 5 3 0 + 0
where we used the fact that = 2 3 0 . Also, using the Bianchi identities 19 for ∇ 4 β and ∇ 3 β, the control of (f , λ) provided by (8.3.30), we obtain along C 1

r 5 div β + 3m r 3 div (f ) -div β r 1 2 5 3 0 + 0 + r -1 .
19 Concerning the term f • ∇ 4 β, note that Bianchi identities imply ∇ 4 β = -2tr χβ + l.o.t., thus, since

β = 3a0m0 r 4 f 0 + O( 0 r -7/2 ), we obtain f • ∇ 4 β = -12a0m0 r 5 f 0 • f + O(r -9 2 0 )f = O(r -5 + r -9 2 0 )f so that f • ∇ 4 β = O(r -5 0 + r -9 2 2 
0 ) thanks to the estimate (8.3.30) for f . Thus, on the sphere S (δ * -1 0 ), where r = δ * -1 0 , we infer, see also Remark 8.3.12 below, sup

S (δ * -1 0 ) r 5 div β + 3m r 3 div (f ) 0 .
Remark 8.3.12. In the estimate above, we used in particular the following estimate of Proposition 8.2.7 for the control of div β which relies on the stronger bound on the initial data layer norm (ext) I 3 ≤ 2 0 , i.e.

sup (ext) L 0 ∩{r∼ -1 0 } r 5 |div β| 0 .
This yields on S (δ * -1 0 ) Step 12d. We will next propagate forward the information provided by estimate (8.3.32).

mr 2 |(div (f )) =1 | 0 + r 5 |(div β ) =1 |.
We use the following identity for the outgoing geodesic foliation initialized on S 1

e 4 S div (f )J (p) = S e 4 div (f ) + κ div (f ) J (p) = S div ∇ 4 (f ) + [∇ 4 , div ]f + κ div (f ) J (p) .
Also recall, see Corollary 2.2.4, that f satisfies the transport equation

21 along C 1 ∇ λ -1 e 4 f + 1 2 κf = -f • χ + E 1 (f, Γ).
20 By the local bootstrap assumption (8.3.28). 21 Recall that (a) trχ = 0 and ω = ξ = 0 for the outgoing geodesic foliation of (ext) L 0 .

Plugging in the above, and using a commutator formula for [∇ 4 , div ], we infer

e 4 S div (f )J (p) = S div λ - 1 2 κf -f • χ + E 1 (f, Γ) + - 1 2 κ div - 1 2 κ ζ • + * β • * -χ • ∇ + ζ • χ • f + κ div (f ) J (p) = S - 1 2 ∇ κ • f - 1 2 div ((λκ -κ )f ) + div (λ (-f • χ + E 1 (f, Γ))) + - 1 2 κ ζ • + * β • * -χ • ∇ + ζ • χ • f J (p) .
In view of the bootstrap assumption (8.3.15) for f and λ, and the bootstrap assumptions (8.3.28), we deduce

e 4 S div (f )J (p) 0 + 2 r 2 + d / ≤1 κ -λ -1 κ + r d / ≤1 (E 1 (f, Γ)) .
In view of the form of the error term E 1 in Corollary 2.2.4, using the transformation formula for κ , together with the bootstrap assumption (8.3.15) for f , and the bootstrap assumptions (8.3.28), we obtain

e 4 S div (f )J (p) 0 + 2 r 2 0 r 2 .
Integrating forward from r = -1 0 , and using estimate (8.3.32) for (div (f )

) =1 on S (δ * -1 0 ), we obtain sup C 1 r 2 |(div (f )) =1 | 0 .
This ends the proof of Lemma 8.3.11.

Step 13. Combining the estimate (8.3.27) for d / k f of Step 11 and the estimate for (div (f )) =1 of Step 12, we obtain on S 1 = S 1 , max

k≤k large +1 d / k f L 2 (S 1 ) 0 .
Together with (8.3.21), we infer

f h k large +1 (S 1 ) + r -1 (f , λ -λ S 1 ) h k large +1 (S 1 ) 0 .
In particular, the above estimate for (f, f ) allows to reapply Lemma 7.3 in [START_REF] Klainerman | Construction of GCM spheres in perturbations of Kerr[END_REF] (restated here in Lemma 8.1.4), with δ 1 = 0 which yields sup

S 1 r r -1 0 .
Together with (8.3.22), we infer

f h k large +1 (S 1 ) + r -1 (f , log λ) h k large +1 (S 1 ) 0 .
This improves the iteration assumption (8.3.16).

We next appeal to Corollary 4.2 in [START_REF] Shen | Construction of GCM hypersurfaces in perturbations of Kerr[END_REF] (restated here in Corollary 8.1.12) with

• δ = 0 , with background foliation given by (ext) L 0 and s max = k large which allows us to make use of the above estimate for (f, f , λ) on S 1 ⊂ Σ * to derive sup

k≤k large +1 d k f L 2 (S 1 ) + r -1 d k (f , log λ) L 2 (S 1 ) + d ≤k-1 ∇ ν (f , log λ) L 2 (S 1 ) 0 .
The above control of (f, f ), together with Lemma 7.3 in [START_REF] Klainerman | Construction of GCM spheres in perturbations of Kerr[END_REF] (restated here in Lemma 8.1.4) for δ 1 = 0 , and Corollary 7.7 in [START_REF] Klainerman | Construction of GCM spheres in perturbations of Kerr[END_REF] (restated here in Lemma 8.1.4) with

• = 0 , implies sup S 1 m H m 0 -1 + r r -1 0 ,
where m H denotes the Hawking mass of S .

We appeal next to the argument used to derive estimate m H -m in Proposition 5.4.7 which leads to sup

Σ * u 1+2δ dec |m H -m| 0 .
We have thus obtained on S 1 sup

k≤k large +1 d k f L 2 (S 1 ) + r -1 d k (f , log λ) L 2 (S 1 ) + d ≤k-1 ∇ ν (f , log λ) L 2 (S 1 ) 0 , sup S 1 m m 0 -1 + r r -1 0 . (8.3.33) 510CHAPTER 8.

INITIALIZATION AND EXTENSION (THEOREMS M0, M6 AND M7)

In view of (8.3.33) and the transformation formulas from the frame 22 of (ext) L 0 to that of of (ext) L 0 we deduce, in addition to q κ = 0, ξ = 0, ω = 0 and η = ζ , ) displays a loss of r -1 with respect to the expected behavior. It is due to the anomalous behavior for f and λ in (8.3.33). A priori, the same loss should also occur for ζ which would then create problems in Step 22. To avoid this issue, we estimate first β using the transformation formulas and the control of (f, f , λ) and r -r in (8.3.33) to obtain

r d ≤k large χ L 2 (S 1 ) + r d ≤k large -1 ζ L 2 (S 1 ) + d ≤k large (η , | trχ , χ , q ω , ξ ) L 2 (S 1 ) 0 . ( 8 
r 2 d ≤k large β L 2 (S 1 ) 0 .
We can then use the Codazzi equation for χ to estimate ζ , Indeed together with the estimate for χ in (8.3.34) and the fact that q κ = 0, we obtain the claimed estimate for ζ in (8.3.34), where the loss of one derivative is due to the term div χ in Codazzi.

Step 14. In this step, we improve the bootstrap assumption (8.3.15) for (f, f , λ) and the bootstrap assumptions (8.3.28) on (q κ , χ , ζ ), β and r -r. In view of Corollary 2.2.4, and since (a) trχ = 0 and ξ = ω = 0, we have

∇ λ -1 e 4 f + 1 2 κf = -f • χ + E 1 (f, Γ), λ -1 e 4 (log λ) = 2f • ζ + E 2 (f, Γ). Since λ -1 e 4 = e 4 + f a e a + 1 4 |f | 2 e 3 , e 4 (r) = r 2 κ, e 4 (e 3 (r)) = -2ω, we infer ∇ λ -1 e 4 (rf ) = - r 2 (q κ -q κ)f -rf • χ + rE 1 (f, Γ) + 1 4 |f | 2 e 3 (r)f.
Then, we proceed as follows for the estimates of (f, f , λ), (q κ , χ , ζ ), β and r -r:

1. Integrating the above transport equations for f and λ from S 1 where (8.3.33) holds, we obtain on

C 1 r | d / ≤5 f | + | d / ≤5 log λ| 0 . (8.3.35)
2. We estimate (q κ , χ , ζ ) and β as follows:

(a) one first controls 5 derivatives of α relying on the corresponding change of frame formula in Proposition 2.2.3, the control of the foliation of (ext) L 0 , and using in particular the fact that the change of frame formula for α only involves (f, λ) but not f , (b) one then controls 5 derivatives χ using the null structure equation for ∇ 4 χ , the above control for 5 derivatives of α , and integrating from S 1 where χ is under control from (8.3.34), (c) one then also controls 5 derivatives of q κ by integrating Raychadhuri from S 1 where q κ = 0 in view of the GCM condition on Σ * , (d) then, using the transformation formula for β , the control of the foliation of (ext) L 0 , and the above control of f and λ, we control 4 derivatives β , (e) then, we control 4 derivatives of ζ from the codazzi for χ , thanks to the control of 4 derivatives of β , and of 5 derivatives of χ and q κ .

The above steps thus lead to the following control on C 1 

r 2 | d / ≤5 ( χ , q κ )| + r 2 | d / ≤4 ζ | + r 3 | d / ≤4 β | + r
| d / ≤4 f | 0 . (8.3.37)
4. Finally, the above control of (f, f ), together with Lemma 7.3 in [START_REF] Klainerman | Construction of GCM spheres in perturbations of Kerr[END_REF] (recalled here in Lemma 8.1.4) for δ 1 = 0 implies the following control of r -r on C 1 :

|r -r| 0 r. (8.3.38) In view of the above, we have improved the bootstrap assumption (8.3.15) for (f, f , λ) and the bootstrap assumptions (8.3.28) on (q κ , χ , ζ ), β and r -r.

Proceeding as above for β , and using in addition the above estimate for r -r, we get the following improved estimates for β 

| d / ≤4 β | 0 r 7 2 + 1 r 4 . ( 8 
e 4 r 3 S curl β J (p) = r 3 S α d * / 2 d * / 1 (0, J (p) ) + r 3 S -2 * ∇ κ • β + curl (α • ζ ) - 1 2 κ ζ • * β - * χ • ∇ β + ζ • * χ • β J (p) - 3 2 (q κ -q κ )r 3 S curl β J (p) .
Together with the control of (q κ , χ , ζ , β , α ) from Step 14 and the control of d * / 2 d * / 1 (0, J (p) ) provided by Lemma 8.3.2, we obtain along C 1

e 4 r 3 S curl β J (p) -8πmaδ p0 0 r 3 2 
.

Transporting along C 1 from S 1 , using the control of (curl β ) =1 in (8.3.1) on Σ * , and hence on S 1 , we infer sup

C 1 r 5 |(curl β ) =1,± | + (curl β ) =1,0 - 2am r 5 0 .
In particular, consider the sphere S (δ * -1

0 ) = C 1 ∩ {r = δ * -1 0 }. Then r 5 |(curl β ) =1,± | + (curl β ) =1,0 - 2am r 5 0 on S (δ * -1 0 ).
Also, using the change of frame formula for β in Proposition 2.2.3, the control for (f, f , λ) of Step 14, and the control of the the curvature components of (ext) L 0 , we have

|curl β -curl β| 0 r 5 + 2 0 r 9 2
.

Together with the above, we obtain on S (δ * -1

0 ) r 3 J (+) curl β + J (-) curl β + S (δ * -1 0 ) J (0) curl β - 8πma r 3 0 .
Using the estimates for m -m 0 of Step 13, we deduce

r 3 S (δ * -1 0 ) J (+) curl β + S (δ * -1 0 ) J (-) curl β + S (δ * -1 0 ) J (0) curl β - 8πm 0 a r 3 0 .
Also, making use of the estimate for curl β in Proposition 8.2.7

curl β = 6a 0 m 0 r 5 J (0) + O(r -5 0 ) on S (δ * -1 0 ).
Using the estimates for r -r of Step 14, this yields on S (δ * -1

0 ) curl β = 6a 0 m 0 r 5 J (0) + O(r - 5 
0 ).
Plugging in the above, and dividing by m 0 , we deduce

r - 2 
S (δ * -1 0 ) J (+) a 0 J (0) + S (δ * -1 0 ) J (-) a 0 J (0) + S (δ * -1 0 ) J (0) a 0 J (0) - 4πa 3 r 2 0 .
Now, recall that we have either a 0 = 0 or |a 0 | 0 . In particular, we have

|a| 0 if a 0 = 0. (8.3.40)
In the other case, we have, since

|a 0 | 0 , r - 2 
S (δ * -1 0 ) J (+) J (0) + S (δ * -1 0 ) J (-) J (0) + S (δ * -1 0 ) J (0) J (0) - 4πa 3a 0 r 2 0 . (8.3.41)
Step 16. In this step, we consider the case a 0 = 0.

Step 16a. We introduce the following scalar function

J := J (0) -(1 + c 0 )J (0) , c 0 := S (δ * -1 0 ) J (0) J (0) S (δ * -1 0 ) (J (0) ) 2 -1. (8.3.42)
We summarize the results of this step in the lemma below.

Lemma 8.3.14. The following estimates hold true

J L ∞ (S (δ * -1 0 )) 0 , |c 0 | 0 . (8.3.43)
Proof. In view of the bootstrap assumption (8.3.17) for J (p) -J (p) , we have

|c 0 | . (8.3.44)
In view of the definition of J and c 0 , we have

S (δ * -1 0 ) J (0) J = 0, i.e. ( J) =1,0 = 0 on S (δ * - 1 
0 ). Using an elliptic estimate for ∆ + 2 r 2 , see Section 5.1.11, we deduce

r -1 J h 2 (S (δ * -1 0 )) r ∆ + 2 r 2 J L 2 (S (δ * -1 0 )) + |( J) =1,± |.
Since J (p) was extended from S 1 by e 4 (J (p) ) = 0, we have

e 4 r -2 S J (p) J (q) - 4π 3 δ pq = r -2 S (q κ -q κ )J (p) J (q) = O 0 r 2
where we have used the estimate for q κ of Step 14, see (8.3.36). Integrating from S 1 ⊂ Σ * where we have 24 

0 on C 1 , we deduce S J (p) J (q) - 4π 3 r 2 δ pq r 2 0 , S ⊂ C 1 .
We deduce, in particular, |( J) =1,± | 0 and hence

r -1 J h 2 (S (δ * -1 0 )) r ∆ + 2 r 2 J L 2 (S (δ * -1 0 )) + 0 . (8.3.46)
Also, since we have extended J (p) from S 1 by e 4 (J (p) ) = 0,

e 4 r 2 ∆ + 2 r 2 J (p) = [e 4 , r 2 ∆ ]J (p) = d / ≤1 (q κ -q κ , χ , ζ , r β ) d / ≤2 J (p) = O( 0 r -2 )
where we have used the estimate for q κ , χ , ζ and β of Step 14. Integrating from S 1 ⊂ Σ * , and using the control on Σ * (and hence on S 1 ) provided by Lemma 8.3.2, we infer along

C 1 ∆ + 2 r 2 J (p) r 3 .
In particular

∆ + 2 r 2 J (p) 0 r 2 on S (δ * -1 0 ).
In view of the definition of J we infer from (8.3.46)

r -1 J h 2 (S (δ * -1 0 )) r ∆ + 2 r 2 J (0) L 2 (S (δ * -1 0 )) + 0 .
Together with the control of r -r of Step 14, this yields

r -1 J h 2 (S (δ * -1 0 )) r -1 r 2 ∆ + 2 J (0) L 2 (S (δ * -1 0 )) + 0 .
Using the change of frame formula for ∆ , and the control of f and f in Step 14, we infer

r -1 J h 2 (S (δ * -1 0 )) r -1 r 2 ∆ + 2 J (0) L 2 (S (δ * -1 0 )) + 0 .
Finally, in view of the control we have for the geodesic foliation of (ext) L 0 , using also Sobolev, we deduce

J L ∞ (S (δ * -1 0 )) 0
as stated in Lemma 8.3.14.

Next, we estimate c 0 . Using our control for (ext) L 0 , see Proposition 8.2.7,

S (J (0) ) 2 - 4π 3 r 2 0 r.
Using Lemma 7.3 in [START_REF] Klainerman | Construction of GCM spheres in perturbations of Kerr[END_REF] (restated here in Lemma 8.1.4) on the comparison between integrals on S and on S , and using also the control of r -r of Step 14, we obtain

S (δ * -1 0 ) (J (0) ) 2 - 4π 3 r 2 r 2 0 . 516CHAPTER 8.
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Also, in view of (8.3.45),

S (δ * -1 0 ) (J (0) ) 2 - 4π 3 r 2 r 2 0 ,
and hence

S (δ * -1 0 ) (J (0) ) 2 - S (δ * -1 0 ) (J (0) ) 2 r 2 0 .
On the other hand, in view of the above control for J and its definition, we have

S (δ * -1 0 ) (J (0) ) 2 = S (δ * -1 0 ) (1 + c 0 )J (0) + J 2 = (1 + c 0 ) 2 S (δ * -1 0 ) (J (0) ) 2 + 2(1 + c 0 ) S (δ * -1 0 ) J (0) J + S (δ * -1 0 ) ( J) 2 .
Together with our weak control for c 0 in (8.3.44) and the above control for J, we deduce 2c 0

S (δ * -1 0 ) (J (0) ) 2 = S (δ * -1 0 ) (J (0) ) 2 - S (δ * -1 0 ) (J (0) ) 2 + r 2 O( 0 + 2 ).
We obtain

|c 0 |r 2 S (δ * -1 0 ) (J (0) ) 2 - S (δ * -1 0 ) (J (0) ) 2 + r 2 0
and hence, in view of the above, we infer

|c 0 | 0 .
This ends the proof of Lemma 8.3.14.

Step 16b. The goal of this step is to prove the following lemma. Proof. In view of the definition of J, and the estimate we have derived for it and c 0 in Lemma 8.3.14, we have sup

S (δ * -1 0 ) |J (0) -J (0) | sup S (δ * -1 0 ) (| J| + |c 0 |) 0 . (8.3.48)
Now, recalling from (8.3.41) that we have

r - 2 
S (δ * -1 0 ) J (0) J (0) - 4πa 3a 0 r 2 0 , we infer r - 2 
S (δ * -1 0 ) (J (0) ) 2 - 4πa 3a 0 r 2 0 .
Together with the above control of S (δ * -1 0 ) (J (0) ) 2 , we deduce

r -2 4π 3 r 2 - 4πa 3a 0 r 2 0
and hence |a -a 0 | 0 as stated in (8.3.47).

It remains to prove the estimate for |J (±) -J (±) |. To achieve this, we introduce the following scalar functions

J + := J (+) -(1 + c ++ )J (+) + c +-J (-) , J -:= J (-) -c -+ J (+) + (1 + c --)J (-) ,
where the constants c ++ and c +-are the solutions of the following 2 by 2 system

c ++ S (δ * -1 0 ) (J (+) ) 2 + c +- S (δ * -1 0 ) J (+) J (-) = S (δ * -1 0 ) (J (+) -J (+) )J (+) , c ++ S (δ * -1 0 ) J (+) J (-) + c +- S (δ * -1 0 ) (J (-) ) 2 = S (δ * -1 0 ) (J (+) -J (+) )J (-) ,
and where the constants c -+ and c --are the solutions of the following 2 by 2 system c --

S (δ * -1 0 ) (J (-) ) 2 + c -+ S (δ * -1 0 ) J (-) J (+) = S (δ * -1 0 ) (J (-) -J (-) )J (-) , c -- S (δ * -1 0 ) J (-) J (+) + c -+ S (δ * -1 0 ) (J (+) ) 2 = S (δ * -1 0 ) (J (-) -J (-) )J (+) .
In view of the bootstrap assumption (8.3.17) for J (p) -J (p) , we have

|c ++ | + |c +-| + |c -+ | + |c --| . (8.3.49)
Also, in view of the definition of J ± and c ++ , c +-, c -+ and c --, we have

S (δ * -1 0 ) J (±) J + = 0, S (δ * -1 0 ) J (±) J -= 0, i.e. ( J + ) =1,± = 0 and ( J -) =1,± = 0 on S (δ * - 1 
0 ). This yields, together with a Hodge elliptic estimate,

r -1 J ± h 2 (S (δ * -1 0 )) r ∆ + 2 r 2 J ± L 2 (S (δ * -1 0 )) + |( J ± ) =1,0 |.
Arguing as above for J, we have

r ∆ + 2 r 2 J ± L 2 (S (δ * -1 0 )) sup S (δ * -1 0 ) ∆ + 2 r 2 J (±) + sup S (δ * -1 0 ) ∆ + 2 r 2 J (±) 0 ,
and hence

r -1 J ± h 2 (S (δ * -1 0 )) |( J ± ) =1,0 | + 0 .
Also, in view of the definition of J ± , we have

|( J ± ) =1,0 | r -2 S (δ * -1 0 ) J ± J (0) sup S (δ * -1 0 ) |J (0) -J (0) | + r -2 S (δ * -1 0 ) J (±) J (0) + r -2 S (δ * -1 0 ) J (±) J (0) .
In view of the above, we infer

|( J ± ) =1,0 | 0 + r -2 S (δ * -1 0 ) J (±) J (0) .
Also, denoting S 0 the sphere of (ext) L 0 sharing the same south pole with S (δ * -1

0 ), we have in view of the control of (ext) L 0 |( J ± ) =1,0 | 0 + r -2 S (δ * -1 0 ) J (±) J (0) - S 0 J (±) J (0) + r -2 S 0 J (±) J (0) 0 + r -2 S (δ * -1 0 ) J (±) J (0) - S 0 J (±) J (0) .
Finally, in view of the control of (f, f ) in Step 14, we may apply Lemma 7.3 in [START_REF] Klainerman | Construction of GCM spheres in perturbations of Kerr[END_REF] (restated here in Lemma 8.1.4) with δ 1 = 0 which yields, together with e 4 (J (p) ) = 0,

r -2 S (δ * -1 0 ) J (±) J (0) - S 0 J (±) J (0) 0 max p=0,+,- sup (ext) L 0 |d ≤1 J (p) | 0 so that |( J ± ) =1,0 | 0 and hence r -1 J ± h 2 (S (δ * -1 0 )) 0 .
Together with Sobolev, we deduce sup

S (δ * -1 0 ) | J ± | 0 .
Next, using again Lemma 7.3 in [START_REF] Klainerman | Construction of GCM spheres in perturbations of Kerr[END_REF] (restated here in Lemma 8.1.4) with δ 1 = 0 , we have

r -2 S (δ * -1 0 ) (J (±) ) 2 - S 0 (J (±) ) 2 + r -2 S (δ * -1 0 ) J (+) J (-) - S 0 J (+) J (-) 0 .
Together with the control of (ext) L 0 and the control of r -r of Step 14, we deduce

S δ * -1 0 (J (±) ) 2 = 4π 3 r 2 1 + O( 0 ) , S δ * -1 0 J (+) J (-) = O(r 2 0 
).

Together with the above control of J ± , we infer

4π 3 r 2 1 + O( 0 ) = S δ * -1 0 (J (+) ) 2 = S δ * -1 0 J + + (1 + c ++ )J (+) + c +-J (-) 2 = 4π 3 r 2 (1 + c ++ ) 2 + (c +-) 2 + O( 0 ) , O(r 2 0 ) = S δ * -1 0 J (+) J (-) = S δ * -1 0 J + + (1 + c ++ )J (+) + c +-J (-) J -+ c -+ J (+) + (1 + c --)J (-) = 4π 3 r 2 (1 + c ++ )c -+ + +c +-(1 + c --) + O( 0 ) , 520CHAPTER 8. 

INITIALIZATION AND EXTENSION (THEOREMS M0, M6 AND M7

)

and 4π 3 r 2 1 + O( 0 ) = S δ * -1 0 (J (-) ) 2 = S δ * -1 0 J -+ c -+ J (+) + (1 + c --)J (-) 2 = 4π 3 r 2 (c -+ ) 2 + (1 + c --) 2 + O( 0 ) , which yields (1 + c ++ ) 2 + (c +-) 2 = 1 + O( 0 ), (c -+ ) 2 + (1 + c --) 2 = 1 + O( 0 ), (1 + c ++ )c -+ + c +-(1 + c --) = O( 0 ).
Together with the above control of c ++ , c +-, c --and c --, we deduce

1 + c ++ = 1 -(c +-) 2 + O( 0 ), 1 + c --= 1 -(c -+ ) 2 + O( 0 ), c -+ = c +-+ O( 0 ).
In particular, there exists a real number ϕ 0 such that

c +-= sin(ϕ 0 ), c -+ = -sin(ϕ 0 ) + O( 0 ), |ϕ 0 | , c ++ = cos(ϕ 0 ) -1 + O( 0 ), c --= cos(ϕ 0 ) -1 + O( 0 ). (8.3.50) 
Together with the above definition, and the above control, of J ± , we infer sup

S δ * -1 0 J (±) -cos(ϕ 0 )J (±) ± sin(ϕ 0 )J (∓) 0 . (8.3.51) 
Also, we have

e 4 J (0) -J (0) = e 4 J (0) = λ e 4 + f • ∇ + 1 4 |f | 2 e 3 J (0) = O(r -1 f ) and e 4 J (±) -cos(ϕ 0 )J (±) ± sin(ϕ 0 )J (∓) = e 4 J (±) = λ e 4 + f • ∇ + 1 4 |f | 2 e 3 J (±) = O(r -1 f ).
Together with the control of f in Step 14, we obtain on C 1 e 4 J (0) -J

+ e 4 J (±) -cos(ϕ 0 )J (±) ± sin(ϕ 0 )J

(∓) 0 r 2
and hence, integrating forward from S δ * -1 0

, and using the above estimate for J (0) -J (0) and for J (±) -(cos(ϕ 0 )J (±) ± sin(ϕ 0 )J (∓) ) on S δ * -1 0 , we deduce on C 1

J (0) -J (0) + J (±) -(cos(ϕ 0 )J (±) ± sin(ϕ 0 )J (∓) ) 0 .
This estimate holds thus in particular on S 1 . Finally, recalling (8.3.18), we have

0 = S 1 J (+) J (-) = S 1 cos(ϕ 0 )J (+) + sin(ϕ 0 )J (-) + O( 0 ) J (-) = 4π 3 r 2 (sin(ϕ 0 ) + O( 0 ))
which implies sin(ϕ 0 ) = O( 0 ). We have thus obtain

max p=0,+,- sup S 1 J (p) -J (p) 0 if a 0 = 0,
which together with the previous estimate for a -a 0 establishes (8.3.47). This ends the proof of Lemma 8.3.15.

Steps 17-24

Step 17. In the case a 0 = 0, we derive higher derivative estimates for f 0 -f 0 and

J (p) -J (p) on Σ * .
In what follows we recall that φ is the effective uniformization factor on S * with (θ, ϕ) the corresponding coordinates and J (p) the corresponding = 1 balanced modes, see (5.1.19). We also recall the definition of the 1-forms f -, f 0 , f + , see Definition 5.6.1. Following our conventions above 25 we denote these by J (p) and f -, f 0 , f + .

Lemma 8.3.16. The effective uniformization factor φ of S * verifies

φ h k+2 (S * ) r Γ g h k (S * ) , 0 ≤ k ≤ k large . (8.3.52) 
Proof. According to Theorem 5.1.2, we have

φ h k+2 (S * ) r 2 K - 1 r 2 h k (S * ) , 0 ≤ k ≤ k large .
25 Quantities related to the PG frame are denoted by primes.
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Also, in view of the linearized Gauss equation of Proposition 5.1.18, we have q K ∈ r -1 Γ g and hence

φ h k+2 (S * ) r Γ g h k (S * )
which concludes the proof of the lemma.

We now proceed as follows:

1. Using Lemmas 5.6.6 and 5.6.7, and simple elliptic estimates, we deduce

φ h k+2 (S * ) r Γ g h k (S * ) , max p=0,+,- r ∇ J (p) h k+2 (S * ) φ h k+2 (S * ) , r ∇f 0 -J (0) ∈ h k+1 (S * ) + r ∇f ± + J (±) δ h k+1 (S * ) φ h k+2 (S * ) .
Together with the bootstrap assumption for Γ g and Γ b , we infer, for k ≤ k large ,

φ h k+2 (S * ) , max p=0,+,- r ∇ J (p) h k+2 (S * ) , r ∇f 0 -J (0) ∈ h k+1 (S * ) + r ∇f ± + J (±) δ h k+1 (S * ) .
By Sobolev, we deduce max p=0,+,-

r d / ≤k large r ∇ J (0) L ∞ (S * ) + r d / ≤k large -1 (r ∇f 0 -J (0) ∈) L ∞ (S * ) +r d / ≤k large -1 (r ∇f ± + J (±) δ) L ∞ (S * ) .
2. On Σ * we have, using the transport equations along Σ * of Lemma 5.6.11

∇ ν r ∇f 0 -J (0) ∈ = Γ b • d / ≤1 f 0 , ∇ ν r ∇f ± + J (±) δ = Γ b • d / ≤1 f ± , ∇ ν r ∇ J (p) = Γ b • d / ≤1 J (p) , p = 0, +, -.
We integrate from S * and obtain, using the bootstrap assumption for Γ b ,

d / ≤k large -1 (r ∇f 0 -J (0) ∈) L ∞ (Σ * ) d / ≤k large -1 (r ∇f 0 -J (0) ∈) h k (S * ) + u * r , d / ≤k large -1 (r ∇f ± + J (±) δ) L ∞ (Σ * ) d / ≤k large -1 (r ∇f ± + J (±) δ) h k (S * ) + u * r , d / ≤k large (r ∇ J (p) ) L ∞ (Σ * ) d / ≤k large (r ∇ J (p) ) h k (S * ) + u * r , p = 0, +, -. and d / ≤k large (f ± -f ± ) L ∞ (S 1 ) + d / ≤k large +1 (J (±) -J (±) ) L ∞ (S 1 ) 0 + J (±) -J (±) L ∞ (S 1 ) .
Together with (8.3.47), we obtain in the case a 0 = 0 max p=0,+,-

d / ≤k large (f p -f p ) L ∞ (S 1 ) + d / ≤k large +1 (J (p) -J (p) ) L ∞ (S 1 ) 0 .
In view of the fact that ∇ ν f p = 0 for p = 0, +, -on Σ * , and in view of the control of (ext) L 0 , and hence of f p for p = 0, +, -, we deduce for a 0 = 0 max p=0,+,-

d ≤k large * (f p -f p ) L ∞ (S 1 ) + d ≤k large +1 * (J (p) -J (p) ) L ∞ (S 1 ) 0 . (8.3.54)
In particular, this improves the bootstrap assumption (8.3.17) on J (p) -J (p) for p = 0, +, -.

Step 18. Next, we control ν(r ) and b * on S 1 . First, recall from (8.3.34) that we have, for k ≤ k large + 7 for the frame of Σ * ,

r |d k * (η , ξ , q ω )| 0 .
Together with Lemma 5.1.12, and since b * = -y -z in view of Lemma 5.1.12, we infer, for k ≤ k large + 7,

r |∇ d k * (e 3 (r) , e 3 (u) , b * )| 0 . (8.3.55) 
Then, proceeding as in Step 7 in the proof of Proposition 5.3.1 for the averages, we obtain on S 1 , for k ≤ k large + 6,

d k * ν(r ) + 2, b * + 1 + 2m r 0 . (8.3.56) 
Step 19. We consider the following change of frame coefficients:

• (f, f , λ) are the change of frame coefficients from the outgoing geodesic frame of (ext) L 0 to the frame of Σ * . They satisfy, according to (8.3.33), sup

k≤k large +1 d k f L 2 (S 1 ) + r -1 d k (f , log λ) L 2 (S 1 ) + d ≤k-1 ∇ ν (f , log λ) L 2 (S 1 ) 0 .
• (f , f , λ ) are the change of frame coefficients from the outgoing PG frame of (ext) L 0 to the outgoing geodesic frame of (ext) L 0 . (f , f , λ ) satisfies in view of Proposition 8.2.7 sup

(ext) L 0 r d ≤k large +8 f + a 0 r f 0 , f + a 0 Υ r f 0 , log λ 0 .
• (f , f , λ ) are the change of frame coefficients from the frame of Σ * to the outgoing PG frame of (ext) M. (f , f , λ ) satisfies by the initialization of the PG structure on Σ * , see Section 3.2.5,

λ = 1, f = a r f 0 , f = - (ν(r ) -b * ) 1 -1 4 b * |f | 2 f .
We now consider the change of frame coefficients (f , f , λ ) from the outgoing PG frame of (ext) L 0 to the outgoing PG frame of (ext) M. In view of:

• the above estimates for (f, f , λ) and (f , f , λ ),

• the above formula for (f , f , λ ),

• the control for r -r and m -m 0 given by (8.3.33), and the control for ν(r ) and b * in Step 18,

• the control of a in (8.3.40) in the case a 0 = 0,

• the control for a -a 0 in (8.3.47) and the control for f 0 -f 0 in Step 17 in the case a 0 = 0, we infer the following estimates sup

S 1 r|d ≤k large f | + sup S 1 |d ≤k large (f , log λ )| 0 + 1 r .
Together with the dominance condition for r on Σ * , we infer sup

S 1 r|d ≤k large f | + sup S 1 |d ≤k large (f , log λ )| 0 . (8.3.57) 
Step 20. In Steps 20-22, (e 1 , e 2 , e 3 , e 4 ) denotes the outgoing PG frame of (ext) L 0 , and (e 1 , e 2 , e 3 , e 4 ) denotes the outgoing PG frame of (ext) M. Also, from now on, (f, f , λ)
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denotes 26 the change of frame coefficients from the outgoing PG frame of (ext) L 0 to the outgoing PG frame of (ext) M. In view of Step 19, we have on S 1 sup

S 1 r|d ≤k large f | + sup S 1 |d ≤k large (f , log λ)| 0 . Let F = f + i * f. Since Ξ = 0, ω = 0, Ξ = 0, ω = 0,
we have, in view of Corollary 2.2.5,

∇ λ -1 e 4 (qF ) = E 4 (f, Γ), λ -1 ∇ 4 (log λ) = f • (ζ -η) + E 2 (f, Γ).
We integrate the above transport equations for F and λ in the order they appear from S 1 .

In view of the control for (f, λ) on S 1 derived in Step 19, and in view of the assumptions on the initial data layer norm, we infer

sup {u =1} r|d ≤k large f | + |d ≤k large log(λ)| 0 , (8.3.58) 
where u denotes from now on the scalar function of the PG structure of (ext) M. In particular, we have by construction S 1 = Σ * ∩{u = 1}, e 4 (u ) = 0 and {u = 1} ⊂ (ext) L 0 .

Step 21. In this step, we estimate r -r, as well as A , } trX and X . Moreover, in the case a 0 = 0, we also estimate J (0) -J (0) and J -J. First, since J (0) is propagated from Σ * by e 4 (J (0) ) = 0, and using the change of frame formula between the PG frame of (ext) L 0 and the PG frame of (ext) M, we infer

e 4 (J (0) -J (0) ) = -λ f • ∇ + 1 4 |f | 2 e 3 J (0) .
Together with the control of f and λ of Step 20, and the control of (ext) L 0 , we infer

sup {u =1} r 2 |d ≤k large (e 4 (J (0) -J (0) ))| 0 .
Integrating from S 1 , where J (0) -J (0) is under control in view of Step 17 in the case a 0 = 0, we infer

sup {u =1} |d ≤k large (J (0) -J (0) )| 0 if a 0 = 0. (8.3.59)
Next, we control } trX . To this end, we also need to control A and X . First, note that the change of frame formula for A , the control of the foliation of (ext) L 0 , the control of f and λ of Step 20, and the fact that the transformation formula for A does not depend on f implies

sup {u =1} r 7 2 +δ B |d ≤k large A | 0 . (8.3.60) 
Then, using the control of the Ricci coefficients of the frame of Σ * obtained in (8.3.34), the control of a in (8.3.40) in the case a 0 = 0, the control for a -a 0 in (8.3.47) and the control for f 0 -f 0 in (8.3.53) in the case a 0 = 0, the control of ν(r ) and b * of Step 18, and the change of frame formula between the frame of Σ * and the outgoing PG frame of (ext) M on Σ * , we infer27 

sup S 1 r 2 |d ≤k large -1 } trX | + |d ≤k large -1 X | 0 .
Then, propagating Raychadhuri for } trX and the null structure equation for ∇ 4 X from S 1 where } trX and X are under control in view of the above estimate, we infer, using the above control of A ,

sup {u =1} r 2 |d ≤k large -1 } trX | + |d ≤k large -1 X | 0 . (8.3.61) 
Next, we notice

trX -λtrX = 2 q - 2 q + (λ -1)trX + } trX -} trX so that q -q = qq 2 -λ λ -1 trX -trX + (λ -1)trX + } trX -} trX .
Together with the control of Step 20 for f and λ, the above control } trX , the above control for J (0) -J (0) if a 0 = 0, the control of a in (8.3.40) in the case a 0 = 0, the control for a -a 0 in (8.3.47) in the case a 0 = 0, the control of the foliation (ext) L 0 , and the fact that q = r + ia 0 J (0) and q = r + iaJ (0) , we infer

sup {u =1} d ≤k large -1 r r -1 + qq 2r λ -1 trX -trX 0 .
Moreover, from the change of frame formulas for tr χ and (a) trχ we have, schematically,

λ -1 trX -trX = r -1 d f + Γ • f + f • f • Γ + f • f • trX + l.o.t.
Together with the control of Step 20 for f , the above control for } trX and the control of the foliation (ext) L 0 , we deduce

sup {u =1} d ≤k large -1 r r -1 0 + 0 sup {u =1} d ≤k large -1 f . (8.3.62) Next, recall the definition of J on Σ * J = 1 |q | (f 0 + i * f 0 ) = 1 r 2 + a 2 (J (0) ) 2 (f 0 + i * f 0 ).
Recall that we control J -J only in the case a 0 = 0. Together with the control of r -r and m -m 0 given by (8.3.33), the control of a -a 0 in Step 16 for a 0 = 0, the control for f 0 -f 0 and J (0) -J (0) in Step 17 for a 0 = 0, and the control of (ext) L 0 , we infer

r d ≤k large * (J -J) L ∞ (S 1 ) 0 + 1 r .
Together with the dominance condition for r on Σ * , we infer

r d ≤k large * (J -J) L ∞ (S 1 ) 0 .
Together with the identity q J -qJ = q (J -J) + (q -q)J = q (J -J) + r -r + i(aJ (0) -a 0 J (0) ) J, the control of r -r given by (8.3.33), the control of J (0) -J (0) in Step 17 and the control of a -a 0 of Step 16, we obtain

d ≤k large * (q J -qJ) L ∞ (S 1 ) 0 .
Also, recall that J and J satisfy in {u = 1}

∇ 4 J = - 1 q J , ∇ 4 J = - 1 q J,
and hence

∇ 4 (q J ) = 0, ∇ 4 (qJ) = 0.
We infer

∇ λ -1 4 (q J ) = 0, ∇ λ -1 4 (qJ) = f • ∇ + 1 4 |f | 2 e 3 (qJ).
Together with the control of f and λ of Step 20, and the control of (ext) L 0 , we obtain

sup {u =1} r 2 |d ≤k large (∇ 4 (q J -qJ))| 0 .
Integrating from S 1 where q J -qJ is under control in view of the above, we infer

sup {u =1} |d ≤k large (q J -qJ)| 0 .
Using again the above identity for q J -qJ, as well as the above control of J (0) -J (0) and r -r, and the control of a -a 0 of Step 16, we deduce

sup {u =1} r|d ≤k large -1 (J -J)| 0 + 0 sup {u =1} d ≤k large -1 f if a 0 = 0. (8.3.63)
Step 22. In this step, we control f on (ext) M. To this end, we first control B and Z . The change of frame formula for B , the control of the foliation of (ext) L 0 , the control of f and λ of Step 20, and the fact that the terms involving f in the transformation formula for B are at least quadratic, implies

sup {u =1} r 7 2 +δ B |d ≤k large -1 B | 0 + 0 sup {u =1} d ≤k large -1 f . (8.3.64)
Then, propagating the null structure equation for ∇ 4 q Z from S 1 where it is under control in view of (8.3.34) for the frame of Σ * and the change of frame formula, we infer, using the above control of B ,

sup {u =1} r 2 |d ≤k large -1 q Z | 0 + 0 sup {u =1} d ≤k large -1 f . (8.3.65) 530CHAPTER 8.
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Next, the transformation formula for Z , together with the control of the foliation of (ext) L 0 , the control of f and λ of Step 20, and the control of } trX and X of Step 21, yields

sup {u =1} r d ≤k large -1 Z -Z - 1 4 trX(f + i * f ) 0 + 0 sup {u =1} d ≤k large -1 f .
Since we have

Z -Z = aq |q | 2 J - a 0 q |q| 2 J + q Z -q Z,
we deduce, together with the control of the foliation of (ext) L 0 , the above control of q Z , the control of r -r of Step 21, the control of a in (8.3.40) in the case a 0 = 0, the control for a -a 0 in (8.3.47) in the case a 0 = 0, and the control of J (0) -J (0) and J -J of Step 21 in the case a 0 = 0,

sup {u =1} d ≤k large -1 f 0 + 0 sup {u =1} d ≤k large -1 f and hence sup {u =1} d ≤k large -1 f 0 .
Together with the control of f and λ of Step 20, we have finally obtained

sup {u =1} r|d ≤k large f | + |d ≤k large log(λ)| + |d ≤k large -1 f | 0 . (8.3.66)
Also, together with the estimates of Step 21 for r -r, we obtain

sup {u =1} d ≤k large -1 r r -1 0 . (8.3.67) 
Step 23. Let (f , f , λ ) denote the change of frame coefficients from the principal outgoing null frame of (int) L 0 to the principal outgoing null frame of (int) M. From

• the estimates of Step 22 on {u = 1},

• the fact that (int) M ∩ (ext) M = {r = r 0 }, • the fact that {u = 1} ∩ {u = 1} is included in (ext) L 0 ∩ (int) L 0 ,
• the initialization of the frame of (int) M as an explicit renormalization of the frame of (ext) M on {r = r 0 },

• the control in (ext) L 0 ∩ (int) L 0 of the difference between the frame of (int) L 0 and an explicit renormalization of the frame of (ext) L 0 , we easily infer, using also u = u on {r = r 0 },

sup {r=r 0 }∩{u =1} |d ≤k large -1 (f , f , log λ )| 0 .
Next, we proceed as in Step 20, exchanging the role of e 3 and e 4 , and we propagate along e 3 the above estimate to {u = 1} for f and λ . We also propagate the control of Step 21 for J (0) -J (0) on {u = 1} in the case a 0 = 0, and hence on its boundary {r = r 0 } to {u = 1}. Also one propagates the control of Step 22 for r -r on {u = 1}, and hence on its boundary {r = r 0 } to {u = 1} using the transport equation28 

e 3 (r -r) = 1 -λ e 3 + f a e a + 1 4 |f | 2 e 4 r = -(λ -1) + f • ∇(r) + 1 4 |f | 2 e 4 (r).
Finally, we propagate f similarly to Step 22. We finally obtain 

sup {u =1} |d ≤k large -1 (f , log λ )| + |d ≤k large -2 (r -r, f )| 0 , (8.3 
d ≤k large -2 J (0) -J (0) 0 , if a 0 = 0. (8.3.69) 
Step 24. Note that the desired estimate for m -m 0 has been obtained in Step 13. Also, note that the desired estimate for a -a 0 has been obtained in Step 15 in the case a 0 = 0, and in Step 16 in the case a 0 = 0. To conclude the proof of Theorem M0, it remains to control k large -2 derivatives, with suitable r-weights and O( 0 ) smallness constant, of A , B , q P , B and A in {u = 1} ∪ {u = 1}, i.e.

max 0≤k≤k large-2 sup {u =1} r 7 2 +δ B |d k (ext) A | + |d k (ext) B | + r 3 d k (ext) P + 2m q 3 (8.3.70) +r 2 |d k (ext) B | + r|d k (ext) A | + max 0≤k≤k large-2 sup B 1 |d k (int) A | +|d k (int) B | + d k (int) P + 2m q 3 + |d k (int) B | + |d k (int) A | 0 .
This follows from:

• the control of (f, f , λ) on {u = 1} derived in Step 22,

• the control of (f , f , λ ) on {u = 1} derived in Step 23,

• the fact that (f, f , λ) denote the change of frame coefficients from the PG frame of (ext) L 0 to the PG frame of (ext) M, and the fact that (f , f , λ ) denote the change of frame coefficients from the principal outgoing null frame of (int) L 0 to the principal outgoing null frame of (int) M,

• the change of frame formulas for the curvature components,

• in the particular case of the estimate for q P , the fact that

P -P = - 2m q 3 + 2m 0 q 3 + q P -q P ,
together with the control of m -m 0 derived in Step 13, the control of r -r in Steps 22 and 23, the control of a in Step 15 in the case a 0 = 0, the control of a -a 0 in

Step 16 in the case a 0 = 0, and the control of J (0) -J (0) in Step 21 and 23 in the case a 0 = 0,

• the assumptions on the initial data layer norm.

The proof of Theorem M0 is now complete.

Proof of Theorem M6

The proof of Theorem M6 proceeds in 8 steps which we summarize below for convenience:

1. In Steps 1-3, we construct our last sphere S * , and then our last slice Σ * inside the part (ext) L 0 of the initial data layer, by relying on the control of (ext) L 0 provided by Proposition 8.2.7, and the GCM constructions of [START_REF] Klainerman | Effective results in uniformization and intrinsic GCM spheres in perturbations of Kerr[END_REF] and [START_REF] Shen | Construction of GCM hypersurfaces in perturbations of Kerr[END_REF] recalled in Section 8.1.

2. In Steps 4-8, we construct from Σ * a GCM admissible spacetime M and we control the change of frame coefficients between the frames of the initial data layer L 0 , and the corresponding frames of M. In view of the control of L 0 and of the change of frames coefficients, we infer the desired control of M thanks to the change of frame formulas.

We now proceed with the proof of Theorem M6.

Step 1. Let r (0) such that

r (0) := d 0 δ * -1 0 , (8.4.1) 
where the small constant δ * appears in (3.4.5), and where the constant d 0 satisfies

1 2 ≤ d 0 ≤ 2
and will be suitably chosen in Step 3. Also, let δ 0 > 0 sufficiently small. Consider the unique sphere

• S of the part (ext) L 0 of the initial data layer on { u = 1+δ 0 } with area radius r (0) . Then, denoting S( u, s) the spheres of the outgoing geodesic foliation of (ext) L 0 , we have

• S = S( • u, • s), • u = 1 + δ 0 , | • s -r (0) | 0 ,
where the control of • s-r (0) follows from the assumptions on the control of (ext) L 0 . Relying on the control of the initial data layer given by (3.4.7), i.e.

I k large +10 ≤ 0 , (ext) 
I 3 ≤ 2 0 , we are in position to apply Theorem 7.3 of [START_REF] Klainerman | Effective results in uniformization and intrinsic GCM spheres in perturbations of Kerr[END_REF] (restated here as Theorem 8.1.7) and Corollary 7.7 of [START_REF] Klainerman | Effective results in uniformization and intrinsic GCM spheres in perturbations of Kerr[END_REF] (restated here as Corollary 8.1.8), with the choices

• δ = • = 0 , s max = k large + 7,
to produce a unique GCM sphere S * , which is a deformation of

• S, satisfying q κ S * = 0, q κ S * = 0, q µ S * = p M S * p J (p,S * ) , (div S * β S * ) =1 = 0, (curl S * β S * ) =1,± = 0, (curl S * β S * ) =1,0 = 2a S * m S * (r S * ) 5 , (8.4.2) 
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• J (p,S * ) denotes the canonical basis of = 1 mode on S * in the sense of Definition 3.10 of [START_REF] Klainerman | Effective results in uniformization and intrinsic GCM spheres in perturbations of Kerr[END_REF] (recalled here in Definition 5.1.3),

• the = 1 modes in (8.4.2) are defined w.r.t. the basis of = 1 modes J (p,S * ) ,

• m S * denotes the Hawking mass of S * , r S * denotes the area radius of S * , and the identity for (curl S * β S * ) =1,0 in (8.4.2) should be understood as providing the definition of a S * .

Remark 8.4.1. In order to apply Theorem 7.3 of [START_REF] Klainerman | Effective results in uniformization and intrinsic GCM spheres in perturbations of Kerr[END_REF] (restated here as Theorem 8.1.7) and Corollary 7.7 of [START_REF] Klainerman | Effective results in uniformization and intrinsic GCM spheres in perturbations of Kerr[END_REF] (restated here as Corollary 8.1.8) to the above setting, one needs to check that foliation of (ext) L 0 satisfies the assumptions of the theorem, and in particular, in the region r ∼ r (0) of (ext) L 0 ,

r 5 |(div β) =1 | + |(curl β) =1,± | + (curl β) =1,0 - 2a 0 m 0 r 5 + r 3 |(q κ) =1 | + r 3 |(q κ) =1 | • δ,
as well as

r 2 |d k Γ b | δ * , k ≤ s max .
Now, in view of the above choice for s max ,

• δ,

• and r (0) , this follows from

r|d ≤k large +7 Γ b | 0 and sup (ext) L 0 ∩{r∼ -1 0 } r 5 |div β| + curl β - 6a 0 m 0 r 5 J (0) + sup (ext) L 0 ∩{r∼ -1 0 } r 3 (|q κ| + |κ|) 0
and hence, in view of Proposition 8.2.7, from

I k large +10 ≤ 0 , (ext) I 3 ≤ 2 0 .
From now on, we denote for simplicity

m := m S * , a := a S * . (8.4.3) 
Step 2. Starting from S * constructed in Step 1, and relying on the control provided by Proposition 8.2.7 for the foliation of (ext) L 0 , we may then apply Theorem 4.1 in [START_REF] Shen | Construction of GCM hypersurfaces in perturbations of Kerr[END_REF] (restated here in Theorem 8.1.11), with s max = k large + 7, which yields the existence of a smooth small piece of spacelike hypersurface Σ * passing through the sphere S * , together with a scalar function u defined on Σ * , whose level surfaces are topological spheres denoted by S, so that

• The following GCM conditions are verified on Σ * q κ = 0,

q κ = C 0 + p C p J (p) , q µ = M 0 + p M p J (p) , (div η) =1 = 0, (div ξ) =1 = 0.
• C 0 , C p , M 0 and M p are constant on each leaf of the u-foliation of Σ * .

• We have, for some constant c Σ * ,

u + r = c Σ * , along Σ * ,
where r denotes the area radius of the spheres S of the u-foliation of Σ * .

• The following normalization condition holds true

b * = -1 - 2m r ,
where b * denotes the average of b * on the spheres foliating Σ * , and where b * is such that we have

ν = e 3 + b * e 4 ,
with ν the unique vectorfield tangent to the hypersurface Σ * , normal to S, and normalized by g(ν, e 4 ) = -2.

• The basis of = 1 modes J (p) is given by J (p) = J (p,S * ) on S * , and extended to Σ * by ν(J (p) ) = 0. Also, the = 1 modes of div η and div ξ above are computed with respect to this basis.

Furthermore, we have 29

max k≤k large +6 sup Σ * r |d k f | + |d k f | + |d k log(λ)| 0 , (8.4.4) 
and

|m -m 0 | + sup Σ * |r -r (0) | 0 , (8.4.5) 
where (f, f , λ) are the transition function from the frame of (ext) L 0 to the frame of Σ * . 29 We have in fact max

k≤k large +8 sup Σ * d k f L 2 (S) + d k f L 2 (S) + d k log(λ) L 2 (S) 0 ,
and then use the Sobolev embedding on the 2-spheres S foliating Σ * to deduce (8.4.4).

Remark 8.4.2. To fix u, we need to pick a specific constant c Σ * such that u + r = c Σ * along Σ * . We choose c Σ * = 1 + r(S 1 ) where S 1 is the only sphere of Σ * intersecting the curve of the south poles 30 of the outgoing null cone { u = 1} of (ext) L 0 .

Step 3. From now on, u is calibrated according to 31 Remark 8.4.2, which also fixes the sphere S 1 = Σ * ∩ {u = 1}. We can then compare

• u = 1 + δ 0 to u(S * ) and obtain |u(S * ) -1 -δ 0 | 0 δ 0 , so that 1 ≤ u ≤ u(S * ) on Σ * where 1 < u(S * ) < 1 + 2δ 0 .
Together with the estimate (8.4.5), and in view of the choice (8.4.1) for r (0) , we have

r(S * ) = r (0) + O( 0 ) = d 0 δ * -1 0 + O( 0 ) = δ * -1 0 (u(S * )) 1+δ dec d 0 + O(δ 0 ) + O δ -1 * 2 0
. Thus, we may choose the constant d 0 in the range 1 2

≤ d 0 ≤ 2 such that r(S * ) = δ * -1 0 (u(S * )) 1+δ dec
so that the condition (3.4.5) for r is satisfied.

Step 4. In view of Step 1 to Step 3, Σ * satisfies all the required properties for the future spacelike boundary of a GCM admissible spacetime, see Section 3.2.3. We now introduce

• the outgoing geodesic frame ( e 4 , e 3 , e 1 , e 2 ) of (ext) L 0 ,

• the outgoing PG frame ((e 0 ) 4 , (e 0 ) 3 , (e 0 ) 1 , (e 0 ) 2 ) of (ext) L 0 ,

• the outgoing PG frame (e 4 , e 3 , e 1 , e 2 ) initialized on Σ * from the GCM frame (e 4 , e 3 , e 1 , e 2 ) by the change of frame with coefficients (f , f , λ ) given by 30 Note that this curve is transversal to Σ * and hence intersect Σ * at exactly one point given by

λ = 1, f = a r f 0 , f = - (ν(r) -b * ) 1 -1 4 b * |f | 2 f ,
Σ * ∩ ({ u = 1} ∩ { θ = π}).
31 Indeed, provided δ 0 > 0 has been chosen sufficiently small, the spacelike hypersurface Σ * of Step 2 intersects the curve of the south poles of the spheres foliating the outgoing cone { u = 1} of the part (ext) L 0 of the initial data layer, which allows to calibrate u as in Remark 8.4.2.

where the 1-form f 0 is chosen on Σ * by

(f 0 ) 1 = 0, (f 0 ) 2 = sin(θ), on S * , ∇ ν f 0 = 0 on Σ * ,
with (e 1 , e 2 ) specified on S * by (2.5.12).

We have the following change of frame coefficients:

• (f, f , λ), introduced in
Step 2, and corresponding to the change from the outgoing geodesic frame ( e 4 , e 3 , e 1 , e 2 ) of (ext) L 0 to the GCM frame (e 4 , e 3 , e 1 , e 2 ) of Σ * ,

• (f , f , λ ), which we now introduce, corresponding to the change from the outgoing geodesic frame ( e 4 , e 3 , e 1 , e 2 ) of (ext) L 0 to the outgoing PG frame ((e 0 ) 4 , (e 0 ) 3 , (e 0 ) 1 , (e 0 ) 2 ) of (ext) L 0 ,

• (f , f , λ ), provided explicitly above, and corresponding to the change from the GCM frame (e 4 , e 3 , e 1 , e 2 ) of Σ * to the PG frame (e 4 , e 3 , e 1 , e 2 ),

• (f , f , λ ), which we now introduce, corresponding to the change from the outgoing PG frame ((e 0 ) 4 , (e 0 ) 3 , (e 0 ) 1 , (e 0 ) 2 ) of the part (ext) L 0 of the initial data layer to the outgoing PG frame (e 4 , e 3 , e 1 , e 2 ) initialized on Σ * .

In this step, our goal is to control the change of frame coefficients (f , f , λ ). In view of the above, we have schematically

(f , f , λ ) = (f , f , λ ) • (f, f , λ) • (f , f , λ ) -1
where (f , f , λ ) -1 denote the coefficients corresponding to the inverse transformation coefficients of the transformation with coefficients (f , f , λ ). We infer sup

Σ * d k * (f , f , λ -1) sup Σ * d k * (f, f , λ -1) + sup Σ * d k * (f -f , f -f , λ -λ ) .
Together with (8.4.4), we infer, for k ≤ k large + 6, sup

Σ * r d k * (f , f , λ -1) 0 + sup Σ * r d k * (f -f , f -f , λ -λ ) .
Together with the explicit formulas above for (f , f , λ ), we obtain, for k ≤ k large + 6, sup

Σ * r d k * (f , f , λ -1) 0 + sup Σ * r d k * f - a r f 0 , f + (ν(r) -b * ) 1 -1 4 b * a 2 r 2 |f 0 | 2 a r f 0 , λ -1 .
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We deduce, using also the control (8.4.5) of m -m 0 , for k ≤ k large + 6, sup

Σ * r d k * (f , f , λ -1) 0 + sup Σ * r d k *   f - a 0 (ext) r L 0 (L 0 ) f 0 , f - a 0 1 -2m 0 (ext) r L 0 (ext) r L 0 (L 0 ) f 0 , λ -1   + |a -a 0 | + sup Σ * |d k * (f 0 -(L 0 ) f 0 )| + r -1 |d k * (r -(ext) r L 0 )| + d k * b * + 1 + 2m r + |d k * (ν(r) + 2)| .
Also, since the change of frame coefficients (f , f , λ ) correspond to the change from the outgoing geodesic frame ( e 4 , e 3 , e 1 , e 2 ) of (ext) L 0 to the outgoing PG frame ((e 0 ) 4 , (e 0 ) 3 , (e 0 ) 1 , (e 0 ) 2 ) of (ext) L 0 , we have by the control provided by Proposition 8.2.7, for k ≤ k large + 7, sup

Σ * r d k *   f - a 0 (ext) r L 0 (L 0 ) f 0 , f - a 0 1 -2m 0 (ext) r L 0 (ext) r L 0 (L 0 ) f 0 , λ -1   0 .
We deduce, for k ≤ k large + 6, sup

Σ * r d k * (f , f , λ -1) 0 + sup Σ * |d k * (af 0 -a 0 (L 0 ) f 0 )| + r -1 |d k * (r -(ext) r L 0 )| + d k * b * + 1 + 2m r + |d k * (ν(r) + 2)| . (8.4.6) 
Step 5. In this step, we focus on the control of the terms on the RHS of (8.4.6). To this end, we first estimate r -(ext) r L 0 on Σ * . In view of the control of the part (ext) L 0 of the initial data layer, we have, for k ≤ k large + 7, sup

(ext) L 0 ( r) 2 | q κ| 0 .
Together with the GCM condition q κ = 0, we infer, for

k ≤ k large + 7, sup Σ * r 2 d k * q κ -q κ 0 .
Now, we have

q κ -q κ = κ -κ - 2 r + 2 r = κ -κ - 2( r -r) r r so that r -r = r r 2 κ -κ -q κ -q κ
and hence, using the above estimate for q κq κ, we have, for k ≤ k large + 7, sup

Σ * d k * (r -r) 0 + sup Σ * r 2 d k * (κ -κ) .
Using the change of frame formula for κ, together with the control (8.4.4) for (f, f , λ) and the part (ext) L 0 of the initial data layer, we deduce, for k ≤ k large + 5, sup

Σ * d k * (r -r) 0 . (8.4.7) 
Together with the control of r -(ext) r L 0 provided by Proposition 8.2.7, we infer, for

k ≤ k large + 5, sup Σ * d k * r -(ext) r L 0 0 . (8.4.8) 
Next, we control b * + 1 + 2m r and ν(r) + 2. First, note that we have

ν(r -r) = ν(r) -e 3 ( r) -b * e 4 ( r).
Together with the control of r -r in (8.4.7), the fact that ν is tangent to Σ * , the change of frame formulas, the control (8.4.4) for (f, f , λ) and the control of the part (ext) L 0 of the initial data layer, we deduce for k ≤ k large + 4, sup

Σ * d k * ν(r) + 1 - 2m 0 r -b * 0 .
Together with the control of r -r in (8.4.7) and the control (8.4.5) of m -m 0 , we infer, 

for k ≤ k large + 4, sup Σ * d k * ν(r) + 1 - 2m r -b * 0 . ( 8 
d k * b * + e 3 (u) -1 - 2m r 0 .
Also, using again the transversality conditions (8.4.10), we have

∇(e 3 (u)) = (ζ -η)e 3 (u).
We deduce, for k ≤

k large + 3, sup Σ * r d k * ∇(b * ) -(ζ -η) b * -1 - 2m r 0 .
The control for ζ and η inferred from the transformation formula, the control of (f, f , λ) and the control of the initial data layer implies, for k ≤ k large + 2,

d k * ∇(b * ) h 1 (S) 0 + r -1 0 d k * (b * ) h 1 (S) .
Also, by our GCM condition on Σ * for b * , we have

b * = -1 - 2m r on Σ * ,
and hence, since ν is tangent to Σ * , we have

ν k b * + 1 + 2m r = 0 on Σ * .
Thus, introducing the scalar h on Σ * given by

h := b * + 1 + 2m r ,
we have obtained so far on Σ * , for k ≤ k large + 2,

d k * ∇(h) h 1 (S) 0 + r -1 0 d k * (h) h 1 (S)
and for any k

ν k h = 0 on Σ * .
Together with Corollary 5.2.3, we deduce from the above identity, for any k,

ν k (h) = ν ≤k (rΓ b • h).
The control of Γ b inferred from the transformation formula, the control of (f, f , λ) and the control of the initial data layer implies, for k ≤ k large + 2

|ν k (h)| 0 |ν ≤k (h)| + 0 k j=0 |ν j h -ν j h|
and hence, by iteration and together with Poincaré and Sobolev, we infer, for k ≤ k large +2,

|ν k (h)| 0 ∇d ≤k * h h 1 (S) .
In view of the above, and using again Poincaré inequality, we deduce for k ≤ k large + 2,

r -1 d k * h h 2 (S) |ν k (h)| + d k * ∇h h 1 (S) d ≤k * ∇h h 1 (S) r -1 0 d ≤k * h h 1 (S) + 0 .
For 0 small enough, we infer, for k ≤ k large + 2,

r -1 d k * h h 2 (S) 0 .
Using Sobolev, and recalling the definition of h, we infer, for k

≤ k large + 2, sup Σ * d k * b * + 1 + 2m r 0 .
Together with (8.4.9), we have obtain, for k

≤ k large + 2, sup Σ * d k * b * + 1 + 2m r , ν(r) + 2 0 . (8.4.11) 
In view of (8.4.6) and (8.4.8), this yields, for k

≤ k large + 2, sup Σ * r d k * (f , f , λ -1) 0 + sup Σ * |d k * (af 0 -a 0 (L 0 ) f 0 )|. (8.4.12) 542CHAPTER 8.
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Step 6. In this step, we focus on the control of the terms on the RHS of (8.4.12). To this end, we first control a. We have in view of Proposition 8.2.7 sup

(ext) L 0 ( r∼ -1 0 ) ( r) 4 curl β - 6a 0 m 0 ( r) 5 J (0) 0 .
Since, in view of the transformation formulas, the control of (f, f , λ) and the control provided by Proposition 8.2.7 for the foliation of (ext) L 0 , we have sup

S * curl β -curl β 0 r 5 (0) 
,

we infer max p=0,+,- ( r) 5 1 |S * | S * curl βJ (p) - 1 |S * | S * 6a 0 m 0 ( r) 5 J (0) J (p) 0 .
Recalling from (8.4.2) that the following holds on the sphere

S * of Σ * 1 |S * | S * curl βJ (0) = 2am r 5 , 1 |S * | S * curl βJ (±) = 0,
we infer, using also (8.4.7) to control r -r on S * ,

am -3a 0 m 0 1 |S * | S * J (0) J (0) + |a 0 |m 0 1 |S * | S * J (0) J (±) 0 .
Together with the control of m -m 0 in (8.4.5), and dividing by m 0 , we obtain

a -3a 0 1 |S * | S * J (0) J (0) + |a 0 | 1 |S * | S * J (0) J (±) 0 .
Next, in view of Corollary 7.2 of [START_REF] Klainerman | Effective results in uniformization and intrinsic GCM spheres in perturbations of Kerr[END_REF] (restated here as Corollary 8.1.6), there exists a canonical basis of = 1 modes on S * in the sense of Definition 3.10 of [START_REF] Klainerman | Effective results in uniformization and intrinsic GCM spheres in perturbations of Kerr[END_REF] (recalled here in Definition 5.1.3), which we denote by J (p,S * ) 0

, such that max p=0,+,-

J (p,S * ) 0 -J (p) h k large +7 (S * ) 0 .
Also, recall that J (p) = J (p,S * ) on S * , where J (p,S * ) is in general another canonical basis of = 1 modes on S * . In view of Definition 5.1.3, note that the canonical basis of = 1 modes on S * are unique modulo isometries of S 2 , i.e. there exists O ∈ O(3) such that This corresponds to fixing the axis of S * . Note that this condition (and hence the axis of S * ) is preserved by multiplying the basis J (p,S * ) by O = -I or by any O fixing J (0,S * ) , so that we may assume in (8.4.13) that O satisfies

J (p,S * ) = q=0,+,- O pq J (q,S * ) 0 , p = 0, +, -. (8 
O 00 ≥ 0, O ++ ≥ 0, O +-= 0, O --≥ 0. ( 8.4.14) 
Since J (p) = J (p,S * ) on S * , we infer max p=0,+,-

J (p) - q=0,+,- O pq J (q) h k large +7 (S * ) 0 , (8.4.15) 
where O satisfies (8.4.14). Plugging (8.4.15) in the above, we deduce

a -3a 0 q=0,+,- O 0q 1 |S * | S * J (0) J (q) + |a 0 | 1 |S * | q=0,+,- O ±q S * J (0) J (q) 0 .
Now, recall that

• S = S( • u,
• s) is the sphere of the foliation of (ext) L 0 which shares the same south pole a S * . Relying on Corollary 5.9 in [START_REF] Klainerman | Construction of GCM spheres in perturbations of Kerr[END_REF] (see also Proposition 8.1.3 here), we have, for q = 0, +, -,

S * J (0) J (q) -• S J (0) J (q) r 0 sup R | d / ≤1 ( J (0) J (q) )| + r sup R (|∇ 3 ( J (0) J (q) )| + |∇ 4 ( J (0) J (q) )|) .
Together with the control of J (p) in (ext) L 0 provided by Proposition 8.2.7, we deduce

S * J (0) J (q) -• S J (0) J (q) r 0 .
Using the properties of J (p) on the sphere • S of (ext) L 0 and the control of r -r in (8.4.7), this yields

1 |S * | S * J (0) J (q) - 1 3 δ 0q 0 , 544CHAPTER 8. 
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and hence, plugging in the above, we obtain

|a -a 0 O 00 | + |a 0 | |O +0 | + |a 0 | |O -0 | 0 . (8.4.16) 
Now, recall that we have either a 0 = 0 or |a 0 | 0 . In particular, we have in view of the above estimate

|a| 0 if a 0 = 0.
(8.4.17)

In the other case, we have, since

|a 0 | 0 , a a 0 -O 00 + |O +0 | + |O -0 | 0 if a 0 = 0. ( 8.4.18) 
This allows us to control, in the case a 0 = 0, the change of frame coefficients (f , f , λ ) introduced in Step 4 from the outgoing PG frame ((e 0 ) 4 , (e 0 ) 3 , (e 0 ) 1 , (e 0 ) 2 ) of the part (ext) L 0 of the initial data layer to the outgoing PG frame (e 4 , e 3 , e 1 , e 2 ) initialized on Σ * . Indeed, (8.4.12) and (8.4.17) yield, for k

≤ k large + 2, sup Σ * r d k * (f , f , λ -1) 0 if a 0 = 0. (8.4.19) 
Step 7. Next, we focus on controlling the RHS of (8.4.12) in the case a 0 = 0. Since O ∈ O(3), we have p O 2 p0 = 1, and recalling also that O 00 ≥ 0 in view of (8.4.14), we infer from (8.4.18) |a -a 0 | 0 if a 0 = 0 (8.4.20) and

|O 00 -1| + |O +0 | + |O -0 | 0 .
Also, since O ∈ O(3), we also have

0 = p O p+ O p0 = O 0+ + O( 0 ), 0 = p O p-O p0 = O 0-+ O( 0 ),
and hence

|O 0+ | + |O 0-| 0 .
Together with the fact that O +-= 0 and O --≥ 0 in view of (8.4.14), and since p O 2 p-= 1, we infer

|O ---1| 0 .
Finally O ++ ≥ 0 in view of (8.4.14), since we have obtained above that |O 0+ | 0 , and since p O 2 p-= 1 and p O p+ O p-= 0, we infer

|O ++ -1| + |O -+ | 0 .
We have thus obtained

|O -I| 0 ,
which together with (8.4.15) implies max p=0,+,-

r -1 J (p) -J (q) h k large +7 (S * ) 0 if a 0 = 0.
Next, we control J (p) -J (p) for p = 0, +, -on Σ * . Recall that we have ν(J (p) ) = 0 along Σ * . We infer

ν J (p) -J (p) = -ν J (p) = -e 3 J (p) -b * e 4 J (p) .
Using the change of frame formulas, and the control (8.4.4) of the change of frame coefficients (f, f , λ), and the control of J (p) , we easily obtain, for k ≤ k large + 6, sup

Σ * r d k * ν J (p) -J (p) 0 .
Integrating along Σ * from S * , and using the above control on S * and Sobolev, as well as the fact that r ∼ -1 0 on Σ * , we infer, for k ≤ k large + 5,

max p=0,+,- sup Σ * d k * J (p) -J (p) 0 if a 0 = 0. (8.4.21) 
Next, we control f 0 -(L 0 ) f 0 on Σ * . First, from the change of frame formulas, the control (8.4.4) for (f, f , λ), and the control of the part (ext) L 0 of the initial data layer, we have,

for k ≤ k large + 7, sup Σ * r 2 d k * Γ g + r d k * Γ b 0 . (8.4.22)
Proceeding as in Proposition 5.6.4, we infer, for k ≤ k large + 7, sup

Σ * r 2 d k * ∇J (0) + 1 r * f 0 0 .
Also, in view of the control of the part (ext) L 0 of the initial data layer, we have, for

k ≤ k large + 7, sup (ext) L 0 ( r) 2 d k ∇ J (0) + 1 r * ( (L 0 ) f 0 ) 0 .
Together with the control (8.4.8) for r -(ext) r L 0 , the change of frame formulas, the control (8.4.4) for (f, f , λ), and the control of the part (ext) L 0 of the initial data layer, we infer,

for k ≤ k large + 7, sup Σ * r 2 d k ∇ J (0) + 1 r * ( (L 0 ) f 0 ) 0 .
Subtracting the two estimates, we infer, for k ≤ k large + 7,

sup Σ * r 2 d k * ∇(J (0) -J (0) ) + 1 r * (f 0 -(L 0 ) f 0 ) 0 .
Together with the above control for J (0) -J (0) , we deduce, for k ≤ k large + 7, sup

Σ * d k * f 0 -(L 0 ) f 0 0 if a 0 = 0. (8.4.23) 
We are now ready to control, in the case a 0 = 0, the change of frame coefficients (f , f , λ ) introduced in Step 4 and corresponding to the change from the outgoing PG frame ((e 0 ) 4 , (e 0 ) 3 , (e 0 ) 1 , (e 0 ) 2 ) of (ext) L 0 to the outgoing PG frame (e 4 , e 3 , e 1 , e 2 ) initialized on Σ * . Indeed, (8.4.12), and the above control of a -a 0 , J (0) -J (0) and f 0 -

(L 0 ) f 0 in the case a 0 = 0 yields, for k ≤ k large + 5, sup Σ * r d k * (f , f , λ -1) 0 if a 0 = 0. (8.4.24) 
We conclude this step with the control of J -J L 0 on Σ * in the case a 0 = 0. Recall that J is given on Σ * by

J = 1 |q| (f 0 + i * f 0 ) on Σ * .
Together with the above estimates for a -a 0 , f 0 -(L 0 ) f 0 , r -r and J (0) -J (0) in the case a 0 = 0, we infer, for k ≤ k large + 7, sup

Σ * r d k * (J -J L 0 ) 0 + sup (ext) L 0 r d k J L 0 - 1 |q L 0 | (L 0 ) f 0 + i * ( (L 0 ) f 0 )
which together with the control provided by Proposition 8.2.7 for the part (ext) L 0 of the initial data layer implies, for k ≤ k large + 7, sup

Σ * r d k * (J -J L 0 ) 0 if a 0 = 0. ( 8.4.25) 
Finally, we have obtained in this step, for k ≤ k large + 2,

|a -a 0 | + sup Σ * r d k * (f , f , λ -1) + d k * J (0) -J (0) L 0 (8.4.26) +r d k * (J -J L 0 ) 0 if a 0 = 0,
where we have also used the control for J (0) -J

L 0 provided by Proposition 8.2.7.

Step 8. We now control the outgoing PG structure initialized on Σ * , and covering the region we denote by (ext) M, which is included in the initial data layer. For convenience, we change our notation. From now on:

• (e 4 , e 3 , e 1 , e 2 ) denotes the outgoing PG frame of the part (ext) L 0 of the initial data layer,

• (e 4 , e 3 , e 1 , e 2 ) denotes the outgoing PG frame of (ext) M initialized on Σ * ,

• (f, f , λ) denote the transition coefficients from the outgoing PG frame (e 4 , e 3 , e 1 , e 2 ) to the outgoing PG frame (e 4 , e 3 , e 1 , e 2 ),

• (r, f 0 , J (0) , J) and (r , f 0 , J (0) , J ) correspond respectively to the outgoing PG structure of (ext) L 0 and to the outgoing PG structure of (ext) M.

In view of (8.4.5), (8.4.8), (8.4.17), (8.4.19), (8.4.26), using the above new notations, and noticing that the structure equations in the e 4 direction for the outgoing PG structure initialized on Σ * allow to recover the e 4 derivatives (which are transversal to Σ * ), we have,

for k ≤ k large + 2, |m -m 0 | + |a -a 0 | + sup Σ * r d k * (f, f , λ -1) + d k * (r -r) + d k * aJ (0) -a 0 J (0) + r d k * (aJ -a 0 J) 0 . (8.4.27) 548CHAPTER 8.
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We introduce the notations

F := f + i * f, F := f + i * f .
Since (e 4 , e 3 , e 1 , e 2 ) and (e 4 , e 3 , e 1 , e 2 ) are outgoing PG frames, we have

Ξ = 0, ω = 0, H + Z = 0, Ξ = 0, ω = 0, H + Z = 0.
In view of Corollary 2.2.5, we have the following transport equations

∇ λ -1 e 4 (qF ) = E 4 (f, Γ), λ -1 ∇ e 4 (log λ) = 2f • ζ + E 2 (f, Γ), ∇ λ -1 e 4 q F -2qD (log λ) + e 3 (r)F = -3q 2 D (f • ζ) + E 5 (∇ ≤1 f, f , ∇ ≤1 λ, D ≤1 Γ),
where E 2 , E 4 and E 5 are given in Corollary 2.2.5. Integrating these transport equations from Σ * in the order they appear, using the control in (8.4.27) for (f, f , λ) on Σ * , and together with the control of the part (ext) L 0 of the initial data layer, we obtain, for

k ≤ k large + 2, sup (ext) M r |d k (f, log(λ))| + |d k-1 f | 0 . (8.4.28) 
Also, we have e 4 (r -λ -1 r) = 1 -λ -1 e 4 (r) + λ -1 e 4 (log(λ)).

Using the change of frame formula and the above transport equation for log(λ), we infer

e 4 (r -λ -1 r) = 1 -e 4 + f • ∇ + 1 4 |f | 2 e 3 r + 3 2 f • ζ + E 2 (f, Γ) = - 1 4 |f | 2 e 3 (r) + 3 2 f • ζ + E 2 (f, Γ).
Integrating from Σ * where r -r is under control in view of (8.4.27), and using the control (8.4.28) for f and λ as well as the control of (ext) L 0 , we infer, for k ≤ k large + 2, sup

(ext) M d k (r -r) 0 . (8.4.29) 
Also, we have

e 4 (aJ (0) -a 0 J (0) ) = -e 4 (a 0 J (0) ) = -a 0 λ e 4 + f • ∇ + 1 4 |f | 2 e 3 J (0) = -a 0 λ f • ∇ + 1 4 |f | 2 e 3 J (0)
and

∇ 4 (aq J -a 0 qJ) = -∇ 4 (a 0 qJ) = -a 0 λ ∇ 4 + f • ∇ + 1 4 |f | 2 ∇ 3 (qJ) = -a 0 λ f • ∇ + 1 4 |f | 2 ∇ 3 (qJ).
Integrating from Σ * where J (0) -J (0) and J -J are under control in view of (8.4.27), and using the control (8.4.28) for f and λ as well as the control of (ext) L 0 , we infer, for

k ≤ k large + 2, sup (ext) M d k (aJ (0) -a 0 J (0) ) + r d k (aJ -a 0 J) 0 . (8.4.30) 
Then, using the outgoing PG structure of (ext) M, we initialize

• the ingoing PG structure of (int) M on T = {r = r 0 },

• the ingoing PG structure of (top) M on {u = u * }, as in Section 3.2.5. Using the control of (f, f , λ), r -r, J (0) -J (0) and J -J induced on {r = r 0 } and {u = u * } by (8.4.28), (8.4.29) and (8.4.30), and using the analog in the e 3 direction for ingoing PG structures of the above transport equation in the e 4 direction for outgoing PG structures, we obtain for (int) M and k ≤ k large + 1 sup

(int) M |d k (f , log(λ))| + |d k-1 f | + |d k (r -r)| +|d k (aJ (0) -a 0 J (0) )| + |d k (aJ -a 0 J)| 0 , (8.4.31) 
and a similar estimate for (top) M.

Let now

M := (ext) M ∪ (int) M ∪ (top) M.
Then, in view of (8.4.28)- (8.4.31), the control of a -a 0 and m -m 0 in (8.4.27), and using the transformation formulas of Proposition 2.2.3, and well as the definition of the linearized quantities based on a, m, r, J (0) = cos θ and J, we deduce

N (Sup) k large + N (Dec) k small 0
which concludes the proof of Theorem M6. 

Proof of Theorem M7

The proof of Theorem M7 proceeds in 18 steps which we summarize below for convenience:

1. In Steps 1-5, we use local existence to extend the spacetime M a little bit, and then focus on the region in the future of Σ * in which we derive additional estimates.

2. In Steps 6-7, we construct a new last sphere S * , and a new last slice Σ * inside the region of the extended spacetime in the future of Σ * by relying on the control derived in Step 1-5 and the GCM constructions of [START_REF] Klainerman | Effective results in uniformization and intrinsic GCM spheres in perturbations of Kerr[END_REF] and [START_REF] Shen | Construction of GCM hypersurfaces in perturbations of Kerr[END_REF] recalled in Section 8.1.

3. In Steps 8-11, we show that the new last slice Σ * , which a priori exists only in a small neighborhood of the new last sphere S * , extends in fact all the way to the initial data layer.

4. In Steps 12-13, we complete the proof of the fact that the new last slice Σ * satisfies all the required properties for being the future spacelike boundary of a GCM admissible spacetime.

5. In Steps 14-18, we construct from Σ * a new GCM admissible spacetime M and we control the change of frame coefficients between the frames of the extended spacetime, and the corresponding frames of M. In view of the control of the extended spacetime and of the change of frames coefficients, we infer the desired control of M thanks to the change of frame formulas.

We now proceed with the proof of Theorem M7. For convenience, we introduce the following notation

k * := k small + 20. (8.5.1)
Then, in view of the assumptions, we are given a GCM admissible spacetime M = M(u * ) ∈ ℵ(u * ) verifying the following improved bounds

N (Dec) k * (M) ≤ C 0 , (8.5.2) 
for a universal constant C > 0 provided by Theorems M1-M5.

Steps 1-5

Step 1. We extend M by a local existence argument, to a strictly larger spacetime M (extend) , with a naturally extended foliation and the following slightly increased bounds 32

N (Dec) k * -3 (M (extend) ) ≤ 2C 0 ,
but which may not verify our admissibility criteria.

Step 2. We then invoke Theorem 4.1 in [START_REF] Shen | Construction of GCM hypersurfaces in perturbations of Kerr[END_REF] (restated here in Theorem 8.1.11) to extend Σ * in M (extend) \ M as a smooth spacelike hypersurface Σ (extend) *

, together with a scalar function u (extend) , satisfying the same GCM conditions than Σ * .

Step 3. We consider the outgoing geodesic foliation (u (extend) , s (extend) ) initialized on Σ in M (extend) . Note in particular that we have from the definition of Σ * and Σ

(extend) * u (extend) + s (extend) = c Σ * on Σ (extend) * .
We define the following spacetime region to the future of Σ

(extend) * R := 1 ≤ u (extend) ≤ u * + δ ext , c Σ * ≤ u (extend) + s (extend) ≤ c Σ * + ∆ ext , where ∆ ext := d 0 r * u * δ ext , r * := r(S * ), S * := Σ * ∩ C * ,
with δ ext > 0 chosen sufficiently small so that R ⊂ M (extend) , and with d 0 a constant satisfying

1 2 ≤ d 0 ≤ 1
which will be suitably chosen in Step 12 below. From now on, for convenience, we drop the index (extend) and simply denote u (extend) and s (extend) by u and s.

Step 4. On Σ (extend) *

, the following GCM conditions hold by construction

q κ = 0, q κ = C 0 + p C p J (p) , q µ = M 0 + p M p J (p) , (div η) =1 = 0, (div ξ) =1 = 0, (8.5.3 
) 32 The loss of three derivatives occurs due to the fact that local existence holds in L 2 based spaces while

N (Dec) k is based on L ∞ .
where the basis of = 1 modes satisfies in particular ν(J (p) ) = 0, p = 0, +, -, along Σ (extend) * ,

and where the scalar functions C 0 , C p , M 0 and M p are constant on the leaves of the u-foliation of Σ . We propagate J (p) , C 0 , C p , M 0 and M p from Σ (extend) * to the spacetime region R along e 4 as follows

e 4 (J (p) ) = 0, e 4 (r 2 C 0 ) = 0, e 4 (r 2 C p ) = 0, e 4 (r 3 M 0 ) = 0, e 4 (r 3 M p ) = 0 on R, (8.5.5) 
so that we have 33 

C 0 = C 0 (u, s), C p = C p (u, s), M 0 = M 0 (u, s), and M p = M p (u, s) in R.
In view of (8.5.5), we have in particular

e 4 r 2 q κ -C 0 + p C p J (p) = e 4 (r 2 q κ), e 4 r 3 q µ -M 0 + p M p J (p)
= e 4 (r 3 q µ).

Propagating from Σ

(extend) * where (8.5.3) holds, and using the bounds of Step 1 on M (extend) , and hence on R, for q κ, q κ, q µ, η and ξ, we obtain, for all

k ≤ k * -4, sup R r 2 d k (q κ) + r 2 d k q κ -C 0 + p C p J (p) +r 3 d k q µ -M 0 + p M p J (p) 0 r ∆ ext (8.5.6) and sup 
R r 2 | d k (div η) =1 | + | d k (div ξ) =1 | 0 r ∆ ext , (8.5.7) 
where 34 d = (e 3 -(e 3 (u) + e 3 (s))e 4 , d /) denotes weighted derivatives tangential to the level hypersurfaces of u + s. 33 More precisely, we have C 0 = r -2 C 0 , C p = r -2 C p , M 0 = r -3 M 0 , and M p = r -3 M p , , with C 0 , C p , M 0 and M p given by the restriction of r 2 C 0 , r 2 C p , r 3 M 0 and r 3 M p to Σ (extend) * so that C 0 = C 0 (u), C p = C p (u), M 0 = M 0 (u) and M p = M p (u). Note also that r = r(u, s). 34 Since s = r and u + r is constant on Σ Next, recall that ν = e 3 + b * e 4 denotes the unique tangent vectorfield to Σ * which is orthogonal to the u-foliation and normalized by g(ν, e 4 ) = -2. In view of Corollary 5.5.3, we have on Σ

(extend) * |ν((div β) =1 )| + |ν((curl β) =1,± )| + ν (curl β) =1,0 - 2am r 5 0 r 5 u 1+δ dec , |ν((q κ) =1 )| 0 r 3 u 1+δ dec + 2 0 r 2 u 2+2δ dec .
In particular, since r(S * ) = δ * -1 0 (u(S * )) 1+δ dec in view of (3.4.5) and u(S * ) = u * , we infer r ∼ δ * -1

0 u 1+δ dec on Σ (extend) * (u * ≤ u ≤ u * + δ ext ) and hence |ν((div β) =1 )| + |ν((curl β) =1,± )| + ν (curl β) =1,0 - 2am r 5 0 r 5 u 1+δ dec , |ν((q κ) =1 )| 0 r 3 u 1+δ dec .
We integrate from S * where we have 

(div β) =1 = 0, (curl β) =1,± = 0, (curl β) =1,0 = 2am r 5 , (q κ) =1 = 0,
r 5 |(div β) =1 | + |(curl β) =1,± | + (curl β) =1,0 - 2am r 5 +r 3 |(q κ) =1 | 0 u * δ ext .
We now integrate in the e 4 direction from Σ (extend) * (u * ≤ u ≤ u * + δ ext ) where we have the above estimate as well as q κ = 0. We obtain sup

R∩{u≥u * } r 5 |(div β) =1 | + |(curl β) =1,± | + (curl β) =1,0 - 2am r 5 +r 3 |(q κ) =1 | + r 3 |(q κ) =1 | 0 u * δ ext + 0 r ∆ ext 0 r ∆ ext . (8.5.8)
Next, recall that s = r on Σ , integrating the following transport equation valid for an outgoing geodesic foliation

e 4 (r -s) = r 2 κ - 2 r = r 2 q κ, from Σ (extend) *
, and using the bounds of Step 1 on M (extend) , and hence on R, for q κ, we infer, for all

k ≤ k * -3, sup R | d k (r -s)| + | d k-1 (e 3 (r) -e 3 (s))| + | d k-1 (e 4 (r) -e 4 (s))| 0 r ∆ ext .(8.5.9)
Also, one has, since u + r is constant on Σ 

Also, arguing as we did above on Σ

(extend) * (u * ≤ u ≤ u * + δ ext ), we have r ∼ δ * -1 0 u 1+δ dec on R ∩ {u ≥ u * } and hence, for all k ≤ k * -3, sup R∩{u≥u * } r 2 |d k Γ b | sup R∩{u≥u * } r 0 u 1+δ dec δ * , (8.5.11) 
which corresponds, for δ * > 0 small enough, to assumption A1-strong in [START_REF] Klainerman | Effective results in uniformization and intrinsic GCM spheres in perturbations of Kerr[END_REF], see (8.1.17).

Finally, we consider the control of the Hawking mass m H of the sphere S(u, s) of the (u, s) foliation in the region R ∩ {u ≥ u * }, where we recall that m H is given by the formula

2m H r = 1 + 1 16π S κκ.
First, we have from Lemma 5.4.6 on Σ

(extend) * ν(m H ) = r 2 d / ≤1 (Γ b • Γ b )
and hence, since m is a constant, and using the bounds of Step 1 on M (extend) , sup

Σ (extend) * u 2+2δ dec |ν(m H -m)| 2 0 .
Since m H = m on S * by definition of m, we infer, propagating the above transport equation from S * , sup

Σ (extend) * (u * ≤u≤u * +δext) |m H -m| 2 0 δ ext u 2+2δ dec * .
Next, recall from the proof of Lemma 5.4.6 the following computation

e 4 (κκ) + κ 2 κ = 2κρ -2κdiv ζ + κ 2|ζ| 2 -χ • χ -κ| χ| 2 = 2κρ -2κdiv ζ + r -1 Γ b • Γ g .
This yields, using a well-known identity for the e 4 derivative of the integral on S of a scalar function in an outgoing geodesic foliation,

e 4 S κκ = S e 4 (κκ) + κ 2 κ = S 2κρ -2κdiv ζ + r -1 Γ b • Γ g
and hence, using integration by parts,

e 4 S κκ = S 2κρ + r -1 Γ b • d ≤1 Γ g .
Together with the definition of m H , we infer

2e 4 (m H ) = 2m H r e 4 (r) + r 16π e 4 S κκ = m H κ + r 8π S κρ + r -1 Γ b • d ≤1 Γ g .
Now, using in particular Gauss equation and Gauss-Bonnet formula, we have

S κρ = κ S ρ + S (κ -κ)(ρ -ρ) = κ S ρ + S r -1 Γ g • Γ g = κ S -K - 1 4 κκ + 1 2 χ • χ + S r -1 Γ g • Γ g = κ -4π - 1 4 S κκ + S r -1 Γ g • Γ g . 556CHAPTER 8.
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In view of the above, and using again the definition of m H , we infer

e 4 (m H ) = r 2 Γ b • d ≤1 Γ g .
Hence, since m is a constant, and using the bounds of Step 1 on M (extend) , we have sup

R∩{u≥u * } ru 3 2 +2δ dec |e 4 (m H -m)| 2 0 .
Integrating from Σ

(extend) * (u * ≤ u ≤ u * + δ ext )
where we control m H -m in view of the above, we infer sup

R∩{u≥u * } |m H -m| 2 0 ru 3 2 +2δ dec * ∆ ext + 2 0 δ ext u 2+2δ dec * 2 0 ru * ∆ ext . (8.5.12) 
Step 5. In this step, we control the basis of = 1 mode J (p) in the spacetime region R.

Recall that J (p) is chosen on S * to be a canonical basis of = 1 modes in the sense of Definition 3.10 of [START_REF] Klainerman | Effective results in uniformization and intrinsic GCM spheres in perturbations of Kerr[END_REF] (recalled here in Definition 5.1.3), i.e. on S * there exist coordinates (θ, ϕ) such that:

1. The induced metric g on S * takes the form g = r 2 e 2φ (dθ) 2 + sin 2 θ(dϕ) 2 . (8.5.13)

2. The functions J (0) := cos θ, J (-) := sin θ sin ϕ, J (+) := sin θ cos ϕ, (

verify the balanced conditions S * J (p) = 0, p = 0, +, -.

Recall also that we extend (θ, ϕ) and J (p) to Σ (extend) * by setting

ν(θ) = 0, ν(ϕ) = 0, ν(φ) = 0, ν(J (p) ) = 0, p = 0, +, -, (8.5.16) 
where we have also extended the conformal fact φ. We then extend (θ, ϕ), φ and J (p) to R as follows e 4 (θ) = 0, e 4 (ϕ) = 0, e 4 (φ) = 0, e 4 (J (p) ) = 0, p = 0, +, -. (8.5.17) In what follows, to avoid the singularities at θ = 0 and θ = π of the (θ, ϕ) coordinates system on the spheres S = S(u, s) of the outgoing geodesic (u, s, )-foliation of R, we use instead two regular coordinates charts based on (θ, ϕ).

Definition 8.5.1. We define two coordinates charts on S(u, s) as follows 1. The coordinates (x 1 N , x 2 N ) are defined for 0 ≤ θ < π by

x 1 N := sin θ cos ϕ 1 + cos θ , x 2 
N := sin θ sin ϕ 1 + cos θ .

2. The coordinates (x 1 S , x 2 S ) are defined for 0 < θ ≤ π by

x 1 S := sin θ cos ϕ 1 -cos θ , x 2 
S := sin θ sin ϕ 1 -cos θ .

Lemma 8.5.2. Let g denote the metric induced by g on S(u, s). Then, on S * , the metric g takes the following form in the (x 1 N , x 2 N ) coordinates system and in the (x 1 S , x 2 S ) coordinates system, for

(x 1 , x 2 ) ∈ R 2 , g = 4r 2 e 2φ 1 + (x 1 ) 2 + (x 2 ) 2 2 (dx 1 ) 2 + (dx 2 ) 2 . (8.5.18) 
Proof. This follows immediately from (8.5.13) and the definition of (x 1 N , x 2 N ) and (x 1 S , x 2 S ) in terms of (θ, ϕ).

From now on, let (x 1 , x 2 ) denote either (x 1 N , x 2 N ) or (x 1 S , x 2 S ). In view of the definition of (x 1 , x 2 ), we have ν(x 1 ) = ν(x 2 ) = 0 on Σ (extend) *

. Since ν = e 3 + b * e 4 and ν(u) = e 3 (u), we infer ∂ u = 1 e 3 (u) ν. We easily derive the following formula on Σ

(extend) * in the (x 1 , x 2 ) coordinates system of S ∂ u g ab = 2χ ∂ ∂ a , ∂ ∂ b + 2b * χ ∂ ∂ a , ∂ ∂ b ,
and hence

∂ u g ab = (κ + b * κ)g ab + 2 χ ∂ ∂ a , ∂ ∂ b + 2b * χ ∂ ∂ a , ∂ ∂ b ,
which we rewrite as follows, recalling in particular that q κ = 0 on Σ (extend) *

, and using ν(x a ) = 0 and ν(φ) = 0,

∂ u r -2 g ab - 4e 2φ 1 + (x 1 ) 2 + (x 2 ) 2 δ ab = q κ + 2 r 1 - 1 e 3 (u) q b * - 2 re 3 (u) ẽ3 (u) r -2 g ab +2r -2 χ ∂ ∂ a , ∂ ∂ b + 2r -2 b * χ ∂ ∂ a , ∂ ∂ b .
Together with the control of Step 1 on M (extend) , and hence on Σ (extend) *

, for q κ, q b * , ẽ3 (u), χ and χ, we infer, for all k ≤ k * -3,

d / k ∂ u r -2 g ab - 4e 2φ 1 + (x 1 ) 2 + (x 2 ) 2 δ ab 0 ru 1+δ dec r -2 |g|.
Integrating from S * , where (8.5.18) holds, we infer on Σ

(extend) * (u * ≤ u ≤ u * + δ ext ), for all k ≤ k * -3, d / k r -2 g ab - 4e 2φ 1 + (x 1 ) 2 + (x 2 ) 2 δ ab 0 ru 1+δ dec * δ ext .
Next, we estimate r -2 g ab in R ∩ {u ≥ u * }. In view of the definition of (x 1 , x 2 ), we have e 4 (x 1 ) = e 4 (x 2 ) = 0. Since we also have e 4 (u) = 0 and e 4 (s) = 1, we infer e 4 = ∂ s . We easily derive the following formula on R in the (x 1 , x 2 ) coordinates system of S

∂ s g ab = 2χ ∂ ∂ a , ∂ ∂ b ,
and hence

∂ s g ab = κg ab + 2 χ ∂ ∂ a , ∂ ∂ b ,
which we rewrite as follows, using e 4 (x a ) = 0 and e 4 (φ) = 0,

∂ s r -2 g ab - 4e 2φ 1 + (x 1 ) 2 + (x 2 ) 2 δ ab = q κ -q κ r -2 g ab + 2r -2 χ ∂ ∂ a , ∂ ∂ b .
Together with the control of Step 1 on M (extend) , and hence on R, for q κ and χ, we infer, for all k ≤ k * -3,

d / k ∂ s r -2 g ab - 4e 2φ 1 + (x 1 ) 2 + (x 2 ) 2 δ ab 0 r 2 u 1 2 +δ dec r -2 |g|.

Integrating from Σ

(extend) * (u * ≤ u ≤ u * + δ ext ), and using the above control of r -2 g ab on Σ Next, we estimate S J (p) for p = 0, +, -in R ∩ {u ≥ u * }. Recall that J (p) is balanced on S * , i.e.

(extend) * (u * ≤ u ≤ u * + δ ext ), we infer in R ∩ {u ≥ u * }, for all k ≤ k * -3, d / k r -2 g ab - 4e 2φ 1 + (x 1 ) 2 + (x 2 ) 2 δ ab 0 ru 1+δ dec * δ ext + 0 r 2 u 1 2 +δ dec * ∆ ext 0 r 2 ∆ ext . (8.5.19) Next, we estimate φ in R ∩ {u ≥ u * }.

S *

J (p) = 0, p = 0, +, -.

Also, since ν(J (p) ) = 0 on Σ (extend) *

, we have, in view of Corollary 5.

J (p) = Γ b , for S ⊂ Σ (extend) * 2.3, ν r -2 S 
, p = 0, +, -, and since J (p) is extended to R by e 4 (J (p) ) = 0, we have

e 4 r -2 S J (p) = Γ g , for S ⊂ R, p = 0, +, -. We deduce in R ∩ {u ≥ u * } r -2 S J (p) 0 ru 1+δ dec * δ ext + 0 r 2 u 1 2 +δ dec * ∆ ext 0 r 2 ∆ ext and hence r -2 S J (p) 0 r 2 ∆ ext for S ⊂ R ∩ {u ≥ u * }, p = 0, +, -. (8.5.21) 
In view of (8.5.19), (8.5.20) and (8.5.21), we may apply Proposition 4.15 in [START_REF] Klainerman | Effective results in uniformization and intrinsic GCM spheres in perturbations of Kerr[END_REF] (restated here as Proposition 5.1.5) which yields on any sphere S of R ∩ {u ≥ u * } the existence of a canonical basis J (p,S) of = 1 modes such that max p=0,+,-r -1 J (p) -J (p,S)

h k * -2 (S) 0 r 2 ∆ ext , for S ⊂ R ∩ {u ≥ u * }. (8.5.22) 560CHAPTER 8.
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This, together with (8.5.24) below, corresponds to assumption A4-strong which is stated at the beginning of Section 8.1.3.

Next, we estimate e 3 (J (p) ) in the region R. Since ν(J (p) ) = 0 on Σ (extend) *

, since ν = e 3 + b * e 4 and since J (p) is extended from Σ (extend) * by e 4 (J (p) ) = 0, we have e 3 (J (p) ) = 0 on Σ (extend) * .

Then, we compute, using e 4 (J (p) ) = 0, ω = 0 and η = -ζ,

e 4 (e 3 (J (p) )) = [e 4 , e 3 ]J (p) = 2ωe 3 -2ωe 4 + 2(η -η) • ∇ J (p) = -2(η + ζ) • ∇J (p) .
Together with the control of Step 1 on M (extend) , and hence on R, for η and ζ, we infer on R, for all k ≤ k * -3,

|d k e 4 (e 3 (J (p) ))| 0 r 2 u 1+δ dec . Since e 3 (J (p) ) = 0 on Σ (extend) * , we infer, for all k ≤ k * -3, | d k e 3 (J (p) )| 0 r 2 u 1+δ dec ∆ ext on R. (8.5.23) 
Finally, arguing as in Corollary 5.3.4, the following holds on Σ

(extend) * r 2 ∆ + 2 J (p) = O( 0 r -1 u -1 2 -δ dec ), p = 0, +, -, 1 |S| S J (p) J (q) = 1 3 δ pq + O( 0 r -1 u -1 2 -δ dec ), p, q = 0, +, -, 1 |S| S J (p) = O( 0 r -1 u -1 2 -δ dec ), p = 0, +, -.
Since J (p) is extended to R by e 4 (J (p) ) = 0, we propagate from Σ (extend) *

and easily obtain on R

r 2 ∆ + 2 J (p) = O( 0 r -1 u -1 2 -δ dec ), p = 0, +, -, 1 |S| S J (p) J (q) = 1 3 δ pq + O( 0 r -1 u -1 2 -δ dec ), p, q = 0, +, -, 1 |S| S J (p) = O( 0 r -1 u -1 2 -δ dec ), p = 0, +, -. (8.5.24) 
Step 8. The spacelike GCM hypersurface Σ * has been constructed in Step 7 in a small neighborhood of S * . We now focus on proving that it in fact extends all the way to the initial data layer. To this end, we denote by u 1 with

1 ≤ u 1 < • u,
the minimal value of u such that

• We have Σ * ∩ C u = ∅ for any u 1 ≤ u ≤ • u. (8.5.27) 
• There exists a large constant D ≥ 1 such that we have for any sphere

S of Σ * (u ≥ u 1 ) (f, f , log(λ)) h k * -3 ( S) ≤ Du * • δ. (8.5.28) 
• For the same large constant D ≥ 1 as above, we have along Σ * (u ≥ u 1 )

|ψ(s)| ≤ Du * • δ, (8.5.29) 
where the function ψ(s) is such that the curve

u = -s + c Σ * + ψ(s), s, θ = π, ϕ with ψ( • s) = 0, (8.5.30) 
coincides with the south poles of the sphere S of Σ * and the constant c Σ * is fixed by the condition ψ(

• s) = 0.
The fact that ψ( [START_REF] Shen | Construction of GCM hypersurfaces in perturbations of Kerr[END_REF] (restated here in Theorem 8. 1.11), it suffices to show that we may improve the bounds (8.5.28) (8.5.29) independently of the value of u 1 .

Step 9. We now focus on improving the bounds (8.5.28) (8.5.29). We first prove that Σ * (u ≥ u 1 ) is included in R. Indeed, (8.5.28) (8.5.29) imply, using also the dominant condition on r in R,

sup Σ * (u≥u 1 ) |u + s -c Σ * | sup Σ * (u≥u 1 ) |ψ| + r|f | + r|f | Du * • δ Du * r 0 ∆ ext 0 D 0 ∆ ext 0 ∆ ext . 564CHAPTER 8.

INITIALIZATION AND EXTENSION (THEOREMS M0, M6 AND M7)

On the other hand, by construction, ψ(

• s) = 0 and the south pole of • S and S * coincide, so that we have

c Σ * = • u + • s = u * + r * + δ ext 2 + 3d 0 r * 4u * δ ext = c Σ * + 3 4 1 + 2u * 3d 0 r * ∆ ext
and hence, using also the dominant condition on r in R,

sup Σ * (u≥u 1 ) u + s -c Σ * - 3 4 ∆ ext u * 2d 0 r * + 0 ∆ ext 0 ∆ ext .
In view of the definition of R, we infer

Σ * (u ≥ u 1 ) ⊂ R (8.5.31) 
as claimed.

Step 10. Since Σ * (u ≥ u 1 ) ⊂ R, the bounds (8.5.10), ( 

≤ k * -4 sup R r 2 d k (q κ) + r 2 d k q κ -C 0 + p C p J (p) +r 2 d k q µ -M 0 + p M p J (p) 0 r ∆ ext • δ, as well as sup R r 2 | d k (div η) =1 | + | d k (div ξ) =1 | 0 r ∆ ext • δ.
Together with the a priori estimates in the proof of Theorem 4.1 in [START_REF] Shen | Construction of GCM hypersurfaces in perturbations of Kerr[END_REF], this yields

|ψ (s)| 1 + 2 m r -e 3 (u) + e 3 (s) + |λ -1| m r - m r + |λ -1| + • δ.
Now, we need to estimate r -r and m -m. We claim

| r -r| + | m -m| Du * • δ. (8.5.32) 
Indeed, in view of (8.5.28), and using Lemma 5.8 in [START_REF] Klainerman | Construction of GCM spheres in perturbations of Kerr[END_REF] (restated here in Proposition 8.1.3), we have

| r -r| sup S r(|f | + |f |) Du * • δ,
which is the stated estimate for r -r in (8.5.32). Next, recall that

• S = S( • u,
• s) is the sphere of the foliation of R ∩ {u ≥ u * } which shares the same south pole a S * . We denote • m the Hawking mass of • S and recall that m denotes the Hawking mass of S * . Then, in view of (8.5.28), and using Corollary 5.17 in [START_REF] Klainerman | Construction of GCM spheres in perturbations of Kerr[END_REF] (restated here in Proposition 8.1.3), we have

m - • m sup S r(|f | + |f |) Du * • δ.
Also, since We infer from (8.5.32) and the estimate immediately above for |ψ (s)|, using also the dominant condition on r in R,

• S ⊂ R ∩ {u ≥ u * },
|ψ (s)| Du * r • δ + • δ (1 + 0 D) • δ • δ.

Integrating from

• s where ψ( Similarly, we obtain, using the a-priori estimates for GCM spheres in [START_REF] Klainerman | Construction of GCM spheres in perturbations of Kerr[END_REF],

(f, f , log(λ)) h k * -3 ( S) max k≤k * -4 sup R r 2 d / k (q κ) + r 2 d / k q κ -C 0 + p C p J (p) +r 2 d / k q µ -M 0 + p M p J (p) + r ( div f ) =1 + ( div f ) =1 ,
and hence

(f, f , log(λ)) h k * -3 ( S) r 2 ( div f ) =1 + ( div f ) =1 + • δ,
where the = 1 modes are taken w.r.t. the basis J (p) . Also, using the a priori estimates in the proof of Theorem 4.1 in [START_REF] Shen | Construction of GCM hypersurfaces in perturbations of Kerr[END_REF], we have

ν ( div f ) =1 + ν ( div f ) =1 r -2 • δ + 1 r ( div f ) =1 + ( div f ) =1 .
In view of (8.5.28), we infer

ν ( div f ) =1 + ν ( div f ) =1 r -2 • δ + r -3 Du * • δ
and integrating from S * , we infer, using also the dominant condition for r in R,

r 2 ( div f ) =1 + ( div f ) =1 u * • δ + D(u * ) 2 r • δ (1 + 0 D) u * • δ u * • δ.
This yields

(f, f , log(λ)) h k * -3 ( S) u * • δ
which improves (8.5.28) for D ≥ 1 large enough. We thus conclude that u 1 = 1, i.e. Σ * extends all the way to the initial data layer, Σ * ⊂ R, and we have the bounds

(f, f , log(λ)) h k * -3 ( S) u * • δ, |ψ(s)| u * • δ.
In view of the definition of • δ, we infer in particular for any sphere

S of Σ * (f, f , log(λ)) h k * -3 ( S) 0 δ ext , |ψ(s)| 0 δ ext . (8.5.33) 
Step 11. As Σ * extends all the way to the initial data layer, this allows us to calibrate ũ along Σ * by fixing the value u = 1 as in Remark 8.4.2:

S 1 = Σ * ∩ { u = 1} is such that S 1 ∩ { u L 0 = 1} ∩ { θ L 0 = π} = ∅, (8.5.34) 
i.e. S 1 is the unique sphere of Σ * intersecting the curve of the south poles of { u L 0 = 1} in the part (ext) L 0 of the initial data layer constructed in Section 8.2.

Now that u is calibrated, we define ũ * := ũ( S * ). (8.5.35) For the proof of Theorem M7, we need in particular to show that ũ * > u * . First, note that, since ũ + r is constant along Σ * , we have

Σ * = u + r = 1 + r( S 1 ) . (8.5.36) 
Since S * ⊂ Σ * , and in view of (8.5.36), (8.5.25), (8.5.30), we infer,

u( S * ) -u * + δ ext 2 = u( S * ) -u( • S) = 1 + r( S 1 ) -r( S * ) --s( • S) + c Σ * .
Together with (8.5.32) and (8.5.9), this yields

u( S * ) -u * + δ ext 2 1 + r( S 1 ) -c Σ * + 0 δ ext .
Since c Σ * in (8.5.30) is a constant, we have in particular

c Σ * = u( S 1 ) + r( S 1 ) -ψ(s( S 1 ))
and thus

u( S * ) -u * + δ ext 2 1 + r( S 1 ) -u( S 1 ) -r( S 1 ) + ψ(s( S 1 )) + 0 δ ext 1 -u( S 1 ) + r( S 1 ) -r( S 1 ) + ψ(s( S 1 )) + 0 δ ext . 568CHAPTER 8.
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In view of (8.5.33) and (8.5.32), we infer

u( S * ) -u * + δ ext 2 1 -u( S 1 ) + 0 δ ext .
Also, since:

• we have by the calibration of u

u = 1 on S 1 ∩ { u L 0 = 1} ∩ { θ L 0 = π},
i.e. S 1 is the unique sphere of Σ * intersecting the curve of the south poles of { u L 0 = 1} in the part (ext) L 0 of the initial data layer,

• we have the following control for the change of frame coefficients (f 0 , f 0 , λ 0 ) between the outgoing geodesic frame of (ext) L 0 and the outgoing geodesic foliation (u, s)

initialized on Σ * |f 0 | 0 r , |λ 0 -1| + |f 0 | 0 ,
see Step 14 in the proof of Theorem M0, and hence

e L 0 4 (u -1) = λ 0 e 4 + f 0 • ∇ + 1 4 |f 0 | 2 e 3 u = λ 0 4 |f 0 | 2 e 3 (u) = O 0 r 2 , we infer sup R∩{ u L 0 =1}∩{ θ L 0 =π} |u -1| ∆ ext 0 r 2 0 δ ext .
This yields |1 -u( S 1 )| 0 δ ext and hence

u( S * ) -u * + δ ext 2 0 δ ext . (8.5.37) 
In particular, we deduce, for 0 small enough,

u( S * ) > u * (8.5.38)
as desired.

Step 12. We would like to check that the condition (3.4.5) for r on Σ * holds, i.e. we need to prove that there exists a choice of constant

d 0 satisfying 1 2 ≤ d 0 ≤ 1 such that r( S * ) = δ * -1 0 ( u( S * )) 1+δ dec .
To this end, note that we have in view of (8.5.32), (8.5.9) and (8.5.37)

r( S * ) -δ * -1 0 ( u( S * )) 1+δ dec = s( • S) + O ( 0 δ ext ) -δ * -1 0 u * + δ ext 2 + O ( 0 δ ext ) 1+δ dec = s( • S) -δ * -1 0 (u * ) 1+δ dec - 1 + δ dec 2 δ * -1 0 (u * ) δ dec δ ext +δ * -1 0 (u * ) δ dec δ ext O δ ext u * + 0 + O ( 0 δ ext ) .
Together with (8.5.25), we infer

r( S * ) -δ * -1 0 ( u( S * )) 1+δ dec = r * + 3d 0 r * 4u * δ ext -δ * -1 0 (u * ) 1+δ dec - 1 + δ dec 2 δ * -1 0 (u * ) δ dec δ ext +δ * -1 0 (u * ) δ dec δ ext O δ ext u * + 0 + O ( 0 δ ext ) = r * -δ * -1 0 (u * ) 1+δ dec + 3d 0 r * 4 - 1 + δ dec 2 δ * -1 0 (u * ) 1+δ dec δ ext u * +δ * -1 0 (u * ) δ dec δ ext O δ ext u * + 0 + O ( 0 δ ext ) .
Since we have by the condition (3.4.5) of r on Σ *

r * = δ * -1 0 u 1+δ dec * , we deduce r( S * ) -δ * -1 0 ( u( S * )) 1+δ dec = 3d 0 4 - 1 + δ dec 2 r * δ ext u * + δ * -1 0 (u * ) δ dec δ ext O δ ext u * + 0 + O ( 0 δ ext ) = 3r * δ ext 4u * d 0 - 2 + 2δ dec 3 + O 0 + δ ext u * .
Thus, we may choose the constant d 0 such that 1 2 ≤ d 0 ≤ 1 and

r( S * ) = δ * -1 0 ( u( S * )) 1+δ dec
as desired.

Step 13. We summarize the properties of Σ * obtained so far:

• Σ * is a spacelike hypersurface included in the spacetime region R.

• The scalar function u is defined on Σ * and its level sets are topological 2-spheres denoted by S.

• The following GCM conditions holds on Σ * q κ = 0,

q κ = C 0 + p C p J (p) , q µ = M 0 + p M p J (p) , ( div η) =1 = 0, ( div ξ) =1 = 0.
• In addition, the following GCM conditions holds on the sphere S * of Σ *

q κ = 0, ( div β) =1 = 0, ( curl β) =1,± = 0, ( curl β) =1,0 = 2 a m r 5 .
• We have, for some constant c Σ * ,

u + r = c Σ * , along Σ * .
• The following normalization condition holds true

b * = -1 - 2 m r ,
where b * denotes the average of b * on the spheres foliating Σ * , and where b * is such that we have

ν = e 3 + b * e 4 ,
with ν the unique vectorfield tangent to the hypersurface Σ * , normal to S, and normalized by g( ν, e 4 ) = -2.

• The condition (3.4.5) for r on S * holds, i.e. we have

r( S * ) = δ * -1 0 ( u( S * )) 1+δ dec .
• ũ is calibrated along Σ * by fixing the value u = 1:

S 1 = Σ * ∩ { u = 1} is such that S 1 ∩ {u L 0 = 1} ∩ { (ext) θ L 0 = π} = ∅, (8.5.39) 
i.e. S 1 is the unique sphere of Σ * intersecting the curve of the south poles of {u L 0 = 1} in the part (ext) L 0 of the initial data layer.

Thus, Σ * satisfies all the required properties for the future spacelike boundary of a GCM admissible spacetime, see Section 3.2.3. Furthermore, we have on Σ * u( S * ) > u * . (8.5.40)

Steps 14-18

Step 14. We introduce:

• the outgoing PG frame (e 4 , e 3 , e 1 , e 2 ) of (ext) M extended to the spacetime M (extend) ,

• the outgoing PG frame ( e 4 , e 3 , e 1 , e 2 ) initialized on Σ * from the GCM frame ( e 4 , e 3 , e 1 , e 2 ) by the change of frame with coefficients (f , f , λ ) given by

λ = 1, f = a r f 0 , f = - ( ν( r) -b * ) 1 -1 4 b * |f | 2 f ,
where the 1-form f 0 is chosen on Σ * by

( f 0 ) 1 = 0, ( f 0 ) 2 = sin( θ), on S * , ∇ ν f 0 = 0 on Σ * ,
with (e 1 , e 2 ) specified on S * by (2.5.12).

We have the following change of frame coefficients:

• (f, f , λ), introduced in Step 7, and corresponding to the change from the outgoing geodesic frame (e 4 , e 3 , e 1 , e 2 ) of M (extend) to the GCM frame ( e 4 , e 3 , e 1 , e 2 ) of Σ * ,

• (f , f , λ ), which we now introduce, corresponding to the change from the outgoing geodesic frame (e 4 , e 3 , e 1 , e 2 ) of M (extend) to the outgoing PG frame (e 4 , e 3 , e 1 , e 2 ) of (ext) M extended to the spacetime M (extend) ,

• (f , f , λ ), provided explicitly above, and corresponding to the change from the GCM frame ( e 4 , e 3 , e 1 , e 2 ) of Σ * to the outgoing PG frame ( e 4 , e 3 , e 1 , e 2 ) initialized on Σ * ,

• (f , f , λ ), which we now introduce, corresponding to the change from the outgoing PG frame (e 4 , e 3 , e 1 , e 2 ) of (ext) M extended to the spacetime M (extend) and the outgoing PG frame ( e 4 , e 3 , e 1 , e 2 ) initialized on Σ * .

In this step, our goal is to control the change of frame coefficients (f , f , λ ). In view of the above, we have schematically

(f , f , λ ) = (f , f , λ ) • (f, f , λ) • (f , f , λ ) -1
where (f , f , λ ) -1 denote the coefficients corresponding to the inverse transformation coefficients of the transformation with coefficients (f , f , λ ). We infer sup

Σ * d k * (f , f , λ -1) sup Σ * d k * (f, f , λ -1) + sup Σ * d k * (f -f , f -f , λ -λ ) .
Now, recall that (f, f , λ) satisfy in view of (8.5.33) and Corollary 4.2 in [START_REF] Shen | Construction of GCM hypersurfaces in perturbations of Kerr[END_REF] (restated here in Corollary 8.1.12)

sup S⊂ Σ * d ≤k * -3 (f, f , log(λ)) L 2 ( S) 0 δ ext .
Together with the Sobolev embedding on the spheres S, we find sup

Σ * r |d ≤k * -5 (f, f , log(λ))| 0 δ ext . (8.5.41) 
We infer, for

≤ k * -5, sup Σ * r d k * (f , f , λ -1) 0 δ ext + sup Σ * r d k * (f -f , f -f , λ -λ ) .
Together with the explicit formulas above for (f , f , λ ), we obtain, for ≤ k * -5, sup

Σ * r d k * (f , f , λ -1) 0 δ ext + sup Σ * r d k * f - a r f 0 , f + ( ν( r) -b * ) 1 -1 4 b * ( a) 2 ( r) 2 | f 0 | 2 a r f 0 , λ -1 .
We deduce, for ≤ k * -5, sup

Σ * r d k * (f , f , λ -1) (8.5.42 
)

0 δ ext + sup Σ * r d k * f - a r f 0 , f + e 3 (s) 1 + 1 4 (e 3 (u) + e 3 (s)) a 2 r 2 |f 0 | 2 a r f 0 , λ -1 + sup Σ * | d k * ( a f 0 -af 0 )| + r -1 | d k * ( r -r)| + | d k * ( b * + e 3 (u) + e 3 (s))| + | d k * ( ν( r) + e 3 (u))| .
We now control the terms on the RHS of (8.5.42). Note first the have have on Σ

(extend) * , in view of the initialization of the PG frame of (ext) M,

λ = 1, f = a r f 0 , f = - (ν(r) -b * ) 1 -1 4 b * a 2 r 2 |f 0 | 2 a r f 0 .
Also, we have r = s on Σ (extend) *

, and hence, using also e 4 (u) = 0 and e 4 (s) = 1, and the fact that ν is tangent to Σ .

In view of the above, this yields

λ -1 = 0, f - a r f 0 = 0, f + e 3 (s) 1 + 1 4 (e 3 (u) + e 3 (s)) a 2 r 2 |f 0 | 2 a r f 0 = 0 on Σ (extend) * .
Next, using Corollary 2.2.4, we have the following transport equations for (f , f , λ )

∇ λ -1 e 4 f + 1 2 κf = -f • χ + E 1 (f , Γ), λ -1 e 4 (log λ ) = 2f • ζ + E 2 (f , Γ), ∇ λ -1 e 4 f + 1 2 κf = 2∇ (log λ ) + 2ωf -f • χ -f • ∇ f +E 3 (f , f , Γ),
where E 1 (f , Γ) and E 2 (f , Γ) contain expressions of the type O(Γf 2 ) with no derivatives, and E 3 (f , f , Γ) contain expressions of the type O(Γ(f , f ) 2 ) with no derivatives. Together with the control of Step 1 on M (extend) , we infer, using also the extension

∇ 4 f 0 = 0 of f 0 from Σ (extend) * to R, for k ≤ k * -3, sup R r -1 d k e 4 r f - a r f 0 + d k e 4 (log(λ )) 1 r 3 + 1 r |d ≤k Γ g | 1 r 3 , and, for k ≤ k * -4, sup R r -1 d k e 4 r f + e 3 (s) 1 + 1 4 (e 3 (u) + e 3 (s)) a 2 r 2 |f 0 | 2 a r f 0 -2r∇ (log(λ )) 1 r 3 + 1 r |d ≤k Γ b | 1 r 3 + 0 r 2 .
Together with the above identities on Σ (extend) *

, we integrate from Σ (extend) * and obtain, using the dominant condition for r on R,

for k ≤ k * -3, sup R r d k f - a r f 0 , λ -1 ∆ ext r 2 0 ∆ ext r 0 δ ext 574CHAPTER 8.
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)

and for k ≤ k * -4 sup R r d k f + e 3 (s) 1 + 1 4 (e 3 (u) + e 3 (s)) a 2 r 2 |f 0 | 2 a r f 0 ∆ ext r 2 + 0 ∆ ext r 0 ∆ ext r 0 δ ext .
Together with (8.5.42), we infer, for k ≤ k * -5, sup

Σ * r d k * (f , f , λ -1) 0 δ ext + sup Σ * | d k * ( a f 0 -af 0 )| + r -1 | d k * ( r -r)|(8.5.43) +| d k * ( b * + e 3 (u) + e 3 (s))| + | d k * ( ν( r) + e 3 (u))| .
Step 15. Next, we focus on the control of the terms on the RHS of (8.5.43). To ease the notations, we introduce the scalar b * on Σ * given by We first estimate r-r on Σ * . Recall from (8.5.6) that we have in particular, for

k ≤ k * -4, sup R r 2 d k (q κ) 0 r ∆ ext 0 δ ext .
Together with the GCM condition q κ = 0 and (8.5.45), we infer, for k ≤ k * -5, sup

Σ * r d k * q κ -q κ L 2 ( S) 0 δ ext + 0 sup Σ * r -1 d ≤k-1 * b * L 2 ( S)
.

Now, we have

q κ -q κ = κ -κ + 2 r - 2 r = κ -κ - 2( r -r) r r so that r -r = r r 2 κ -κ -q κ -q κ
and hence, using the above estimate for q κq κ, we have, for k ≤ k * -5, sup

Σ * r -1 d k * ( r -r) L 2 ( S) 0 δ ext + sup Σ * r 2 d k * ( κ -κ) + 0 sup Σ * r -1 d ≤k-1 * b * L 2 ( S) .
Using the change of frame formula for κ, together with the control (8.5.41) for (f, f , λ) and the control of Step 1 on M (extend) , we deduce for k ≤ k * -6 sup

Σ * r -1 d k * ( r -r) L 2 ( S) 0 δ ext + 0 sup Σ * r -1 d ≤k-1 * b * L 2 ( S) . (8.5.46) 
Next, we control b * = b * + e 3 (u) + e 3 (s). First, note that we have

ν( r -r) = ν( r) -e 3 (r) -b * e 4 (r).
Together with the control of r -r in (8.5.46), the fact that ν is tangent to Σ * , the change of frame formulas, the control (8.5.41) for (f, f , λ) and the control of Step 1 on

M (extend) , we deduce for k ≤ k * -7, sup Σ * r -1 d k * ν( r) -e 3 (r) -b * e 4 ( r) 
L 2 ( S)

0 δ ext + 0 sup Σ * r -1 d ≤k-1 * b * L 2 ( S) .
The control (8.5.9) of r -s and (8.5.45) allows us to replace r by s in the above formula which yields, since e 4 (s

) = 1, for k ≤ k * -7, sup Σ * r -1 d k * ν( r) -e 3 (s) -b * L 2 ( S) 0 δ ext + 0 sup Σ * r -1 d ≤k-1 * b * L 2 ( S) . Since ν( u + r) = 0 on Σ * , we infer for k ≤ k * -7 sup Σ * r -1 d k * b * + ν( u) + e 3 (s) L 2 ( S) 0 δ ext + 0 sup Σ * r -1 d ≤k-1 * b * L 2 ( S) .
Now, as part of the construction of Σ * , the following transversality conditions on Σ * are assumed, see Theorem 4.1 in [START_REF] Shen | Construction of GCM hypersurfaces in perturbations of Kerr[END_REF] (restated here in Theorem 8.1.11),

ξ = ω = 0, η = -ζ, e 4 ( r) = 1, e 4 ( u) = 0. ( 8.5.47) 
We infer

ν( u) = e 3 ( u) + b * e 4 ( u) = e 3 ( u)
and hence, for

k ≤ k * -7, sup Σ * r -1 d k * b * + e 3 ( u) + e 3 (s) L 2 ( S) 0 δ ext + 0 sup Σ * r -1 d ≤k-1 * b * L 2 ( S) . 576CHAPTER 8 
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Also, using again the transversality conditions (8.5.47), we have

∇( e 3 ( u)) = ( ζ -η) e 3 ( u).
Similarly, we have for the outgoing geodesic foliation of R

∇(e 3 (u)) = (ζ -η)e 3 (u).
Together with the change of frame formulas, the control (8.5.41) for (f, f , λ) and the control of Step 1 on M (extend) , we deduce, for k ≤ k * -6, sup

Σ * d k * ∇(e 3 (u)) -( ζ -η)e 3 (u) r -1 0 δ ext .
Subtracting to the above identity for e 3 ( u), we infer for

k ≤ k * -6 sup Σ * d k * ∇( e 3 ( u) -e 3 (u)) -( ζ -η)( e 3 ( u) -e 3 (u)) r -1 0 δ ext .
Together with the above estimate for b * + e 3 ( u) + e 3 (s), we infer, for

k ≤ k * -8, sup Σ * d k * ∇ b * + e 3 (u) + e 3 (s) -( ζ -η) b * + e 3 (u) + e 3 (s) 
L 2 ( S)

0 δ ext + 0 sup Σ * r -1 d ≤k-1 * b * L 2 ( S) .
Using the change of frame formulas, the control (8.5.41) for (f, f , λ) and the control of

Step 1 on M (extend) to control ζ and η, we infer in view of b * = b * + e 3 (u) + e 3 (s), for

k ≤ k * -9, sup Σ * d k * ∇ (b * ) h 1 ( S) 0 δ ext + 0 sup Σ * r -1 d k * (b * ) h 1 ( S) .
Also, recall that we have obtained in Step 4 Subtracting this identity to the previous estimate, using the change of frame formulas, the control (8.5.41) for (f, f , λ) and the control of Step 1 on M (extend) , we infer, for k ≤ k * -6,

sup Σ * ν k b * + e 3 (u) + e 3 (s) 0 δ ext + r -1 | m -m| + r -2 sup Σ * | ν ≤k ( r -r)| + 0 sup Σ * | ν ≤k ( b * + e 3 (u) + e 3 (s))|.
Recall that the averages in b * and e 3 (u) + e 3 (s) are taken respectively on the spheres foliating Σ * and R. Using the fourth item of Proposition 8.1.3 to compare the average of e 3 (u) + e 3 (s) on both types of spheres, together with , the control (8.5.41) for (f, f , λ) and the control of Step 1 on M (extend) , we obtain, for k

≤ k * -6, sup Σ * ν k b * + e 3 (u) + e 3 (s) 0 δ ext + r -1 | m -m| + r -2 sup Σ * | ν ≤k ( r -r)| + 0 sup Σ * | ν ≤k ( b * + e 3 (u) + e 3 (s))|,
where the average is, from now on, only taken w. 

0 δ ext + 0 sup Σ * r -1 d ≤k * (b * ) h 2 ( S)
.

Thus, we have obtained so far on Σ * , for k ≤ k * -9, sup

Σ * d k * ∇ (b * ) h 1 ( S) 0 δ ext + 0 sup Σ * r -1 d k * (b * ) h 1 ( S) .
and, for k

≤ k * -8, sup Σ * ν k (b * ) 0 δ ext + 0 sup Σ * r -1 d ≤k * (b * ) h 2 ( S) .
Using again Poincaré inequality, we infer, for k ≤ k * -9, Together with

r -1 d k * b * h 2 ( S) | ν k (b * )| + d k * ∇b * h 1 ( S) 0 sup Σ * r -1 d ≤k * (b * ) h 2 ( S) + 0 δ ext .
• the above control of b * + e 3 (u) + e 3 (s) on Σ * ,

• the above control of r -r on Σ * and the fact that ν is tangent to Σ * ,

• the control (8.5.9) of e 3 (r -s) and e 4 (r -s) on R, together with (8.5.45),

• the change of frame formulas, the control (8.5.41) for (f, f , λ) and the control of

Step 1 on M (extend) , which yields the control of e 3 (r) -e 3 (r) and e 4 (r) -e 4 (r),

we deduce, for k ≤ k * -9, sup Σ * d k * ( ν( r) + e 3 (u)) 0 δ ext .
The above estimates, together with (8.5.43), yield for ≤ k * -9, sup

Σ * r d k * (f , f , λ -1) 0 δ ext + sup Σ * | d k * ( a f 0 -af 0 )|. (8.5.49) 
Step 16. Next, we focus on the control of the RHS of (8.5.49). To this end, we first control a. Recall that we have in view of (8.5.8) sup

R∩{u≥u * } r 5 1 |S| S curl βJ (0) - 2am r 5 + 1 |S| S curl βJ (±) 0 r ∆ ext 0 δ ext .
Also, recall that

• S = S( • u,
• s) is the sphere of the foliation of R ∩ {u ≥ u * } which shares the same south pole a S * . Relying on Corollary 5.9 in [START_REF] Klainerman | Construction of GCM spheres in perturbations of Kerr[END_REF] (see also Proposition 8.1.3 here), we have, in view of the control (8.5.58) of the deformation map Ψ : Next, in view of the change of frame formulas, we have, using also the control of Step 1 on

• S → S * , for p = 0, +, -, S * curl βJ (p) -• S curl βJ (p) r 0 δ ext sup R | d / ≤1 (curl βJ (p) )| + r sup R (|∇ 3 (curl βJ (p) )| + |∇ 4 (curl βJ (p) )|) 0 δ ext sup R |d ≤2 β| + r|d∇ 3 β| + r|dβ|(|∇ 3 J (p) | + |∇ 4 J (p) | .
M (extend) , curl β -curl β curl λ β + 3 2 (f ρ + * f * ρ) + 1 2 α • f + • • • -curl β r -4 | d / ≤1 (f, f , λ -1)|
and hence, using the control (8.5.41) for (f, f , λ), we deduce on Σ * curl β -curl β r -5 0 δ ext .

Plugging in the above, we infer

r 5 1 | S * | S * curl βJ (0) - 2a m r 5 + 1 | S * | S * curl βJ (±) 0 δ ext .
Next, in view of Corollary 7.2 of [START_REF] Klainerman | Effective results in uniformization and intrinsic GCM spheres in perturbations of Kerr[END_REF] (restated here as Corollary 8.1.6), there exists a canonical basis of = 1 modes on S * in the sense of Definition 3.10 of [START_REF] Klainerman | Effective results in uniformization and intrinsic GCM spheres in perturbations of Kerr[END_REF] (recalled here in Definition 5.1.3), which we denote by J where O satisfies (8.5.51). Plugging (8.5.52) in the above, we deduce

r 5 1 | S * | q=0,+,- O 0q S * curl β J (q) - 2a m r 5 + 1 | S * | q=0,+,- O ±q S * curl β J (p) 0 δ ext .
On the other hand, we have in view of (8. 

= (a + O( 0 δ ext )) 2 + O( 2 0 δ 2 ext ) a 2 + 2 0 δ 2 ext .
In particular, we infer the following estimate for a Step 17. Next, we focus on controlling the RHS of (8.5.49) in the case |a| > √ 0 δ ext . In this case, we have from (8.5.53) and the fact that p O 2 p0 = 1

| a| 0 δ ext if |a| ≤ 0 δ ext . ( 8 
( a) 2 = ( a) 2 p O 2 p0 = (a + O( 0 δ ext )) 2 + O( 2 0 δ 2 ext ) = a 2 + O( 3 2 0 δ 3 2 ext )
and hence a ≥ 1 2 √ 0 δ ext . Thus, dividing (8.5.53) by a, we obtain

O 00 - a a + |O +0 | + |O -0 | 0 δ ext .
Together with the fact that p O 2 p0 = 1, and recalling also that O 00 ≥ 0 in view of (8.5.51), we infer

| a -a| 0 δ ext if |a| > 0 δ ext (8.5.56)
and

|O 00 -1| + |O +0 | + |O -0 | 0 δ ext .
Also, since O ∈ O(3), we also have

0 = p O p+ O p0 = O 0+ + O( 0 δ ext ), 0 = p O p-O p0 = O 0-+ O( 0 δ ext ),
and hence

|O 0+ | + |O 0-| 0 δ ext .
Together with the fact that O +-= 0 and O --≥ 0 in view of (8.5.51), and since p O 2 p-= 1, we infer

|O ---1| 0 δ ext .
Finally O ++ ≥ 0 in view of (8.5.51), since we have obtained above that |O 0+ | √ 0 δ ext , and since p O 2 p-= 1 and p O p+ O p-= 0, we infer

|O ++ -1| + |O -+ | 0 δ ext .
We have thus obtained

|O -I| 0 δ ext ,
which together with (8.5.52) implies max p=0,+,-r -1 J (p) -J (p)

h k * -4 ( S * ) 0 δ ext if |a| > 0 δ ext .
Next, we control J (p) -J (p) for p = 0, +, -on Σ * . Recall that we have ν( J (p) ) = 0 along Σ * . We infer ν J (p) -J (p) = -ν(J (p) ) = -e 4 (J (p) ) -b * e 3 (J (p) ).

Using the change of frame formulas, and the fact that e 4 (J (p) ) = 0, we obtain

ν J (p) -J (p) = -λ f • ∇ + 1 4 |f | 2 e 3 J (p) -b * λ -1 1 + 1 2 f • f + 1 16 |f | 2 |f | 2 e 3 + f + 1 4 |f | 2 • ∇ J (p) .
Together with the control (8.5.41) for (f, f , λ), and (8.5.23) for e 3 (J (p) ), we infer sup

Σ * d k * -5 * ν J (p) -J (p) 0 δ ext ru * + 0 δ ext r 2 .
Integrating along Σ * from S * , using the above estimate on S * and Sobolev, and using the dominant condition on r on Σ * , we infer max p=0,+,-

sup Σ * d k * -6 * J (p) -J (p) 0 δ ext if |a| > 0 δ ext . (8.5.57)
Next, we control f 0 -f 0 on Σ * . First, recall from Lemma 5.6.6 that the following identity holds on S *

∇J (0) = - 1 re φ * f 0 .
Next, recalling that we have extended φ, J (0) and f 0 first to Σ (extend) * by ν(φ) = 0, ∇ ν f 0 = 0 and ν(J (0) ) = 0, and then to R by e 4 (φ) = 0, ∇ 4 f 0 = 0 and e 4 (J (0) ) = 0, we have on Σ

(extend) * ∇ ν r ∇J (0) + 1 re φ * f 0 = Γ b d / ≤1 J (0)
and on R

∇ 4 r ∇J (0) + 1 re φ * f 0 = Γ g d / ≤1 J (0) .
Integrating first from S * , where the above identity holds, to Σ 

d k ∇J (0) + 1 re φ * f 0 0 r 3 u 1 2 +δ dec * ∆ ext + 0 r 2 u 1+δ dec * δ ext 0 r 2 u 1+δ dec * δ ext .
In particular, since the GCM sphere

S * constructed in Step 6 is included in R(u ≥ u * ), we infer, for k ≤ k * -3, sup S * d k ∇J (0) + 1 re φ * f 0 0 r 2 u 1+δ dec * δ ext .
Together with the control (8.5.48) for r -r, the change of frame formulas, the control (8.5.41) for (f, f , λ) and the control of Step 1 on M (extend) , we infer, for k ≤ k * -6, sup

S * d / k ∇J (0) + 1 re φ * f 0 0 r 2 u 1+δ dec * δ ext .
Also, recall that

• S = S( • u,
• s) is the sphere of the foliation of R ∩ {u ≥ u * } which shares the same south pole a S * . As a byproduct of the construction of the GCM sphere 35 S * in Step 6 we have, see Corollary 7.2 of [START_REF] Klainerman | Effective results in uniformization and intrinsic GCM spheres in perturbations of Kerr[END_REF] (stated here as Corollary 8.1.6), the deformation map Ψ :

• S → S is given by Ψ( • u, • s, x 1 , x 2 ) = ( • u + U (x 1 , x 2 ), • s + S(x 1 , x 2 )),
where the scalar function U and S on • S satisfy r -1 (U, S) S replaced with the corresponding analogs (Ψ -1 ) # g, φ • Ψ -1 and J (p) • Ψ -1 on S * . We may thus apply Proposition 4.15 in [START_REF] Klainerman | Effective results in uniformization and intrinsic GCM spheres in perturbations of Kerr[END_REF] (restated here as Proposition 5.1.5) which yields on S * the estimate

h k * -2 ( • S) 0 δ ext . ( 8 
r -1 φ -φ • Ψ -1 h k * -3 ( S * ) 0 r 2 ∆ ext 0 r δ ext .
Together with the above form of Ψ, the above control of (U, S), and the control of φ provided by (8.5.20), we infer

r -1 φ -φ h k * -3 ( S * ) 0 r δ ext .
Together with Sobolev, we deduce from the above, for k ≤ k * -6, sup

S * d / k ∇J (0) + 1 re φ * f 0 0 r 2 δ ext .
On the other hand, in view of Lemma 5.6.6 applied to the GCM sphere S * , the following identity holds on S * ∇ J (0) = -1 Also, using the change of frame formulas and the fact that ∇ 4 f 0 = 0, we have on Σ *

re φ * f 0 . We infer, for k ≤ k * -6, sup S * d / k ∇( J (0) -J (0) ) + 1 re φ * ( f 0 -f 0 ) 0 r 2 δ ext .
∇ ν f 0 = ∇ e 3 f 0 + b * ∇ e 4 f 0 = λ -1 1 + 1 2 f • f + 1 16 |f | 2 |f | 2 ∇ 3 + f + 1 4 |f | 2 f • ∇ f 0 + b * λ f • ∇ + 1 4 |f | 2 ∇ 3 f 0 .
Together with the above estimate for ∇ 3 f 0 and the control (8.5.41) for (f, f , λ), we infer,

for k ≤ k * -5, sup Σ * d k ∇ ν f 0 0 r δ ext .
Since ∇ ν f 0 = 0, we deduce, for k ≤ k * -5, sup

Σ * d k ∇ ν f 0 -f 0 0 r δ ext .
Integrating from S * and using the above control on S * for f 0 -f 0 , as well as the dominant condition for r on R, we deduce, for k ≤ k * -7, sup

Σ * d k f 0 -f 0 0 δ ext if |a| > 0 δ ext . (8.5.59)
We are now in position to control, in the case |a| > √ 0 δ ext , the change of frame coefficients (f , f , λ ) introduced in Step 14 and corresponding to the change from the outgoing PG frame (e 4 , e 3 , e 1 , e 2 ) of (ext) M extended to the spacetime M (extend) and the PG frame ( e 4 , e 3 , e 1 , e 2 ). Recall (8.5.49) that holds for ≤ k * -9 sup

Σ * r d k * (f , f , λ -1) 0 δ ext + sup Σ * | d k * ( a f 0 -af 0 )|.
In view of the above estimates for a -a and f 0 -f 0 , we infer, ≤ k * -9, sup

Σ * r d k * (f , f , λ -1) 0 δ ext if |a| > 0 δ ext . (8.5.60)
We conclude this step with the control of J -J on Σ * in the case |a| > √ 0 δ ext . Recall from Step 14 that (f , f , λ ) denote the change of frame coefficients introduced in Step 14 and corresponding to the change from the outgoing geodesic frame (e 4 , e 3 , e 1 , e 2 ) of M (extend) to the outgoing PG frame (e 4 , e 3 , e 1 , e 2 ) of (ext) M extended to the spacetime M (extend) . Recall from (5.6.4) and (3.3.10) that J satisfies in M (extend) , and hence in R, the following identities

J = 1 |q| (f 0 + i * f 0 ) on Σ (extend) * , ∇ e 4 J = - 1 q J on R.
Using the change of frame formulas, we have on R

∇ e 4 J = ∇ λ (e4+f •∇+ 1 4 |f | 2 e 3) J = ∇ 4 J + (λ -1)∇ 4 J + λ f • ∇J + λ 4 |f | 2 ∇ 3 J
and hence

∇ 4 J - 1 q J = -(λ -1)∇ 4 J -λ f • ∇J - λ 4 |f | 2 ∇ 3 J.
Recall also that we have derived the following control for (f , λ

) in Step 14, for k ≤ k * -3, sup R r d k f - a r f 0 , λ -1 0 δ ext .
Together with the control of J in M (extend) , we infer, for

k ≤ k * -3, sup R r 3 d k ∇ 4 J - 1 q J 0 δ ext .
Also, recall that we have ∇ 4 f 0 = 0 in R and hence

∇ 4 (|q|J -(f 0 + i * f 0 )) = |q| ∇ 4 + ∇ 4 (|q|) |q| J = |q| ∇ 4 + r |q| 2 J = |q| ∇ 4 + 1 q J - ia cos θ |q| J.
Together with the above estimate for ∇ 4 J -1 q J, we infer, for k

≤ k * -3, sup R r 2 d k ∇ 4 (|q|J -(f 0 + i * f 0 )) 1.
Integrating from Σ (extend) *

where |q|J -

(f 0 + i * f 0 ) = 0, we infer, for k ≤ k * -3, sup R d k (|q|J -(f 0 + i * f 0 )) 1 r 2 ∆ ext 1 r δ ext .
Together with the dominant condition for r on R, we obtain, for

k ≤ k * -3, sup R r d k J - 1 |q| (f 0 + i * f 0 ) 0 δ ext .
On the other hand, we have on Σ

* J = 1 | q| f 0 + i * f 0 . Since Σ * ⊂ R, this yields, for k ≤ k * -3, sup Σ * r d k * J -J 0 δ ext + sup Σ * r d k * 1 | q| f 0 + i * f 0 - 1 |q| (f 0 + i * f 0 ) 0 δ ext + sup Σ * d k * f 0 -f 0 + r -1 d k * ( r -r) + r -1 d k * J (0) -J (0) .
In view of the estimates for r -r in Step 15, and the above estimates for f 0 -f 0 and J (0) -J (0) in the case |a| > √ 0 δ ext , we infer, for ≤ k * -7, sup 

Σ * r d k * J -J 0 δ ext if |a| > 0 δ ext . ( 8 
r d k * (f , f , λ -1) + | a -a| + d k * J (0) -J (0) +r d k * J -J 0 δ ext if |a| > 0 δ ext .
Together with the control (8.5.32) for r -r and m -m, (8.5.54) and (8.5.55) for the case |a| ≤ √ 0 δ ext , and possibly reducing the size of δ ext > 0 (which can be chosen arbitrarily small), we deduce, for ≤ k * -9, sup

Σ * u 1+δ dec r d k * (f , f , λ -1) + d k * ( r -r) + | m -m| + | a -a| + d k * a J (0) -aJ (0) + r d k * a J -aJ 0 . (8.5.62)
Step 18. We now control the outgoing PG structure initialized on Σ * . We denote by (ext) M the region covered by this outgoing PG structure. For convenience, we change our notation. From now on:

• (e 4 , e 3 , e 1 , e 2 ) denotes the outgoing PG frame of (ext) M extended to the spacetime M (extend) ,

• ( e 4 , e 3 , e 1 , e 2 ) denotes the outgoing PG frame initialized on Σ * ,

• (f, f , λ) denote the transition coefficients from the PG frame (e 4 , e 3 , e 1 , e 2 ) to the PG frame ( e 4 , e 3 , e 1 , e 2 ).

In view of (8.5.62), using the above new notations for (f, f , λ), and noticing that the structure equations in the e 4 direction for the outgoing PG structure initialized on Σ * allow to recover the e 4 derivatives (which are transversal to Σ * ), we have, for We introduce the notations

≤ k * -9, sup Σ * u 1+δ dec r d k (f, f , λ -1) + d k ( r -r) + | m -m| + | a -a| + d k a J (0) -aJ (0) + r d k a J -aJ 0 . ( 8 
F := f + i * f, F := f + i * f . 590CHAPTER 8.

INITIALIZATION AND EXTENSION (THEOREMS M0, M6 AND M7)

Since (e 4 , e 3 , e 1 , e 2 ) and ( e 4 , e 3 , e 1 , e 2 ) are outgoing PG frames, we have

Ξ = 0, ω = 0, H + Z = 0, Ξ = 0, ω = 0, H + Z = 0.
In view of Corollary 2.2.5, we have the following transport equations

∇ λ -1 e 4 (qF ) = E 4 (f, Γ), λ -1 ∇ e 4 (log λ) = 2f • ζ + E 2 (f, Γ), ∇ λ -1 e 4 q F -2q D(log λ) + e 3 (r)F = -3q 2 D (f • ζ) + E 5 ( ∇ ≤1 f, f , ∇ ≤1 λ, D ≤1 Γ),
where E 2 , E 4 and E 5 are given in Corollary 2.2.5. Integrating these transport equations from Σ * in the order they appear, using the control in (8.5.63) for (f, f , λ) on Σ * , and together with the control (8.5.64) for the Ricci coefficients of the foliation of M (extend) , we obtain, for ≤ k * -9, sup Using the change of frame formula and the above transport equation for log(λ), we infer

(ext) M r u 1 2 +δ dec + u 1+δ dec |d k (f, log(λ))| + |d k-1 f | 0 . ( 8 
e 4 ( r -λ -1 r) = 1 -e 4 + f • ∇ + 1 4 |f | 2 e 3 r + 3 2 f • ζ + E 2 (f, Γ) = - 1 4 |f | 2 e 3 (r) + 3 2 f • ζ + E 2 (f, Γ).
Integrating from Σ * where r -r is under control in view of (8.5.63), and using the control (8.5.65) for f and λ as well as the control (8.5.64) for the foliation of M (extend) , we infer, for ≤ k * -9, sup ), the induced horizontal structure H, functions (r, θ), and a horizontal 1-form J such that the following hold true:

(ext) M u 1+δ dec d k ( r -r) 0 . ( 8 
1. e 4 is geodesic.

2. We have e 4 (r) = 1, e 4 (θ) = 0, ∇ 4 (qJ) = 0, q = r + ai cos θ. (9.1.1)

3.

We have ), the induced horizontal structure H, functions (r, θ), and a horizontal 1-form J such that the following hold true:

H = - aq |q| 2 J. ( 9 
1. e 3 is geodesic.

2. We have e 3 (r) = -1, e 3 (θ) = 0, ∇ 3 (qJ) = 0, q = r + ai cos θ. 

Definition of the PT structures in M

Let M denote our admissible GCM spacetime introduced in Section 3.2. We decompose M as follows

M = (ext) M ∪ (int) M ∪ (top) M ,
where

• (ext)
M is covered by an outgoing PT structure initialized on Σ * as will be made precise below,

• (int) M is covered by an ingoing PT structure initialized on T = {r = r 0 } as will be made precise below,

• (top) M is covered by an ingoing PT structure initialized on {u = u * } for some u * ∈ [u * -5, u * -4] as will be made precise below.

Remark 9.1.7. Recall that (ext) M is covered by an outgoing PG structure. A priori, the outgoing PT structure introduced above covers a different region (ext) M . The fact that these two regions coincide, i.e. (ext) M = (ext) M, is due to the fact that (ext) M is defined purely in terms of (u, r), and that the functions (u, r) for the outgoing PT frame coincide with the ones of the outgoing PG frame in (ext) M, see Lemma 9.2.11.

Remark 9.1.8. The constant u * involved in the definition (top) M and its associated ingoing PT structure will be fixed in Section 9.2.8.

Initialization of the outgoing PT structure of (ext) M Recall from Section 3.2.3 that the GCM boundary Σ * comes together with a null frame, as well as scalar functions (u, r, θ) all defined on Σ * . Also, recall the definition of the 1-form f 0 on Σ * , see Definition 5.6.1,

(f 0 ) 1 = 0, (f 0 ) 2 = sin θ, on S * , ∇ ν f 0 = 0 on Σ * ,
where, on S * , we consider the orthonormal basis (e 1 , e 2 ) of S * given by (5.6.1).

Next, recall that the outgoing PT structure of (ext) M is initialized on Σ * . In view of Lemma 9.1.3, it suffices to prescribe the corresponding outgoing PT initial data set, as in Definition 9.1.2, on Σ * . We make the following choice of outgoing PT initial data set {(e 3 , e 4 , H), r, θ, J} on Σ * :

1. The frame (e 1 , e 2 , e 3 , e 4 ), consisting of the null pair (e 3 , e 4 ) and the horizontal structure H, is obtained from the null frame attached to Σ * by the change of frame formula with frame coefficients (f, f , λ) given by

λ = 1, f = a r f 0 , f = aΥ r f 0 . (9.1.5) 
2. The functions (r, θ) coincide on Σ * with the ones of Σ * .

3. The complex horizontal 1-form J is given on Σ * by

J = 1 r (f 0 + i * f 0 ). (9.1.6)
Remark 9.1.9. Let ( f , f , λ) denote the coefficients involved in the initialization of the outgoing PG frame of (ext) M on Σ * , i.e. corresponding to the change from the frame of Σ * to the outgoing PG frame of (ext) M. Recall from Section 3.2.5 that

( f , f , λ) is given on Σ * by λ = 1, f = a r f 0 , f = - (ν(r) -b * ) 1 -1 4 b * a 2 (sin θ) 2 r 2 a r f 0 .
Note in particular that λ = λ and f = f , but f = f so that the outgoing PG frame and the outgoing PT frame of (ext) M are initialized differently on Σ * . Indeed, the initialization used for the PG frame on Σ * would lead to a loss of one derivative and hence cannot be used for the PT frame.

Initialization of the ingoing PT structure of (int) M

Recall that the ingoing PT structure of (int) M is initialized on the timelike hypersurface T . We denote by {(e 3 , e 4 , H), r, θ, J} the outgoing PT initial data set induced by the outgoing PT structure of (ext) M on T = {r = r 0 }. In view of Lemma 9.1.6, it suffices to prescribe the ingoing PT initial data set, as in Definition 9.1.5, corresponding to the PT structure of (int) M on T . We make the following choice of ingoing PT initial data set {(e 3 , e 4 , H ), r , θ , J } on T :

1. The frame (e 2. The functions (r , θ ) coincide on {u = u * } with the functions (r, θ).

3. The complex horizontal 1-form J coincides on {u = u * } with the complex horizontal 1-form J. r2 + a 2 r2 -2mr + a 2 dr. Definition 9.1.11. We define (top) M ⊂ M to be the region covered by the maximally extended 3 ingoing PT structure initialized on {u = u * } by the outgoing PT structure of (ext) M as above.

Remark 9.1.12. Since u * -5 ≤ u * ≤ u * -4, note that (top) M includes (top) M, as well as a small portion of (int) M, (int) M and (ext) M. 9.2 Outgoing PT structure of (ext) M 9.2.1 Null structure equations for the PT frame of (ext) M We recall below Proposition 2.8.4 for outgoing PT structures which applies in particular to the outgoing PT structure of (ext) M. Proposition 9.2.1. Consider an outgoing PT structure. Then, the equations in the e 4 direction for the Ricci coefficients of the outgoing PT frame take the form

∇ 4 trX + 1 2 (trX) 2 = - 1 2 X • X, ∇ 4 X + (trX) X = -A, ∇ 4 trX + 1 2 trXtrX = -D • aq |q| 2 J + a 2 |q| 2 |J| 2 + 2P - 1 2 X • X, ∇ 4 X + 1 2 trX X = -D ⊗ aq |q| 2 J + a 2 (q) 2 |q| 4 J ⊗J - 1 2 trX X, ∇ 4 Z + 1 2 trXZ = - 1 2 trX aq |q| 2 J - 1 2 X • Z + aq |q| 2 J -B, ∇ 4 Ξ = -∇ 3 aq |q| 2 J - 1 2 trX aq |q| 2 J + H - 1 2 X • aq |q| 2 J + H -B, ∇ 4 H = - 1 2 trX H + aq |q| 2 J - 1 2 X • H + aq |q| 2 J -B, ∇ 4 ω = η + aq |q| 2 J • ζ + η • aq |q| 2 J + ρ.
9.2.2 Other transport equations in the e 4 direction Lemma 9.2.2. We have Proof. Straightforward verification.

∇ 4 D cos θ + 1 2 trXD cos θ = - 1 2 X • D cos θ, ∇ 4 Dr + 1 2 trXDr = - 1 2 X • Dr + (Z + H), ∇ 4 Du + 1 2 trXDu = - 1 2 X • Du,

Linearized quantities for the outgoing PT frame

Recall the definition of the linearized quantities in the PT frame, see Definition 2.8.6.

Definition 9.2.3. We consider the following renormalizations, for given constants (a, m), 1. The set Γ g with Γ g = } trX, X, q Z, } trX, r -1 ∇(r), r q P , rB, rA . (9.2.4)

} trX := trX - 2 q , } trX := trX + 2q∆ |q| 4 , q Z := Z - aq |q| 2 J, q H := H - aq |q| 2 J, q ω := ω - 1 2 ∂ r ∆ |q| 2 , q P := P + 2m q 3 , (9.2 
2. The set Γ b = Γ b,1 ∪ Γ b,2 ∪ Γ b,3 with Γ b,1 = q H, X, q ω, Ξ, rB, A , Γ b,2 = r -1 ẽ3 (r), D(cos θ), e 3 (cos θ), | Du, r -1 ẽ3 (u) , Γ b,3 = r D • J, r D ⊗J, r } ∇ 3 J .
(9.2.5)

Linearized equations for outgoing PT structures

Recall the convention O(r -p ) introduced earlier in Definition 6.1.3.

Definition 9.2.5 (Order of magnitude notation). Throughout this chapter, we will be using the notation O(r -p ) to denote: The following proposition provides the linearized null structure equations for the outgoing PT frame of (ext) M.

Proposition 9.2.6. In an outgoing PT frame, the linearized null structure equations in the e 4 direction are

∇ 4 } trX + 2 q } trX = Γ g • Γ g , ∇ 4 X + 2 q X = -A + Γ g • Γ g , ∇ 4 q Z + 1 q q Z = - aq |q| 2 } trXJ - aq |q| 2 J • X -B + Γ g • Γ g , ∇ 4 q H + 1 q q H = - ar |q| 2 } trXJ - ar |q| 2 J • X -B + Γ b • Γ g , ∇ 4 q ω = q P + ar |q| 2 J • q Z + 2a |q| 2 qJ • q H + Γ g • Γ g , ∇ 4 } trX + 1 q } trX = 2 q P + q∆ |q| 4 } trX - aq |q| 2 D • J + a q 2 D(r) • J - ia 2 q 2 D(cos θ) • J + Γ b • Γ g , ∇ 4 X + 1 q X = - aq |q| 2 D ⊗J + a q 2 D(r) ⊗J + ia 2 q 2 D(cos θ) ⊗J + q∆ |q| 4 X + Γ b • Γ g , ∇ 4 Ξ = q∆ |q| 4 q H - ar |q| 2 } trXJ - ar |q| 2 J • X -B - aq |q| 2 } ∇ 3 J + a q 2 ẽ3 (r) + iae 3 (cos θ) J + Γ b • Γ b .
Proof. See appendix D.1. Compare also with the proof of Lemma 6.1.15 in the outgoing PG frame.

Remark 9.2.7. Note that the equations for ∇ 4 } trX, ∇ 4 X, and ∇ 4 Ξ in Proposition 9.2.6 do not lose derivative, unlike the corresponding ones in the outgoing PG frame (compare with Lemma 6.1.15).

Other linearized equations

The following lemma follows immediately from Lemma 9.2.2, the definition of the linearized quantities, and the definition of Γ g and Γ b . Lemma 9.2.8. We have

∇ 4 D cos θ + 1 q D cos θ = O(r -1 ) } trX + i 2 J • X + Γ b • Γ g , ∇ 4 Dr + 1 q Dr = q Z + rΓ g • Γ g , ∇ 4 | Du + 1 q | Du = O(r -1 ) } trX - a 2 J • X + Γ b • Γ g , and 
e 4 (e 3 (cos θ)) = -J • q H - 2ar |q| 2 J • D(cos θ) + Γ b • Γ b , e 4 ( ẽ3 (r)) = -2q ω - 2ar |q| 2 J • Dr + rΓ b • Γ g , e 4 ( ẽ3 (u)) = -aJ • q H - 2ar |q| 2 J • | Du + Γ b • Γ b .
Proof. Straightforward verification. Compare it also with the proof of Lemma 6.1.16.

Lemma 9.2.9. We have

∇ 4 D ⊗J + 2 q D ⊗J = O(r -1 )B + O(r -2 ) } trX + O(r -2 ) X +O(r -2 ) q Z + O(r -3 ) D(cos θ), ∇ 4 D • J + 2 q D • J = O(r -1 )B + O(r -2 ) } trX + O(r -2 ) X + O(r -2 ) q Z +O(r -3 ) D(cos θ), ∇ 4 } ∇ 3 J + 1 q } ∇ 3 J = O(r -1 ) q P + O(r -3 ) ẽ3 (r) + O(r -3 )e 3 (cos θ) + O(r -2 )q ω +O(r -2 ) q H + O(r -2 ) | ∇J.
Proof. Straightforward verification 4 . Compare it also with the proof of Lemma 6.1.17.

Remark 9.2.10 (Triangular structure of the main equations). We can order the linearized quantities appearing in the equations of Proposition 9.2.6, Lemma 9.2.8 and Lemma 9.2.9 as follows

} trX, X, q Z, q H, D cos θ, q ω, Dr, | Du, e 3 (cos θ), ẽ3 (r), ẽ3 (u), D ⊗J, D • J, } ∇ 3 J, } trX, X, Ξ,
and note that the transport equation for each one of them depends5 only on the previous components of the sequence. This triangular structure is essential for estimating the terms one by one. This crucial fact will be used in Section 9.8 to estimate the Ricci coefficients of the PT frame of (ext) M.

Comparison between the PT and PG structures of (ext) M

The following lemma compares the outgoing PG and PT structures of (ext) M.

Lemma 9.2.11. Let {(e 3 , e 4 , H), r, θ, J} denote the extended outgoing PG structure of (ext) M, and let {(e 3 , e 4 , F ), r , θ , J } denote the extended outgoing PT structure of (ext) M. Also, let (f, f , λ) denote the transition coefficients from the PG frame to the PT one.

Then, the following identities hold in (ext) M:

1. We have f = 0 and λ = 1. In particular, we have

e 4 = e 4 .
2. We have

u = u, r = r, θ = θ, J = J.
3. Let (f , f , λ ) denote the transition coefficients from the PT frame to the PG one. Then, we have

λ = 1, f = 0, f = -f .
4. We have, in view of Definition 2.6.6 for linearized outgoing PG quantities,

∇ 4 f = 2 q ζ.
5. With the notation F = f + i * f , we have, in view of Definition 9.2.3 for linearized outgoing PT quantities,

∇ 4 F + 1 2 trX F = -2 q Z -F • χ .
Proof. See Section D.2.

9.2.8

The choice of the constant u * Recall from Section 9.1.3 that the ingoing PT structure of (top) M in initialized from the outgoing PT structure of (ext) M on the hypersurface {u = u * } of (ext) M for u * ∈ [u * -5, u * -4]. We are now ready to make a specific choice of u * . First, we introduce the following notation

q R 2 w,k := r 3+δ B |d ≤k * (A, B)| 2 + r 3-δ B |d ≤k * q P | 2 + r 1-δ B |d ≤k * B| 2 , q Γ 2 w,k := r 2 | d / ≤k Γ g | 2 + | d / ≤k Γ b | 2 , (9.2.6) 
where (A, B, q P , B) denote linearized curvature components w.r.t. the the outgoing PT frame of (ext) M, Γ g and Γ b are defined w.r.t. the outgoing PT frame of (ext) M as in Definition 9.2.4, d * denote weighted derivatives tangential to the hypersurface {u = u * }, and d

/ denote weighted derivatives tangential to the sphere Σ * ∩ {u = u * }.

With the notations in (9.2.6), we choose u * such that we have

{u=u * } q R 2 w,k large +7 + Σ * ∩{u=u * } q Γ 2 w,k large +7 = inf u * -5≤u 1 ≤u * -4 {u=u 1 } q R 2 w,k large +7 + Σ * ∩{u=u 1 } q Γ 2 w,k large +7 . (9.2.7) 
9.3 Ingoing PT structures of (int) M and (top) M

Linearized quantities in an ingoing PT frame

Given an extended ingoing PT structure {(e 3 , e 4 , H), r, θ, u, J} hold true:

1. We have

ξ = ω = 0, e 3 (r) = -1, e 3 (u) = e 3 (θ) = 0, ∇ 3 (qJ) = 0.
In addition, we have

H = aq |q| 2 J.
2. The quantities X, X, Ξ, A, B, B, A, Dr, e 4 (cos θ), D ⊗J, vanish in Kerr and therefore are small in perturbations.

Main linearized equations for ingoing PT structures

Proposition 9.3.3. In an ingoing PT frame, the linearized null structure equations in the e 3 direction are

∇ 3 ( } trX) - 2 q } trX = Γ b • Γ b , ∇ 3 X - 2r |q| 2 X = -A + Γ b • Γ b , ∇ 3 q Z - 1 q q Z = -B + O(r -2 ) X + O(r -2 ) } trX + Γ b • Γ g , ∇ 3 | H - 1 q | H = B + O(r -2 ) X + O(r -2 ) } trX + Γ b • Γ g , ∇ 3 } trX - 1 q } trX = 2 q P + O(r -1 ) } trX + O(r -1 ) D • J + O(r -3 )Dr + O(r -3 ) D(cos θ) + Γ b • Γ g , ∇ 3 X - 1 q X = O(r -1 )D ⊗J + O(r -4 ) D(cos θ) + O(r -1 ) X + Γ b • Γ g , ∇ 3 q ω = ( q P ) + O(r -2 ) q Z + O(r -2 ) | H + Γ b • Γ g , ∇ 3 Ξ = O(r -1 ) | H + O(r -2 ) } trX + O(r -2 ) X + B + O(r -1 ) } ∇ 4 J + O(r -3 ) ẽ4 (r) + O(r -3 )e 4 (cos θ) + Γ b • Γ g .
Also, we have

∇ 3 D cos θ - 1 q D cos θ = O(r -1 ) } trX + O(r -1 ) X + Γ b • Γ b , ∇ 3 Dr - 1 q Dr = q Z + rΓ b • Γ g , ∇ 3 | Du - 1 q | Du = O(r -1 ) } trX + O(r -1 ) X + Γ b • Γ b , e 3 (e 4 (cos θ)) = O(r -1 ) | H + O(r -2 ) D(cos θ) + Γ g • Γ g , e 3 ( ẽ4 (r)) = -2q ω + O(r -2 )Dr + rΓ g • Γ g , e 3 ( ẽ4 (u)) = O(r -1 ) | H + O(r -2 ) | Du + Γ g • Γ g , ∇ 3 D ⊗J - 2 q D ⊗J = O(r -1 )B + O(r -2 ) } trX + O(r -2 ) X + O(r -2 ) q Z +O(r -3 ) D(cos θ), ∇ 3 D • J - 2 q D • J = O(r -1 )B + O(r -2 ) } trX + O(r -2 ) X + O(r -2 ) q Z +O(r -3 ) D(cos θ), ∇ 3 } ∇ 4 J - 1 q } ∇ 4 J = O(r -1 ) q P + O(r -3 ) ẽ4 (r) + O(r -3 )e 4 (cos θ) + O(r -2 )q ω +O(r -2 ) | H + O(r -2 ) | ∇J.
Proof In order to deal with the trapping in the region (int) M , we will need additional equations provided in the proposition below.

Proposition 9.3.4. In the ingoing PT structure of (int) M , the linearized Codazzi of X takes the following schematic form7 

D • X = D } trX + Γ b + Γ b • Γ b .
Also, we can write the Bianchi identities in (int) M schematically in the form

∇ 3 A - 1 2 D ⊗B = Γ b + Γ b • Γ b , ∇ 4 B - 1 2 D • A = Γ b + Γ b • Γ b , ∇ 3 B -D q P = Γ b + Γ b • Γ b , ∇ 4 P - 1 2 D • B = Γ b + Γ b • Γ b , ∇ 3 P + 1 2 D • B = Γ b + Γ b • Γ b , ∇ 4 B + D q P = Γ b + Γ b • Γ b , ∇ 3 B + 1 2 D • A = Γ b + Γ b • Γ b , ∇ 4 A + 1 2 D ⊗B = Γ b + Γ b • Γ b .

The scalar function τ on M

We introduce on M a scalar function τ with the following properties.

Proposition 9.3.5. There exists a scalar function τ defined on M such that:

1. We have on M g(Dτ, Dτ ) ≤ -m 2 8r 2 , (9.3.6) so that the level sets of τ are spacelike and asymptotically null.

2. The future boundary (top) Σ of M is given by

(top) Σ = {τ = u * } (9.3.7)
and τ ≤ u * on M. 

k := Σ * r 2 d ≤k ( X, } trX, q Z, } trX) 2 + d ≤k ( X, q H, q ω, Ξ) 2 + Σ * d ≤k D cos θ 2 + d ≤k Dr 2 + d ≤k e 3 (cos θ) 2 + r -2 d ≤k ẽ3 (r) 2 + Σ * r 2 d ≤k D ⊗J| 2 + d ≤k D • J 2 + d ≤k } ∇ 3 J 2 + Σ * d ≤k * b * + 1 + 2m r + d ≤k * (ν(r) + 2) , (9.4.1) 
where } trX, X, q Z, q H, } trX, X, q ω, Ξ are the linearized Ricci coefficients of the outgoing PT frame of (ext) where A, B, q P , B, A denote the linearized curvature components relative to the outgoing PT frame of (ext) M.

Norms of (ext) M Definition 9.4.3. We define the following norms for the PT-Ricci coefficients of (ext) M (ext) G 2 k := sup

λ≥r 0 r=λ r 2 d ≤k ( X, } trX, q Z) 2 + r 2-δ B |d ≤k } trX| 2 + d ≤k ( X, q H, q ω) 2 + r -δ B |d ≤k Ξ| 2 + sup λ≥r 0 r=λ d ≤k D cos θ 2 + d ≤k Dr 2 + d ≤k e 3 (cos θ) 2 + r -2 d ≤k ẽ3 (r) 2 + sup r≥r 0 r=λ r 2 d ≤k D ⊗J| 2 + d ≤k D • J 2 + d ≤k } ∇ 3 J 2 , (9.4.3)
where } trX, X, q Z, q H, } trX, X, q ω, Ξ are the linearized Ricci coefficients of the outgoing PT frame of (ext) M. Definition 9.4.4. We define the following norms for the PT curvature coefficients in

(ext) M (ext) R 2 k := (ext) M r 3+δ B |d ≤k (A, B)| 2 + r 3-δ B |d ≤k q P | 2 + r -2 |d ≤k B| 2 + r -4 |d ≤k A| 2 , (9.4.4) 
where A, B, q P , B, A denote the linearized curvature components relative to the outgoing PT frame of (ext) M.

Norms of (int) M

Recall that r ≤ r 0 on (int) M . We thus discard r-weights in the Ricci and curvature norms of (int) M introduced below. Definition 9.4.5. We define the following norms for the PT-Ricci coefficients of (int) M

(int) G 2 k := (int) M d ≤k q Γ 2 ,
where q Γ denotes the set of all linearized Ricci and metric coefficients with respect to the ingoing PT frame of (int) M , i.e. q Γ := } trX, X, q Z, | H, D cos θ, q ω, Dr, | Du, e 4 (cos θ), ẽ4 (r), ẽ4 (u), D • J, D ⊗J, } ∇ 4 J, } trX, X, Ξ .

For the curvature norms in (int) M , we rely in particular on the scalar function τ introduced in Section 9.3.4. We also introduce the following vectorfield11 in (int) M R := 1 2

|q| 2 r 2 + a 2 e 4 - ∆ r 2 + a 2 e 3 .
(9.4.5) Definition 9.4.6. We define the following norms for the curvature coefficients in (int) M

(int) R 2 k = (int) M ∇ R d ≤k-1 q R 2 + |d ≤k-1 q R| 2 + sup τ (int) M ∩Σ(τ ) |d ≤k q R| 2 ,
where q R = {A, B, q P , B, A} is the set of all linearized curvature coefficients w.r.t. the ingoing PT frame of (int) M . The derivative ∇ R is taken with respect to the vectorfield R defined in (9.4.5).

Global norms

We define the global norms for the PT frames of M as follows

G k = G k + (ext) G k + (int) G k + (top) G, R k = R k + (ext) R k + (int) R k + (top) R.
(9.4.10)

Initial data norms

Given u, u defined respectively relative to the outgoing PT frame of (ext) M and the ingoing PT frame of (int) M , we define

B 1 := u = 1 , B 1 := u = 1 . (9.4.11)
Definition 9.4.9. We define the following initial data norms on B 1 ∪ B 1

(P T -ext) I k := sup S⊂B 1 r 5 2 +δ B d k (ext) A L 2 (S) + d k (ext) B L 2 (S) + sup S⊂B 1 r 2 d k (ext) q P L 2 (S) + r d k (ext) B L 2 (S) + d k (ext) A L 2 (S)
,

(P T -int) I k := sup S⊂B 1 d k (int) A L 2 (S) + d k (int) B L 2 (S) + sup S⊂B 1 d k (int) q P L 2 (S) + r d k (int) B L 2 (S) + d k (int) A L 2 (S) , (9.4.12) 
where the linearized curvature components are taken respectively w.r.t. the outgoing PT frame of (ext) M on B 1 and the ingoing PT frame of (int) M on B 1 . We also set 

Statement of the Main PT-Theorem

We are now ready to state the main result of this chapter on the control of the PT structures of M.

Theorem 9.4.10 (Main PT-Theorem). Consider a GCM admissible spacetime verifying the initial data assumptions of the Main Theorem in Section 3.4.3, i.e.

I k large +10 ≤ 0 , (ext) I 3 ≤ 2 0 .
Then, relative to the global norms defined in Section 9.4.1 for the PT frames of M, we have the following bounds 

G k + R k 0 , k ≤ k large + 7. ( 9 

Proof of Theorem M8

Using Theorem 9.4.10, we are ready to prove Theorem M8, stated in Section 3.7.2. We proceed in several steps.

Step 1. Let (f, f , λ) denote the transition coefficients corresponding to the change from the outgoing PT frame of (ext) M to the outgoing PG frame of (ext) M. Also, we denote the quantities corresponding to the outgoing PT frame without primes, and the quantities corresponding to the outgoing PG frame with primes. In view of Lemma 9.2.11, the following identities hold in (ext) M:

1. We have f = 0 and λ = 1. In particular, we have

e 4 = e 4 .
2. We have r = r, θ = θ, q = q, J = J.

3. With the notation F = f + i * f , we have

∇ 4 F + 1 2 trXF = -2 q Z -F • χ.
Also, note from the initialization of the outgoing PG frame of (ext) M on Σ * of Section 3.2.5, and the initialization of the outgoing PT frame of (ext) M on Σ * of Section 9.1.3, that we have on Σ

* f = - (ν(r) -b * ) 1 -1 4 b * a 2 (sin θ) 2 r 2 a r f 0 - aΥ r f 0 . We infer on Σ * f = - a r (ν(r) + 2) -b * + 1 + 2m r 1 -1 4 b * a 2 (sin θ) 2 r 2 + O(r -2 ) f 0 . (9.4.15)
Step 2. We first control the L 2 (Σ * ) norm of q H on Σ * as this quantity is part of the boundedness norm for the outgoing PG frame of (ext) M, see (3.3.13). In view of the transformation formula for η in Proposition 2.2.3, together with the fact that f = 0 and λ = 1, we have

η = η + 1 4 f tr χ - 1 4 * f (a) trχ + 1 2 f • χ.
Since r = r, θ = θ, q = q, and J = J in (ext) M, we infer

q η = q η + 1 4 f tr χ - 1 4 * f (a) trχ + 1 2 f • χ
and hence

d ≤k q H L 2 (Σ * ) d ≤k q H L 2 (Σ * ) + d ≤k f tr χ, (a) trχ, χ L 2 (Σ * ) .
Together with the control of the PT frames provided by Theorem 9.4.10, we infer

d ≤k large +7 q H L 2 (Σ * ) 0 + r -1 d ≤k large +7 f L 2 (Σ * ) .
Using the formula for f on Σ * of Step 1, and using again the control of the PT frames provided by Theorem 9.4.10, we obtain

d ≤k large +7 q H L 2 (Σ * ) 0 + d ≤k large +7 O(r -3 ) L 2 (Σ * ) .
In view of the dominance condition (3.4.5) for r on Σ * , we deduce

d ≤k large +7 q H L 2 (Σ * ) 0 (9.4.16)
which yields the desired behavior for q H on Σ * .

Step 3. The remaining estimates for the PG frames of M being all in sup norm, we first derive sup norms estimates for the PT frames of M. In view of the control of the PT frames provided by Theorem 9.4.10, together with Sobolev and the trace theorem, we obtain, for k ≤ k large + 4, sup 9.4.17) where in each case, (Γ g , Γ b ) is defined w.r.t. the linearized quantities in the PT frame of the corresponding region.

(ext) M r 2 |d ≤k Γ g | + r|d ≤k Γ b | + r 7 2 + δ B 2 |d ≤k A| + |d ≤k B| + sup (top) M r 2 |d ≤k Γ g | + r|d ≤k Γ b | + r 7 2 + δ B 2 |d ≤k A| + |d ≤k B| + sup (int) M |d ≤k Γ g | + |d ≤k Γ b | 0 , ( 
Remark 9.4.11. In view of the definition of (ext) G k and (top) G k , (9.4.17) holds a priori only for Γ g \ { } trX} and Γ b \ {Ξ}, while } trX and Ξ satisfy a priori the following weaker estimates (in terms of powers of r) in (ext) M and (top) M, for k ≤ k large + 4, sup

(ext) M r 2-δ B 2 |d ≤k } trX| + r 1-δ B 2 |d ≤k Ξ| + sup (top) M r 2-δ B 2 |d ≤k } trX| 0 .
To recover the claimed estimates for } trX and Ξ of (9.4.17) in (ext) M, it suffices to integrate the transport equations for ∇ 4 } trX and ∇ 4 Ξ of Proposition 9.2.6, using the control provided by (9.4.17) for Γ g \ { } trX} and Γ b \ {Ξ} for the RHS, and the control of } trX and Ξ on Σ * (which has no loss in r). Finally, integrating along the e 3 direction in (top) M the equation for ∇ 3 } trX yields the desired claim (9.4.17) also for } trX in (top) M so that (9.4.17) indeed holds true.

We will also need a sharper estimate for q Z on (ext) M. Recall from Proposition 9.2.6 that q Z, in the outgoing PT frame of (ext) M, satisfies on

(ext) M ∇ 4 q Z + 1 q q Z = - aq |q| 2 } trXJ - aq |q| 2 J • X -B + Γ g • Γ g .
We infer from the above control, on Σ * ,

d ≤k large +4 (q q Z) 0 r 5 2 
.

Integrating from Σ * , we infer the following improved bound on (ext) M

d ≤k large +4 q Z 0 r 2 * + 0 r 5 2 
.

(9.4.18)

Step 4. Next, we estimate f on (ext) M. First, in view of the identity for f derived on Σ * in Step 1, together with the control of Step 3 for the PT frame of (ext) M, and the dominant condition for r on Σ * , we have sup

Σ * r|d ≤k large +4 f | 0 .
Also, recall from Step 1 the following transport equation on

(ext) M ∇ 4 F + 1 2 trXF = -2 q Z -F • χ,
where F = f + i * f . Together with the control of the PT frames provided by Step 3, we infer

∇ 4 F + 1 2 trXF = -2 q Z -F • χ.
In view of the bounds provided by Step 3 for the outgoing PT frame of (ext) M, using in particular the improved bound for q Z, we infer, on (ext) M,

d ≤k large +4 ∇ 4 (qF ) = 0 r * + 0 r 3 2 + 0 r 2 d ≤k large +4 (qF ) .
Integrating from Σ * , and using the above control for f on Σ * , we infer, for 0 small enough, 2. The fact that λ = 1, f = 0, and f is controlled on (ext) M in Step 4, where (f, f , λ) denote the transition coefficients corresponding to the change from the outgoing PT frame of (ext) M to the outgoing PG frame of (ext) M.

d ≤k large +4 F r * -r rr * 0 + 0 r 3 
3. The initialization of the ingoing PG frame of (top) M from the ingoing PG frame of (ext) M in Section 3.2.5. Next, using the analog of Corollary 2.2.5 for ingoing foliations, and the fact that both the ingoing PT frame of (top) M and the ingoing PG frame of (top) M verify ξ = ω = 0, we obtain the following transport equations

∇ λ -1 e 3 F + 1 2 trX F = -χ • F + E 1 (f , Γ), λ -1 ∇ 3 (log λ ) = f • (-ζ -η) + E 2 (f , Γ),
where F = f +i * f , and where the Ricci coefficients appearing are the ones of the ingoing PT frame of (top) M . Integrating both transport equations from {u = u * } starting with the one for f , using the control of the ingoing PT frame of (top) M provided by Step 3, and the above control for (f , λ ) on {u = u * }, we obtain sup

(top) M r d ≤k large +4 (f , log(λ )) 0 .
Also, using again the analog of Corollary 2.2.5 for ingoing foliation, we have

∇ λ -1 e 3 F + 1 2 trXF = -2(H -Z) + 2D (log λ ) + 2ωF + E 3 (∇ ≤1 f , f , Γ, λ -1 χ ),
where F = f + i * f , and where the Ricci coefficients appearing are the ones of the ingoing PT frame of (top) M . Now, we have Z -H = q Z in view of the fact that H = aq |q| 2 J for ingoing PT foliations, and hence

∇ λ -1 e 3 F + 1 2 trXF = -2 q Z + 2D (log λ ) + 2ωF + E 3 (∇ ≤1 f , f , Γ, λ -1 χ ).
Integrating the transport equations from {u = u * }, using the control of the ingoing PT frame of (top) M provided by Step 3, the above control of (f , λ ) on (top) M, and the above control for f on {u = u * }, we obtain sup

(top) M r d ≤k large +3 f 0 .
Step 6. We are now ready to conclude the proof of Theorem M8. First, let (f , f , λ ) denote the transition coefficients corresponding to the change from the ingoing PT frame of (int) M to the ingoing PG frame of (int) M. Starting from the timelike hypersurface 

(ext) M r 2 |d ≤k Γ g | + r|d ≤k Γ b | + r 7 2 + δ B 2 |d ≤k A | + |d ≤k B | + sup (top) M r 2 |d ≤k Γ g | + r|d ≤k Γ b | + r 7 2 + δ B 2 |d ≤k A | + |d ≤k B | + sup (int) M |d ≤k Γ g | + |d ≤k Γ b | 0 + sup (ext) M
r d ≤k+1 r -r, cos(θ ) -cos(θ), q -q, r(J -J)

+ sup (top) M
r d ≤k+1 r -r, cos(θ ) -cos(θ), q -q, r(J -J)

+ sup

(int) M d ≤k+1 r -r, cos(θ ) -cos(θ), q -q, J -J where in each case, (Γ g , Γ b ) is defined w.r.t. the linearized quantities in the PG frame of the corresponding region, and r -r, cos(θ ) -cos(θ), q -q and J -J correspond to the difference between the un-primed quantity in the PT frame and the primed quantity in the PG frame of the corresponding region. In view of the definition of the combined sup norm N (Sup) k

for the PG structures of (ext) M, (int) M and (top) M, see Section 3.3.5, and using also the estimate for q H on Σ * derived in Step 2, this yields

N (Sup) k large +2 0 + sup (ext) M
r d ≤k large +3 r -r, cos(θ ) -cos(θ), q -q, r(J -J)

+ sup (top) M
r d ≤k large +3 r -r, cos(θ ) -cos(θ), q -q, r(J -J)

+ sup (int) M
d ≤k large +3 r -r, cos(θ ) -cos(θ), q -q, J -J .

Next, recall from

Step 1 that we have on (ext) M r = r, θ = θ, q = q, J = J.

Hence, we obtain

N (Sup) k large +2 0 + sup (top) M
r d ≤k large +3 r -r, cos(θ ) -cos(θ), q -q, r(J -J)

+ sup (int) M
d ≤k large +3 r -r, cos(θ ) -cos(θ), q -q, J -J .

It thus remains to control the quantities r -r, cos(θ ) -cos(θ), q -q and J -J on (top) M and (int) M. Denoting in each region by (e 1 , e 2 , e 3 , e 4 ) the corresponding ingoing PG frame, and by (e 1 , e 2 , e 3 , e 4 ) the corresponding ingoing PT frame, we have

e 3 (r) = -1, e 3 (θ) = 0, e 3 (q) = -1, ∇ 3 (qJ) = 0, e 3 (r ) = -1, e 3 (θ ) = 0, e 3 (q ) = -1, ∇ 3 (q J ) = 0.
Expressing e 3 on the frame (e 1 , e 2 , e 3 , e 4 ) using the fame transformation formulas, using the control of (f , f , λ ) on (top) M in Step 5, and the above control of (f , f , λ ) on (int) M, we easily infer sup

(top) M
r d ≤k large +3 e 3 (r -r), e 3 (cos(θ ) -cos(θ)), e 3 (q -q), ∇ 3 (q (J -J))

+ sup

(int) M d ≤k large +3 e 3 (r -r), e 3 (cos(θ ) -cos(θ)), e 3 (q -q), ∇ 3 (q (J -J)) 0 .

Together with the fact that we have on (ext) M r = r, θ = θ, q = q, J = J, we infer, integrating the transport equations in e 3 from (ext) M ∩ (top

) M = {u = u * } to (top) M and from (ext) M ∩ (int) M = {r = r 0 } to (int) M, sup (top) M
r d ≤k large +3 r -r, cos(θ ) -cos(θ), q -q, r(J -J)

+ sup (int) M d ≤k large +3 r -r, cos(θ ) -cos(θ), q -q, J -J 0 .
Plugging in the above, we deduce

N (Sup) k large +2 0
as desired. This concludes the proof of Theorem M8.

(b) We have r = r, θ = θ, q = q, J = J. 

where we used in particular the fact that r 1+ δ dec 2 u 1+ 3δ dec 4 |d ≤k small q ζ| 0 .

3. Next, let (f , f , λ ) denote the transition coefficients corresponding to the change from the ingoing PG frame of (top) M to the ingoing PT frame of (top) M . As in

Step 5 of the proof of Theorem M8 in Section 9.4.3, we control (f , f , λ ). We now rely on the analog for ingoing PT structures of the transport equations of Corollary 2.8.8. Note that these transport equations do not lose derivatives 14 and we obtain sup 14 Unlike their analogs for PG structures in Corollary 2.2.5.

As in

Step 6 of the proof of Theorem M8 in Section 9.4.3, we then rely on the above control of the various change of frame coefficients, the above control of the PG structures of M, and the change of frame formulas of Proposition 2.2.3 to infer, for k ≤ k small -1, sup

(ext) M∪ (top) M (r≥r 0 ) ru 1 2 +δ dec + u 1+ 3δ dec 4 |d ≤k Γ g | + ru 1+ 3δ dec 4 |d ≤k Γ b | + sup (top) M (r≤r 0 )∪ (int) M u 1+ 3δ dec 4 |d ≤k Γ g | + |d ≤k Γ b | 0 , (9.4.32) 
where in each case, (Γ g , Γ b ) is defined w.r.t. the linearized quantities in the PT frame of the corresponding region. The weights in r, u and u are enough to take care of the spacetime integrations in the global norms defined in Section 9.4.1 for the PT frames of M, and we finally obtain the following desired bounds for the PT frames of M .4.33) This concludes the proof of Lemma 9.4.13.

G k small -1 + R k small -1 0 . ( 9 

Iterative procedure for the proof of the Main PT-Theorem

First, recall our bootstrap assumptions BA-PT which are assumed throughout the proof of Theorem 9.4.10

G k large +7 + R k large +7 ≤ . (9.4.34)
For J in the range k small -1 ≤ J ≤ k large + 5, we also make the following iteration assumption

G J + R J 0 + L * (J), (9.4.35) 
with L * (k) given by

L 2 * (k) := L 2 * (k, u * ) = {u=u * } q R 2 w,k + Σ * ∩{u=u * } q Γ 2 w,k (9.4.36) 
where we recall the notation (9.2.6)

q R 2 w,k := r 3+δ B |d ≤k * (A, B)| 2 + r 3-δ B |d ≤k * q P | 2 + r 1-δ B |d ≤k * B| 2 , q Γ 2 w,k := r 2 | d / ≤k Γ g | 2 + | d / ≤k Γ b | 2 .
(9.4.37)

In (9.4.37), (A, B, q P , B) denote linearized curvature components w.r.t. the the outgoing PT frame of (ext) M, Γ g and Γ b are defined w.r.t. the outgoing PT frame of (ext) M as in Definition 9. G k small -1 + R k small -1 0 , (9.4.35) holds for J = k small -1.

We now state the main sequence of estimates which will allow us to prove Theorem 9.4.12 in the next section.

Theorem 9.4.15. Let J such that k small -1 ≤ J ≤ k large + 6. Under the iteration assumption (9.4.35), we have the following estimate in M for the global PT curvature norm of Section 9.4.1 where the constant in is independent of r 0 and where J := G J + R J .

R J+1 r - δ B 2 0 (top) G ≥r 0 J+1 + (ext) G J+1 + r 21+δ B 0 J + r 21 2 + δ B 2 0 √ J+1 √ J + 0 + |a|r 3+ δ B 2 0 G J+1 + r
Proof. The proof is given in Section 9.6.

Proposition 9.4.16. Let J such that k small -1 ≤ J ≤ k large + 6. The following estimate holds true on Σ * for the Ricci and metric coefficients of the outgoing PT frame of (ext) M

G J+1 R J+1 + 0 , (9.4.39) 
where the constant in is independent of r 0 .

Proof. The proof is given in Section 9.7, see Proposition 9.7.1.

Proposition 9.4.17. Let J such that k small -1 ≤ J ≤ k large + 6. The following estimates hold true for the Ricci and metric coefficients of the outgoing PT frame of (ext) M

(ext) G J+1 G J+1 + (ext) R J+1 + 0 , (9.4.40)
where the constant in is independent of r 0 .

Proof. We start with the first estimate. In view of Theorem 9.4.15, and Propositions 9.4.16, 9.4.17 and 9.4.19, we have

R J+1 + G J+1 r -δ B 0 (top) G ≥r 0 J+1 + (ext) G J+1 + J+1 and (top) G ≥r 0 J+1 + (ext) G J+1 R J+1 + G J+1 + 0 + L * (J + 1)
where the constant in is independent of r 0 in both inequalities. Plugging the second inequality in the first, we infer

R J+1 + G J+1 r -δ B 0 R J+1 + G J+1 + r -δ B 0 L * (J + 1) + J+1
where the constant in is independent of r 0 . For r 0 large enough, we may absorb the first term on the RHS, and we obtain

R J+1 + G J+1 r -δ B 0 L * (J + 1) + J+1 ,
where the constant in is independent of r 0 , which is the first desired estimate.

Next, we focus on the second estimate of the corollary. In view of Propositions 9.4.16, 9.4.17, 9.4.18 and 9.4.19, we have

G J+1 R J+1 + 0 + L * (J + 1).
Plugging the first estimate of the corollary proved above to control the term R J+1 in the RHS, we infer

G J+1 L * (J + 1) + J+1
which is the second desired estimate. This concludes the proof of Corollary 9.4.20.

End of the proof of the Main PT-Theorem

Step 1. As mentioned in Remark 9.4.14, the estimate (9.4.23) trivially implies the iteration assumption (9.4.35) with J = k small -1.

Step 2. We assume that the iteration assumption (9.4.35) holds for any fixed J such that k small -1 ≤ J ≤ k large + 5, i.e.

G J + R J 0 + L * (J).
Plugging the iteration assumption, for J in the range k small -1 ≤ J ≤ k large + 5, in the estimates of Corollary 9.4.20, we deduce

R J+1 + G J+1 L * (J + 1) + J+1 .
Recalling the definition of J+1 in (9.4.44), we infer

R J+1 + G J+1 0 + G J + R J + L * (J + 1) + |a|r 3+ δ B 2 0 G J+1 0 + L * (J + 1) + |a|r 3+ δ B 2 0 G J+1 ,
and hence, for |a| small enough,

R J+1 + G J+1 0 + L * (J + 1),
where the constant in depends on r 0 . Thus, the iteration assumption (9.4.35) holds for J + 1. This implies that the iteration assumption (9.4.35) holds true for any J in the range k small -1 ≤ J ≤ k large + 6, i.e.

R J + G J 0 + L * (J), k small -1 ≤ J ≤ k large + 6. (9.4.47) 
In particular, we have for J = k large + 6 R k large +6 + G k large +6 0 + L * (k large + 6). (9.4.48)

Step 3. In order to control the term L * (k large + 6) on the RHS of (9.4.48), we rely on the following interpolation lemma.

Lemma 9.4.21. For any k small -1 ≤ k ≤ k large + 7, we have

L * (k) ( 0 + L * (k small -1)) k large +7-k k large +7-(k small -1) ×( 0 + R k large +7 + L * (k large + 7)) k-(k small -1)
k large +7-(k small -1) .

(9.4.49)

Proof. We prove the lemma by iteration. Assume for k small -1 < p ≤ k large + 5 the following iteration assumption

L * (k) ( 0 + L * (k small -1)) p-k p-(k small -1) ( 0 + L * (p)) k-(k small -1) p-(k small -1) , k small -1 ≤ k ≤ p.
The iteration assumption holds trivially in the case p = k small .

Next, assume that the iteration assumption holds for some p in the range k small -1 < p ≤ k large + 5. We now consider whether the iteration assumption holds for p + 1. Recall from (9.4.36) that

L 2 * (p) = {u=u * } q R 2 w,p + Σ * ∩{u=u * } q Γ 2 w,p .
In view of the definition (9.2.6), and noting that q R w,k only involves derivatives tangential to {u = u * }, while q Γ w,k contains only derivatives tangential to Σ * ∩ {u = u * }, we may integrate by parts once, which yields

L 2 * (p) L * (p -1)L * (p + 1) + |B p |,
where the boundary term B p corresponds to a product of curvature terms integrated on the boundary of {u = u * } where one curvature term has p -1 derivatives and the other p derivatives. Using the trace theorem, we easily derive the following estimate

|B p | R p-1 R p R p R p+1 = R p-1 R p R p+1 .
Now, recall from (9.4.47) that we have obtained

R k 0 + L * (k), k ≤ k large + 6.
Since p ≤ k large + 5, we have p + 1 ≤ k large + 6 and we infer

|B p | 0 + L * (p -1)( 0 + L * (p)) 0 + L * (p + 1).
Plugging in the above bound for L 2 * (p), we infer

L 2 * (p) ( 0 + L * (p -1))( 0 + L * (p + 1)).
Also, applying the iteration assumption with k = p -1, we have

L * (p -1) ( 0 + L * (k small -1)) 1 p-(k small -1) ( 0 + L * (p)) p-1-(k small -1) p-(k small -1)
and hence

L 2 * (p) ( 0 + L * (k small -1)) 1 p-(k small -1) ( 0 + L * (p)) p-1-(k small -1)
p-(k small -1) ( 0 + L * (p + 1))

or

L * (p) ( 0 + L * (k small -1)) 1 p+1-(k small -1) ( 0 + L * (p + 1)) p-(k small -1)
p+1-(k small -1) .

Plugging in the iteration assumption, we infer, for any

k small -1 ≤ k ≤ p, L * (k) ( 0 + L * (k small -1)) p-k p-(k small -1) ( 0 + L * (p))
k-(k small -1) p-(k small -1)

( 0 + L * (k small -1)) p+1-k p+1-(k small -1) ( 0 + L * (p + 1)) k-(k small -1) p+1-(k small -1)
which, together with the fact that the case k = p + 1 trivially holds, implies the iteration assumption for p replaced by p + 1. We deduce that the iteration assumption holds true for any k small -1 < p ≤ k large + 6. In particular, for p = k large + 6, we infer that

L * (k) ( 0 + L * (k small -1)) k large +6-k k large +6-(k small -1) ( 0 + L * (k large + 6)) k-(k small -1) k large +6-(k small -1)
for any k small -1 ≤ k ≤ k large + 6.

We still need to go from p = k large + 6 to p = k large + 7. To this end, we proceed as above and obtain

L 2 * (k large + 6) ( 0 + L * (k large + 5))( 0 + L * (k large + 7)) + |B k large +6 | ( 0 + L * (k large + 5))( 0 + L * (k large + 7)) + R k large +5 R k large +6 R k large +7 .
Using (9.4.47) for J = k large + 5 and J = k large + 6, we infer

L 2 * (k large + 6) ( 0 + L * (k large + 5))( 0 + L * (k large + 7)) + 0 + L * (k large + 5) ( 0 + L * (k large + 6)) R k large +7
and hence

L 2 * (k large + 6) ( 0 + L * (k large + 5))( 0 + R k large +7 + L * (k large + 7)).
Then, in view of the above, we infer

L 2 * (k large + 6) ( 0 + L * (k small -1)) 1 k large +6-(k small -1) ×( 0 + L * (k large + 6)) 1- 1 k large +6-(k small -1) ( 0 + R k large +7 + L * (k large + 7)) or (L * (k large + 6)) ( 0 + L * (k small -1)) 1 k large +7-(k small -1) ×( 0 + R k large +7 + L * (k large + 7)) 1- 1 k large +7-(k small -1) .
Plugging in the above, we obtain for any k small -1 ≤ k ≤ k large + 6 1) . This is the stated estimate for k small -1 ≤ k ≤ k large + 6. Since the case k = k large + 7 trivially holds, this concludes the proof of Lemma 9.4.21.

L * (k) ( 0 + L * (k small -1)) k large +6-k k large +6-(k small -1) ( 0 + L * (k large + 6)) k-(k small -1) k large +6-(k small -1) ( 0 + L * (k small -1)) k large +7-k k large +7-(k small -1) ×( 0 + R k large +7 + L * (k large + 7)) k-(k small -1) k large +7-(k small -
Step 4. Applying Lemma 9.4.21 with k = k large + 6, we have

L * (k large + 6) ( 0 + L * (k small -1)) 1 k large +7-(k small -1) ×( 0 + R k large +7 + L * (k large + 7)) 1- 1 k large +7-(k small -1) .
Also, in view of (9.4.23), we have L * (k small -1) 0 and hence L * (k large + 6)

1 k large +7-(k small -1) 0 ( 0 + R k large +7 + L * (k large + 7)) 1- 1 k large +7-(k small -1) .
Plugging in (9.4.48), we deduce 1) .

R k large +6 + G k large +6 0 + L * (k large + 6) 0 + 1 k large +7-(k small -1) 0 ×( 0 + R k large +7 + L * (k large + 7)) 1- 1 k large +7-(k small -
We also use the first estimate of Corollary 9.4.20 with J = k large + 6, i.e.

R k large +7 + G k large +7 r -δ B 0 L * (k large + 7) + k large +7 ,
where the constant in is independent of r 0 .

We now estimate L * (k large + 7). Recall from (9.4.36) that

L 2 * (k large + 7) = {u=u * } q R 2 w,k large +7 + Σ * ∩{u=u * } q Γ 2 w,k large +7 .
Also, recall from (9.2.7) that

{u=u * } q R 2 w,k large +7 + Σ * ∩{u=u * } q Γ 2 w,k large +7 = inf u * -5≤u 1 ≤u * -4 {u=u 1 } q R 2 w,k large +7 + Σ * ∩{u=u 1 } q Γ 2 w,k large +7 .
We infer

L 2 * (k large + 7) u * -4 u 1 =u * -5 {u=u 1 } q R 2 w,k large +7 + Σ * ∩{u=u 1 } q Γ 2 w,k large +7 du 1 .
In view of the definition of | q R| w,k and | q Γ| w,k in (9.4.37), and the definition of R k and G k in Section 9.4.1, we deduce

L * (k large + 7) R k large +7 + G k large +7
where the constant in is independent of r 0 . Plugging in the above, we obtain

R k large +7 + G k large +7 r -δ B 0 R k large +7 + G k large +7 + k large +7 ,
where the constant in is independent of r 0 , which immediately implies, for r 0 large enough,

R k large +7 + G k large +7 + L * (k large + 7) k large +7 .
Together with the estimate of Corollary 9.4.20 with J = k large + 6, i.e.

G k large +7 L * (k large + 7) + k large +7 ,
we infer

R k large +7 + G k large +7 k large +7 .
In view of the the definition (9.4.44) of J+1 , we immediately infer

R k large +7 + G k large +7 |a|G k large +7 + 0 + R k large +6 + G k large +6
where the constant in now depends on r 0 . For |a| small enough, we infer

R k large +7 + G k large +7 0 + R k large +6 + G k large +6 .
On the other hand, we have obtained

R k large +6 + G k large +6 0 + 1 k large +7-(k small -1) 0 ×( 0 + R k large +7 + L * (k large + 7)) 1- 1 k large +7-(k small -1) 0 + 1 k large +7-(k small -1) 0 ×( 0 + R k large +7 + G k large +7 ) 1- 1 k large +7-(k small -1) .
Plugging in the above, we deduce

R k large +7 + G k large +7 0 + 1 k large +7-(k small -1) 0 ×( 0 + R k large +7 + G k large +7 ) 1- 1 k large +7-(k small -1) .
We deduce

R k large +7 + G k large +7 0
as desired. This concludes the proof of Theorem 9.4.10.

Proof of Theorem 9.4.12

As in the proof of Theorem M0, see Section 8.3, we divide the proof in 24 steps, denoted here by primes, i.e. 1'-24', which can thus be compared with Steps 1-24 of Section 8.3. Remark 9.5.1. Steps 1'-19' differ little from Steps 1-19. The main difference occurs with Steps 20'-24' where the properties of the PT frames will be important. More generally, as the conclusions of Theorem M0 hold for k ≤ k large -2 while the ones of Theorem 9.4.12 hold for k ≤ k large + 7, only estimates involving top regularity will differ.

Steps 1'-7'. Steps 1'-7' are identical to Steps 1-7. More precisely, we propagate from S * along Σ * , relative to the integrable frame of Σ * , the = 1 modes of div β, curl β, q ρ and q κ, use the GCM assumptions on S * , and arrive at the estimate (8. 0 . Recall also that r denotes the volume radius for the outgoing geodesic foliation of (ext) L 0 constructed in Section 8.2, while r is the are radius of the spheres S ⊂ C 1 . In fact all quantities associated to the outgoing geodesic foliation of C 1 are denoted by primes, while the quantities associated to the outgoing geodesic foliation of (ext) L 0 are denoted by tildes.

As in the proof of Theorem M0, we rely on the estimates (8.3.1), the GCM conditions on S 1 = S 1 and the following bootstrap assumptions.

Local Bootstrap Assumptions:

1. Along C 1 , we have sup S ⊂C 1 f h 4 (S ) + (r ) -1 (f , log λ) h 4 (S ) ≤ . (9.5.2)
2. On S 1 = S 1 , we assume

f h k large +7 (S 1 ) + r -1 (f , log(λ)) h k large +7 (S 1 ) ≤ . (9.5.3) 
3. In the case a 0 = 0, we make the following assumption 15 , on S 1 = S 1 , on the difference between the basis of = 1 modes J (p) of Σ * , and the basis of = 1 modes J (p) of (ext) L 0 max p=0,+,-

d ≤k * (J (p) -J (p) ) L 2 (S 1 )
≤ , for all k ≤ k large + 7. (9.5.4) Remark 9.5.2. Note that (9.5.3) and (9.5.4) hold for k ≤ k large + 7, while their analogs in Theorem M0 hold only for k ≤ k large .

The proof of Steps 8'-16' is then completely analogous to the one of Steps 8-16, with k large being replaced by k large + 7 in view of Remark 9.5.2. In particular, we obtain the following analog of (8.3.33) sup

k≤k large +8 d k f L 2 (S 1 ) + r -1 d k (f , log λ) L 2 (S 1 ) + d ≤k-1 ∇ ν (f , log λ) L 2 (S 1 ) 0 , sup S 1 m m 0 -1 + r r -1 0 , (9.5 
.5) 15 Recall that d * refers to the properly normalized tangential derivatives along Σ * .

which improves the bootstrap assumption (9.5.3). Also, we obtain the following analog of (8. Step 17'. The main difference with Step 17 is that we now rely on L 2 norms rather than sup norms. In particular, we rely on φ h k+2 (S * ) , r ∇f 0 -J (0) ∈ h k+1 (S * ) + r ∇f ± + J (±) δ h k+1 (S * ) φ h k+2 (S * ) .

d ≤k * Γ b L 2 (Σ * ) ≤ , k ≤ k large + 7, ( 9 
Now, in view of (9.5.8) and the trace theorem, we have, for k ≤ k large + 6,

Γ b h k (S * ) d ≤k+1 * Γ b L 2 (Σ * ) .
Hence, for k + 1 ≤ k large + 7,

φ h k+2 (S * ) , max p=0,+,- r ∇ J (p) ∈ h k+2 (S * ) , r ∇f 0 -J (0) ∈ h k+1 (S * ) + r ∇f ± + J (±) δ h k+1 (S * ) .
Next, on Σ * , we have by Lemma 5.6.11, p) , p = 0, +, -.

∇ ν r ∇f 0 -J (0) ∈ = Γ b • d / ≤1 f 0 , ∇ ν r ∇f ± + J (±) δ = Γ b • d / ≤1 f ± , ∇ ν r ∇ J (p) = Γ b • d / ≤1 J ( 
Integrating from S * , we obtain for k ≤ k large + 7

r ∇f 0 -J (0) ∈ L ∞ u h k (S ) r ∇f 0 -J (0) ∈ h k (S * ) + √ u * d k * Γ b L 2 (Σ * ) , r ∇f ± + J (±) δ L ∞ u h k (S ) r ∇f ± + J (±) δ h k (S * ) + √ u * d k * Γ b L 2 (Σ * ) , r ∇ J (p) L ∞ u h k (S ) r ∇ J (p) h k (S * ) + √ u * d k * Γ b L 2 (Σ * ) , p = 0, +, -.
Together with the above control on S * , the control (9.5.8) for Γ b , and the dominance condition for r on Σ * , we deduce, for all k ≤ k large + 7,

r ∇ f 0 -J (0) ∈ L ∞ u h k (S ) + r ∇f ± + J (±) δ L ∞ u h k (S ) + max p=0,+,- r ∇ J (p) L ∞ u h k (S ) √ u * r 0 .
In view of the above, using the definition of ∇ J (0) , see Definition 5.6.2, we infer on S 1 , for all k ≤ k large + 7,

∇ f 0 - J (0) r ∈ h k (S 1 ) + ∇ f ± + J (p) r δ h k (S 1 ) 0 , + ∇ J (0) + 1 r * f 0 h k (S 1 ) + ∇ J (±) - 1 r f ± h k (S 1 )
0 .

On the other hand, from the control of (ext) L 0 , the change of frame formula for ∇ , the control (9.5.5) for the change of frame coefficients (f, f , λ) from (ext) L 0 to Σ * , and the control of r -r on S 1 also provided by (9.5.5), we have, for all k ≤ k large + 7,

∇ f 0 - J (0) r ∈ h k (S 1 ) + ∇ f ± + J (p) r δ h k (S 1 ) 0 , ∇ J (0) + 1 r * f 0 h k (S 1 ) + ∇ J (±) - 1 r f ± h k (S 1 ) 0 ,
and hence, for all k ≤ k large + 7,

∇ (f 0 -f 0 ) - J (0) -J (0) r ∈ h k (S 1 ) + ∇ (f ± -f ± ) + J (±) -J (±) r δ h k (S 1 ) 0 , ∇ (J (0) -J (0) ) + 1 r * (f 0 -f 0 ) h k (S 1 ) + ∇ (J (±) -J (±) ) - 1 r * (f ± -f ± ) h k (S 1 ) 0 .
We deduce, for all k ≤ k large + 7,

r -1 f 0 -f 0 h k+1 (S 1 ) + r -1 J (0) -J (0) h k+1 (S 1 ) 0 + J (0) -J (0) L 2 (S 1 )
and

r -1 f ± -f ± h k+1 (S 1 ) + r -1 J (±) -J (±) h k+1 (S 1 ) 0 + r -1 J (±) -J (±) L 2 (S 1 )
.

Together with (9.5.7), we obtain in the case a 0 = 0, for all k ≤ k large + 7, max p=0,+,-

r -1 f p -f p h k+1 (S 1 ) + r -1 J (p) -J (p) h k+1 (S 1 ) 0 .
In view of the fact that ∇ ν f p = 0 for p = 0, +, -on Σ * , and in view of the control of (ext) L 0 , and hence of f p for p = 0, +, -, we deduce for a 0 = 0, for all k ≤ k large + 8, max p=0,+,-

r -1 d ≤k * (f p -f p ) L 2 (S 1 ) + r -1 d ≤k * (J (p) -J (p) ) L 2 (S 1 ) 0 . (9.5.9) 
In particular, the above improves 16 the bootstrap assumption (9.5.4) on J (p) -J (p) for p = 0, +, -. Step 19'. We consider the following change of frames coefficients:

• (f, f , λ) are the change of frame coefficients from the outgoing geodesic frame of (ext) L 0 to the frame of Σ * . (f, f , λ) satisfies according to (9.5.5)

sup k≤k large +8 d k f L 2 (S 1 ) + r -1 d k (f , log λ) L 2 (S 1 ) + d ≤k-1 ∇ ν (f , log λ) L 2 (S 1 ) 0 .
• (f , f , λ ) are the change of frame coefficients from the outgoing PG frame of (ext) L 0 to the outgoing geodesic frame of (ext) L 0 . In view of Proposition 8.2.7, we have sup

(ext) L 0 r d ≤k large +8 f + a 0 r f 0 , f + a 0 Υ r f 0 , log λ 0 .
• (f , f , λ ) are the change of frame coefficients from the frame of Σ * to the outgoing PT frame of (ext) M. We assume here that (f , f , λ ) satisfies by the initialization of the PT structure on Σ * , see Section 9.1.3,

λ = 1, f = a r f 0 , f = aΥ r f 0 .
We now consider the change of frame coefficients (f , f , λ ) from the outgoing PG frame of (ext) L 0 to the outgoing PT frame of (ext) M. In view of:

• the above estimates for (f, f , λ) and (f , f , λ ),

• the above formula for (f , f , λ ),

• the control for r -r and m -m 0 given by (9.5.5),

• the control of a in (9.5.6) in the case a 0 = 0,

• the control for a -a 0 in (9.5.7) and the control for f 0 -f 0 in Step 17' in the case a 0 = 0, we infer the following estimates, for all k ≤ k large + 8,

d ≤k f L 2 (S 1 ) + r -1 d ≤k (f , log λ ) L 2 (S 1 ) 0 + 1 r .
Together with the dominance condition for r on Σ * , we infer

d ≤k f L 2 (S 1 ) + r -1 d ≤k (f , log λ ) L 2 (S 1 ) 0 , k ≤ k large + 8. (9.5.10)
Step 20'. In this step, (e 1 , e 2 , e 3 , e 4 ) denotes the outgoing PG frame of (ext) L 0 , and (e 1 , e 2 , e 3 , e 4 ) denotes the outgoing PT frame of (ext) M. From now on, (f, f , λ) denotes the change of frame coefficients 17 from the outgoing PG frame of (ext) L 0 to the outgoing PG frame of (ext) M. In view of Step 19', we have on S 1

d ≤k f L 2 (S 1 ) + r -1 d ≤k (f , log λ) L 2 (S 1 ) 0 , k ≤ k large + 8. Let F = f + i * f.
17 Denoted in the previous step by (f , f , λ ).

Since

Ξ = 0, ω = 0, Ξ = 0, ω = 0, η = -ζ,
we have, in view of Corollary 2.8.8,

∇ λ -1 e 4 (qF ) = E 4 (f, Γ), λ -1 ∇ 4 (log λ) = 2f • ζ + E 2 (f, Γ).
We integrate the above transport equations for F and λ from S 1 . In view of the control for (f, λ) on S 1 derived in Step 19', and in view of the assumptions on the initial data layer norm we infer, for all k ≤ k large + 8, sup

S ⊂{u =1} d ≤k f L 2 (S ) + r -1 d ≤k log λ L 2 (S ) 0 , (9.5.11) 
where 18 u denotes from now on the scalar function of the PT structure of (ext) M. In particular, we have by construction S 1 = Σ * ∩{u = 1}, e 4 (u ) = 0 and {u = 1} ⊂ (ext) L 0 .

Step 21'. In this step, we estimate r -r, J (0) -J (0) and J -J, as well as A , } trX and X . First, since J (0) is propagated from Σ * by e 4 (J (0) ) = 0, and using the change of frame formula between the PG frame of (ext) L 0 and the PT frame of (ext) M, we infer e 4 (J (0) -

J (0) ) = -λ f • ∇ + 1 4 |f | 2 e 3 J (0) .
Together with the control of f and λ of Step 20', and the control of (ext) L 0 , we infer, for k ≤ k large + 8, sup S ⊂{u =1} r d ≤k (e 4 (J (0) -J (0) )) L 2 (S ) 0 .

Integrating from S 1 where J (0) -J (0) is under control in view of Step 17', we infer, for all k ≤ k large + 8, sup

S ⊂{u =1} r -1 d ≤k (J (0) -J (0) ) L 2 (S ) 0 .
(9.5.12)

Next, we control } trX . To this end, we also need to control A and X . First, note that the change of frame formula for A , the control of the foliation of (ext) L 0 , the control of f and λ of Step 20', and the fact that the transformation formula for A does not depend on f implies, since k ≤ k large + 8, sup S ⊂{u =1} Then, using the control of (f, f , λ) on S 1 derived in Step 19', the control of the initial data layer, and the change of frame formulas between the PG frame of (ext) L 0 and the PT frame of (ext) M on S 1 , we infer, for all k ≤ k large + 7,

r d ≤k } trX L 2 (S 1 ) + d ≤k X L 2 (S 1 ) 0 .
Then, propagating Raychadhuri for } trX and the null structure equation for ∇ 4 X from S 1 where } trX and X are under control in view of the above estimate, we infer, using also the above control of A , sup

S ⊂{u =1} r d ≤k } trX L 2 (S ) + d ≤k X L 2 (S ) 0 , k ≤ k large + 7. (9.5.14) Next, we notice trX -λtrX = 2 q - 2 q + (λ -1)trX + } trX -} trX so that q -q = qq 2 -λ λ -1 trX -trX + (λ -1)trX + } trX -} trX .
Together with the control of Step 20' for f and λ, the above control for J (0) -J (0) and } trX , the control of a -a 0 in (9.5.6) (9.5.7), the control of the foliation (ext) L 0 , and the fact that q = r + ia 0 J (0) and q = r + iaJ (0) we infer, for all k ≤ k large + 7.

sup

S ⊂{u =1} r -1 d ≤k r r -1 + qq 2r λ -1 trX -trX L 2 (S ) 0 .
Moreover, from the change of frame formulas for tr χ and (a) trχ we have, schematically,

λ -1 trX -trX = r -1 d f + Γ • f + f • f • Γ + f • f • trX + l.o.t.
Together with the control of Step 20' for f , the above control for } trX and the control of the foliation (ext) L 0 we deduce, for all k ≤ k large + 7, sup

S ⊂{u =1} r -1 d ≤k r r -1 L 2 (S ) 0 + 0 sup S ⊂{u =1} r -1 d ≤k f L 2 (S ) . (9.5.15)
Next, recall the definition of J on Σ * , see Definition 3.3.4,

J = 1 |q | (f 0 + i * f 0 ) = 1 r 2 + a 2 (J (0) ) 2 (f 0 + i * f 0 ).
Together with the control of r -r and m -m 0 given by (9.5.5), the control of a -a 0 in (9.5.6) (9.5.7), the control for f 0 -f 0 and J (0) -J (0) in Step 17', and the control of (ext) L 0 , we infer

d ≤k * (J -J) L 2 (S 1 ) 0 + 1 r .
Together with the dominance condition for r on Σ * , we infer, for all k ≤ k large + 7,

d ≤k * (J -J) L 2 (S 1 ) 0 .
Together with the identity q J -qJ = q (J -J) + (q -q)J = q (J -J) + r -r + i(aJ (0) -a 0 J (0) ) J, the control of r -r given by (9.5.5), the control of J (0) -J (0) in Step 17' and the control of a -a 0 in (9.5.6) (9.5.7), we obtain r -1 d ≤k * (q J -qJ) L 2 (S 1 ) 0 .

Also, recall that J and J satisfy in {u = 1}

∇ 4 J = - 1 q J , ∇ 4 J = - 1 q J,
and hence

∇ 4 (q J ) = 0, ∇ 4 (qJ) = 0.
We infer

∇ λ -1 4 (q J ) = 0, ∇ λ -1 4 (qJ) = f • ∇ + 1 4 |f | 2 e 3 (qJ).
Together with the control of f and λ of Step 20', (see estimate (9.5.11) ), and the control of (ext) L 0 , we obtain, for k ≤ k large + 8, sup

S ⊂{u =1} r d ≤k (∇ 4 (q J -qJ)) L 2 (S ) 0 .
Integrating from S 1 where q J -qJ is under control in view of the above we infer, for all k ≤ k large + 7, sup

S ⊂{u =1} d ≤k (q J -qJ) L 2 (S ) 0 .
Using again the above identity for q J -qJ, the above control of J (0) -J (0) and r -r and the control of a -a 0 in (9.5.6) (9.5.7), we deduce for all k ≤ k large + 7, sup

S ⊂{u =1} d ≤k (J -J) L 2 (S ) 0 + 0 sup S ⊂{u =1} r -1 d ≤k f L 2 (S ) .
(9.5.16)

Step 22'. To estimate f we make use of the last equation in Corollary 2.8.8, and the fact that H + aq |q| 2 J =q Z, see Definition 2.6.6. For F = f + i * f , we obtain

∇ λ -1 e 4 F = -2 aq |q | 2 J - aq |q| 2 J + 2 q Z - 1 2 trXF -F • χ + E 6 (f, f , Γ).
Together with the control of a -a 0 in (9.5.6) (9.5.7), the control of J (0) -J (0) , r -r and J -J of Step 21', and the control on the Ricci coefficients of the PG frame of (ext) L 0 , we obtain for, all k ≤ k large + 7, sup

S ⊂{u =1} r d ≤k λ -1 ∇ e 4 f L 2 (S ) 0 + 0 sup S ⊂{u =1} r -1 d ≤k f L 2 (S ) .
Together with the above, and the control of λ of Step 20', see estimate (9.5.11), we infer sup

S ⊂{u =1} r d ≤k ∇ e 4 f L 2 (S ) 0 + 0 sup S ⊂{u =1} r -1 d ≤k f L 2 (S ) .
Integrating from S 1 where f is under control in view of Step 19', we infer sup

S ⊂{u =1} r -1 d ≤k f L 2 (S ) 0 + 0 sup S ⊂{u =1} r -1 d ≤k f L 2 (S )
and hence, for all k ≤ k large + 7, sup

S ⊂{u =1} r -1 d ≤k f L 2 (S ) 0 .
Together with the control of f and λ of Step 20', we have finally obtained, for all k ≤ k large + 7, sup

S ⊂{u =1} d ≤k f L 2 (S ) + r -1 d ≤k (log(λ), f ) L 2 (S ) 0 .
(9.5.17)

Also, together with the estimates (9.5.16) and (9.5.15) for r -r and J -J of Step 21', we obtain for all k ≤ k large + 7, sup

S ⊂{u =1} r -1 d ≤k r r -1 L 2 (S )
+ d ≤k (J -J) L 2 (S ) 0 .

(9.5.18)

Step 23'. Let (f , f , λ ) denote the change of frame coefficients from the ingoing PG frame of (int) L 0 to the ingoing PT frame of (int) M . From

• the estimates of Step 22' on {u = 1},

• the fact that (int) M ∩ (ext) M = {r = r 0 },

• the fact that {u = 1} ∩ {u = 1} is included in (ext) L 0 ∩ (int) L 0 ,

• the initialization of the frame of (int) M as an explicit renormalization of the frame of (ext) M on {r = r 0 },

• the control in (ext) L 0 ∩ (int) L 0 of the difference between the frame of (int) L 0 and an explicit renormalization of the frame of (ext) L 0 , we easily infer, using also u = u on {r = r 0 }, for all k ≤ k large + 7, sup

S ⊂{r =r 0 }∩{u =1} d ≤k (f , log(λ ), f ) L 2 (S ) 0 .
Next, we proceed as in Step 20', exchanging the role of e 3 and e 4 , and we propagate along e 3 the above estimate to {u = 1} for f and λ . We also propagate the control of Step 21' for J (0) -J (0) on {u = 1}, and hence on its boundary {r = r 0 } to {u = 1}. Also one propagates the control of Step 22' for r -r on {u = 1}, and hence on its boundary {r = r 0 } to {u = 1} using the transport equation19 

e 3 (r -r) = 1 -λ e 3 + f a e a + 1 4 |f | 2 e 4 r = -(λ -1) + f • ∇(r) + 1 4 |f | 2 e 4 (r
d ≤j+1 J (0) -J (0) , r -r, J -J L 2 (S ) 0 , k ≤ k large + 7. (9.5.20)
Step 24'. Note that the desired estimates 20 for m -m 0 and a -a 0 have been obtained respectively in Step 13' and in(9.5.6) (9.5.7). To conclude the proof of Theorem 9.4.12, it remains to control k ≤ k karge + 7 derivatives, with suitable r-weights and O( 0 ) smallness constant, of A, B, q P , B and A in {u = 1} ∪ {u = 1}. This follows from:

• the control of (f, f , λ) on {u = 1} derived in Step 22',

• the control of (f , f , λ ) on {u = 1} derived in Step 23',

• the fact that (f, f , λ) denote the change of frame coefficients from the outgoing PT frame of (ext) L 0 to the outgoing PT frame of (ext) M, and the fact that (f , f , λ ) denote the change of frame coefficients from the ingoing PT frame of (int) L 0 to the ingoing PT frame of (int) M ,

• the change of frame formulas for the curvature components,

• in the particular case of the estimate for q P , the fact that

P -P = - 2m q 3 + 2m 0 q 3 + q P -q P ,
together with the control of m -m 0 derived in Step 13', the control of a -a 0 in (9.5.6) (9.5.7), the control of J (0) -J (0) in Step 21' and 23', and the control of r -r in Steps 22' and 23',

• the assumptions for the curvature components of the foliations of (ext) L 0 and (int) L 0 .

This concludes the proof of Theorem 9.4.12.

20 Since they only require a small number of derivatives their proof has in fact already been obtained in Theorem M0.

Control of curvature

The goal of this section is to prove Theorem 9.4.15 on the control of curvature coefficients. We first construct a global frame that will be used to perform the curvature estimates on M.

Construction of a global null frame

The construction of the global null frame in this section is analogous to the one in section 4.5, the main difference being that we cannot lose derivatives in the context of the proof of Theorem 9.4.15.

In order to produce a global frame on M, we will proceed in several steps. First, we extend the ingoing PT structure of (int) M slightly inside (ext) M. Lemma 9.6.1. We may extend the ingoing PT structure of (int) M into the region

R (1) := (ext) M( (ext) r ≤ r 0 + 1) ∩ {u ≤ u * }. (9.6.1) 
Furthermore:

• we have, for 0 ≤ k ≤ k large + 7, R (1) 
d k ( (int) q Γ) 2 + R (1) d k ( (int) q R) 2 G 2 k + R 2 k ,
where (int) q Γ and (int) q R denote respectively the linearized Ricci coefficients and curvature components of the ingoing PT structure of (int) M extended into R (1) ,

• we have, for 1 ≤ k ≤ k large + 8, R (1) 
d ≤k f, f , log | (ext) q| 2 (ext) ∆ λ 2 G 2 k-1 + R 2 k-1 ,
where (f, f , λ) denotes the change of frame coefficients from the outgoing PT frame of (ext) M to the ingoing PT frame of (int) M extended into R (1) ,

• we have, for

1 ≤ k ≤ k large + 8, R (1) ∩ (top) M d ≤k f, f , log λ 2 G 2 k-1 + R 2 k-1 ,
where (f, f , λ) denotes the change of frame coefficients from the ingoing PT frame of (int) M to the ingoing PT frame of (top) M ,

• we have, for

1 ≤ k ≤ k large + 8, R (1) 
d ≤k (int) r -(ext) r 2 + d ≤k cos( (int) θ) -cos( (ext) θ) 2 + d ≤k (int) J -(ext) J 2 G 2 k-1 + R 2 k-1 , and 
R (1) ∩ (top) M d ≤k (int) r -(top) r, u -(top) u 2 + d ≤k cos( (int) θ) -cos( (top) θ) 2 + d ≤k (int) J -(top) J 2 G 2 k-1 + R 2 k-1 ,
where ( (ext) r, (ext) θ, (ext) J), ( (int) r, u, (int) θ, (int) J) and ( (top) r, (top) u, (top) θ, (top) J) are associated respectively with the outgoing PT structure of (ext) M and the ingoing PT structures of (int) M and (top) M .

Proof. See Section 9.6.3.

Remark 9.6.2. Along level hypersurfaces of u, in the region r ∼ r 0 on (ext) M, we have

du dr = e 3 (u) e 3 (r) = -2 + O(r -1 0 ).
In particular, since u = u on T = {r = r 0 }, we infer

u ≥ (u * -1) -2 + O(r -1 0 ) > u * - 7 2 on (ext) M( (ext) r ≤ r 0 + 1) ∩ {u * -1 ≤ u ≤ u * } and hence (ext) M( (ext) r ≤ r 0 + 1) ∩ {u * -1 ≤ u ≤ u * } ⊂ (ext) M(u ≥ u * -7/2). Since (top) M ∩ (ext) M = (ext) M(u ≥ u * ),
and since u * is chosen such that u * ≤ u * -4, we also have

(ext) M( (ext) r ≤ r 0 + 1) ∩ {u * -1 ≤ u ≤ u * } ⊂ (top) M .
We now glue the ingoing PT frame of (int) M , extended slightly into (ext) M in Lemma 9.6.1, to the ingoing PT frame of (top) M in the matching region

Match 1 := (int) M (u ≥ u * -1) ∪ (ext) M( (ext) r ≤ r 0 + 1) ∩ {u * -1 ≤ u ≤ u * } .(9.6.2)
Lemma 9.6.3. There exists a frame (e 4 , e 3 , e 1 , e 2 ) on

(int) M ∪ (top) M \ (ext) M ∪ (ext) M( (ext) r ≤ r 0 + 1) ∪ (ext) M(u ≥ u * -1),
as well as a pair of scalar functions (r , J (0) ), and a complex 1-form J , such that:

(a) In

(ext) M(u ≥ u * -1) ∪ (ext) M( (ext) r ≤ r 0 + 1) \ {u ≤ u * } ∪ (top) M \ (int) M ∪ (ext) M
we have 

int) M ∪ (ext) M( (ext) r ≤ r 0 + 1) ∩ {u ≤ u * -1},
we have (e 4 , e 3 , e 1 , e 2 ) = ( (int) e 4 , (int) e 3 , (int) e 1 , (int) e 2 ), as well as r = (int) r, J (0) = cos( (int) θ), and J = (int) J, where we recall that the ingoing PT structure of (int) M has been extended slightly into (ext) M in Lemma 9.6.1.

(c) In the matching region, we have, for 0 ≤ k ≤ k large + 7,

Match 1 d k ( q Γ ) 2 + Match 1 d k ( q R ) 2 R 2 k + G 2 k ,
where q Γ and q R are the one associated to the frame (e 4 , e 3 , e 1 , e 2 ) and renormalized using (r , J (0) , J ).

(d) In the matching region, we also have, for

1 ≤ k ≤ k large + 8, Match 1 d ≤k (f, f , log λ) 2 R 2 k-1 + G 2 k-1 ,
where (f, f , λ) denotes

• by (e 4 , e 3 , e 1 , e 2 ) the outgoing PT frame of (ext) M,

• by (u, r, θ) and by J respectively the triplet of scalar functions and the complex 1-form associated to the outgoing PT structure of (ext) M,

• by (e 4 , e 3 , e 1 , e 2 ) the ingoing PT frame of (int) M slightly extended into (ext) M,

• by (u, r , θ ) and by J respectively the triplet of scalar functions and the complex 1-form associated to the ingoing PT structure of (int) M slightly extended into (ext) M,

• by (f, f , λ) the change of frame from (e 4 , e 3 , e 1 , e 2 ) to (e 4 , e 3 , e 1 , e 2 ).

Recall from Section 9.1.3 that we have, in view of the initialization of the ingoing PT structure of (int) M on T = {r = r 0 } from the outgoing PT structure of (ext) M,

u = u, r = r, θ = θ, J = J, f = f = 0, λ = ∆ |q| 2 on {r = r 0 }. (9.6.13)
Step 1. We start with a first control for (f, f , λ) and (r -r, cos(θ ) -cos θ, J -J).

To this end, we introduce, as in the proof of Proposition 4.4.3, the following auxiliary transformation

e 3 = λ e 3 + (f ) b e b + 1 4 |f | 2 e 3 , e a = δ b a + 1 2 (f ) a (f ) b e b + 1 2 (f ) a e 3 + 1 2 (f ) a + 1 8 |f | 2 (f ) a e 4 , e 4 = (λ ) -1 1 + 1 2 f • f + 1 16 |f | 2 |f | 2 e 4 + (f ) b + 1 4 |f | 2 (f ) b e b + 1 4 |f | 2 e 3 ,
where λ > 0 is a scalar and (f , f ) are 1-forms. In view of (4.4.12), it suffices to control (f , f , λ ) in order to control (f, f , λ). Note also that (9.6.13) and (4.4.12) imply

f = f = 0, λ = |q| 2 ∆ on {r = r 0 }. (9.6.14)
Now, let

F := f + i * f , F := f + i * f .
In view of (4.4.14), and Step 3 of Section 4.4.4 for the equation for the second equation, we have the following transport equations for (F , F , λ ) (9.6.15) where E 1 (f , Γ) and E 2 (f , Γ) contain expressions of the type O(Γ(f ) 2 ) with no derivatives, and E 3 (f , f , Γ) contains expressions of the type O(Γ(f , f ) 2 ) with no derivatives. Also, since e 3 (r) = 1, e 3 (cos θ) = 0 and ∇ 3 J = 1 q J , we may proceed as in Step 4 of the proof of Proposition 4.4.3 and obtain

∇ (λ ) -1 e 3 F + 1 2 trX F + 2ω F =Γ b + Γ b • F + E 1 (f , Γ), (λ ) -1 ∇ 3 log ∆ |q| 2 λ =Γ b + O(r -2 )F + Γ b • F + E 2 (f , Γ) + |q| 2 ∆ f • ∇ + 1 4 |f | 2 e 3 ∆ |q| 2 , (λ ) -1 ∇ 3 F -2ωF = 2aq |q | 2 J - 2aq |q| 2 J + Γ b + O(r -1 )F + Γ g • F + E 3 (f , f , Γ),
e 3 (r -r) = -λ -1 λ - ∆ |q| 2 + rΓ b + O(1)f • (f, f ) + rΓ g • f , e 3 (cos(θ ) -cos(θ)) =Γ b + O(r -1 )f + Γ b • f • (f, f ), ∇ 3 (J -J) + 1 q (J -J) =r -1 Γ b + O(r -2 )λ -1 λ - ∆ |q| 2 + O(r -3 )(r -r) + O(r -3 )(cos(θ ) -cos θ) + O(r -2 )f + Γ b • (f, f ) + O(r -2 )f • (f, f ). (9.6.16)
In view of (9.6.13) and (9.6.14), we have

d k f , f , log ∆ |q| 2 λ , r -r, θ -θ, J -J = 0, k ≤ k large + 8,
where d denotes tangential derivatives to T . Since d is generated by d and e 3 , together with the transport equations in (9.6.15) and (9.6.16), we infer, for 1

≤ k ≤ k large + 8, T d ≤k f , f , log ∆ |q| 2 λ , r -r, θ -θ, J -J 2 T d ≤k-1 q Γ 2 which implies, for 1 ≤ k ≤ k large + 8, T d ≤k f , f , log ∆ |q| 2 λ , r -r, θ -θ, J -J 2 (ext) G 2 k-1 . ( 9 
.6.17)

We now integrate the transport equations in (9.6.15) and (9.6.16) from T in the following order, taking advantage of a triangular structure:

F , ∆ |q| 2 λ , r -r, cos(θ ) -cos(θ), J -J, F .
Together with the control on T provided by (9.6.17), and since R (1) ⊂ (ext) M( (ext) r ≤ r 0 + 1), we easily infer, for k ≤ k large + 7, R

d ≤k f , f , log ∆ |q| 2 λ , r -r, cos(θ ) -cos(θ), J -J 2 (ext) G 2 k . (9.6.18) (1) 
Together with (4.4.12), this implies, for k ≤ k large + 7, R

d ≤k f, f , log |q| 2 ∆ λ 2 (ext) G 2 k . (9.6.19) (1) 
Notice, in view of (9.6.18) and (9.6.19), that we still need to derive the stated control for (f, f , λ) and (r -r, cos(θ ) -cos θ, J -J) for k = k large + 8. This will be achieved in Step 4.

Step 2. Next, we control q R and obtain a first control for q Γ . We have, in view of the change of frame formulas of Proposition 2.2.3,

R (1) d ≤k q R 2 R (1) 
d ≤k q R 2 + R (1) 
d ≤k f, f , log |q| 2 ∆ λ , r -r, cos(θ ) -cos(θ) 2 (ext) R 2 k + R (1) d ≤k f, f , log |q| 2 ∆ λ , r -r, cos(θ ) -cos(θ) 2 and R (1) 
d ≤k q Γ 2 R (1) 
d ≤k q Γ 2 + R (1) 
d ≤k+1 f, f , log |q| 2 ∆ λ , r -r, cos(θ ) -cos(θ) 2 (ext) G 2 k + R (1) d ≤k+1 f, f , log |q| 2 ∆ λ , r -r, cos(θ ) -cos(θ) 2 
which together with (9.6.18) and (9.6.19) implies, for 1

≤ k ≤ k large + 7, R (1) 
d ≤k-1 q Γ 2 (ext) G 2 k , R (1) 
d ≤k q R 2 (ext) G 2 k + (ext) R 2 k . ( 9 
.6.20) (9.6.20) provides the stated control for q R , but we still need to derive the stated control for q Γ for k = k large + 7. This will be achieved in Step 3.

Step 4. In this step, we improve the control of (f, f , λ) and (r -r, cos(θ ) -cos θ, J -J) derived in Step 1 which misses the case k = k large +8. First, as a consequence of the change of frame formulas of Proposition 2.2.3 for Ricci coefficients, we have, for 1

≤ k ≤ k large +8, R (1) 
d ≤k f, f , log |q| 2 ∆ λ 2 R (1) d ≤k-1 q Γ 2 + R (1) d ≤k-1 q Γ 2 + R (1) d ≤k-1 (r -r, cos(θ ) -cos(θ), J -J) 2 + R (1) d ≤k-1 f, f , log |q| 2 ∆ λ 2 .
Together with (9.6.18), (9.6.19) and the control for q Γ in Step 3, we infer, for 1

≤ k ≤ k large + 8, R (1) 
d ≤k f, f , log |q| 2 ∆ λ 2 (ext) G 2 k-1 + (ext) R 2 k-1
which is the stated control of (f, f , λ).

It remains to improve the control of (r -r, cos(θ ) -cos θ, J -J) derived in Step 1. We have, for 1

≤ k ≤ k large + 8, R (1) 
d ≤k (r -r, cos(θ ) -cos(θ), J -J) 2 R (1) d ≤k-1 D (r ), ẽ 4 (r ), D cos(θ ), e 4 (cos θ ), D ⊗J , D • J , ∇ 4 J 2 + R (1) 
d ≤k-1 D(r), ẽ3 (r), D cos(θ), e 3 (cos θ), D ⊗J, D • J, } ∇ 3 J 2 + R (1) 
d ≤k-1 (r -r, cos(θ ) -cos(θ), J -J) and hence

R (1) d ≤k (r -r, cos(θ ) -cos(θ), J -J) 2 R (1) d ≤k-1 q Γ 2 + R (1) d ≤k-1 q Γ 2 + R (1) d ≤k-1 (r -r, cos(θ ) -cos(θ), J -J) 2 .
Together with (9.6.18) and the control for q Γ in Step 3, we infer, for 1

≤ k ≤ k large + 8, R (1) 
d ≤k (r -r, cos(θ ) -cos(θ), J -J) 2 (ext) G 2 k-1 + (ext) R 2 k-1
which is the stated control of (r -r, cos(θ ) -cos θ, J -J).

Step 5. So far, we have proved all statements involving comparisons between the extension of the ingoing PT structure of (int) M into (ext) M and the outgoing PT structure of (ext) M. It thus remains to prove the statements involving comparisons between the extension of the ingoing PT structure of (int) M into (ext) M and the ingoing PT structure of (top) M . To this end, it suffices to compare the ingoing PT structure of (top) M and the outgoing PT structure of (ext) M in a region including R (1) ∩ (top) M . We denote

• by (e 4 , e 3 , e 1 , e 2 ) the ingoing PT frame of (top) M ,

• by (u , r , θ ) and by J respectively the triplet of scalar functions and the complex 1-form associated to the ingoing PT structure of (top) M ,

• by (f , f , λ ) the change of frame from (e 4 , e 3 , e 1 , e 2 ) to (e 4 , e 3 , e 1 , e 2 ),

• by R (1) the spacetime region

R (1) = (ext) M ∩ (top) M (u ≤ u * + 1) which satisfies R (1) ∩ (top) M ⊂ R (1) .
Then, arguing as in Step 1 above, and integrating the transport equations in e 3 from {u = u * } where the ingoing PT structure of (top) M is initialized from the outgoing PT structure of (ext) M, we obtain, for k ≤ k large + 7, R

d ≤k f , f , log ∆ |q| 2 λ , r -r, cos(θ ) -cos(θ), J -J 2 (ext) G 2 k . (1) 
Next, arguing as in Step 4 above, we infer, for 1

≤ k ≤ k large + 8, R (1) 
d ≤k f , f , log |q| 2 ∆ λ 2 R (1) d ≤k-1 q Γ 2 + R (1) 
d ≤k-1 q Γ 2 + R (1) d ≤k-1 (r -r, cos(θ ) -cos(θ), J -J) 2 + R (1) d ≤k-1 f , f , log |q| 2 ∆ λ 2 and hence, for 1 ≤ k ≤ k large + 8, R (1) 
d ≤k f , f , log |q| 2 ∆ λ 2 (ext) G 2 k-1 + (top) G 2 k-1 .
• In the matching region Match 1 , r , J (0) and J are defined by

r = ψ(u)r + (1 -ψ(u))r, J (0) = ψ(u) cos(θ ) + (1 -ψ(u)) cos θ, J = ψ(u)J + (1 -ψ(u))J.
In view of the above definitions, properties (a) and (b) of Lemma 9.6.3 are immediate. Also, in view of Lemma 9.6.1, we have, for 1 ≤ k ≤ k large + 8,

Match 1 ∩ (ext) M d ≤k f, f , log(λ) 2 G 2 k-1 + R 2 k-1 .
Arguing as in Lemma 9.6.1, one easily extends this estimate to Match 1 ∩ (int) M to obtain, for 1 ≤ k ≤ k large + 8,

Match 1 d ≤k f, f , log(λ) 2 G 2 k-1 + R 2 k-1 .
In view of the definition of (f , f , λ ), we deduce, for 1

≤ k ≤ k large + 8, Match 1 d ≤k f , f , log(λ ) 2 G 2 k-1 + R 2 k-1 .
Also, if (f , f , λ ) denotes the coefficients of the change of frame from (e 4 , e 3 , e 1 , e 2 ) to (e 4 , e 3 , e 1 , e 2 ), we easily obtain from the above control of (f , f , λ ) and (f, f , λ), for 1 ≤ k ≤ k large + 8,

Match 1 d ≤k f , f , log(λ ) 2 G 2 k-1 + R 2 k-1
which concludes the proof of property (d) of Lemma 9.6.3.

Next, in view of Lemma 9.6.1, we have, for 1 ≤ k ≤ k large + 8,

Match 1 ∩ (ext) M d ≤k (r -r, cos(θ ) -cos(θ), J -J) 2 G 2 k-1 + R 2 k-1 .
Arguing as in Lemma 9.6.1, one easily extends this estimate to Match 1 ∩ (int) M to obtain, for 1

≤ k ≤ k large + 8, Match 1 d ≤k (r -r, cos(θ ) -cos(θ), J -J) 2 G 2 k-1 + R 2 k-1 .
In view of the definition of r , J (0) and J in Match 1 , we deduce, for 1 ≤ k ≤ k large + 8,

Match 1 d ≤k r -r, J (0) -cos(θ), J -J 2 G 2 k-1 + R 2 k-1
3. Finally, we conclude the proof of Proposition 9.7.1 in Section 9.7.3 by using the transition coefficients

λ = 1, f = a r f 0 , f = aΥ r f 0 ,
the transformation formulas to pass from the integrable frame of Σ * to the PT frame of (ext) M on Σ * , and the control of the integrable of Σ * and of the 1-form f 0 .

Control of the integrable frame of Σ *

Recall that on Σ * , the Ricci coefficients of the integrable frame of Σ * verify the following GCM conditions

| trχ = 0, | trχ = p C p J (p) , q µ = p M p J (p) , (div η) =1 = 0, (div ξ) =1 = 0, b * = -1 - 2m r ,
where C p , M p , p = 0, +, -, are functions of r along Σ * , and where b * denotes the average of b * on the spheres foliating Σ * .

Additionally, the following holds on S *

( | trχ) =1 = 0, (div β) =1 = 0, (curl β) =1,± = 0, (curl β) =1,0 = 2am r 5 .
Also, remember that the integrable frame of Σ * satisfies the following transversality conditions

ξ = 0, ω = 0, η = -ζ, e 4 (r) = 1, e 4 (u) = 0, (9.7.2) 
where r denotes the area radius of the u-foliation of Σ * , and we have u + r = c Σ * on Σ * , where c Σ * is a constant.

Remark 9.7.2. Note that the transversality conditions above are compatible with an outgoing geodesic foliation initialized on Σ * . Note also that they must be specified to make sense of ξ and η, and hence to make sense of the GCM conditions (div η) =1 = 0 and (div ξ) =1 = 0 on Σ * .

To state the main result of this section we need to introduce the following norms.

Definition 9.7.3. We define the following Ricci coefficients norms on Σ * relative to the integrable frame of Σ *

(Σ * ) G 2 k := Σ * r 2 |d ≤k+1 * ( χ, | trχ, ζ, | trχ)| 2 + |d ≤k+1 * χ| + | d / ≤1 d ≤k * (η, q ω, ξ)| 2 + Σ * r -2 | d / ≤2 d ≤k * ( } ν(r), } ν(u), q b * )| 2 , (9.7.3) 
where | trχ, χ, ζ, η, | trχ, χ, q ω, ξ are the Ricci coefficients of the integrable frame of Σ * , and ν = e 3 + b * e 4 is tangent to Σ * . Definition 9.7.4. We define the curvature norm on Σ * , relative to the integrable frame of Σ * ,

(Σ * ) R 2 k := Σ * r 4+δ |d ≤k (α, β)| 2 + r 4 |d ≤k (q ρ, | * ρ)| 2 + r 2 |d ≤k β| 2 + |d ≤k α| 2 , (9.7.4) 
where α, β, ρ, * ρ, β, α denote the curvature components relative to the integrable frame of Σ * .

The following proposition, which provides the control of the Ricci coefficients of the integrable frame of Σ * , is the main result of this section. Proof. We rely on L 2 (Σ * )-estimates for the main quantities, with the exception of = 1 modes and averages which are estimated in L 2 u L ∞ (S). Also, we rely on the following local bootstrap assumptions

(Σ * ) G k ≤ , k ≤ k large + 7. (9.7.6)
Finally, we rely repeatedly on the results of Sections 5.1 and 5.2.

Step 1. The estimate for | trχ follows immediately from our GCM conditions according to which we have | trχ = 0 on Σ * .

Step 2. Since we have tr χ = 2 r and tr χ = -2Υ r on S * according to our GCM conditions, we infer from the Gauss equation

K = -ρ - 1 4 tr χtr χ + 1 2 χ • χ = -ρ + Υ r 2 + 1 2 χ • χ = 1 r 2 -q ρ + 1 2 χ • χ on S * .
We deduce, using the trace theorem,

r 2 K - 1 r 2 h k-1 (S * ) r 2 q ρ h k-1 (S * ) + χ • χ 2 h k-1 (S * ) 2 + (Σ * ) R k , k ≤ k large + 7.
Next, recall that φ denotes the uniformization factor of S * , see (2.5.9) in Section 2.5.3.

Using the effective uniformization theorem, see Theorem 5.1.2,

φ h k+1 (S * ) r 2 K - 1 r 2 h k-1 (S * ) 0 + (Σ * ) R k , k ≤ k large + 7,
we deduce

φ h k+1 (S * ) 0 + (Σ * ) R k , for all k ≤ k large + 7. (9.7.7)
Step 3. Using the formula ∆J (p) + 2 r 2 J (p) = 2 r 2 (1 -e -2φ )J (p) , see Lemma 5.2.7 and its proof, we infer from the control of φ provided by Step 2

r 2 ∆J (p) + 2 r 2 J (p) h k+1 (S * ) 0 + (Σ * ) R k , for all k ≤ k large + 7. (9.7.8)
Step 4. Recall from Lemma 5.2.8 that we have

∇ ν r 2 ∆ + 2)J (p) = O d / ≤1 Γ b .
Integrating from S * along Σ * and using (9.7.6) as well as the control on S * of Step 3, we infer

sup S⊂Σ * r 2 ∆J (p) + 2 r 2 J (p) h k-1 (S) 0 + √ u * √ u * , k ≤ k large + 7.
Then, proceeding as in the proof of Lemma 5.2.8, we have

d * / 2 d * / 1 J (p) h k (S) ∆J (p) + 2 r 2 J (p) h k (S) + r -1 Γ g h k (S) ,
where by d * / 1 J (p) , we mean either d * / 1 (J (p) , 0) or d * / 1 (0, J (p) ). Together with the above estimate and (9.7.6) yields sup

S⊂Σ * r 2 d * / 2 d * / 1 J (p) h k-1 (S) √ u * , k ≤ k large + 7.
Together with the dominance condition for r on Σ * , we deduce sup

S⊂Σ * r ∆J (p) + 2 r 2 J (p) h k-1 (S) + d * / 2 d * / 1 J (p) h k-1 (S) √ u * r 0 , k ≤ k large + 7.
Using ν(J (p) ) = 0, we recover ν derivatives as well, and hence, for k ≤ k large + 7, sup

S⊂Σ * r d k-1 * ∆J (p) + 2 r 2 J (p) L 2 (S) + d k-1 * d * / 2 d * / 1 J (p) L 2 (S)
0 .

(9.7.9)

Step 5. Next, differentiating Codazzi for χ by div , and integrating against J (p) , we infer, see Steps 1 of the proof of Proposition 5.4.3 in Section 5.4.2,

(div d / 2 χ) =1 = 1 r (div ζ) =1 -(div β) =1 + r -3 S d / ≤1 ( χ • ζ)J (p) .
This then yields, after after integration by parts,

(div ζ) =1 = r(div β) =1 + r -2 S χ • d * / 2 d * / 1 J (p) + r -3 S d / ≤1 ( χ • ζ)J (p) .
Together with (9.7.6) and the control for d * / 2 d * / 1 J (p) of Step 4, we infer, using integration by parts on S for angular derivatives to avoid loss of derivatives, for k ≤ k large + 7,

r 3 u * u=1 ν ≤k+1 (div ζ) =1 2 1 2 2 + (Σ * ) R k + r u * u=1 S ∇ k+1 ν β • d /J (p) 2 1 2 
.

Since ν = e 3 + b * e 4 , and using the Bianchi identities for ∇ 3 β and ∇ 4 β, as well as the commutator Lemma 5.1.20, we have

∇ k+1 ν β = ∇(∇ k ν q ρ) + * ∇(∇ k ν * ρ) -b * div (∇ k ν α) + l.o.t.
Plugging in the above and integrating the angular derivatives by parts to avoid a loss of derivatives, we infer

r 3 u * u=1 ν ≤k+1 (div ζ) =1 2 1 2 2 + (Σ * ) R k , k ≤ k large + 7,
and hence 

r 3 u * u=1 ν ≤k+1 (div ζ) =1 2 1 2 0 + (Σ * ) R k , k ≤ k large + 7. ( 9 
2 u 1+δ dec |(q κ) =1 | 0 .
To derive an estimate for higher order derivatives in ν, we rely on the following equation of Corollary 5.2.12

ν S ∆ | trχ + 2Υ r div ζ J (p) = O(r -3 ) S q κJ (p) + O(r -2 ) S div ζJ (p) + O(r -1 ) S div βJ (p) + O(r -2 ) S q ρJ (p) +O(r -1 ) S div βJ (p) + r -1 S ∆ + 2 r 2 J (p) d / ≤1 Γ b + r -2 S d / ≤2 (Γ b • Γ b )J (p) , which yields ν S ∆q κ + 2Υ r div ζ J (p) = O(r -1 ) S div βJ (p) + O(r -3 ) S J (p) d / ≤1 Γ g + r -1 S ∆ + 2 r 2 J (p) d / ≤1 Γ b +r -2 S d / ≤2 (Γ b • Γ b )J (p) .
Differentiating in ν, using integration by parts on S for angular derivatives to avoid loss of derivatives, relying on the estimates of Step 4 and Step 5, and using (9.7.6), we deduce, for k ≤ k large + 7,

r 2 u * u=1 ν ≤k+1 ( | trχ) =1 2 1 2 r -1 + 2 + (Σ * ) R k + u * u=1 S ∇ k+1 ν β • d /J (p) 2 1 2 + u * u=1 S ∇ k+1 ν β • d /J (p) 2 1 2
.

Next, as in Step 5, we use the fact that ν = e 3 + b * e 4 and the Bianchi identities, as well as the commutator Lemma 5.1.20, to derive

∇ k+1 ν β = ∇(∇ k ν q ρ) + * ∇(∇ k ν * ρ) -b * div (∇ k ν α) + l.o.t., ∇ k+1 ν β = -div (∇ k ν α) -b * ∇(∇ k ν q ρ) + b * * ∇(∇ k ν * ρ) + l.o.t.
Plugging in the above and integrating the angular derivatives by parts to avoid a loss of derivatives, we infer

r 2 u * u=1 ν ≤k+1 ( | trχ) =1 2 1 2 r -1 + 2 + (Σ * ) R k , k ≤ k large + 7.
Together with the dominance condition for r on Σ * , we obtain

r 2 u * u=1 ν ≤k+1 ( | trχ) =1 2 1 2 0 + (Σ * ) R k , k ≤ k large + 7.
(9.7.11)

Step 7. We are now ready to control | trχ.

Step 7a. 

χ = - 2 1 -2m H r r ,
where tr χ denotes the average of tr χ on S. In particular, we infer

| trχ = - 4(m -m H ) r 2 .
Since we have by Lemma 5.4.6 and by Proposition 5.4.7

ν(m H ) = S d / ≤1 (Γ b • Γ b ), sup Σ * u 1+2δ dec |m H -m| 0 ,
we infer, together with (9.7.6), and integrating the angular derivatives by parts to avoid a loss of derivatives,

u * u=1 ν ≤k+1 m H -m 2 1 2 + r 2 u * u=1 ν ≤k+1 | trχ 2 1 2 0 , k ≤ k large + 7.
Step 7b. Next, we control ν k (C 0 ) and ν k (C (p) ). In view of our GCM conditions for | trχ and the fact that ν(J (p) ) = 0, we have

ν k ( | trχ) = ν k (C 0 ) + p ν k (C (p) )J (p) = ν k (C 0 ) + p ν k (C (p) )J (p) + h k , h k := ν k (C 0 ) -ν k (C 0 ) + p ν k (C (p) ) -ν k (C (p) ) J (p) .
Since ξ satisfies curl ξ = Γ b • Γ b and the GCM condition (div ξ) =1 = 0 on Σ * , we proceed exactly as in Step 13 and obtain

d / ≤1 (d ≤k * ξ) L 2 (Σ * ) 0 + (Σ * ) R k , k ≤ k large + 7.
(9.7.18)

Step 15. We may now complete the estimates for χ and χ. Recall from Step 11 and Step 12 that we have

r d / ≤1 (d ≤k * χ) L 2 (Σ * ) + d / ≤1 (d ≤k * χ) L 2 (Σ * ) 0 + (Σ * ) R k , k ≤ k large + 7,
so that we still need to recover ∇ k+1 ν χ and ∇ k+1 ν χ. In view of the fact that ν = e 3 + b * e 4 , the null structure equations for ∇ 3 χ, ∇ 3 χ, ∇ 4 χ, and ∇ 4 χ, (9.7.6), the estimate of Step 10 for ζ, of Step 13 for η and of Step 14 for ξ, we have

r ∇ k+1 ν χ L 2 (Σ * ) + ∇ k+1 ν χ L 2 (Σ * ) 0 + 2 + (Σ * ) R k , k ≤ k large + 7.
Together with the above estimates, we deduce

r d ≤k+1 * χ L 2 (Σ * ) + d ≤k+1 * χ L 2 (Σ * ) 0 + (Σ * ) R k , k ≤ k large + 7.
Step 16. We have 

r -1 d / ≤2 d /d k-1 * e 3 (r) L 2 (Σ * ) 0 + (Σ * ) R k , k ≤ k large + 7, (9.7.19) 
and

r -1 d / ≤2 ν k (e 3 (r)) -ν k (e 3 (r)) L 2 (Σ * ) 0 + (Σ * ) R k , k ≤ k large + 7. (9.7.20)
Step 17. We have 

r -1 d / ≤2 d /d k-1 * e 3 (u) L 2 (Σ * ) 0 + (Σ * ) R k , k ≤ k large + 7, ( 9 
r -1 d / ≤2 d /d k-1 * b * L 2 (Σ * ) 0 + (Σ * ) R k , k ≤ k large + 7, (9.7.23) 
and

r -1 d / ≤2 ν k (b * ) -ν k (b * ) L 2 (Σ * ) 0 + (Σ * ) R k , k ≤ k large + 7. (9.7.24) 
Step 19. Since b * = -1 -2m r on Σ * , and since ν is tangent to Σ * , we have for any k

ν k b * + 1 + 2m r = 0.
Using Corollary 5.2.3, we deduce

ν k b * + 1 + 2m r = ν ≤k (r 2 Γ b • Γ b ) and hence   u * u=1 ν k b * + 1 + 2m r 2   1/2 2 0 , 1 ≤ k ≤ k large + 7.
Also, we have, for any k ≥ 1,

ν k b * + 1 + 2m r = ν k (b * ) + O(r -1-k ),
and hence, in view of the dominant condition for r on Σ * , we infer

ν k b * + 1 + 2m r -ν k (b * ) 0 u -1-δ dec , 1 ≤ k ≤ k large + 7.
This yields

u * u=1 ν k (b * ) 2 1/2 0 , 1 ≤ k ≤ k large + 7.
Plugging back in the bounds of Step 18, we deduce

r -1 d / ≤2 ν k (b * ) L 2 (Σ * ) 0 + (Σ * ) R k , 1 ≤ k ≤ k large + 7.
Together with the dominance in r, this yields

r -1 d / ≤2 ν k ( q b * ) L 2 (Σ * ) 0 + (Σ * ) R k , 1 ≤ k ≤ k large + 7.
Since the case k = 0 follows from Theorem M3, we thus have

r -1 d / ≤2 ν k ( q b * ) L 2 (Σ * ) 0 + (Σ * ) R k , k ≤ k large + 7.
Plugging back in the bounds of Step 18, we deduce

r -1 d / ≤2 d k * q b * L 2 (Σ * ) 0 + (Σ * ) R k , k ≤ k large + 7. (9.7.25) 
Step 20. We make use of Lemma 5. 

= re 3 (u) 2 1 e 3 (u) - 2Υ r + | trχ + 2 r b * = -2e 3 (u) 1 e 3 (u) + re 3 (u) 2 1 e 3 (u) | trχ + 2 r q b *
and hence

e 3 (r) = -Υ + 2 1 -e 3 (u) 1 e 3 (u) -q b * + re 3 (u) 2 1 e 3 (u) | trχ + 2 r q b * .
Together with the control of | trχ in Step 7, the control of q b * in Step 19, and the dominant condition for r on Σ * , we infer, for 1

≤ k ≤ k large + 7, u * u=1 ν k (e 3 (r)) 2 1 2   u * u=1 ν k 1 -e 3 (u) 1 e 3 (u) 2   1 2 + 0 + (Σ * ) R k .
In view of the control of e 3 (r) in Step 16, this yields

r -1 d / ≤2 ν k (e 3 (r)) L 2 (Σ * ) 0 + (Σ * ) R k , 1 ≤ k ≤ k large + 7.
Since the case k = 0 is treated by Theorem M3, since e 3 (r) = -Υ + ẽ3 (r), and using the dominant condition on r, we obtain

r -1 d / ≤2 ν k ẽ3 (r) L 2 (Σ * ) 0 + 1 r + (Σ * ) R k 0 + (Σ * ) R k , k ≤ k large + 7.
Using again the control of e 3 (r) in Step 16, we deduce 

r -1 d / ≤2 d k * ẽ3 (r) L 2 (Σ * ) 0 + (Σ * ) R k , k ≤ k large + 7.
r -1 d / ≤2 d k * } ν(r), } ν(u) L 2 (Σ * ) 0 + (Σ * ) R k , k ≤ k large + 7. (9.7.26)
Step 21. It remains to control q ω. Recall from Proposition 5.1.18 the following linearized null structure equation

∇ 3 ζ - Υ r ζ = -β -2∇q ω + Υ r (η + ζ) + 1 r ξ + 2m r 2 (ζ -η) + Γ b • Γ b .
The control of ζ in Step 10, of η in Step 13, of ξ in Step 14, and (9.7.6) implies

d /d k * q ω L 2 (Σ * ) 0 + (Σ * ) R k , k ≤ k large + 7.
Also, using the null structure equations for ∇ 3 | trχ and ∇ 4 | trχ, and the fact that ν = e 3 + b * e 4 , we have 

∇ ν | trχ = 2div η + 2q ρ - 1 r q κ + 4 r q ω + 2 r 2 ẽ3 (r) + Γ b • Γ g .
ν k q ω L 2 (Σ * ) 0 + (Σ * ) R k , k ≤ k large + 7.
In view of the above estimate for d

/d k * q ω, this implies d / ≤1 d k * q ω L 2 (Σ * ) 0 + (Σ * ) R k , k ≤ k large + 7. (9.7.27) 
In view of Steps 1-21, and in view of the definition of the norm (Σ * ) G k , we have obtained

(Σ * ) G k 0 + (Σ * ) R k , k ≤ k large + 7,
which is an improvement of the local bootstrap assumptions (9.7.6). This concludes the proof of Proposition 9.7.5. 9.7.2 Control of J (0) , f 0 and J on Σ *

In view of Section 3.2.3, θ initialized on S * as in Section 2.5.3, and propagated to Σ * by ν(θ) = 0. Recall also that

J (0) = cos θ so that ν(J (0) ) = 0 along Σ * .
Moreover, the tangential 1-form f 0 on Σ * given by, see Definition 5.6.1,

(f 0 ) 1 = 0, (f 0 ) 2 = sin θ, on S * , ∇ ν f 0 = 0,
where, on S * , we consider the orthonormal basis (e 1 , e 2 ) of S * given by (5.6.1).

Finally, note that the complex horizontal 1-form J introduced in Definition 3.3.4 verifies

J = 1 |q| (f 0 + i * f 0 ) on Σ * .
Recall from Section 9.1.3 that we initialize the PT frame of (ext) M from the integrable frame on Σ * , by relying on the change of frame formula with the transition coefficients

λ = 1, f = a r f 0 , f = aΥ r f 0 .
Thus, in order to control the PT frame of (ext) M on Σ * in the next section, we first need to control the 1-form f 0 . We also need to control J (0) = cos θ and J as these quantities are involved in the definition of the linearized quantities corresponding to the PT frame of (ext) M. The following lemma provides the control of J (0) , f 0 and J on Σ * .

Lemma 9.7.6. The following estimates holds true on Σ * , for all k ≤ k large + 7,

d ≤k * ∇J (0) L 2 (Σ * ) + d ≤k * div (f 0 ) L 2 (Σ * ) + d ≤k * curl (f 0 ) L 2 (Σ * ) + d ≤k * ∇ ⊗f 0 L 2 (Σ * ) + rd ≤k * D • J L 2 (Σ * ) + rd ≤k * D ⊗J L 2 (Σ * ) 0 + (Σ * ) R k , (9.7.28) 
where, see Definitions 5.6.2 and 5.6.3,

∇J (0) := ∇J (0) + 1 r * f 0 , curl (f 0 ) := curl (f 0 ) - 2 r cos θ, D • J := D • J - 4i(r 2 + a 2 ) cos θ |q| 4 .
(9.7.29)

Proof. We first derive estimates on S * . We make use of Lemmas 5.6.6 and 5.6.7 according to which we have on S * ∇J

(0) = - 1 r (e -φ -1) * f 0 , div (f 0 ) = f 0 • ∇φ, curl (f 0 ) = 2 re φ cos θ -f 0 ∧ ∇φ, ∇ ⊗f 0 = f 0 • ∇φ f 0 ∧ ∇φ f 0 ∧ ∇φ -f 0 • ∇φ .
We also use the following estimate on S * φ h k+1 (S * ) 0 + (Σ * ) R k , for all k ≤ k large + 7, derived in Step 2 of the proof of Proposition 9.7.5. The above control of φ on S * and the above identities on S * implies immediately

r ∇J (0) , div (f 0 ), curl (f 0 ), ∇ ⊗f 0 h k (S * ) 0 + (Σ * ) R k , for all k ≤ k large + 7, which is equivalent to r ∇J (0) h k (S * ) + r∇f 0 -cos θ ∈ h k (S * ) 0 + (Σ * ) R k , for all k ≤ k large + 7.
Next, using ν(J (0) ) = 0 and ∇ ν f 0 = 0, we have along Σ * , see Lemma 5.6.11,

∇ ν r ∇J (0) = Γ b • d / ≤1 J (0) , ∇ ν r∇f 0 -cos θ ∈ = Γ b d / ≤1 f 0 .
Commuting with d / and integrating from S * , where r ∇J (0) and r∇f 0 -cos θ ∈ are under control in view of the above, and making use of Proposition 9.7.5 to control Γ b , we deduce on Σ

* sup S⊂Σ * d / ≤k (r ∇J (0) ) L 2 (S) + d / ≤k (r∇f 0 -cos θ ∈) L 2 (S) 0 + (Σ * ) R k + u * 1 d / ≤k (Γ b d / ≤1 f 0 ) L 2 (S) 0 + (Σ * ) R k + √ u * d / ≤k (Γ b d / ≤1 f 0 ) L 2 (Σ * ) √ u * 0 + (Σ * ) R k .
Thus, using the dominant condition for r on Σ * , we infer, for k ≤ k large + 7, sup

S⊂Σ * d / ≤k ∇J (0) L 2 (S) + d / ≤k ∇f 0 - cos θ r ∈ L 2 (S) u -1 2 -δ dec * 0 + (Σ * ) R k .
As a consequence, since δ dec > 0, we have

d / ≤k ∇J (0) L 2 (Σ * ) + d / ≤k ∇f 0 - cos θ r ∈ L 2 (Σ * ) 0 + (Σ * ) R k , k ≤ k large + 7. Using again ∇ ν [r ∇J (0) ] = Γ b • d / ≤1 J (0) and ∇ ν [r∇f 0 -cos θ ∈] = Γ b d / ≤1
f 0 , together with the control of Γ b provided by Proposition 9.7.5, we may recover the ∇ ν derivatives and obtain

d ≤k * ∇J (0) L 2 (Σ * ) + d ≤k * ∇f 0 - cos θ r ∈ L 2 (Σ * ) 0 + (Σ * ) R k , k ≤ k large + 7,
or equivalently, for k ≤ k large + 7,

d ≤k * ∇J (0) L 2 (Σ * ) + d ≤k * div (f 0 ) L 2 (Σ * ) + d ≤k * curl (f 0 ) L 2 (Σ * ) + d ≤k * ∇ ⊗f 0 L 2 (Σ * ) 0 + (Σ * ) R k as stated.
Finally, we control J. Recall that we have on Σ

* J = 1 |q| (f 0 + i * f 0 ) = 1 r (f 0 + i * f 0 ) + O(r -3 ) (f 0 + i * f 0 ) . We infer on Σ * D • J = 1 r (∇ -i * ∇) • (f 0 + i * f 0 ) + O(r -4 ) = 2 r (div (f 0 ) + icurl (f 0 )) = 4i cos θ r 2 + 2 r div (f 0 ) + i curl (f 0 ) + O(r -4 ) = 4i(r 2 + a 2 ) cos θ |q| 4 + 2 r div (f 0 ) + i curl (f 0 ) + O(r -4 ),
and hence

D • J = 2 r div (f 0 ) + i curl (f 0 ) + O(r -4 ),
as well as

D ⊗J = 1 r (∇ + i * ∇) ⊗ (f 0 + i * f 0 ) + O(r -4 ) = 2 r ∇ ⊗f 0 + i * (∇ ⊗f 0 ) + O(r -4 ).
Together with the above control of div (f 0 ), curl (f 0 ) and ∇ ⊗f 0 , and the dominant condition for r on Σ * , we immediately infer, for all k ≤ k large + 7,

rd ≤k * D • J L 2 (Σ * ) + rd ≤k * D ⊗J L 2 (Σ * ) 0 + (Σ * ) R k + r -2 √ u * 0 + (Σ * ) R k .
This concludes the proof of Lemma 9.7.6.

For convenience, we introduce the following notation.

• by (f, f , λ) the transition coefficients from the integrable frame E of Σ * to the outgoing PT frame E of (ext) M,

• by (f , f , λ ) the transition coefficients of the reverse transformation, i.e. the transition coefficients from the frame E to the frame E, and recall from Section 9.1.3 that the initialization of the PT frame of (ext) M given by the following choice for (f, f , λ) on Σ

* λ = 1, f = a r f 0 , f = aΥ r f 0 ,
and that r , u , θ and J are initialized on Σ * by r = r, u = u, θ = θ, J = J.

Remark 9.7.9. We note that, in view of the transformation formulas of Proposition 2.2.3 in the particular case of the transformation from the integrable frame of Σ * to the outgoing PT frame of (ext) M, and in view of the form of the transition coefficients (f, f , λ) on Σ * recalled above, the curvature norm To control the PT frame on Σ * , we will rely on the reverse transformation, i.e. from the PT frame of (ext) M to the integrable frame of Σ * . This is done in the following lemma.

Lemma 9.7.10. Consider the change of frame coefficients (f , f , λ ) from the outgoing PT frame of (ext) M to the integrable frame of Σ * . Then, we have 25 

on Σ * λ = 1 + O(r -2 ), f = - a r 1 + O(r -2 ) f 0 , f = - aΥ r 1 + O(r -2 ) f 0 .
Proof. Recall that the change of frame coefficients from the integrable frame of Σ * to the PT frame of (ext) M are given by

λ = 1, f = a r f 0 , f = aΥ r f 0 .
In view of equation (2.2.3) of Lemma 2.2.1, we have

λ = λ -1 1 + 1 2 f • f + 1 16 |f | 2 |f | 2 , f a = - λ 1 + 1 2 f • f + 1 16 |f | 2 |f | 2 f a + 1 4 |f | 2 f a , f a = -λ -1 f a + 1 4 |f | 2 f a ,
from which the lemma easily follows.

Lemma 9.7.11. Let curl (f

) := curl (f ) + 2a r 2 cos θ, curl (f ) := curl (f ) + 2aΥ r 2 cos θ, ∇ν f := ∇ ν f + 2a r 2 f 0 , ∇ν f := ∇ ν f + 2a r 2 f 0 . Then, we have, for all k ≤ k large + 7, rd ≤k+1 * log(λ ) L 2 (Σ * ) + rd ≤k * div (f ) L 2 (Σ * ) + rd ≤k
Proof. Recall that we have

λ = 1 + O(r -2 ), f = - a r 1 + O(r -2 ) f 0 , f = - aΥ r 1 + O(r -2 ) f 0 .
We infer, using in particular ∇(r) = 0,

∇λ = O(r -3 ), div (f ) = - a r div (f 0 ) + O(r -4 ), curl (f ) = - a r curl (f 0 ) + O(r -4 ), ∇ ⊗f = - a r ∇ ⊗f 0 + O(r -4 ), div (f ) = - aΥ r div (f 0 ) + O(r -4 ), curl (f ) = - aΥ r curl (f 0 ) + O(r -4 ), ∇ ⊗f = - aΥ r ∇ ⊗f 0 + O(r -4 ).
Together with the control of f 0 in Lemma 9.7.6, the dominant condition for r on Σ * , the definition of curl (f ) and curl (f ), and Remark 9.7.9 on the equivalence between the norms (Σ * ) R k and R k , we deduce, for all k ≤ k large + 7,

rd ≤k * ∇(λ ) L 2 (Σ * ) + rd ≤k * div (f ) L 2 (Σ * ) + rd ≤k
Also, using again

λ = 1 + O(r -2 ), f = - a r 1 + O(r -2 ) f 0 , f = - aΥ r 1 + O(r -2 ) f 0 ,
and since ∇ ν f 0 = 0 and ν(θ) = 0 on Σ * , and ν(r) = -2 + } ν(r), we obtain

ν(λ ) = O(r -3 ) -2 + } ν(r) , ∇ ν f = a r 2 1 + O(r -2 ) -2 + } ν(r) f 0 , ∇ ν f = a r 2 1 + O(r -1 ) -2 + } ν(r) f 0 ,
and hence

ν(λ ) = O(r -3 ) -2 + } ν(r) , ∇ν f = a r 2 } ν(r)f 0 + O(r -4 ) -2 + } ν(r) f 0 , ∇ν f = a r 2 } ν(r)f 0 + O(r -3 ) -2 + } ν(r) f 0 .
Together with the control of } ν(r) derived in Proposition 9.7.5, the control of f 0 in Lemma 9.7.6, the dominant condition for r on Σ * , and Remark 9.7.9 on the equivalence between the norms (Σ * ) R k and R k , we infer, for all k ≤ k large + 7,

rd ≤k * ν(λ ) L 2 (Σ * ) + rd ≤k * ∇ν f L 2 (Σ * ) + rd ≤k * ∇ν f L 2 (Σ * ) 0 + R k .
This concludes the proof of Lemma 9.7.11.

Proof of Proposition 9.7.1

We are now ready to prove Proposition 9.7.1.

Step 1. We start with the following lemma.

Lemma 9.7.12. For all k ≤ k large + 7, we have 

e 4 (r ) = 1 -1 4 |f | 2 ν(r) 1 -1 4 |f | 2 b * , e 4 (u ) = - 1 4 |f | 2 ν(u) 1 -1 4 |f | 2 b * , e 4 (cos(θ )) = - f • ∇ cos θ 1 -1 4 |f | 2 b * .
In view of the choice of f , we infer 

e 4 (r ) = 1 + O(r -2 ) + O(r -2 )( q b * , } ν(r)), e 4 (u ) = O(r -2 ) + O(r -2 ) } ν(u) + O(r -4 ) q b * ,
(r -2 ) + r -1 Γ b , e 4 (u ) = O(r -2 ) + r -1 Γ b , e 4 (cos(θ )) = O(r -2 ) + r -1 Γ b .
Using again ν = e 3 +b * e 4 , and the fact that ν is tangent to Σ * so that we have ν(r -r) = 0, ν(u -u) = 0 and ν(θ ) = 0, we infer that

e 3 (r ) = -Υ + O(r -2 ) + rΓ b , e 3 (u ) = 2 + O(r -2 ) + rΓ b , e 3 (cos(θ )) = O(r -2 ) + r -1 Γ b .
Using the above identities on Σ * for e 4 (r ), e 4 (u ), e 4 (cos(θ )) and e 3 (r ), e 3 (u ), e 3 (cos(θ )), together with the change of frame transformation, the choice of λ, f and f , and the fact that ∇(r ) = ∇(u ) = 0 on Σ * , we obtain

∇ (r ) = 1 2 a r e 3 (r ) + aΥ r e 4 (r ) f 0 + O(r -3 ) = Γ b + O(r -3 ), ∇ (u ) = 1 2 a r e 3 (u ) + aΥ r e 4 (u ) f 0 + O(r -3 ) = a r f 0 + Γ b + O(r -3 ), ∇ (cos(θ )) = ∇(cos θ) + r -2 Γ b + O(r -3 ) = - 1 r * f 0 + Γ b + O(r -3 ), and 
e 3 (r ) = (1 + O(r -2 ))e 3 (r ) + O(r -2 )e 4 (r ) = -Υ + O(r -2 ) + rΓ b , e 3 (u ) = (1 + O(r -2 ))e 3 (u ) + O(r -2 )e 4 (u ) = 2 + O(r -2 ) + rΓ b , e 3 (cos(θ )) = (1 + O(r -2 ))e 3 (cos(θ )) + aΥ r f 0 • ∇ cos(θ ) + O(r -2 )e 4 (cos(θ )) = O(r -2 ) + r -1 Γ b .
Since we have by definition of J on Σ

* J = 1 |q| (f 0 + i * f 0 ) = 1 r (f 0 + i * f 0 ) + O(r -3 )(f 0 + i * f 0 ), we deduce D (r), D (u), D (cos θ) = O(r -3 ) + Γ b , ẽ 3 (r), ẽ 3 (u), = O(r -2 ) + rΓ b , e 3 (cos θ) = O(r -2 ) + r -1 Γ b .
The proof of Lemma 9.7.12 then follows from the control of Γ b provided by Corollary 9.7.8, and the dominant condition for r on Σ * .

Step 2. Next, we consider the following lemma. Lemma 9.7.13. For all k ≤ k large + 7, we have

rd ≤k * D ⊗J L 2 (Σ * ) + rd ≤k * D • J L 2 (Σ * ) + rd ≤k * ∇ 3 J L 2 (Σ * ) 0 + R k .
Proof. The proof is in the same spirit as the one of Lemma 9.7.12. First, since ∇ 4 J = -1 q J , since q = q and J = J on Σ * , and since ∇J = ∇J we have, using the transformation formulas

- 1 q J = ∇ 4 J = ∇ 4 J + f • ∇J + O(r -2 )∇ 3 J = ∇ 4 J + f • ∇J + O(r -2 )∇ ν J + O(r -2 )∇ 4 J = (1 + O(r -2 ))∇ 4 J + O(r -3 ) + r -3 Γ b
where we have denoted for convenience (Σ * ) Γ b and (Σ * ) Γ g of Definition 9.7.7 simply by Γ b and Γ g . Hence, we have on Σ *

∇ 4 J = - 1 q J + O(r -3 ) + r -3 Γ b .
Also, since ∇ ν J = ∇ ν J on Σ * , and since ν = e 3 + b * e 4 , we have

∇ 3 J = ∇ ν J -b * ∇ 4 J = 1 r ∇ ν (rJ) - ν(r) r J + b * q J + O(r -3 ) + r -3 Γ b = 1 r J + O(r -3 ) + r -1 Γ b ,
where we have used in particular

∇ ν (rJ) = ∇ ν (f 0 + i * f 0 ) = 0 on Σ * .
Using the above identities on Σ * for ∇ 4 J and ∇ 3 J , together with the change of frame transformation, the choice of λ, f and f , and the fact that ∇(r ) = ∇(u ) = 0 on Σ * , we obtain

D J = DJ + O(r -3 ) + r -2 Γ b , ∇ 3 J = ∇ 3 J + O(r -3 ) + r -2 Γ b = 1 r J + O(r -3 ) + r -1 Γ b .
We infer

D ⊗J = D ⊗J + O(r -3 ) + r -2 Γ b = r -1 Γ b , D • J = D • J + O(r -3 ) + r -2 Γ b = 4i(r 2 + a 2 ) cos θ |q| 4 + O(r -3 ) + r -1 Γ b , ∇ 3 J = 1 r J + O(r -3 ) + r -1 Γ b = ∆q |q| 4 J + O(r -3 ) + r -1 Γ b ,
and hence

D ⊗J = r -1 Γ b , D • J = O(r -3 ) + r -1 Γ b , ∇ 3 J = O(r -3 ) + r -1 Γ b .
The proof of Lemma 9.7.13 then follows from the control of Γ b provided by Corollary 9.7.8, and the dominant condition for r on Σ * .

Step 3. We prove the following lemma.

Lemma 9.7.14. We have, for all k ≤ k large + 7,

d ≤k * ( X , q H , Ξ , q ω ) L 2 (Σ * ) 0 + R k .
Proof. In this lemma, we use the following notation q Γ := r } trX , r X , r q Z , r } trX , q H , X , ω , Ξ , 9.8 Control of the PT-Ricci coefficients in (ext) M

The goal of this section is to provide the proof of Proposition 9.4.17. For convenience, we restate the result below.

Proposition 9.8.1. Relative to the PT frame of (ext) M we have Also, we make use of the transport lemmas derived in the next section.

(ext) G k 0 + G k + (ext) R k , k ≤ k large + 7. ( 9 

Transport lemmas

In what follows the weighted derivatives d / = (r∇) and d = (r∇, r∇ 4 , ∇ 3 ) are defined with respect to the outgoing PT frame of (ext) M. We revisit Proposition 6.4.2 and state below its L 2 version using the following norms

f 2 (u, r) := f L 2 S(u,r) , f 2,k (u, r) := k i=0 d i f 2 (u, r).
Proposition 9.8.2. Let U and F anti-selfdual k-tensors. Assume that U verifies one of the following equations, for a real constant c,

∇ 4 U + c q U = F (9.8.3) or ∇ 4 U + c q U = F. (9.8.4)
In both cases we derive, for any 

r 0 ≤ r ≤ r * = r * (u) at fixed u, with 1 ≤ u ≤ u * , in (ext) M r c-1 U 2,k (u, r) r c-1 * U 2,k (u, r * ) + r * r λ c-1 F 2,k (u, λ)dλ. ( 9 
λ 2(c-1) d ≤k U 2 Σ * r 2(c-1) d ≤k U 2 + (ext) M(r≥r 1 ) r 2C d ≤k F 2 . (9.8.6)
Proof. Apply (9.8.5) for r 0 ≤ r 1 ≤ r ≤ r * = r * (u), 1 ≤ u ≤ u * with r * (u) = c * -u on Σ * , take the square and integrate in u to derive

r=λ λ 2(c-1) d ≤k U 2 Σ * r 2(c-1) d ≤k U 2 + u * 1 du r * λ λ (c-1) F 2,k (u, λ )dλ 2 .
By Cauchy-Schwartz, we have for any

C > c -1 2 r * λ λ (c-1) F 2,k (u, λ )dλ 2 r * λ λ 2C F 2,k (u, λ )dλ r * λ λ 2c-2-2C dλ r * λ λ 2C F 2 2,k (u, λ )dλ .
Hence, we infer for any C > c -1 2 , and for any r 1 ≥ r 0 , sup

λ≥r 1 r=λ λ 2(c-1) d ≤k U 2 Σ * r 2(c-1) d ≤k U 2 + (ext) M(r≥r 1 )
r 2C d ≤k F 2 as stated.

9.8.2 Proof of Proposition 9.8.1

We estimate the Ricci and metric coefficients of the outgoing PT structure of (ext) M in the following order } trX, X, D cos θ, q Z, Dr, q H, ẽ3 (r), q ω, D ⊗J, D • J, e 3 (cos θ), | e 3 J, Ξ, making use of the triangular structure of the linearized equations for outgoing PT structures derived in sections 9.2.5 and 9.2.6, the transport lemmas of the previous section, and the bootstrap assumption (9.8.2).

Step 1. Estimates for } trX.

We apply Corollary 9.8.3 to the following equation, see Proposition 9.2.6,

∇ 4 } trX + 2 q } trX = Γ g • Γ g ,
with c = 2 and C = 2 and derive, for k ≤ k large + 7, sup

λ≥r 0 r=λ λ 2 d ≤k } trX 2 Σ * r 2 d ≤k } trX 2 + (ext) M r 4 d ≤k (Γ g • Γ g ) 2 ( G k ) 2 + (ext) M r 4 d ≤k (Γ g • Γ g ) 2 .
Note that, in view of our bootstrap assumptions (9.8.2) on Γ g ,

d ≤k (Γ g • Γ g ) 2 d ≤k/2 (Γ g ) 2 d ≤k (Γ g ) 2 2 r -4 d ≤k (Γ g ) 2 .
Hence

(ext) M r 4 d ≤k (Γ g • Γ g ) 2 2 (ext) M Γ g 2 2,k 2 r * r 0 r=λ d ≤k (Γ g ) 2 = 2 r * r 0 λ -2 r=λ λ 2 d ≤k (Γ g ) 2 2 sup λ≥r 0 r=λ λ 2 d ≤k (Γ g ) 2 2 G 2 k 4 2 0 .
Thus, we deduce sup

λ≥r 0 r=λ λ 2 d ≤k } trX 2 1 2 0 + G k , k ≤ k large + 7. (9.8.7)
Step 2. Estimates for X.

We apply Corollary 9.8.3 to the following equation, see Proposition 9.2.6,

∇ 4 X + 2 q X = -A + Γ g • Γ g , with c = 2 and C = 3/2 + δ B /2 and derive, for k ≤ k large + 7, sup λ≥r 0 r=λ λ 2 d ≤k X 2 Σ * r 2 d ≤k X 2 + (ext) M r 3+δ B d ≤k A 2 + (ext) M r 3+δ B d ≤k (Γ g • Γ g ) 2 .
Recalling the definition of G k and (ext) R k , and proceeding as in Step 1 with the quadratic term, we deduce sup

λ≥r 0 r=λ λ 2 d ≤k X 2 1 2 0 + G k + (ext) R k , k ≤ k large + 7. ( 9 
.8.8)

Step 3. Estimate for D cos θ.

We apply Corollary 9.8.3 to the following equation, see Lemma 9.2.8,

∇ 4 D cos θ + 1 q D cos θ = O(r -1 ) } trX + O(r -1 ) X + Γ b • Γ g ,
with c = 1 and C = 1. Using the estimate of Step 1 for } trX, the estimate of Step 2 for X, and treating the quadratic terms as before, we easily derive sup

λ≥r 0 r=λ d ≤k D cos θ 2 1 2 0 + G k + (ext) R k , k ≤ k large + 7. ( 9 
.8.9)

Step 4. Estimate for q Z.

We apply26 Proposition 9.8.2 to the following equation, see Proposition 9.2.6,

∇ 4 q Z + 1 q q Z = F, F = O(r -2 ) } trX + O(r -2 ) X -B + Γ g • Γ g , with c = 1 and derive, for k ≤ k large + 7, q Z 2,k (r, u) q Z 2,k (r * , u) + r * r F (λ, u) 2,k (u, λ)dλ,
and hence, for k ≤ k large + 7,

q Z 2 2,k (r, u) q Z 2 2,k (r * , u) + r * r F (λ, u) 2,k (u, λ)dλ 2 q Z 2 2,k (r * , u) + r -2-δ B r * r λ 3+δ B F (λ, u) 2 2,k (u, λ)dλ .
In view of the form of F , this yields, for k ≤ k large + 7, 

q Z 2 2,k (r, u) q Z 2 2,k (r * , u) + r -2-δ B r * r λ 3+δ B B 2 2,k (u, λ) + ( } trX, X) 2 2,k (u, λ) + 2 Γ g 2 2,k (u, λ) . ( 9 
λ 2 d ≤k q Z 2 1 2 Σ * r 2 |d ≤k q Z| 2 + (ext) M r 3+δ B |d ≤k B| 2 + |d ≤k ( } trX, X)| 2 + 2 |d ≤k Γ g | 2 .
Using the estimate of Step 1 for } trX and the estimate of Step 2 for X, we easily derive sup

λ≥r 0 r=λ λ 2 d ≤k q Z 2 1 2 0 + G k + (ext) R k , k ≤ k large + 7. (9.8.11) 
Step 5. Estimates for Dr.

We apply Proposition 9.8.2 to the following equation, see Lemma 9.2.8,

∇ 4 Dr + 1 q Dr = q Z + rΓ g • Γ g
with c = 1 and deduce, for k ≤ k large + 7,

Dr 2,k (u, r) Dr 2,k (u, r * ) + r * r q Z 2,k (u, λ)dλ + r * r λ Γ g • Γ g 2,k (u, λ)dλ.
Squaring and integrating in u, controlling the error term as before using (9.8.2), we derive, for k ≤ k large + 7, sup

λ≥r 0 r=λ d ≤k Dr 2 G 2 k + sup r≥r 0 u * u=1 r * r q Z 2,k (u, λ)dλ 2 + 2 0 .
Now, recall (9.8.10)

q Z 2,k (r, u) q Z 2,k (r * , u) + r -1-δ B 2 r * r λ 3+δ B B 2 2,k (u, λ) + ( } trX, X) 2 2,k (u, λ) + 2 Γ g 2 2,k (u, λ) 1 2 
.

Hence, we have

r * r q Z 2,k (λ, u)dλ r * q Z 2,k (r * , u) + r * r λ 3+δ B B 2 2,k (u, λ) + ( } trX, X) 2 2,k (u, λ) + 2 Γ g 2 2,k (u, λ) 1 2
and thus, using the estimate of Step 1 for } trX and the estimate of Step 2 for X, we obtain, for k ≤ k large + 7,

u * u=1 r * r q Z 2,k (λ, u)dλ 2 G 2 k + (ext) R 2 k + 2 0 .
Plugging in the above estimate for Dr, we infer, for k ≤ k large + 7, sup Step 6. Estimates for q H.

λ≥r 0 r=λ d ≤k Dr 2 G 2 k + sup r≥r 0 u * u=1 r * r q Z 2,k (u, λ)dλ 2 + 2 0 G 2 k + (ext) R 2 k + 2 0 , i.e.
We apply Corollary 9.8.3 to the following equation, see Proposition 9.2.6,

∇ 4 q H + 1 q q H = O(r -2 ) } trX + O(r -2 ) X -B + Γ b • Γ g , with c = 1 and C = 1 and derive, for k ≤ k large + 7, sup λ≥r 0 r=λ d ≤k q H 2 Σ * d ≤k q H 2 + (ext) M r 2 d ≤k O(r -2 ) } trX + O(r -2 ) X -B + Γ b • Γ g 2 .
Using the estimate of Step 1 for } trX and the estimate of Step 2 for X, and proceeding as in Step 1 with the quadratic term, we deduce sup λ≥r 0 r=λ 

d ≤k q H 2 1 2 0 + G k + (ext) R k , k ≤ k large + 7. ( 9 
)) = O(r -1 ) q H + O(r -2 ) D(cos θ) + Γ b • Γ b ,
with c = 0 and deduce, for k ≤ k large + 7,

r -1 e 3 (cos θ) 2,k (u, r) r -1 * e 3 (cos θ) 2,k (u, r * ) + r * r λ -1 F 2,k (u, λ)dλ, with F = O(r -1 ) q H + O(r -2 ) D(cos θ) + Γ b • Γ b .
Multiplying by r, squaring, and integrating in u, we deduce, for r ≥ r 0 and k ≤ k large + 7,

u * u=1 e 3 (cos θ) 2 2,k (u, r) Σ * d ≤k e 3 (cos θ) 2 + u * u=1 r r * r λ -1 F 2,k (u, λ)dλ 2 ( G k ) 2 + u * u=1 r r * r λ -1 F 2,k (u, λ)dλ 2 . Also r * r λ -1 F 2,k (u, λ)dλ r * r λ -2 ( q H, D(cos θ)) 2,k (u, λ)dλ + r * r λ -2 Γ b 2,k (u, λ)dλ r -1 2 r * r λ -2 ( q H, D(cos θ)) 2 2,k (u, λ)dλ 1 2 + r -1 2 r * r λ -2 Γ b 2 2,k (u, λ)dλ 1 2
and hence

u * u=1 r r * r λ -1 F 2,k (u, λ)dλ 2 r u * u=1 du r * r λ -2 ( q H, D(cos θ)) 2 2,k (u, λ)dλ + 2 r u * u=1 du r * r λ -2 Γ b 2 2,k (u, λ)dλ r r * r λ -2 dλ sup r≥r 0 r=λ d ≤k ( q H, D(cos θ)) 2 + 2 r=λ d ≤k Γ b 2 sup r≥r 0 r=λ d ≤k ( q H, D(cos θ)) 2 + 2 r=λ d ≤k Γ b 2 .
Together with (9.8.2), the estimate of Step 3 for D(cos θ)) and the estimate of Step 6 for q H, we infer, for k ≤ k large + 7,

u * u=1 r r * r λ -1 F 2,k (u, λ)dλ 2 0 + G k + (ext) R k 2 .
Plugging in the above, we infer sup λ≥r 0 r=λ

d ≤k e 3 (cos θ)

2 1 2 0 + G k + (ext) R k , k ≤ k large + 7. (9.8.14)
Step 8. Estimate for q ω.

We start with the following equation, see Proposition 9.2.6,

∇ 4 q ω = q P + F, F = O(r -2 ) q Z + O(r -2 ) q H + Γ g • Γ g .
By Proposition 9.8.2, we deduce, for k ≤ k large + 7,

r -1 ω 2,k (r, u) r -1 * ω 2,k (r * , u) + r * r λ -1 q P 2,k + r * r λ -1 F 2,k .
By Cauchy-Schwartz, we infer Multiplying by r 2 , integrating in u, using (9.8.2), the estimate of Step 4 for q Z and the estimate of Step 6 for q H, we easily derive sup λ≥r 0 r=λ

r -2 ω 2 2,k (r, u) r -2 * ω 2 2,k (r * , u) + r -4+δ B r * r λ 3-δ B q P 2 2,k dλ + r -3 r * r λ -2 ( q H, q Z) 2 2,k dλ + 2 r * r λ -2 Γ g 2 
d ≤k q ω 2 1 2 0 + G k + (ext) R k , k ≤ k large + 7. ( 9 
.8.16)

Step 9. Estimates for ẽ3 (r).

In view of Lemma 9.2.8, we have

e 4 ( ẽ3 (r)) = -2q ω + F, F = O(r -2 )Dr + rΓ b • Γ g .
Proceeding as above we deduce

r -1 ẽ3 (r) 2,k r -1 * ẽ3 (r) 2,k (r, * u) + r * r λ -1 q ω 2,k (u, λ)dλ + r * r λ -1 F 2,k (u, λ)dλ
and hence, squaring and integrating in u,

r -2 λ=r d ≤k ( ẽ3 (r)) 2 ( G k ) 2 + u * u=1 r * r λ -1 q ω 2,k (u, λ)dλ 2 + u * u=1 r * r λ -1 F 2,k (u, λ)dλ 2 .
Using Cauchy Schwarz, (9.8.2), and the estimate of Step 5 for Dr, we infer

r -2 λ=r d ≤k ( ẽ3 (r)) 2 ( G k ) 2 + 2 0 + u * u=1 r * r λ -1 q ω 2,k (u, λ)dλ 2 .
The term in q ω is the more dangerous as it could lead to a logarithmic divergence. We estimate it using the more precise estimate for q ω in (9.8.15). Thus,

r * r λ -1 q ω 2,k (u, λ)dλ r * -r r * q ω 2,k (r * , u) + r -1+ δ B 2 r * r λ 3-δ B q P 2 2,k dλ 1/2 +r -1 2 r * r λ -2 ( q H, q Z) 2 2,k dλ + 2 r * r λ -2 Γ g 2 2,k dλ 1 2 q ω 2,k (r * , u) + r * r λ 3-δ B q P 2 2,k dλ 1/2 + r * r λ -2 ( q H, q Z) 2 2,k dλ + 2 r * r λ -2 Γ g 2 2,k dλ 1 2 
.

Squaring, integrating in u, using (9.8.2), and the estimate of Step 4 for q Z and the estimate of Step 6 for q H, we easily derive

u * u=1 r * r λ -1 q ω 2,k (u, λ)dλ 2 G k + (ext) R k + 0 2 , k ≤ k large + 7.
In vie of the above, we infer sup

λ≥r 0 λ -2 r=λ d ≤k ( ẽ3 (r)) 2 1 2 0 + G k + (ext) R k , k ≤ k large + 7. ( 9 
.8.17)

Step 10. Estimates for D ⊗J and D • J.

We make use of equations, see Lemma 9.2.9,

∇ 4 D ⊗J + 2 q D ⊗J = O(r -1 )B + O(r -2 ) } trX + O(r -2 ) X +O(r -2 ) q Z + O(r -3 ) D(cos θ), ∇ 4 D • J + 2 q D • J = O(r -1 )B + O(r -2 ) } trX + O(r -2 ) X + O(r -2 ) q Z +O(r -3 ) D(cos θ).
Using Corollary 9.8.3 with c = 2 and C = 2, the estimates of Step1-4 for } trX, X, D(cos θ) and q Z, we easily derive sup

λ≥r 0 r=λ λ 2 d ≤k (D ⊗J, D • J) 2 1 2 0 + G k + (ext) R k , k ≤ k large + 7. (9.8.18)
Step 11. Estimates for } trX.

We make use of the following equation, see Proposition 9.2.6,

∇ 4 } trX + 1 q } trX = 2 q P + F, F = O(r -1 ) } trX + O(r -1 ) D • J + O(r -3 )D(r) + O(r -3 ) D(cos θ) + Γ b • Γ g .
Using Proposition 9.8.2, we infer

} trX 2,k (u, r) } trX 2,k (u, r * ) + r * r q P 2,k (u, λ)dλ + r * r F 2,k (u, λ)dλ. Now, we have, for k ≤ k large + 7, r * r q P 2,k (u, λ)dλ r -1+ δ B 2 r * r λ 3-δ B q P 2 2,k (u, λ)dλ 1 2 , u * u=1 r * r q P 2,k (u, λ)dλ 2 r -2+δ B ( (ext) R k ) 2 .
Also, we have

r * r F 2,k (u, λ)dλ r -1+ δ B 2 r * r λ 3-δ B F 2 2,k (u, λ)dλ 1 2 r -1+ δ B 2 r * r λ 1-δ B ( } trX, D • J) 2,k (u, λ) + λ -2 (Dr, D(cos θ)) 2,k (u, λ) +λ 2 Γ b • Γ g 2,k (u, λ) 2 1 2 
.

Integrating in u, using (9.8.2), and the estimates of Steps 1, 3, 5 and 10 respectively for } trX, D(cos θ), Dr and D • J, we easily derive, for k ≤ k large + 7,

u * u=1 r * r F 2,k (u, λ)dλ 2 r -2+δ B ( G + (ext) R k + 0 ) 2 .
We deduce sup

λ≥r 0 r=λ λ 2-δ B d ≤k } trX 2 1 2 0 + G k + (ext) R k , k ≤ k large + 7. (9.8.19)
Step 12. Estimates for X.

We make use of the following equation, see Proposition 9.2.6, 

∇ 4 X + 1 q X = O(r -1 )D ⊗J + O(r -3 )Dr + O(r -3 ) D(cos θ) + O(r -1 ) X + Γ b • Γ g . Using 
+ G k + (ext) R k , k ≤ k large + 7. ( 9 
.8.20)

Step 13. Estimates for } ∇ 3 J.

We make use of the following equation, see Lemma 9.2.9,

∇ 4 } ∇ 3 J + 1 q } ∇ 3 J = F, F = O(r -1 ) q P + O(r -3 ) ẽ3 (r) + O(r -3 )e 3 (cos θ) + O(r -2 )q ω +O(r -2 ) q H + O(r -2 ) | ∇J.
Using Proposition 9.8.2, we infer

} ∇ 3 J 2,k (u, r) } ∇ 3 J 2,k (u, r * ) + r * r F 2,k (u, λ)dλ. Now, we have r * r F 2,k (u, λ)dλ r -2+ δ B 2 r * r r 3-δ dec q P 2 2,k (u, λ)dλ 1 2 +r -1 2 r * r r -2 (q ω, q H, | ∇J) 2 2,k (u, λ) + r -2 ( ẽ3 (r), e 3 (cos θ)) 2 2,k (u, λ) dλ 1 2 
.

Squaring, integrating in u, using (9.8.2), and the estimates of Steps 6-10 respectively for q H, e 3 (cos θ), q ω, ẽ3 (r) and | ∇J, we easily derive

u * u=1 r * r F 2,k (u, λ)dλ 2 r -2 ( G + (ext) R k + 0 ) 2 .
We deduce sup

λ≥r 0 r=λ λ 2 d ≤k } ∇ 3 J 2 1 2 0 + G k + (ext) R k , k ≤ k large + 7. ( 9 
.8.21)

Step 14. Estimates for Ξ.

We make use of the following equation, see Proposition 9.2.6,

∇ 4 Ξ = F, F = O(r -1 ) q H + O(r -2 ) } trX + O(r -2 ) X -B + O(r -1 ) } ∇ 3 J + O(r -3 ) ẽ3 (r) +O(r -3 )e 3 (cos θ) + Γ b • Γ b .
Using Proposition 9.8.2, we infer

r -1 Ξ 2,k (u, r) r -1 * Ξ 2,k (u, r * ) + r * r λ -1 F 2,k (u, λ)dλ. Now, we have r * r F 2,k (u, λ)dλ r -1+ δ B 2 r * r λ 1-δ B B 2 2,k (u, λ)dλ 1 2 +r -1 2 r * r λ -2 ( q H, } ∇ 3 J) 2 2,k (u, λ) + λ -2 ( } trX, X) 2 2,k (u, λ) +λ -4 ( ẽ3 (r), e 3 (cos θ)) 2 2,k (u, λ) 1 2 
.

Squaring, integrating in u, using (9.8.2), and the estimates of Steps 6, 7, 9, 11, 12, 13 respectively for q H, e 3 (cos θ), ẽ3 (r), } trX, X and } ∇ 3 J, we easily derive

u * u=1 r * r F 2,k (u, λ)dλ 2 r -2+δ B ( G + (ext) R k + 0 ) 2 .
We deduce sup

λ≥r 0 r=λ λ -δ B d ≤k Ξ 2 1 2 0 + G k + (ext) R k , k ≤ k large + 7. (9.8.22) 
Gathering the estimates derived in Steps 1-14, we infer, in view of the definition of (ext) G k ,

(ext) G k 0 + G k + (ext) R k , k ≤ k large + 7,
as stated. This concludes the proof of Proposition 9.8.1.

9.9 Control of the PT-Ricci coefficients in (int) M Since we will not need to refer to the old region (int) M, defined w.r.t. the PG frame, we drop the prime of (int) M in this section.

Recall the following norms on (int) M introduced in Section 9.4.1, for k ≤ k large + 7,

(int) G 2 k = (int) M d ≤k q Γ 2 , (int) R 2 k = (int) M ∇ R d ≤k-1 q R 2 + |d ≤k-1 q R| 2 + sup τ (int) M∩Σ(τ ) |d ≤k q R| 2 ,
where q Γ denotes the set of all linearized Ricci and metric coefficients with respect to the ingoing PT frame of (int) M, i.e.

q Γ = } trX, X, q Z, | H, D cos θ, q ω, Dr, | Du, e 4 (cos θ), ẽ4 (r), ẽ4 (u), D • J, D ⊗J, } ∇ 4 J, } trX, X, Ξ ,
where q R denotes the set of all linearized curvature components with respect to the ingoing PT frame of (int) M, i.e. q R = {A, B, q P , B, A}, and where the vectorfield R in (int) M is given by, see (9.4.5),

R = 1 2 |q| 2 r 2 + a 2 e 4 - ∆ r 2 + a 2 e 3 .
Remark 9.9.1. Recall that r ≤ r 0 in (int) M so that r is uniformly bounded in that region. In particular, all components have the same behavior in (int) M which is reflected in the definition of the norms (int) G k and (int) R k .

The goal of this section is to provide the proof of Proposition 9.4.18. For convenience, we restate the result below. Proposition 9.9.2 (Control of q Γ in (int) M). Relative to the PT frame of (int) M, we have

(int) G k 0 + (ext) G k + (int) R k , k ≤ k large + 7.
To prove Proposition 9.9.2, we rely in particular on our bootstrap assumption BA-PT, see (9.4.21), which implies for the Ricci and metric coefficients of the ingoing PT frame of (int) M

(int) G k ≤ , k ≤ k large + 7. ( 9 
.9.1)

Preliminaries

Recall that the following identities hold for an ingoing PT structure

ξ = 0, ω = 0, H = aq |q| 2 J, e 3 (r) = -1, e 3 (u) = e 3 (θ) = 0, ∇ 3 J = 1 q J.
In view of Definition 9.3.1 and the notation q Γ, we have

e 4 (r) = ∆ |q| 2 + q Γ, ∇(r) = q Γ, e 4 (u) = 2(r 2 + a 2 ) |q| 2 + q Γ, Du = aJ + q Γ.
Also, note from the definition of R that

R(r) = ∆ r 2 + a 2 + q Γ, e 4 = 2(r 2 + a 2 ) |q| 2 R + ∆ |q| 2 e 3 .
The region (int) M *

We recall the scalar function τ constructed in Proposition 9.3.5 whose level sets are uniformly spacelike in (int) M, and the region

(int) M * = (int) M ∩ {τ ≤ τ * }, (9.9.2) 
see Definition 9.3.9. In particular, the boundary of (int) M * is given by

∂ (int) M * = A ∪ (int) Σ * ∪ T ∪ {u = 1} (9.9.3) 
where A and

(int) Σ * = (int) M ∩ {τ = τ * } (9.9.4) are strictly spacelike, while T = {r = r 0 } and {u = 1} are timelike, with {u = 1} included in the initial data layer.

A simple computation

The following simple computation will be useful in Lemma 9.9.9.

Lemma 9.9.3. For any function f , we have

Div(f e 3 ) = e 3 (f ) - 2r |q| 2 f + f q Γ.
Proof. We have, with π (3) the deformation tensor of e 3 ,

Div(e 3 ) = 1 2 trπ (3) = 1 2 δ ab π (3) 
ab -π

.

Observe that π

= g(D 3 e 3 , e 4 ) + g(D 4 e 3 , e 3 ) = 0, π 

This yields

Div(e 3 ) = tr χ = -

2r |q| 2 + q Γ.
Thus,

Div(f e 3 ) = f Div(e 3 ) + e 3 (f ) = - 2r |q| 2 f + f q Γ + e 3 (f )
as stated.

Commutation formulas Lemma 9.9.4. Given U a horizontal tensor in (int) M, we have 27

[∇ 3 , ∇]U = O(1)∇U + q ΓdU + O(1) + q Γ + q R U, [∇ 3 , ∇ 4 ]U = O(1)∇U + O(1)∇ 3 U + q ΓdU + O(1) + q Γ + q R U.
Proof. In view of Lemma 2.1.2, we have in (int) M, for a real horizontal tensor in (int) M,

[∇ 3 , ∇ b ]U = -χ bc ∇ c U + (η b -ζ b )∇ 3 U + ξ b ∇ 4 U + O(1) + q Γ + q R U, [∇ 4 , ∇ 3 ]U = 2(η b -η b )∇ b U + 2ω∇ 3 U -2ω∇ 4 U + O(1) + q Γ + q R U.
Since, in view of the identities for ingoing PT structures, we have ω = 0, ξ = 0, and

ζ -η = q ζ, we infer [∇ 3 , ∇]U = O(1)∇U + q ΓdU + O(1) + q Γ + q R U, [∇ 4 , ∇ 3 ]U = O(1)∇U + O(1)∇ 3 U + q ΓdU + O(1) + q Γ + q R U,
as stated.

Corollary 9.9.5. Given U a complex horizontal tensor in (int) M we have

[∇ 3 , ∇ R ]U = O(1)∇U + O(1)∇ 3 U + O(1)∇ R U + q ΓdU + O(1) + q Γ + q R U.
Proof. Recall that we have

R = 1 2 |q| 2 r 2 + a 2 e 4 - ∆ r 2 + a 2 e 3 , so that [∇ 3 , ∇ R ] = 1 2 e 3 |q| 2 r 2 + a 2 ∇ 4 -e 3 ∆ r 2 + a 2 ∇ 3 + 1 2 |q| 2 r 2 + a 2 [∇ 3 , ∇ 4 ] = O(1)∇ R + O(1)∇ 3 + O(1)[∇ 3 , ∇ 4 ]
and the corollary follows immediately from the formula for [∇ 3 , ∇ 4 ] in Lemma 9.9.4.

Commuted structure equations

In this section, we rely on the commutation formulas of Lemma 9.9.4 and Corollary 9.9.5 to derive the equations for higher order derivatives of the equations for the Ricci coefficients and metric coefficients of the ingoing PT structure of (int) M. We start with the following proposition concerning the schematic form of the uncommuted equations in (int) M. Proposition 9.9.6. In the PT structure of (int) M, the equations of Proposition 9.3.3 for the Ricci and metric coefficients take the following form28 :

1. X satisfies a transport equation of the following form

∇ 3 X = O(1) X -A + q Γ • q Γ. ( 9 
.9.5)

2. If Φ is among the quantities } trX, X, D cos θ, Dr, e 4 (cos θ), ẽ4 (r), then Φ satisfies a transport equation of the following form

∇ 3 Φ = O(1)Φ + q Γ 0 [Φ] + q Γ • q Γ, (9.9.6) 
where

q Γ 0 [ } trX] = 0, q Γ 0 [ X] = D ⊗J, D(cos θ), X , q Γ 0 [ D cos θ] = } trX, X , q Γ 0 [Dr] = q Z, q Γ 0 [e 4 (cos θ)] = | H, D(cos θ) , q Γ 0 [ ẽ4 (r)] = q ω, Dr .
(9.9.7)

3. If Φ is among the quantities q Z, | H, } trX, q ω, Ξ, D ⊗J, D • J, } ∇ 4 J, then Φ satisfies a transport equation of the following form

∇ 3 Φ = O(1)Φ + q Γ 0 [Φ] + q R 0 [Φ] + q Γ • q Γ, ( 9 
.9.8)

where q R 0 [Φ] is a curvature component among the list q R 0 [Φ] = B, q P , B , (9 
.9.9)

and q Γ 0 [ q Z] = X, } trX , q Γ 0 [ | H] = X, } trX , q Γ 0 [ } trX] = } trX, D • J, Dr, D(cos θ) , q Γ 0 [q ω] = q Z, | H , q Γ 0 [Ξ] = | H, } trX, X, } ∇ 4 J, ẽ4 (r), e 4 (cos θ) , q Γ 0 [D ⊗J] = } trX, X, q Z, D(cos θ) , q Γ 0 [ D • J] = } trX, X, q Z, D(cos θ) , q Γ 0 [ } ∇ 4 J] = ẽ4 (r), e 4 (cos θ), q ω, | H, | ∇J .
(9.9.10)

In addition, the linearized Codazzi equation for X in Proposition 9.3.4

D • X = D } trX + q R + q Γ + q Γ • q Γ.
Proof. This follows immediately from Proposition 9.3.3.

We now commute the equations of Proposition 9.9.6.

Proposition 9.9.7. Let 1 ≤ k ≤ k large an integer. In the PT structure of (int) M, the commutation of the equation of Proposition 9.9.6 for the Ricci and metric coefficients take the following form:

1. X satisfies a transport equation of the following form

∇ 3 (∇ R d k-1 X) = O(1)∇ R d k-1 X + O(1)∇d k-1 X +∇ R d k-1 q R + d ≤k-1 ( q R, q Γ) + d ≤k ( q Γ • q Γ). ( 9 
.9.11)

2. If Φ is among the quantities } trX, X, D cos θ, Dr, e 4 (cos θ), ẽ4 (r), then Φ satisfies a transport equation of the following form

∇ 3 (∇ R d k-1 Φ) = O(1)∇ R d k-1 Φ + O(1)∇d k-1 Φ + q Γ k [Φ] +d ≤k-1 ( q R, q Γ) + d ≤k ( q Γ • q Γ), ( 9 
.9.12)

and

∇ 3 (∇d k-1 Φ) = O(1)∇ R d k-1 Φ + O(1)∇d k-1 Φ + q Γ k [Φ] +d ≤k-1 ( q R, q Γ) + d ≤k ( q Γ • q Γ), (9.9.13) 
where

q Γ k [ } trX] = 0, q Γ k [ X] = d k D ⊗J, D(cos θ), X , q Γ k [ D cos θ] = d k } trX, X , q Γ k [Dr] = d k q Z, q Γ k [e 4 (cos θ)] = d k | H, D(cos θ) , q Γ k [ ẽ4 (r)] = d k q ω, Dr . (9.9.14) 3. If Φ is among the quantities q Z, | H, } trX, q ω, Ξ, D ⊗J, D • J, } ∇ 4 J, then Φ satisfies transport equations of the following form ∇ 3 (∇ R d k-1 Φ) = O(1)∇ R d k-1 Φ + O(1)∇d k-1 Φ + q Γ k [Φ] +∇ R d k-1 q R + d ≤k-1 ( q R, q Γ) + d ≤k ( q Γ • q Γ), ( 9 
.9.15)

and

∇ 3 (∇d k-1 Φ + d k-1 q R) = O(1)∇ R d k-1 Φ + O(1)∇d k-1 Φ + q Γ k [Φ] +∇ R d k-1 q R + d ≤k-1 ( q R, q Γ) + d ≤k ( q Γ • q Γ), (9.9.16) where q Γ k [ q Z] = d k X, } trX , q Γ k [ | H] = d k X, } trX , q Γ k [ } trX] = d k } trX, D • J, Dr, D(cos θ) , q Γ k [q ω] = d k q Z, | H , q Γ k [Ξ] = d k | H, } trX, X, } ∇ 4 J, ẽ4 (r), e 4 (cos θ) , q Γ k [D ⊗J] = d k } trX, X, q Z, D(cos θ) , q Γ k [ D • J] = d k } trX, X, q Z, D(cos θ) , q Γ k [ } ∇ 4 J] = d k ẽ4 (r), e 4 (cos θ), q ω, | H, | ∇J .
(9.9.17)

In addition, we have

D • (d k-1 X) = d k } trX + d ≤k-1 ( q R, q Γ) + d ≤k-1 ( q Γ • q Γ). ( 9 
.9.18)

Proof. We focus on (9.9.16) as the other commuted equations follow immediately from the corresponding uncommuted equation in Proposition 9.9.6 and the commutation formulas of Lemma 9.9.4 and Corollary 9.9.5.

Recall that the case of (9.9.16), Φ satisfies according to Proposition 9.9.6 the following uncommuted equation

∇ 3 Φ = O(1)Φ + q Γ 0 [Φ] + q R 0 [Φ] + q Γ • q Γ,
where q R 0 [Φ] is a curvature component among the list {B, q P , B}. Thus, using the commutation formulas of Lemma 9.9.4 and Corollary 9.9.5, we immediately infer

∇ 3 (∇d k-1 Φ) = O(1)∇ R d k-1 Φ + O(1)∇d k-1 Φ + O(1)∇ 3 d k-1 Φ + q Γ k [Φ] +d k-1 ∇ q R 0 [Φ] + d ≤k-1 ( q R, q Γ) + d ≤k ( q Γ • q Γ).
Also, using

∇ 3 (d k-1 Φ) = d ≤k-1 q Γ + d ≤k-1 q R + d ≤k-1 ( q Γ • q Γ),
we may get rid of the term O(1)∇ 3 d k-1 Φ on the RHS and obtain

∇ 3 (∇d k-1 Φ) = O(1)∇ R d k-1 Φ + O(1)∇d k-1 Φ + q Γ k [Φ] +d k-1 ∇ q R 0 [Φ] + d ≤k-1 ( q R, q Γ) + d ≤k ( q Γ • q Γ),
where the only term of the RHS which does not agree with (9.9.16) is d

k-1 ∇ q R 0 [Φ].
Next, in view of Proposition 9.3.4, we may rewrite some of the linearized Bianchi identities in the following schematic form

D ⊗B = ∇ 3 q R + q R + q Γ + q R • q Γ, D • B = ∇ 4 q R + q R + q Γ + q R • q Γ, D q P = ∇ 3 q R + q R + q Γ + q R • q Γ, D q P = ∇ 4 q R + q R + q Γ + q R • q Γ, D • B = ∇ 3 q R + q R + q Γ + q R • q Γ, D ⊗B = ∇ 4 q R + q R + q Γ + q R • q Γ.
Now, note that we have

∇q ρ = 1 2 (D q P ) + (D q P ) , ∇ | * ρ = 1 2 (D q P ) -(D q P ) ,
so that D q P and D q P generate any angular derivative of q P . Thus, in view of the above schematic linearized Bianchi identities, we have

∇ q P = ∇ 3 q R + ∇ 4 q R + q R + q Γ + q R • q Γ.
Also, note that for a complex anti-selfdual 1-form

F = f + i * f , we have div (f ) = 1 2 (D • F ), curl (f ) = 1 2 (D • F ), ∇ ⊗f = (D ⊗F ), and 
∇ a f b = 1 2 div (f )δ ab + 1 2 curl (f ) ∈ ab + 1 2 (∇ ⊗β) ab ,
so that D • F and D ⊗F generate any angular derivative of F . Thus, in view of the above schematic linearized Bianchi identities, we have

∇B = ∇ 3 q R + ∇ 4 q R + q R + q Γ + q R • q Γ, ∇B = ∇ 3 q R + ∇ 4 q R + q R + q Γ + q R • q Γ.
Since q R 0 [Φ] is a curvature component among the list {B, q P , B}, we infer from the above identities for ∇ q P , ∇B and ∇B that we have

∇ q R 0 [Φ] = ∇ 3 q R + ∇ 4 q R + q R + q Γ + q R • q Γ.
Also, since e 4 is in the span of R and e 3 , we infer

∇ q R 0 [Φ] = ∇ 3 q R + ∇ R q R + q R + q Γ + q R • q Γ.
Next, recall from the above that we have

∇ 3 (∇d k-1 Φ) = O(1)∇ R d k-1 Φ + O(1)∇d k-1 Φ + q Γ k [Φ] +d k-1 ∇ q R 0 [Φ] + d ≤k-1 ( q R, q Γ) + d ≤k ( q Γ • q Γ).
Plugging the above identity for ∇ q R 0 [Φ], we infer

∇ 3 (∇d k-1 Φ) = O(1)∇ R d k-1 Φ + O(1)∇d k-1 Φ + q Γ k [Φ] +d k-1 ∇ 3 q R + d k-1 ∇ R q R + d ≤k-1 ( q R, q Γ) + d ≤k ( q Γ • q Γ).
Using again the commutation formulas of Lemma 9.9.4 and Corollary 9.9.5, we infer

∇ 3 (∇d k-1 Φ) = O(1)∇ R d k-1 Φ + O(1)∇d k-1 Φ + q Γ k [Φ] +∇ 3 d k-1 q R + ∇ R d k-1 q R + d ≤k-1 ( q R, q Γ) + d ≤k ( q Γ • q Γ),
and hence

∇ 3 (∇d k-1 Φ + d k-1 q R) = O(1)∇ R d k-1 Φ + O(1)∇d k-1 Φ + q Γ k [Φ] +∇ R d k-1 q R + d ≤k-1 ( q R, q Γ) + d ≤k ( q Γ • q Γ),
as stated in (9.9.16). This concludes the proof of Proposition 9.9.7.

so that for Φ satisfying (9.9.19), we have

e 3 (|q| p |Φ| 2 ) = -pr|q| p-2 |Φ| 2 + 2|q| p (Φ • F ).
We deduce

Div(|q| p |Φ| 2 e 3 ) = -(p + 2)r|q| p-2 |Φ| 2 + 2|q| p (Φ • F ) + |q| p |Φ| 2 q Γ
and hence, using in particular q Γ = O( ),

Div(|q| p |Φ| 2 e 3 ) ≤ -p + 1 + O( ) r|q| p-2 |Φ| 2 + r -1 |q| p+2 |F | 2 .
Integrating on (int) M * , we infer, for > 0 small enough,

(int) Σ * |q| p |Φ| 2 g(e 3 , N ) + A |q| p |Φ| 2 g(e 3 , N ) + p (int) M * r|q| p-2 |Φ| 2 ≤ (int) M * r -1 |q| p+2 |F | 2 + T |q| p |Φ| 2 |g(e 3 , N )| + {u=1} |q| p |Φ| 2 |g(e 3 , N )|.
Since both (int) Σ * and A are spacelike, and taking the orientation into account, we have g(e 3 , N ) > 0 in both cases, and hence We now apply Lemma 9.9.9 to the transport equations of Proposition 9.9.7.

Proposition 9.9.11. If Φ is any quantity among q Γ \ { X}, i.e. Φ is any linearized Ricci or metric coefficient of the ingoing PT structure of (int) M except X, then Φ satisfies, for k ≤ k large + 7,

(int) Σ * ∪A |d k Φ| 2 + (int) M * |d k Φ| 2 0 + (int) R k + (int) G k-1 2 + (int) M * | q Γ k [Φ]| 2 + T ∪{u=1}
|d k Φ| 2 . (9.9.21)

Proof. We start with the case where Φ is among the quantities } trX, X, D cos θ, Dr, e 4 (cos θ), ẽ4 (r). Then, according to Proposition 9.9.7. Φ satisfies a transport equations of the following form

∇ 3 (∇ R d k-1 Φ) = O(1)∇ R d k-1 Φ + O(1)∇d k-1 Φ + q Γ k [Φ] +d ≤k-1 ( q R, q Γ) + d ≤k ( q Γ • q Γ), and 
∇ 3 (∇d k-1 Φ) = O(1)∇ R d k-1 Φ + O(1)∇d k-1 Φ + q Γ k [Φ] +d ≤k-1 ( q R, q Γ) + d ≤k ( q Γ • q Γ).
Then, applying (9.9.20), we obtain

(int) Σ * ∪A |q| p |∇ R d k-1 Φ| 2 + |∇d k-1 Φ| 2 |g(e 3 , N )| +p (int) M * r|q| p-2 |∇ R d k-1 Φ| 2 + |∇d k-1 Φ| 2 ≤ (int) M * O(1)r -1 |q| p+2 |∇ R d k-1 Φ| 2 + |∇d k-1 Φ| 2 + (int) M * r -1 |q| p+2 q Γ k [Φ] + d ≤k-1 ( q R, q Γ) + d ≤k ( q Γ • q Γ) 2 + T ∪{u=1} |q| p-2 |d k Φ| 2 |g(e 3 , N )|.
Note that O(1) depends only on k and the equation of Φ, and hence not on p. Together with the fact that r + -δ H ≤ r ≤ r 0 in (int) M, there exists thus a constant C independent of p such that

(int) Σ * ∪A |q| p |∇ R d k-1 Φ| 2 + |∇d k-1 Φ| 2 |g(e 3 , N )| +p (int) M * r|q| p-2 |∇ R d k-1 Φ| 2 + |∇d k-1 Φ| 2 ≤ C (int) M * r|q| p-2 |∇ R d k-1 Φ| 2 + |∇d k-1 Φ| 2 + (int) M * r -1 |q| p+2 q Γ k [Φ] + d ≤k-1 ( q R, q Γ) + d ≤k ( q Γ • q Γ) 2 + T ∪{u=1} |q| p-2 |d k Φ| 2 |g(e 3 , N )|.
In particular, taking p large enough, we may absorb the first term on the RHS by the LHS and obtain, using again the fact that r + -δ H ≤ r ≤ r 0 in (int) M,

(int) Σ * ∪A |∇ R d k-1 Φ| 2 + |∇d k-1 Φ| 2 |g(e 3 , N )| + (int) M * |∇ R d k-1 Φ| 2 + |∇d k-1 Φ| 2 (int) M * q Γ k [Φ] + d ≤k-1 ( q R, q Γ) + d ≤k ( q Γ • q Γ) 2 + T ∪{u=1} |∇ R d k-1 Φ| 2 + |∇d k-1 Φ| 2 |g(e 3 , N )|.
Also, using in particular Proposition 9.3.5 for the boundary (int) Σ * = {τ = τ * }, as well as the fact that A = {r = r + -δ H } and T {r = r 0 }, we infer

|g(e 3 , N )| 1 on T ∪ {u = 1}, |g(e 3 , N )| 1 on (int) Σ * ∪ A which yields (int) Σ * ∪A |∇ R d k-1 Φ| 2 + |∇d k-1 Φ| 2 + (int) M * |∇ R d k-1 Φ| 2 + |∇d k-1 Φ| 2 (int) M * q Γ k [Φ] + d ≤k-1 ( q R, q Γ) + d ≤k ( q Γ • q Γ) 2 + T ∪{u=1} |d k Φ| 2 .
Next, we estimate the first term on the RHS. In view of the definition of (int) R k and (int) G k , and using the bootstrap assumption (9.9.1), we have, for k ≤ k large + 7,

(int) M * d ≤k-1 ( q R, q Γ) + d ≤k ( q Γ • q Γ) 2 2 + (int) R k + (int) G k-1 2 0 + (int) R k + (int) G k-1 2 .
Plugging in the above, we deduce, for k ≤ k large + 7,

(int) Σ * ∪A |∇ R d k-1 Φ| 2 + |∇d k-1 Φ| 2 + (int) M * |∇ R d k-1 Φ| 2 + |∇d k-1 Φ| 2 0 + (int) R k + (int) G k-1 2 + (int) M * | q Γ k [Φ]| 2 + T ∪{u=1} |d k Φ| 2 . Now, note that |d k Φ| |∇ R d k-1 Φ| + |∇d k-1 Φ| + |∇ k 3 Φ| + |d ≤k-1 Φ|
and hence, for k ≤ k large + 7,

(int) Σ * ∪A |d k Φ| 2 + (int) M * |d k Φ| 2 0 + (int) R k + (int) G k-1 2 + (int) M * | q Γ k [Φ]| 2 + T ∪{u=1} |d k Φ| 2 + (int) Σ * ∪A |∇ k 3 Φ| 2 + (int) M * |∇ k 3 Φ| 2
so that it still remains to control ∇ k 3 Φ. Using ∇ 3 Φ = q Γ + q R, and iterating, we have

∇ k 3 Φ = q Γ + d ≤k-1 q R,
and hence, in view of the definition of (int) R k and (int) G k , and the trace theorem for q Γ, we have

(int) Σ * ∪A |∇ k 3 Φ| 2 + (int) M * |∇ k 3 Φ| 2 (int) Σ * ∪A | q Γ + d ≤k-1 q R| 2 + (int) M * | q Γ + d ≤k-1 q R| 2 (int) R 2 k + (int) M * |d ≤1 q Γ| 2 (int) G 2 1 + (int) R 2 k .
Since (int) G 1 0 in view of (9.4.23), we infer

(int) Σ * ∪A |∇ k 3 Φ| 2 + (int) M * |∇ k 3 Φ| 2 2 0 + (int) R 2 k .
Plugging in the above estimate for d k Φ, we infer, for k ≤ k large + 7,

(int) Σ * ∪A |d k Φ| 2 + (int) M * |d k Φ| 2 0 + (int) R k + (int) G k-1 2 + (int) M * | q Γ k [Φ]| 2 + T ∪{u=1} |d k Φ| 2
as stated.

It remains to treat the case where Φ is among the quantities q Z, | H, } trX, q ω, Ξ, D ⊗J, D • J, } ∇ 4 J. Then, according to Proposition 9.9.7. Φ satisfies a transport equations of the following form

∇ 3 (∇ R d k-1 Φ) = O(1)∇ R d k-1 Φ + O(1)∇d k-1 Φ + q Γ k [Φ] +∇ R d k-1 q R + d ≤k-1 ( q R, q Γ) + d ≤k ( q Γ • q Γ), and 
∇ 3 (∇d k-1 Φ + d k-1 q R) = O(1)∇ R d k-1 Φ + O(1)∇d k-1 Φ + q Γ k [Φ] +∇ R d k-1 q R + d ≤k-1 ( q R, q Γ) + d ≤k ( q Γ • q Γ).
Proceeding exactly as in the first case, we obtain

(int) Σ * ∪A |d k Φ + d k-1 q R| 2 + (int) M * |d k Φ + d k-1 q R| 2 (int) M * |∇ R d k-1 q R| 2 + 0 + (int) R k + (int) G k-1 2 + (int) M * | q Γ k [Φ]| 2 + T ∪{u=1} |d k Φ| 2 .
Since we have, in view of the definition of (int) R k ,

(int) Σ * ∪A |d k-1 q R| 2 + (int) M * |d k-1 q R| 2 + (int) M * |∇ R d k-1 q R| 2 ( (int) R k ) 2 ,
we infer, for k ≤ k large + 7,

(int) Σ * ∪A |d k Φ| 2 + (int) M * |d k Φ| 2 0 + (int) R k + (int) G k-1 2 + (int) M * | q Γ k [Φ]| 2 + T ∪{u=1} |d k Φ| 2
as stated. This concludes the proof of Proposition 9.9.11.

Non-integrable Hodge estimates

Note that Proposition 9.9.11 does not apply to X. In this section, we provide estimate for X relying in particular on Codazzi. To this end, we start by considering Hodge type systems of the form and note that with this definition, we have e 1 (u) = 0, e 1 (r) = 0, e 2 (u) = 0, e 2 (r) = 0, so that ( e 1 , e 2 ) spans the tangent space of the spheres S(u, r). We decompose 

D • U = H (9.
N α D α U • U = - 1 2 g(N, e 4 )D 3 U • U - 1 2 g(N, e 3 )D 4 U • U + g(N, e b )D b U • U = O(1)∇ 3 U • U + O(1)∇ 4 U • U + 1 2 g(N, e b ) e b (U • U ). Now, since ∂ (int) M * = (int) Σ * ∪ A ∪ {u = 1} ∪ T ,
∂ (int) M * N α D α U • U = ∂ (int) M * O(1)|∇ 3 U ||U | + O(1)|∇ 4 U ||U | + O(1)|U | 2 = ∂ (int) M * O(1)|∇ 3 U ||U | + O(1)|∇ R U ||U | + O(1)|U | 2 .
Plugging in the above, we infer

(int) M * |∇U | 2 (int) M * |D • U | 2 + |U ||dU | + ∂ (int) M * |∇ 3 U | + |∇ R U | + |D • U | + |U | |U |
as stated. This completes the proof of Proposition 9.9.12.

We are now ready to derive and estimate for X on (int) M * .

Proposition 9.9.15. X satisfies, for k ≤ k large + 7,

(int) M * |d k X| 2 (int) M * |d k } trX| 2 + (int) Σ * ∪A |d k } trX| 2 + |d ≤k-1 ( q Γ \ { X})| 2 + T ∪{u=1} |d ≤k q Γ| 2 + 0 + (int) R k + (int) G k-1 2 
.

(9.9.26) 30 Recall that e 4 (u) = 2(r 2 +a 2 )

|q| 2
+ q Γ so that we may divide by e 4 (u).

Proof. Recall from Proposition 9.9.7 that X satisfies the following equation

∇ 3 (∇ R d k-1 X) = O(1)∇ R d k-1 X + O(1)∇d k-1 X +∇ R d k-1 q R + d ≤k-1 ( q R, q Γ) + d ≤k ( q Γ • q Γ).
Then, applying (9.9.20), we obtain

(int) Σ * ∪A |q| p |∇ R d k-1 X| 2 |g(e 3 , N )| + p (int) M * r|q| p-2 |∇ R d k-1 X| 2 ≤ (int) M * O(1)r -1 |q| p+2 |∇ R d k-1 X| 2 + (int) M * O(1)r -1 |q| p+2 |∇d k-1 X| 2 + (int) M * r -1 |q| p+2 ∇ R d k-1 q R + d ≤k-1 ( q R, q Γ) + d ≤k ( q Γ • q Γ) 2 + T ∪{u=1} |q| p-2 |∇ R d k-1 X| 2 |g(e 3 , N )|.
Next, we choose p large enough to absorb the first term on the RHS. Proceeding as in the proof of Proposition 9.9.11, we obtain

(int) Σ * ∪A |∇ R d k-1 X| 2 + (int) M * |∇ R d k-1 X| 2 (int) M * |∇d k-1 X| 2 + T ∪{u=1} |∇ R d k-1 X| 2 + (int) M * ∇ R d k-1 q R + d ≤k-1 ( q R, q Γ) + d ≤k ( q Γ • q Γ) 2 .
In view of the definition of (int) R k and (int) G k , and using the bootstrap assumption (9.9.1), we infer, for k ≤ k large + 7,

(int) Σ * ∪A |∇ R d k-1 X| 2 + (int) M * |∇ R d k-1 X| 2 (int) M * |∇d k-1 X| 2 + T ∪{u=1} |∇ R d k-1 X| 2 + 0 + (int) R k + (int) G k-1 2 
.

Next, we focus on controlling the first term on the RHS of the above estimate, i.e. the one involving ∇d k-1 X. We use Proposition 9.9.12 with U = d k-1 X which yields

(int) M * |∇d k-1 X| 2 (int) M * |D • d k-1 X| 2 + |d k-1 X||d k X| + ∂ (int) M * |∇ 3 d k-1 X| + |∇ R d k-1 X| + |D • d k-1 X| + |d k-1 X| |d k-1 X|.
Also, recall from Proposition 9.9.7 that X satisfies the following equation

∇ 3 d k-1 X = d ≤k-1 ( q R, q Γ) + d ≤k-1 ( q Γ • q Γ), D • (d k-1 X) = d k } trX + d ≤k-1 ( q R, q Γ) + d ≤k-1 ( q Γ • q Γ).
Plugging in the above, we deduce

(int) M * |∇d k-1 X| 2 (int) M * d k } trX + d ≤k-1 ( q R, q Γ) + d ≤k-1 ( q Γ • q Γ) 2 + |d k-1 X||d k X| + ∂ (int) M * |d k } trX| + |d ≤k-1 ( q R, q Γ) + d ≤k-1 ( q Γ • q Γ)| + |∇ R d k-1 X| + |d k-1 X| |d k-1 X|.
In view of the definition of (int) R k and (int) G k , and using the bootstrap assumption (9.9.1), we infer, for k ≤ k large + 7,

(int) M * |∇d k-1 X| 2 (int) M * |d k } trX| 2 + |d k-1 X||d k X| + ∂ (int) M * |d k } trX| 2 + |d ≤k-1 ( q Γ \ { X})| 2 + ∂ (int) M * |∇ R d k-1 X| + |d k-1 X| |d k-1 X| + 0 + (int) R k + (int) G k-1 2 .
Also, using the trace theorem, we have

∂ (int) M * |d k-1 X| 2 (int) M * |d ≤k-1 X||d ≤k X|.
Together with

(int) M * |d ≤k-1 X||d ≤k X| (int) G k-1 (int) M * |d k X| 2 1 2 + (int) G 2 k-1 ,
we infer

(int) M * |∇d k-1 X| 2 (int) M * |d k } trX| 2 + (int) G k-1 (int) M * |d k X| 2 1 2 +( (int) G k-1 ) 1 2 (int) M * |d k X| 2 1 4 ∂ (int) M * |∇ R d k-1 X| 2 1 2 + ∂ (int) M * |d k } trX| 2 + |d ≤k-1 ( q Γ \ { X})| 2 + 0 + (int) R k + (int) G k-1 2 
and hence, for k ≤ k large + 7,

(int) M * |∇d k-1 X| 2 (int) M * |d k } trX| 2 + (int) G k-1 (int) M * |d k X| 2 1 2 +( (int) G k-1 ) 1 2 (int) M * |d k X| 2 1 4 (int) Σ * ∪A |∇ R d k-1 X| 2 1 2 + (int) Σ * ∪A |d k } trX| 2 + |d ≤k-1 ( q Γ \ { X})| 2 + 0 + (int) R k + (int) G k-1 2 + T ∪{u=1} |d ≤k q Γ| 2 .
Next, recall the following above estimate, for k ≤ k large + 7,

(int) Σ * ∪A |∇ R d k-1 X| 2 + (int) M * |∇ R d k-1 X| 2 (int) M * |∇d k-1 X| 2 + T ∪{u=1} |∇ R d k-1 X| 2 + 0 + (int) R k + (int) G k-1 2 .
Plugging the above estimate for ∇d k-1 X, we obtain, for k ≤ k large + 7,

(int) Σ * ∪A |∇ R d k-1 X| 2 + (int) M * |∇ R d k-1 X| 2 + (int) M * |∇d k-1 X| 2 (int) M * |d k } trX| 2 + (int) G k-1 (int) M * |d k X| 2 1 2 +( (int) G k-1 ) 1 2 (int) M * |d k X| 2 1 4 (int) Σ * ∪A |∇ R d k-1 X| 2 1 2 + (int) Σ * ∪A |d k } trX| 2 + |d ≤k-1 ( q Γ \ { X})| 2 + T ∪{u=1} |d ≤k q Γ| 2 + 0 + (int) R k + (int) G k-1 2 
.

We use the boundary term for ∇ R d k-1 X on the LHS to absorb the corresponding term on the RHS and infer

(int) M * |∇ R d k-1 X| 2 + (int) M * |∇d k-1 X| 2 (int) M * |d k } trX| 2 + (int) G k-1 (int) M * |d k X| 2 1 2 + (int) Σ * ∪A |d k } trX| 2 + |d ≤k-1 ( q Γ \ { X})| 2 + T ∪{u=1} |d ≤k q Γ| 2 + 0 + (int) R k + (int) G k-1 2 
.

Using the fact that X satisfies

∇ 3 d k-1 X = d ≤k-1 q Γ + d ≤k-1 q R + d ≤k-1 ( q Γ • q Γ),
and using again the definition of (int) R k and (int) G k , and the bootstrap assumption (9.9.1), we infer, for k ≤ k large + 7,

(int) M * |∇ R d k-1 X| 2 + (int) M * |∇d k-1 X| 2 + (int) M * |∇ 3 d k-1 X| 2 (int) M * |d k } trX| 2 + (int) G k-1 (int) M * |d k X| 2 1 2 + (int) Σ * ∪A |d k } trX| 2 + |d ≤k-1 ( q Γ \ { X})| 2 + T ∪{u=1} |d ≤k q Γ| 2 + 0 + (int) R k + (int) G k-1 2 .
Since ∇, ∇ R and ∇ 3 span all derivatives, we deduce

(int) M * |d k X| 2 (int) M * |d k } trX| 2 + (int) G k-1 (int) M * |d k X| 2 1 2 + (int) Σ * ∪A |d k } trX| 2 + |d ≤k-1 ( q Γ \ { X})| 2 + T ∪{u=1} |d ≤k q Γ| 2 + 0 + (int) R k + (int) G k-1 2 
.

We may absorb the second term on the RHS by the LHS and obtain, for k ≤ k large + 7,

(int) M * |d k X| 2 (int) M * |d k } trX| 2 + (int) Σ * ∪A |d k } trX| 2 + |d ≤k-1 ( q Γ \ { X})| 2 + T ∪{u=1} |d ≤k q Γ| 2 + 0 + (int) R k + (int) G k-1 2 
as stated. This concludes the proof of Proposition 9.9.15. 9.9.5 Estimates for the PT frame of (int) M on T

The following lemma provides the control of the ingoing PT structure of (int) M on T from the outgoing PT structure of (ext) M. Proof. The proof is the analog for the PT frames of (ext) M and (int) M of the one of Lemma 7.2.2 for the PG frames of (ext) M and (int) M. To simplify the notations, in this proof, we denote:

• by (e 4 , e 3 , e 1 , e 2 ) the outgoing PT frame of (ext) M, with all quantities associated to the outgoing PT structure of (ext) M being unprimed,

• by (e 4 , e 3 , e 1 , e 2 ) the ingoing PT frame of (int) M, with all quantities associated to the ingoing PT structure of (int) M being primed.

Recall that (ext) M ∩ (int) M = T = {r = r 0 }. In view of the above notations, and the initialization of the ingoing PT structure of (int) M from the outgoing PG structure of Based on this initialization we derive in particular, for any tangent vector X on T , g(D X e 4 , e a ) = g (D X (λe 4 ) , e a ) = λg (D X e 4 , e a ) , g(D X e 3 , e a ) = g D X λ -1 e 3 , e a = λ -1 g (D X e 3 , e a ) , g(D X e 4 , e 3 ) = g D X (λe 4 ) , λ -1 e 3 = -2X(log λ) + g (D X e 4 , e 3 ) .

Note that any such tangent vector X is a linear combination of the following three tangent directions to T , X 1 = e 1 -e 1 (r)e 4 , X 2 = e 2 -e 2 (r)e 4 , X 3 = e 3 -e 3 (r)e 4 .

Also, note that we have ∇(r) = q Γ, e 3 (r) = -λ + q Γ, so that X 1 = e 1 + q Γe 4 , X 2 = e 2 + q Γe 4 , X 3 = e 3 + λe 4 + q Γe 4 , as well as X 1 = e 1 + q Γe 4 , X 2 = e 2 + q Γe 4 , X 3 = λe 3 + e 4 + q Γe 4 .

We infer χ ba = λχ ba + q Γ, χ ba = λ -1 χ ba + q Γ, ζ b = -e b (log λ) + ζ b + q Γ, and λη a + ξ a = λη a + λ 2 ξ + q Γ, λξ a + η a = λ -1 ξ a + η a + q Γ, -λω + ω = -1 2 e 3 (log λ) -ω + λω + q Γ.

Together with

• the fact that, by the PT gauge choices, ξ = 0, ω = 0, H = aq |q | 2 , ξ = 0, ω = 0, H = -aq |q| 2 J,

• the form of λ,

• the fact that r = r, θ = θ, and J = J on T ,

• the definition of the linearized quantities for the PT frame in (int) M and (ext) M, Then, since the PT structure equations take the form ∇ 3 q Γ = q Γ + q R + q Γ • q Γ, and using the bootstrap assumption (9.9.1), we infer, for k ≤ k large + 7,

T d ≤k q Γ 2 (ext) G 2 k + T |d ≤k-1 q R | 2 + |d ≤k-1 q Γ | 2 .
Together with the trace theorem and the definition of (int) R k , we obtain, for k ≤ k large +7,

T d ≤k q Γ 2 (ext) G 2 k + (int) R 2 k + T |d ≤k-1 q Γ | 2 .
We thus need in this step to control the solution on regions of the type R u 1 ,u 2 := u 1 ≤ u ≤ u 2 , 1 ≤ u 1 < u 1 + 1 ≤ u 2 ≤ u * , u 2 -u 1 ≤ 4(m + 1). (9.9.31)

We use the following lemma.

Lemma 9.9.17. Let Φ satisfying on (int) M an equation of the type

∇ 3 (d k Φ) = O(1)d k Φ + d ≤k-1 q Γ + d ≤k q R + d ≤k ( q Γ • q Γ).
(9.9.32)

Then, Φ satisfies on regions R u 1 ,u 2 as in (9.9.31), for k ≤ k large + 7,

Ru 1 ,u 2 |d k Φ| 2 T |d k Φ| 2 + 0 + (int) G k-1 + (int) R k 2 .
(9.9.33)

Proof. Let u 1 ≤ u ≤ u 2 . We integrate the transport equation in r along the level set of u which yields, after applying Gronwall lemma and using the fact that r ≤ r 0 in (int) M, 

d ≤k-1 q Γ + d ≤k q R + d ≤k ( q Γ • q Γ) 2 .
Since r ≤ r 0 in (int) M, we infer 

d ≤k-1 q Γ + d ≤k q R + d ≤k ( q Γ • q Γ) 2 .
Integrating in u for u ∈ (u 1 , u 2 ), we infer

Ru 1 ,u 2 |d k Φ| 2 T |d k Φ| 2 + Ru 1 ,u 2 d ≤k-1 q Γ + d ≤k q R + d ≤k ( q Γ • q Γ) 2 .
Then, using the definition of (int) R k and (int) G k , and the bootstrap assumption (9.9.1), we have, for k ≤ k large + 7,

Ru 1 ,u 2 d ≤k-1 q Γ + d ≤k q R + d ≤k ( q Γ • q Γ) 2 (int) G 2 k-1 + 2 0 + max Ru 1 ,u 2 τ -max Ru 1 ,u 2 τ sup τ Σ(τ )∩ (int) M |d ≤k q R| 2 0 + (int) G k-1 + (int) R
where we have also use the fact that u 2 -u 1 1 by the definition of R u 1 ,u 2 and that the variation of τ is controlled by the variation of u on (int) M in view of Proposition 9.3.5. We thus infer, for k ≤ k large + 7,

Ru 1 ,u 2 |d k Φ| 2 T |d k Φ| 2 + 0 + (int) G k-1 + (int) R k 2
as desired. This concludes the proof of Lemma 9.9.17.

The set of all linearized Ricci and metric coefficients q Γ satisfies, in view of the equations in the ingoing PT structure,

∇ 3 (d k q Γ) = O(1)d k Φ + d ≤k-1 q Γ + d ≤k q R + d ≤k ( q Γ • q Γ).
We may thus apply Lemma 9.9.17 which yields on regions R u 1 ,u 2 as in (9.9.31), for k ≤ k large + 7,

Ru 1 ,u 2 |d k q Γ| 2 T |d k q Γ| 2 + 0 + (int) G k-1 + (int) R k 2 .
Together with the iteration assumption (9.9.29) and the control on T for q Γ provided by Lemma 9.9.16, we infer, for k ≤ k large + 7,

Ru 1 ,u 2 |d k q Γ| 2 0 + (ext) G k + (int) R k 2 .
(9.9.34)

In particular, since (int) M \ (int) M * is included in R u 1 ,u 2 with u 1 = u * -4(m + 1) and u 2 = u * in view of (9.9.30), (9.9.34) yields

(int) M\ (int) M * |d k q Γ| 2 0 + (ext) G k + (int) R k 2
, k ≤ k large + 7. (9.9.35) Also, choosing u 1 = 1 and u 2 = 2, we have in view of (9.9.34)

1≤u≤2 |d k q Γ| 2 0 + (ext) G k + (int) R k 2
, k ≤ k large + 7. (9.9.36)

Let 1 ≤ u 0 ≤ 2 such that

u=u 0 |d k q Γ| 2 = inf 1≤ u≤2 u= u |d k q Γ| 2 .
Together with (9.9.36), this yields

u=u 0 |d k q Γ| 2 ≤ 2 1 u= u |d k q Γ| 2 d u 1≤u≤2 |d k q Γ| 2 0 + (ext) G k + (int) R k 2 so that u=u 0 |d k q Γ| 2 0 + (ext) G k + (int) R k 2
, k ≤ k large + 7. (9.9.37)

In view of (9.9.37), we should:

• reduce (int) M * to (int) M * ∩ {u ≥ u 0 } so that the boundary terms on {u = u 0 } in the integration by parts of Propositions 9.9.11 and 9.9.15 are under control,

• control the remaining region {1 ≤ u ≤ u 0 } thanks to (9.9.36).

For simplicity, we pretend that u 0 = 1, i.e. we assume from now by a slight abuse that we have (9.9.37) with u 0 = 1 and hence

u=1 |d k q Γ| 2 0 + (ext) G k + (int) R k 2
, k ≤ k large + 7. (9.9.38)

Control on (int) M * Note that (9.9.35) provides the desired control of q Γ on (int) M \ (int) M * . It thus remains to control q Γ on (int) M * . We start with the following corollary of Propositions 9.9.11 and 9.9.15. Corollary 9.9.18. Φ is any quantity among q Γ \ { X}, i.e. Φ is any linearized Ricci or metric coefficient of the ingoing PT structure of (int) M, then Φ satisfies, for k ≤ k large +7, Proof. Consider first the case of Φ in q Γ \ { X}. Then, according to Proposition 9.9.11, Φ satisfies, for k ≤ k large + 7,

(int) Σ * ∪A |d k Φ| 2 + (int) M * |d k Φ| 2 0 + (int) R k + (int) G k-1 2 + (int) M * | q Γ k [Φ]| 2 + T ∪{u=1} |d k q Γ| 2 .
Together with the iteration assumption (9.9.29), the control on T for q Γ provided by Lemma 9.9.16, and the control of q Γ on u = 1 provided by (9.9.38), we infer, for k ≤ k large + 7, Next, we focus on the estimate for X. According to Proposition 9.9.15, X satisfies, for k ≤ k large + 7,

(int) M * |d k X| 2 (int) M * |d k } trX| 2 + (int) Σ * ∪A |d k } trX| 2 + |d ≤k-1 ( q Γ \ { X})| 2 + T ∪{u=1} |d ≤k q Γ| 2 + 0 + (int) R k + (int) G k-1 2 .
Together with the iteration assumption (9.9.29), the control on T for q Γ provided by Lemma 9.9.16, and the control of q Γ on u = 1 provided by (9.9.38), we infer, for k ≤ k large + 7,

(int) M * |d k X| 2 (int) M * |d k } trX| 2 + (int) Σ * ∪A |d k } trX| 2 + 0 + (int) R k + (ext) G k 2 .
Together with the control on (int) M \ (int) M * provided by (9.9.35), we infer

(int) Σ * ∪A |d k ( q Γ \ { X})| 2 + (int) M |d k q Γ| 2 0 + (int) R k + (ext) G k 2 
. (9.9.43)

Together with iteration assumption (9.9.29), and in view of the definition of (int) G k , we deduce

(int) G k + (int) Σ * ∪A |d ≤k ( q Γ \ { X})| 2 1 2 0 + (int) R k + (ext) G k .
This is the iteration assumption (9.9.29) with k replaced by k + 1. We have thus obtained (int) G k 0 + (int) R k + (ext) G k , k ≤ k large + 7. This concludes the proof of Proposition 9.9.2.

Control of the PT-Ricci coefficients in (top) M

The goal of this section is to provide the proof of Proof of Proposition 9.4.19 recalled in Proposition 9.10.1 below. Since we will not need to refer to the old region (top) M, defined w.r.t. the PG frame, we drop the prime of (top) M in this section.

Preliminaries

Recall the following norm for the linearized Ricci and metric coefficients on (top) M introduced in Section 9.4.1, for k ≤ k large + 7,

(top) G 2 k = (top) M(r≤r 0 ) d ≤k q Γ| 2 + ( (top) G ≥r 0 k ) 2
where q Γ denotes the set of all linearized Ricci and metric coefficients with respect to the ingoing PT frame of (top) M, and where with Ξ, q ω, } trX, X, q Z, | H, } trX, X the linearized Ricci coefficients of the ingoing PT frame of (top) M, and with the notation 

( (top) G ≥r 0 k ) 2 := sup
|d ≤k q R| 2 ,
where q R is the set of all linearized curvature coefficients w.r.t. the ingoing PT frame of (top) M, and A, B, q P , B, A denote the linearized curvature components relative to the ingoing PT frame of (top) M. Also, recall the definition of L * (k), see (9.4.36), In particular, we have in which case the constant in is independent of r 0 .

L 2 * (k) = {u=u * } q R 2 w,k + Σ * ∩{u=u * } q Γ 2 w,k (9 
To prove Proposition 9.10.1, we rely in particular on our bootstrap assumption BA-PT, see (9.4.21), which implies for the Ricci and metric coefficients of the ingoing PT frame of Proof. This follows from a straightforward adaptation of Proposition 9.8.2 which is our main transport lemma in (ext) M.

Next, we control the linearized Ricci and metric coefficients of the outgoing PT frame of (ext) M on the hypersurface {u = u * }. where the constant in the definition of is independent of r 0 .

Proof. We proceed as follows:

1. We rely on the equations for the linearized Ricci and metric coefficients of the PT structure of (ext) M, see Proposition 9.2.6 and Lemmas 9.2.8 and 9.2.9, and the control of transport equations along e 4 provided by Lemma 9.10.2.

2. We integrate the transport equations in the order consistent with the triangular structure of the system, i.e., as in Section 9.8.2, we estimate the linearized Ricci and metric coefficients of the outgoing PT structure of (ext) M in the following order } trX, X, D cos θ, q Z, Dr, q H, ẽ3 (r), q ω, D ⊗J, D • J, e 3 (cos θ), | e 3 J, Ξ.

3. We also make use of the bootstrap assumption (9.8.2) for the outgoing PT frame of (ext) M.

As a result, we obtain the control of the linearized Ricci and metric coefficients of the outgoing PT structure of (ext) M by the following two contributions:

• their restriction to S(u * , r * ) = Σ * ∩ {u = u * },

• r p weighed norms of curvature along {u = u * }, which are precisely in the form of L * (k), see (9.10.1). The proof is very similar to the one in Section 9.8.2, and in fact simpler. We leave the details to the reader.

We are now ready to state the main result of this section on the control of the linearized Ricci and metric coefficients of the ingoing PT frame of (top) M on {u = u * }. where the constant in the definition of is independent of r 0 .

Proof. The proof is the analog for the PT frames of (ext) M and (top) M of the one of Lemma 7.5.3 for the PG frames of (ext) M and (top) M. To simplify the notations, in this proof, we denote:

• by (e 4 , e 3 , e 1 , e 2 ) the outgoing PT frame of (ext) M, with all quantities associated to the outgoing PT structure of (ext) M being unprimed,

• by (e 4 , e 3 , e 1 , e 2 ) the ingoing PT frame of (top) M, with all quantities associated to the ingoing PT structure of (int) M being primed.

In view of the above notations, and the initialization of the ingoing PT structure of (top) M from the outgoing PG structure of Based on this initialization we derive in particular, for any tangent vector X on {u = u * }, g(D X e 4 , e a ) = g (D X (λe 4 ) , e a ) = λg (D X e 4 , e a ) , g(D X e 3 , e a ) = g D X λ -1 e 3 , e a = λ -1 g (D X e 3 , e a ) , g(D X e 4 , e 3 ) = g D X (λe 4 ) , λ -1 e 3 = -2X(log λ) + g (D X e 4 , e 3 ) .

Note that any such tangent vector X is a linear combination of the following three tangent directions to {u = u * }, Together with 33 Recall that Ξ and } trX exhibit a r -δ B

• the fact that, by the PT gauge choices, ξ = 0, ω = 0, H = aq |q | 2 , ξ = 0, ω = 0, H = -aq |q| 2 J, • the form of λ,

• the fact that r = r, θ = θ, and J = J on {u = u * },

• the definition of the linearized quantities for the PT frame in where the constant in the definition of is independent of r 0 , and where we recall the notation (top) M r 0 ,u 1 = (top) M(r ≥ r 0 ) ∩ {u 1 ≤ u ≤ u 1 + 1}. Integrating in r on (max(r 0 , r -(u)), r + (u)), and using again the bound (9.10.13), this yields as stated. Note that the constant in the definition of is independent of r 0 since it is the case in Proposition 9.10.6 and in the bound (9.10.13).

In

Next, we consider the second case, i.e. the estimate for U in (top) M(r ≤ r 0 ). We proceed as above, but instead of integrating in r on (max(r 0 , r -(u)), r + (u)), we integrate in r on (r -(u), r + (u)) and obtain In particular, we deduce are an immediate consequence of Corollary 2.2.4 and the notation for F and F .

Next, we focus on proving the fourth identity. Since we assume e 4 (q) = 1, which also yields e 4 (q) = 1, we have We infer ∇ λ -1 e 4 (qF ) = q∇ λ -1 e 4 F + λ -1 e 4 (q

)F = q - 1 2 trXF -2ωF -2Ξ -χ • F + E 1 (f, Γ) + F + f • ∇ + 1 4 |f | 2 e 3 F = -2qωF -2qΞ - 1 2 q trX - 2 q F -q χ • F + qE 1 (f, Γ) + f • ∇(q)F + 1 4
|f | 2 e 3 (q)F and hence ∇ λ -1 e 4 (qF ) = -2qωF -2qΞ + E 4 (f, Γ), where E 4 (f, Γ) is given by

E 4 (f, Γ) = - 1 2 q trX - 2 q F -q χ • F + qE 1 (f, Γ) + f • ∇(q)F + 1 4
|f | 2 e 3 (q)F as stated.

Finally, we consider the fifth and last identity. Using the first four identities and the We infer that λ -1 tr χ = 2 r -2a 2 (cos θ) In the following lemma, we derive the asymptotic of the area radius of S(u, r) that will be used in the proof of Proposition 2.4.29 below.

Lemma A.3.2. Let r denote the area radius of S(u, r). r verifies

r = r 1 + a 2 3r 2 + O 1 r 3 .
Proof. Let g denote the induced metric on S(u, r). Then, (θ, ϕ) forms a coordinates system on S(u, r), and we have g θθ = g θθ = |q| 2 , g θϕ = g θϕ = 0, g ϕϕ = g ϕϕ = Σ 2 (sin θ) 2 |q| 2 .

We deduce Moreover, using the fact that χ, χ and ∇ ⊗J, are traceless,

g
2g cd (T) π cd = | trχ + ∆ |q| 2 | trχ -2a ( div J) = Γ g .
This concludes the proof of Proposition 2.6.10.

and

∇ 4 ( χ • χ) = r -1 d / ≤1 (Γ b • Γ g ),
and hence

∇ 4 q ρ - 1 2 χ • χ = div β - 3 r q ρ + r -1 d / ≤1 (Γ b • Γ g ).
Since ν = e 3 + b * e 4 and b * = -1 -2m r + rΓ b , we infer

∇ ν q ρ - 1 2 χ • χ = -div β -(1 + O(r -1
))div β + O(r -1 )q ρ + O(r -3 )q κ + O(r -4 )q y +r - as stated. This concludes the proof of Corollary 5.2.12.

B.5 Proof of Proposition 5.1.26

In the proof, we denote by

• (e 1 , e 2 , e 3 , e 4 ) the null frame of Σ * ,

• (e 1 , e 2 , e 3 , e 4 ) the null frame of (ext) M,

• (e 1 , e 2 , e 3 , e 4 ) the second null frame of (ext) M of Proposition 3.6.2,

• (e 1 , e 2 , e 3 , e 4 ) the global null frame of M of Proposition 3.6.9.

Also, we denote

• by (f, f , λ) the change coefficients from (e 1 , e 2 , e 3 , e 4 ) to (e 1 , e 2 , e 3 , e 4 ),

• by (f , f , λ ) the change coefficients from (e 1 , e 2 , e 3 , e 4 ) to (e 1 , e 2 , e 3 , e 4 ).

Since Proposition 5.1.26 involves identities on Σ * , it suffices to consider a neighborhood of Σ * where we have in view of Proposition 3.6.9 We now ready to prove the identities (5.1.57) and (5.1.58) starting with the first one.

1 See Definition 5.2.2 in [START_REF] Giorgi | Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes[END_REF].

B.5.1 Proof of (5.1.57)

In view of Proposition 2.1.9 applied to the frame (e 1 , e 2 , e 3 , e 4 ), we have in particular

(∇ e 3 -4ω )A = 1 2 D ⊗B -

1 2 trX A + 1 2 (Z + 4H ) ⊗B -3P X .
Also, recall that in the frame (e 1 , e 2 , e 3 , e 4 ), we have q H ∈ Γ g and the normalization in ingoing, so that trX = -2 q + Γ g , Z = aq |q| 2 J + Γ g , H = aq |q| 2 J + Γ g , P = -2m q 3 + r -1 Γ g .

Together with the fact that A ∈ r -1 Γ g and B ∈ r -1 Γ g , we infer

(∇ e 3 -4ω )A = 1 2 D ⊗B + 1 q A + 5 2

aq |q| 2 J ⊗B + 6m q 3 X + r -1 Γ g • Γ g .
Plugging in the definition of q, and using additionally

C 1 = - 4 r + O(r -2 ) + Γ g , C 2 = 2 r 2 + O(r -3 ) + r -1 Γ g , q = r + O(1),
we infer q = qq 3 (∇ e 3 -2ω ) 1 2 D ⊗B + 1 q A + 5 2

aq |q| 2 J ⊗B + 6m q 3 X - 4 r 
1 2 D ⊗B + 1 q A + 2 r 2 A + d ≤1 Γ g + r 2 d ≤1 (Γ b • Γ g ).
where we have used in particular the fact that ∇ e 3 (Γ g ) = r -1 dΓ b and ∇ 3 (r) = -1+rΓ b . Also, using again q = r + O(1), ∇ 3 (r) = -1 + rΓ b , as well as

ω = O(r -2 ) + Γ b , ∇ e 3 J = O(r -1 )J + r -1 Γ b , [∇ 3 , D ⊗]B = 1 r D ⊗B + r -4 d ≤1 Γ g + r -2 d ≤1 (Γ b • Γ g ),
we obtain 

q = qq
= -(f -) 1 ∇ 2 φ -(f -) 2 ∇ 1 φ so that ∇ ⊗f -= (f -) 2 ∇ 2 φ -(f -) 1 ∇ 1 φ -(f -) 1 ∇ 2 φ -(f -) 2 ∇ 1 φ -(f -) 1 ∇ 2 φ -(f -) 2 ∇ 1 φ -(f -) 2 ∇ 2 φ + (f -) 1 ∇ 1 φ
as stated. This concludes the proof of Lemma 5.6.7.

B.7 Proof of Lemma 5.6.10

Let f a 1-form and F = f + i * f . Then, we have

D • F = 2div (f ) + 2icurl (f ).
Also, since |q| 2 = r 2 + a 2 (cos θ) 2 , J (0) = cos θ, and ∇(r) = 0, we have

div 1 |q| f = 1 |q| div (f ) - ∇(|q|) |q| 2 • f = 1 |q| div (f ) - ∇(r 2 + a 2 (cos θ) 2 ) 2|q| 3 • f = 1 |q| div (f ) - a 2 cos θ∇(J (0) ) |q| 3 • f = 1 |q| div (f ) + a 2 cos θ r|q| 3 * f 0 • f - a 2 cos θ |q| 3 ∇J (0) • f and curl 1 |q| f = 1 |q| curl (f ) + * ∇(|q|) |q| 2 • f = 1 |q| curl (f ) - * ∇(r 2 + a 2 (cos θ) 2 ) 2|q| 3 • f = 1 |q| curl (f ) - a 2 cos θ * ∇(J (0) ) |q| 3 • f = 1 |q| curl (f ) - a 2 cos θ r|q| 3 f 0 • f - a 2 cos θ |q| 3 * ∇J (0) • f.
Hence, we have

D • 1 |q| F = 2 |q| div (f ) + 2a 2 cos θ r|q| 3 * f 0 • f - 2a 2 cos θ |q| 3 ∇J (0) • f +i 2 |q| curl (f ) - 2a 2 cos θ r|q| 3 f 0 • f - 2a 2 cos θ |q| 3 * ∇J (0) • f .
Since we have by definition on Σ *

J = 1 |q| (f 0 + i * f 0 ) , J ± = 1 |q| (f ± + i * f ± ) ,
we infer and

D • J = 2 |q| div (f 0 ) + 2a 2 cos θ r|q| 3 * f 0 • f 0 - 2a 2 cos θ |q| 3 f 0 • ∇J (0)
D • J ± = 2 |q| div (f ± ) + 2a 2 cos θ r|q| 3 * f 0 • f ± - 2a 2 cos θ |q| 3 f ± • ∇J (0) +i 2 |q| curl (f ± ) - 2a 2 cos θ r|q| 3 f 0 • f ± - 2a 2 cos θ |q| 3 f ± • * ∇J (0) .
Since we have on Σ * In view of the definition of curl (f 0 ), div (f ± ), D • J, and D • J ± we obtain

f 0 • f 0 = (sin θ) 2 , f + • f 0 = -J (-) , f -• f 0 = J (+) , f 0 • * f 0 = 0, f + • * f 0 =
D • J = O(r -4 ) + 2 |q| div (f 0 ) - 2a 2 cos θ |q| 3 f 0 • ∇J (0) +i 2 |q| curl (f 0 ) - 2a 2 cos θ |q| 3 f 0 • * ∇J (0) , D • J ± = O(r -4 ) + 2 |q| div (f ± ) - 2a 2 cos θ |q| 3 f ± • ∇J (0) +i 2 |q| curl (f ± ) - 2a 2 cos θ |q| 3 f ± • * ∇J (0) ,
where O(r a ) denotes, for a ∈ R, a function of (r, cos θ) bounded by r a as r → +∞. This concludes the proof of Lemma 5.6.10.

Next, recall ∇ 4 X + (trX) X = -A and hence

∇ 4 X + 2r |q| 2 X = -A + Γ g • Γ g .
Next, recall

∇ 4 Z + trXZ = -X • Z -B.
We infer

∇ 4 q Z = -trXZ -X • Z -B -∇ 4 aq |q| 2 J .
Now, since e 4 (q) = 1 and ∇ 4 J = -q -1 J, we have

∇ 4 aq |q| 2 J = a |q| 2 - 2aqe 4 (|q|)
|q| 3 Jaq q|q| 2 J = a |q| 4 |q| 2 -q(q + q) -q 2 J = -2aq 2 |q| 4 J and thus

∇ 4 q Z + 2 q q Z = - aq |q| 2 J } trX - aq |q| 2 J • X -B + Γ g • Γ g .
We infer

∇ 4 q Z + 2 q q Z = - aq |q| 2 J • X -B + O(r -2 ) } trX + Γ g • Γ g .
Next, recall

∇ 4 H + 1 2 trX(H + Z) = - 1 2 X • (H + Z) -B,
we infer

∇ 4 q H = - 1 2 trX(H + Z) - 1 2 X • (H + Z) -B -∇ 4 aq |q| 2 J .
Now, since e 4 (q) = 1 and ∇ 4 J = -q -1 J, we have

∇ 4 aq |q| 2 J = a |q| 2 - 2aqe 4 (|q|)
|q| 3 Ja |q| 2 J = -aq(q + q) |q| 4 J and thus

∇ 4 q H + 1 q q H = - 1 q q Z - ar |q| 2 } trXJ - ar |q| 2 J • X -B + Γ b • Γ g .
We infer

∇ 4 q H + 1 q q H = - 1 q q Z - ar |q| 2 J • X -B + O(r -2 ) } trX + Γ b • Γ g .
Next, recall

∇ 4 trX + 1 2 trXtrX = -D • Z + Z • Z + 2P - 1 2 X • X.
We infer

∇ 4 } trX = ∇ 4 2q∆ |q| 4 - 1 2 trXtrX -D • Z + Z • Z + 2P - 1 2 X • X = ∂ r 2q∆ |q| 4 - 1 2 2 q + } trX - 2q∆ |q| 4 + } trX -D • Z + Z • Z + 2 - 2m (q) 3 + q P - 1 2 X • X,
and hence

∇ 4 } trX + 1 q } trX = -D • Z + Z • Z + 2 q P + ∂ r 2q∆ |q| 4 + 2∆ |q| 4 - 4m (q) 3 +O(r -1 ) } trX + Γ b • Γ g .
Next, we compute

-D • Z + Z • Z = -D • aq |q| 2 J + q Z + aq |q| 2 J + q Z • aq |q| 2 J + q Z = - aq |q| 2 D • J -D aq |q| 2 • J -D • q Z + a 2 |q| 2 J • J + aq |q| 2 J • q Z + aq |q| 2 J • q Z + Γ g • Γ g .
Since J • J = 2(sin θ) 2 |q| 2 , we infer 

-D • Z + Z • Z = - aq |q| 2 - 4i(
ia 2 q 2 |q| 4 D(cos θ) • J -D • q Z + aq |q| 2 J • q Z + aq |q| 2 J • q Z + Γ g • Γ g .
This yields

∇ 4 } trX + 1 q } trX = - aq |q| 2 D • J - ia 2 q 2 |q| 4 D(cos θ) • J -D • q Z + aq |q| 2 J • q Z + aq |q| 2 J • q Z +2 q P + O(r -1 ) } trX + Γ b • Γ g
and hence

∇ 4 } trX + 1 q } trX = -D • q Z + 2 q P + O(r -2 ) q Z + O(r -1 ) } trX +O(r -1 ) D • J + O(r -3 ) D(cos θ) + Γ b • Γ g .
Next, recall that

∇ 3 Z + 1 2 trX(Z + H) -2ω(Z -H) = -2Dω - 1 2 X • (Z + H) + 1 2 trXΞ -B + 1 2 Ξ • X, ∇ 3 Z + ∇ 4 Ξ = - 1 2 trX(Z + H) - 1 2 X • (Z + H) -B.
We infer

∇ 4 Ξ + 1 2 trXΞ = 2Dω + i (trX)(Z + H) -2ω(Z -H) + Γ b • Γ g .
This yields

∇ 4 Ξ + 1 q Ξ = D ∂ r ∆ |q| 2 + i - 2q∆ |q| 4 a(q + q) |q| 2 J -∂ r ∆ |q| 2
a(q -q) |q| 2 J +O(r -1 ) d / ≤1 (q ω) + O(r -2 ) q Z + O(r -2 ) q H + O(r -2 ) } trX + Γ b • q ω, Γ g . Now, using D(r) = 0, (q) = a cos θ, D(|q| 2 ) = 2a 2 cos θD(cos θ), D(cos θ) = -iJ + D(cos θ),

we have by direct check

D ∂ r ∆ |q| 2 + i - 2q∆ |q| 4 a(q + q) |q| 2 J -∂ r ∆ |q| 2
a(q -q) |q| 2 J = O(r -3 ) D(cos θ)

and hence

∇ 4 Ξ + 1 q Ξ = O(r -1 ) d / ≤1 (q ω) + O(r -2 ) q Z + O(r -2 ) q H + O(r -2 ) } trX +O(r -3 ) D(cos θ) + Γ b • q ω, Γ g .
Next, recall that

∇ 4 X + 1 2 trX X = - 1 2 D ⊗Z + 1 2 Z ⊗Z - 1 2 trX X
and hence

∇ 4 X + 1 q X = - 1 2 D ⊗Z + 1 2 Z ⊗Z + O(r -1 ) X + Γ b • Γ g .

Now, we have

-D ⊗Z + Z ⊗Z = -D ⊗ aq |q| 2 J + q Z + aq |q| 2 J + q Z ⊗ aq |q| 2 J + q Z = - aq |q| 2 D ⊗J -D aq |q| 2 ⊗J -D ⊗ q Z + a 2 q 2 |q| 4 J ⊗J + 2aq |q| 2 J ⊗ q Z + Γ g • Γ g
= a 2 q 2 |q| 4 J ⊗J + a q 2 D(q) ⊗J -D ⊗ q Z + O(r -2 ) q Z + O(r -1 )D ⊗J + Γ g • Γ g = a 2 iq 2 |q| 4 D(cos θ) -iJ ⊗J -D ⊗ q Z + O(r -2 ) q Z + O(r -1 )D ⊗J + Γ g • Γ g = -D ⊗ q Z + O(r -2 ) q Z + O(r -1 )D ⊗J + O(r -3 ) D(cos θ) + Γ g • Γ g .

Since we have we deduce

D 1 q + 1 q aq |q| 2 J -i 2 q aq |q| 2 J = -
1 2 D • X = 1 q q Z -B + O(r -2 ) X + O(r -2 ) q H + O(r -1 ) d / ≤1 } trX +O(r -2 ) D(cos θ) + Γ b • Γ g .
Next, recall

∇ 3 B -DP = -trXB + 2ωB + B • X + 3P H + 1 2 A • Ξ.
We infer

∇ 3 B -D q P = 2 r B + O(r -2 )B + O(r -2 ) q P + O(r -3 ) q H -D 2m (q) 3 - 6m (q) 3 aq |q| 2 J + r -1 Γ b • Γ g .

Now, we have

-D 2m (q) 3 -6m (q) 3 aq |q| 2 J = 6m q 4 D(q) -6am (q) 4 J = -6iam q 4 D(cos θ) -6am (q) 4 J = -6iam q 4 D(cos θ) -iJ = -6iam q 4 D(cos θ)

and hence

∇ 3 B -D q P = 2 r B + O(r -2 )B + O(r -2 ) q P + O(r -3 ) q H + O(r -4 ) D(cos θ) + r -1 Γ b • Γ g .
Next, recall

∇ 4 B - 1 2 D • A = -2trXB + 1 2 A • Z,
and hence

∇ 4 B + 4 q B = 1 2 D • A + aq 2|q| 2 J • A + Γ g • (B, A).
C.2 Proof of Lemma 6.1.16

We have from Lemma 6.1.10. where we have used ∇ 4 J = -q -1 J, we infer

∇ 4 | Du + 1 q | Du = O(r -1 ) } trX + O(r -1 ) X + Γ b • Γ g .
Also, recall that we have We infer e 4 2(r 2 + a 2 ) |q| 2 + ẽ3 (u) = -a(q + q) |q| 2 J • aJ + O(r -1 ) q H + O(r -1 ) q Z + O(r Also, recall that we have

∇ 4 D cos θ + 1 2 trXD cos θ = - 1 2 X • D cos θ.
and hence

∇ 4 D cos θ + 1 q D cos θ = i 2 J • X + O(r -1 ) } trX + Γ b • Γ g . Since ∇ 4 D cos θ + 1 q D cos θ = ∇ 4 iJ + D cos θ + 1 q iJ + D cos θ = ∇ 4 D cos θ + 1 q D cos θ,
where we have used ∇ 4 J = -q -1 J, we infer

∇ 4 D cos θ + 1 q D cos θ = i 2 J • X + O(r -1 ) } trX + Γ b • Γ g .
Also, recall that we have and hence e 4 (e 3 (cos θ)) = a(q + q)

|q| 2 J • iJ + O(r -1 ) q H + O(r -1 ) q Z + O(r -2 ) D cos θ + Γ b • Γ b = i 2ra |q| 2 2(sin θ) 2 |q| 2 + O(r -1 ) q H + O(r -1 ) q Z + O(r -2 ) D cos θ + Γ b • Γ b = O(r -1 ) q H + O(r -1 ) q Z + O(r -2 ) D cos θ + Γ b • Γ b .
This concludes the proof of Lemma 6.1.16.

C.3 Proof of Lemma 6.2.3

In view of Lemma 2. 

f c λ -1 χ ab + 1 2 f b λ -1 χ ac + 1 2 λ -1 ζ a f c f b - 1 4 f c λ -1 χ ad f b f d - 1 2 f c δ d a + 1 2 f a f d χ db - 1 2 f c f a η b - 1 2 f c f a + 1 4 |f | 2 f a ξ b + 1 2 f b δ d c + 1 2 f c f d δ p a + 1 2 f a f p χ pd + f a η d + f a + 1 4 |f | 2 f a ξ d + 1 4 f b f c -2 δ p a + 1 2 f a f p ζ p -2ωf a + ω 2f a + 1 2 |f | 2 f a .
We infer = -

1 2 f c δ d a + 1 2 f a f d χ db - 1 2 f c f a η b - 1 2 f c f a + 1 4 |f | 2 f a ξ b + 1 2 f b δ d c + 1 2 f c f d δ p a + 1 2 f a f p χ pd + f a η d + f a + 1 4 |f | 2 f a ξ d + 1 4 f b f c -2 δ p a + 1 2 f a f p ζ p -2ωf a + ω 2f a + 1 2 |f | 2 f a ,
where Err[g(D e a e b , e c )] contains all the terms depending on (f, f , Γ), without derivative, and at least quadratic in (f, f ). This concludes the proof of Lemma 6.2.3.

C.4 Proof of Proposition 6.2.10

In order to prove Proposition 6.2.10, we start with the following lemma. Proof. We start with the first identity. We use e 4 (J) = 0 and the commutation Lemma We are now ready to prove Proposition 6.2.10.

Proof of Proposition 6. C.5 Proof of Proposition 6.3.2

Recall the definition of our renormalized quantities:

[ q H] ren = 1 q q q H -q q Z + 1 3 -q 2 + |q| 2 B + a 2 (q -q)J • X ,

[ D cos θ] ren = 1 q q D cos θ + i 2 |q| 2 J • X , [ | M ] ren = 1 qq 2 q D • q 2 q Z + - a 2 q 2 - a 2 |q| 2 J • X + 2q 3 q P -2aq 2 J • q Z + - 1 3
q 2 q 2 -1 3 qq 3 + 2 3 q 4 D • B + a q 2 q + 2 3 qq 2 -13 6 q 3 J • B + a 2 (q 2 + |q| 2 )J • X • J .

To eliminate the term in X we make use of

∇ 4 X + 2r |q| 2 X = -A + Γ g • Γ g .
We infer, using also ∇ 4 J = -q -1 J and J = O(r -1 ),

∇ 4 i 2 |q| 2 J • X = ∇ 4 i 2 |q| 2 J • X + i 2 |q| 2 ∇ 4 J • X + i 2 |q| 2 J • ∇ 4 X = i 2 (q + q)J • X + i 2 |q| 2 - 1 q J • X + i 2 |q| 2 J • - 2r |q| 2 X -A + Γ g • Γ g = - i 2 qJ • X + O(r)A + rΓ g • Γ g .
Summing the two identities above, we infer

∇ 4 q[ D cos θ] ren = ∇ 4 q D cos θ + i 2 |q| 2 J • X = O(1) } trX + O(r)A + rΓ b • Γ g as desired.
Third identity. To check

∇ 4 qq 2 [ | M ] ren = O(1) d / ≤1 } trX + O(r) d / ≤2 A + r 2 d / ≤1 (Γ g • Γ g ) + r 3 Γ b • A,
we start with the equation

∇ 4 q Z + 2 q q Z = - aq |q| 2 J • X -B + O(r -2 ) } trX + Γ g • Γ g
which we rewrite in the form

∇ 4 (q 2 q Z) = - aq 3 |q| 2 J • X -q 2 B + O(1) } trX + r 2 Γ g • Γ g .
To eliminate the term in X on the right we make use of the equation

∇ 4 X + 2r |q| 2 X = -A + Γ g • Γ g . a 2 q 2 - a 2 |q| 2 J • - 2r |q| 2 X -A + Γ g • Γ g = aq 3 |q| 2 J • X + O(r)A + rΓ g • Γ g .
Summing the two identities above, we infer

∇ 4 q 2 q Z + - a 2 q 2 - a 2 |q| 2 J • X = -q 2 B + O(1) } trX + O(r)A + r 2 Γ g • Γ g .
Commuting with q D• we deduce

∇ 4 q D • q 2 q Z + - a 2 q 2 - a 2 |q| 2 J • X = [∇ 4 , q D•] q 2 q Z + - a 2 q 2 - a 2 |q| 2 J • X -q D • (q 2 B) + O(1) d / ≤1 } trX + O(r) d / ≤1 A + r 2 d / ≤1 (Γ g • Γ g ) = -q trX Z + Γ g • d ≤1 • q 2 q Z + - a 2 q 2 - a 2 |q| 2 J • X -q D • (q 2 B) + O(1) d / ≤1 } trX + O(r) d / ≤1 A + r 2 d / ≤1 (Γ g • Γ g )
and hence

∇ 4 q D • q 2 q Z + - a 2 q 2 - a 2 |q| 2 J • X = - 2aq 3 |q| 2 J • q Z + a 2 q |q| 2 q 2 + |q| 2 J • X • J -q D • (q 2 B) +O(1) d / ≤1 } trX + O(r) d / ≤1 A + r 2 d / ≤1 (Γ g • Γ g ).
Next we make use of

∇ 4 q P - 1 2 D • B = - 3 q q P - aq 2|q| 2 J • B + O(r -3 ) } trX + r -1 Γ g • Γ g + Γ b • A
from which we obtain ∇ 4 (2q 3 q P ) = q 3 D • B -aq 2 J • B + O(1) } trX + r 2 Γ g • Γ g + r 3 Γ b • A.

Taking the complex conjugate, we infer

∇ 4 2q 3 q P = q 3 D • B -aq 2 J • B + O(1) } trX + r 2 Γ g • Γ g + r 3 Γ b • A.
Adding to the previous identity, we deduce

∇ 4 q D • q 2 q Z + - a 2 q 2 - a 2 |q| 2 J • X + 2q 3 q P = - 2aq 3 |q| 2 J • q Z + a 2 q |q| 2 q 2 + |q| 2 J • X • J -q D • (q 2 B) + q 3 D • B -aq 2 J • B +O(1) d / ≤1 } trX + O(r) d / ≤1 A + r 2 d / ≤1 (Γ g • Γ g ) + r 3 Γ b • A.
Since we have -q D • (q 2 B) + q 3 D • B = q(q 2 -q 2 )D • B -2|q| 2 Dq • B = q(q 2 -q 2 )D • B -2ai|q| 2 D(cos θ) • B = q(q 2 -q 2 )D • B -2a|q| 2 J • B + rΓ b • Γ g , we infer

∇ 4 q D • q 2 q Z + - a 2 q 2 - a 2 |q| 2 J • X + 2q 3 q P = - 2aq 3 |q| 2 J • q Z + q(q 2 -q 2 )D • B -a 2|q| 2 + q 2 J • B + a 2 q |q| 2 q 2 + |q| 2 J • X • J +O(1) d / ≤1 } trX + O(r) d / ≤1 A + r 2 d / ≤1 (Γ g • Γ g ) + r 3 Γ b • A.
To eliminate the term in q Z on the right we write

∇ 4 -2aq 2 J • q Z = a∇ 4 (-2q 2 )J • q Z -2aq 2 ∇ 4 J • q Z -2aq 2 J • ∇ 4 q Z = -4aqJ • q Z + 2aq 2 q J • q Z -2aq 2 J • - 2 q q Z - aq |q| 2 J • X -B + O(r -2 ) } trX + Γ g • Γ g = 2aq 3 |q| 2 J • q Z + 2a 2 q 3 |q| 2 J • X • J + 2aq 2 J • B + O(r -1 ) } trX + rΓ g • Γ g .
where we used in particular the fact that -1 3 q 2 q 2 -1 3 qq 3 + 2 3 q 4 = O(r 3 ). Together with (C.5.1), we deduce, for the intermediary quantity [ | M ] red defined by

[ | M ] red : = q D • q 2 q Z + - a 2 q 2 - a 2 |q| 2 J • X + 2q 3 q P -2aq 2 J • q Z + - 1 3 q 2 q 2 - 1 3 qq 3 + 2 3 q 4 D • B
the following identity

∇ 4 [ | M ] red = a 4q 2 -5q 2 J • B + a 2 q |q| 2 3q 2 + |q| 2 J • X • J + O(1) d / ≤1 } trX + O(r) d / ≤2 A + r 2 d / ≤1 (Γ g • Γ g ) + r 3 Γ b • A. (C.5.2)
To eliminate the term in J • B on the RHS of (C.5.2), we compute ∇ 4 -a -q 2 q -2 3 qq 2 + 13 6 q 3 J • B = -a∇ 4 -q 2 q -2 3 qq 2 + 13 6 q 3 J • B -a -q 2 q -2 3 qq 2 + 13 6 q 3 ∇ 4 J • B -a -q 2 q -2 3 qq 2 + 13 6 q 3 J • ∇ 4 B = -a -q 2 -10 3 |q| 2 + 35 6 q 2 J • B -a -q 2 q -2 3 qq 2 + 13 6 q 3 -1 q J • B -a -q 2 q -2 3 qq 2 + 13 6 q 3 J • -

4 q B + O(r -1 ) d / ≤1 A + Γ g • (B, A) = -a(4q 2 -5q 2 )J • B + O(r) d / ≤1 A + rΓ g • Γ g .
Summing with (C.5.2), we infer

∇ 4 [ | M ] ren + a q 2 q + 2 3 qq 2 - 13 6 q 3 J • B = a 2 q |q| 2 3q 2 + |q| 2 J • X • J + O(1) d / ≤1 } trX + O(r) d / ≤2 A + r 2 d / ≤1 (Γ g • Γ g ) + r 3 Γ b • A.
Proof. We start with the linearized Bianchi equations

∇ 4 B + 4 q B = 1 2 D • A + aq 2|q| 2 J • A + Γ g • (B, A), ∇ 4 q P - 1 2 D • B = - 3 q q P - aq 2|q| 2 J • B + O(r -3 ) } trX + r -1 Γ g • Γ g + Γ b • A.
We infer, using ∇ 4 J = -q -1 J,

∇ 4 [B] ren = ∇ 4 B - 3a 2 J∇ 4 q P - 3a 2 
q P ∇ 4 J - a 4 J • ∇ 4 A - a 4 A • ∇ 4 J = - 4 q B + 1 2 D • A + aq 2|q| 2 J • A + Γ g • (B, A) - 3a 2 J 1 2 D • B - 3 q q P - aq 2|q| 2 J • B + O(r -3 ) } trX + r -1 Γ g • Γ g + Γ b • A + 3a 2q q P J - a 4 J • ∇ 4 A + a 4q J • A = - 4 q [B] ren - 3a 2 J 1 2 D • B - aq 2|q| 2 J • B + 3a 2 1 q - 1 q q P J + 1 2 D • A - a 4 J • ∇ 4 A - a 4q J • A + O(r -4 ) } trX + Γ g • (B, A) + r -2 Γ g • Γ g
and hence as desired. This concludes the proof of Lemma C.6.1. zontal 1-forms f and f are given by (6.2.1) and

F = f + i * f, F = f + i * f .
In view of (C.6.1) we deduce

D • A = D • A + 1 2 F • ∇ 4 A + 1 2 F • ∇ 3 A + O(r -3 )d ≤1 A + r -1 Γ b • A.
Also, in view of (6. We infer

D • A = D • A - a 2 J • ∇ 4 A - a 2 J • ∇ 3 A + O(r -2 )∇ 3 A + O(r -3 )d ≤1 A +Γ b • ∇ 3 A + r -1 Γ b • A.
Making use of the Bianchi identity

∇ 3 A = 1 2 D ⊗B - 1 2 trXA + 4ωA + 1 2 (Z + 4H) ⊗B -3P X = 1 2 D ⊗B + 1 r A + a(q + 4q) 2|q| 2 J ⊗B + 6m q 3 X + O(r -2 )A + Γ b • (A, B) + r -1 Γ g • Γ g ,
we deduce

D • A = D • A - a 2 J • ∇ 4 A - a 2r J • A - a 4 J • D ⊗B - a 2 (q + 4q) 4|q| 2 J • (J ⊗B) - 3am q 3 J • X +O(r -2 )∇ 3 A + O(r -3 )d ≤1 A + Γ b • ∇ 3 A + r -1 Γ b • (A, B) + r -2 Γ g • Γ g and hence D • A - a 2 J • ∇ 4 A - a 2q J • A = D • A + a 4 J • D ⊗B + O(r -3 )B + O(r -4 ) X +O(r -2 )∇ 3 A + O(r -3 )d ≤1 A + Γ b • ∇ 3 A + r -1 Γ b • (A, B) + r -2 Γ g • Γ g
as stated. This concludes the proof of Lemma C.6.2.

Step 3. Next, we derive the following corollary.

Corollary C.6.3. We have Next, to prove (C.6.3), we write, since (J) = ( * J), D • J = (∇ -i * ∇) • ( (J) + i (J)) = 2div ( (J)) + 2icurl ( (J)), D ⊗J = (∇ + i * ∇) ⊗( (J) + i (J)) = 2∇ ⊗ (J) + 2i * ∇ (J), so that ∇ ⊗ (J) ∈ r -1 Γ b , div ( (J)) ∈ r -1 Γ b , curl ( (J)) = 2(r 2 + a 2 ) cos θ

|q| 4 + r -1 Γ b .
This yields ∇ a (J) b = (r 2 +a 2 ) cos θ 

+ (J) 1 + i (J) 2 div β + icurl β = 2 (J) 1 ∇ 1 β 1 + i∇ 1 β 2 + 2 (J) 2 ∇ 2 β 1 + i∇ 2 β 2 = 2 (J) c ∇ c B b b=1
.

Since the complex tensors on the LHS and RHS verify V 2 = -iV 1 , the equality holds also for b = 2 and hence we have obtained

- 1 2 (D • B)J b + 1 4 (J • (D ⊗B)) b + δ cd J d D c B b -J • D b B = 2 (J) c ∇ c B b
as stated in (C. 6.6). This concludes the proof of Lemma C.6.4.

Step 5. Next, we prove the following corollary.

Corollary C.6.5. We have Proof. We combine Corollary C.6.3 with Lemma C.6.4 to derive

∇ 4 -a (J) b ∇ b [B] ren + 4 r [B] ren = 1 2 D • A - a 2 D • (J ⊗B) + 3a 2 4r (J • B)J +O(r -4 ) X + O(r -3 )B + O(r -3 ) d / ≤1 q P + O(r -4 ) } trX +O(r -2 )∇ 3 A + O(r -3 )d ≤1 A + Γ g • (B, A) + Γ b • ∇ 3 A + r -2 Γ g • Γ g .
Also, recalling (C.6.1)

D a V B = D a V B + 1 2 F a f c ∇ c V B + 1 2 F a ∇ 4 V B + 1 2 F a + 1 8 |f | 2 F a ∇ 3 V B +O(r -3 )V + r -1 Γ b V,
we infer, for a complex 1-form U ,

∇ 4 -a (J) b ∇ b , r[D] red U = 1 - r q D • U - r q Z • U -ar[ (J) b ∇ b , D•]U + a 2 2 r (J) b ∇ b , J • (∇ 4 + ∇ 3 ) U - a 2 rJ • 2ω∇ 4 U + 2(η + ζ) • ∇U + 4η ⊗(ζ • U ) -4ζ ⊗(η • U ) + 4i * ρU + Γ g • d ≤1 U - a 2 1 - r q J • ∇ 4 - a 2 1 - r q J • ∇ 3 .
We infer We infer

[∇ b , D a ]U a = δ ac [∇ b , ∇ a ]U c -i ∈ ca [∇ b , ∇ a ]U c = 1 r 2 (δ ac -i ∈ ca ) δ cb δ da -δ db δ ca U d +O(r -3 )d ≤1 U + O(r -2 )∇ 3 U + r -1 Γ g d ≤1 U + Γ g ∇ 3 U = 1 r 2 -δ db -i ∈ bd U d +O(r -3 )d ≤1 U + O(r -2 )∇ 3 U + r -1 Γ g d ≤1 U + Γ g ∇ 3 U = - 1 r 2 U b + i * U b + O(r -3 )d ≤1 U + O(r -2 )∇ 3 U + r -1 Γ g d ≤1 U + Γ g ∇ 3 U
1 A priori, one also expects a contribution r -1 Γ b coming from δ ac χ bd + χ ac δ bd -δ bc χ ad -χ bc δ ad , but this tensor vanishes in fact identically.

and hence, using also (J) = * (J), we obtain

(J) b [∇ b , D a ]U a = -(J) b 1 r 2 U b + i * U b +O(r -4 )d ≤1 U + O(r -3 )∇ 3 U + r -2 Γ g d ≤1 U + r -1 Γ g ∇ 3 U = - 1 r 2 (J) • U + i (J) • * U +O(r -4 )d ≤1 U + O(r -3 )∇ 3 U + r -2 Γ g d ≤1 U + r -1 Γ g ∇ 3 U = - 1 r 2 (J) • U -i * (J) • U +O(r -4 )d ≤1 U + O(r -3 )∇ 3 U + r -2 Γ g d ≤1 U + r -1 Γ g ∇ 3 U = - 1 r 2 J • U + O(r -4 )d ≤1 U + O(r -3 )∇ 3 U + r -2 Γ g d ≤1 U + r -1 Γ g ∇ 3 U.
In view of the above, we deduce as desired. This concludes the proof of Lemma C.6.6.

[ (J) b ∇ b , D•]U = -D a (J) b ∇ b U a + (J) b [∇ b , D a ]U a = - i cos θ r 2 D • U - 1 r 2 J • U +O(r -4 )d ≤1 U + O(r -3 )∇ 3 U + r -2 Γ b d ≤1 U + r -1 Γ g ∇ 3 U.
Step 7. We are finally ready to prove Lemma 6.3.5. We start with the identity of Corollary C.6.5 This follows in view of the formula (C.6.1)

D a V B = D a V B + 1 2 F a f c ∇ c V B + 1 2 F a ∇ 4 V B + 1 2 F a + 1 8 |f | 2 F a ∇ 3 V B + O(r -3 ) + r -1 Γ b V
from which we infer, using also (C. We have

∇ 4 aq |q| 2 J = ∂ r aq |q| 2 J + aq |q| 2 - 1 q J = - 2 q aq |q| 2 J
and hence

∇ 4 q Z + 1 q q Z = - aq |q| 2 } trXJ - aq |q| 2 J • X -B + Γ g • Γ g .
Next, recall

∇ 4 H = - 1 2 trX(H -H) - 1 2 X • (H -H) -B.
We infer = -a q 2 Ja |q| 2 J and hence

∇ 4 aq |q| 2 J + q H = - 1 2 2 q + } trX aq |q| 2 J + q H + aq |q| 2 J - 1 2 X • aq |q| 2 J + aq |q| 2 J -B + Γ b • Γ g .

Now, we have

∇ 4 q H + 1 q q H = - ar |q| 2 } trXJ - ar |q| 2 J • X -B + Γ b • Γ g .
Next, recall

∇ 4 ω -(η -η) • ζ + η • η = ρ
which we rewrite

∇ 4 ω - 1 2 (H -H) • Z -H • H = (P ).
We infer

1 2 ∂ 2 r ∆ |q| 2 + ∇ 4 q ω - 1 2 aq |q| 2 J + q H + aq |q| 2 J • aq |q| 2 J + q Z + aq |q| 2 J + q H • aq |q| 2 J
= -2m q 3 + q P and hence

∇ 4 q ω = - 1 2 ∂ 2 r ∆ |q| 2 + a 2 2|q| 2 J • J + a 2 |q| 4 q 2 J • J + - 2m q 3 + q P + ar |q| 2 J • q Z + 2a |q| 2 qJ • q H + Γ g • Γ g .
Since J • J = 2(sin θ) 2 |q| 2 , we infer

∇ 4 q ω = q P + ar |q| 2 J • q Z + 2a |q| 2 qJ • q H + Γ g • Γ g .
Next, recall

∇ 4 trX + 1 2 trXtrX = D • H + H • H + 2P - 1 2 X • X.
We infer

∇ 4 - 2q∆ |q| 4 + } trX + 1 2 2 q + } trX - 2q∆ |q| 4 + } trX = D • H + H • H + 2 - 2m q 3 + q P + Γ b • Γ g .
Now, we have, using in particular J • J = 2(sin θ) 

∇ 4 X + 1 q X = - aq |q| 2 D ⊗J + a q 2 D(r) ⊗J + ia 2 q 2 D(cos θ) ⊗J + q∆ |q| 4 X + Γ b • Γ g .
Next, recall

∇ 4 Ξ = ∇ 3 H + 1 2 trX( H -H) + 1 2 X • ( H -H) -B.
We infer

∇ 4 Ξ = ∇ 3 H + 1 2 - 2q∆ |q| 4 + } trX - 2ar |q| 2 J -q H - ar |q| 2 J • X -B + Γ b • Γ b .
Also, we have

∇ 3 H = ∇ 3 - aq |q| 2 J = - aq |q| 2 ∇ 3 J + a q 2 ∇ 3 (q)J = - aq |q| 2
∆q |q| 4 J + } ∇ 3 J + a q 2 e 3 (r) + iae 3 (cos θ) J = -a∆(|q| 2 + q 2 ) |q| 6 Jaq |q| 2 } ∇ 3 J + a q 2 ẽ3 (r) + iae 3 (cos θ) J.

We infer

∇ 4 Ξ = q∆ |q| 4 q H - ar |q| 2 } trXJ - ar |q| 2 J • X -B - aq |q| 2 } ∇ 3 J + a q 2 ẽ3 (r) + iae 3 (cos θ) J + Γ b • Γ b .
This concludes the proof of Proposition 9.2.6.

D.2. PROOF OF LEMMA 9.2.11

As J = J on Σ * , this propagates immediately to (ext) M, and we deduce J = J on (ext) M.

Next, we consider the transition coefficients (f , f , λ ) from the PT frame to the PG one, i.e. (f , f , λ ) corresponds to the inverse transformation of (f, f , λ). Since λ = 1 and f = 0, we infer immediately from (2.2.3) that λ = 1, f = 0, f = -f .

Next, we derive the transport equation for f . We compute1 Since (e 1 , e 2 , e 3 , e 4 ) is a PG frame and (e 1 , e 2 , e 3 , e 4 ) is a PT frame, we have η = -ζ and H = -aq |q | 2 J . Since q = q and J = J, we infer in view of the definition of q Z in Definition 2.6.6, H -H = -aq |q | 2 J + Z = Z -aq |q| 2 J = q Z so that η -η = q ζ and hence

∇ 4 f = 2 q ζ.
Finally, we derive the identity for ∇ 4 F where F = f + i * f . To this end, we compute 2 Since q = q and J = J, and in view of the linearization of ζ in Definition 2.6.6 and the one for ζ in Definition 9.2.3, we have

ζ -ζ = aq |q | 2 J - aq |q| 2 J + q ζ -q ζ = q ζ -q ζ
and hence

q ζ = q ζ + 1 4 tr χ f + 1 4 (a) trχ * f + 1 2 f • χ .
Together with the above equation for ∇ 4 f , this yields

∇ 4 f = 2 q ζ = 2 q ζ + 1 2 tr χ f + 1 2 (a) trχ * f + f • χ .
Since we have obtained above 

∇ 4 f + 1 2 tr χ f + 1 2 (a) trχ * f = -2 q ζ -f • χ .
With the notation F = f + i * f , we infer

∇ 4 F + 1 2 trX F = -2 q Z -F • χ
as desired. This concludes the proof of Lemma 9.2.11.

D.3 Proof of Proposition 9.3.5

In this section, we prove Proposition 9. In the next section, we construct the suitable function f (r). This will allow us to prove Proposition D.3.5 in Section D.3.3.

D.3.2 Construction of a suitable function f (r)

In this section, we exhibit a function f (r) satisfying in particular the properties (D.3.9) (D.3.10) (D.3.11).

We start with the following lemma.

Lemma D.3.6. We have g(Dτ, Dτ ) = 1 |q| 2 ∆(f (r)) 2 + 2(r 2 + a 2 )f (r) + a 2 (sin θ) as desired.

Motivated by the above lemma, we consider, for r > r + , the following second order polynomial P (X) := ∆X with the constant c 0, * chosen such that f 2 satisfies (D. 3.11). Then:

1. We have, for all r ≥ r + -δ H , f 1 (r) > f 2 (r).

2. There exists a unique solution r 1 ≥ r + -δ H of f 1 (r 1 ) = f 2 (r 1 ).

3. We have r 1 ∈ (r 0 , r 0 + m).

4. For r + -δ H < r < r 1 , we have f 1 (r) < f 2 (r), and for r > r 1 , we have f 1 (r) > f 2 (r).

The following holds:

• For all r ≥ r + -δ H , we have

P (f 1 (r)) ≤ - m 2 4 .
• For all r ≥ r 0 , we have

P (f 2 (r)) ≤ -8m 2 .
• For all r ≥ r 0 , we have

P σf 1 (r) + (1 -σ)f 2 (r) ≤ - m 2 4 , 0 ≤ σ ≤ 1.
Proof. In view of the definition of f 1 (r) and f 2 (r), we have

f 1 (r) = - m 2 r 2 , f 2 (r) = -2 - 4m r + m 2 r 2 .
In particular, note that, on r > r + -δ H , We infer

f 1 (r 0 ) = - m 2 r + -δ H + m 2 r 0 , f 2 (r 0 ) = O m 2 r 0 , f 1 (r 0 + m) = - m 2 r + -δ H + m 2 r 0 + m , f 2 (r 0 + m) = -2m + O m 2 r 0 ,
and hence f 1 (r 0 ) < f 2 (r 0 ), f 1 (r 0 + m) > f 2 (r 0 + m) so that, there exists, by the mean value theorem, r 1 ∈ (r 0 , r 0 + m) such that f 1 (r 1 ) = f 2 (r 1 ).

Note that, since f 1 (r) > f 2 (r) for all r > r + -δ H , r 1 is the unique 0 of f 1 -f 2 on r > r + -δ H , and we have f 1 (r) < f 2 (r) for r < r 1 , and f 1 (r) > f 2 (r) for r > r 1 .

Next, we compare f 1 (r) to the roots X ± (r) of P . We have Finally, for r > r + , we have P (X) = 2∆ > 0 and hence P is convex in X which implies, for any 0 ≤ σ ≤ 1, for r ≥ r 0 , P σf 1 (r) + (1 -σ)f 2 (r) ≤ σP (f 1 (r)) + (1 -σ)P (f 2 (r))

X + (r) -f 1 (r) =
≤ - σm 2 4 -8m 2 (1 -σ) ≤ - m 2 4 
as desired. This concludes the proof of Lemma D.3.9.

Corollary D.3.10. The exists a smooth function f such that 1. f (r) = f 1 (r) for r ≤ r 0 .

We deduce, for r ≥ r + -δ H , g(Dτ, Dτ ) = 1 |q| 2 ∆(f (r)) 2 + 2(r 2 + a 2 )f (r) + a 2 (sin θ) 2 In view of the definition of f , f is strictly decreasing so that its minimum is achieved at r = r 0 . Also, at r = r 0 , f = f 1 . We infer on 
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 11 Figure 1.1: The Penrose diagram of the final space-time in the Main Theorem with complete future null infinity I + and future event horizon H + .
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 12 Figure 1.2: The GCM admissible space-time M

χ

  ab = g(D a e 3 , e b ), χ ab = g(D a e 4 , e b ), 4 e 4 , e 3 ), and remark that, due to the lack of integrability of H, the null fundamental forms χ and χ are no longer symmetric. They can be both decomposed as follows trχ + χ ab ,

Definition 1 . 3 . 2 .

 132 A framed hypersurface consists of a set Σ, r, (H, e 3 , e 4 ) where 1. a framed hypersurface Σ, r, (H, e 3 , e 4 ) as in Defintion 1.3.2, 2. a fixed 1-form f on the spheres S of the r-foliation of Σ verifying the condition b Σ |f | 2 < 4 on Σ, where b Σ is such that ν = e 3 + b Σ e 4 is tangent to Σ.

(Dec) k small 0 .

 0 It still remains to improve the second half of the bootstrap assumptions concerning N (Sup) k large and show that N (Sup) k large 0 . Both types of estimates are proved by an induction argument starting with the improved estimates for k ≤ k small , i.e. N (Dec) k small 0 , derived in Theorems M0-M7.

Given a null frame e 1

 1 , e 2 , e 3 , e 4 we define the general connection coefficients, (Λ µ ) αβ : = g D eµ e β , e α (2.1.4) and the special ones χ ab = g(D a e 3 , e b ), χ ab = g(D a e 4 , e b ), 4 e 3 , e a ), η a = 1 2 g(D 3 e 4 , e a ), ζ a = 1 2 g(D ea e 4 , e 3 ).

( 2 . 1 . 5 ) 2 χ ab e 3 + 1 2 χ ab e 4 ,D a e 4 =

 215244 Note that these account for all the connection coefficients except(Λ µ ) ab := g(D eµ e b , e a ), µ = 1, 2, 3, 4, a, b = 1, 2.We have the Ricci formulas D a e b = ∇ a e b + 1 χ ab e b -ζ a e 4 , D a e 3 = χ ab e b + ζ a e 3 , D 3 e a = ∇ 3 e a + η a e 3 + ξ a e 4 , D 3 e 3 = -2ωe 3 + 2ξ b e b , (2.1.6) D 3 e 4 = 2ωe 4 + 2η b e b , D 4 e a = ∇ 4 e a + η a e 4 + ξ a e 3 , D 4 e 4 = -2ωe 4 + 2ξ b e b , D 4 e 3 = 2ωe 3 + 2η b e b .

2 tr χ χ + tr χ χ - 1 2 - 2 ( 2 - 2 tr χ 2 -

 22222 * χ (a) trχ + * χ (a) trχ + ∇ ⊗η + 2ω χ+ ξ ⊗ξ + η ⊗η, ∇ 4 tr χ = -χ • χ -trχ (a) trχ + 2div η + 2ωtr χ + 2 ξ • ξ + |η| 2 + 2ρ, ∇ 4 (a) trχ = -χ ∧ χ -1 (a) trχtr χ + tr χ (a) trχ) + 2curl η + 2ω (a) trχ + 2ξ ∧ ξ + 2 * ρ, ∇ 4 χ = -1 2 tr χ χ + tr χ χ -1 * χ (a) trχ + * χ (a) trχ + ∇ ⊗η + 2ω χ + ξ ⊗ξ + η ⊗η, ∇ 4 tr χ = -| χ| 2 -1 (a) trχ 2 + 2div ξ -2ωtr χ + 2ξ • (η + η + 2ζ), ∇ 4 (a) trχ = -tr χ (a) trχ + 2curl ξ -2ω (a) trχ + 2ξ ∧ (-η + η -2ζ), ∇ 4 χ = -tr χ χ + ∇ ⊗ξ -2ω χ + ξ ⊗(η + η + 2ζ) -α, ∇ 3 ζ + 2∇ω = -χ • (ζ + η) -1 2 tr χ(ζ + η) -1 2 (a) trχ( * ζ + * η) + 2ω(ζ -η)

Proposition 2 . 1 . 4 .

 214 We have∇ 3 α -∇ ⊗β = -1 2 tr χα + (a) trχ * α) + 4ωα + (ζ + 4η) ⊗β -3(ρ χ + * ρ * χ), ∇ 4 β -div α = -2(tr χβ -(a) trχ * β) -2ωβ + α • (2ζ + η) + 3(ξρ + * ξ * ρ), ∇ 3 β -(∇ρ + * ∇ * ρ) = -(tr χβ + (a) trχ * β) + 2ω β + 2β • χ + 3(ρη + * ρ * η) + α • ξ,

Lemma 2 . 2 . 1 .e 4 = λ e 4 + f b e b + 1 4 |f | 2 e 3 , e a = δ b a + 1 2 f a f b e b + 1 2

 22144432 The following transformation formulas hold true.1. A general null transformation 5 between two null frames (e 4 , e 3 , e 1 , e 2 ) and (e 4 , e 3 , e 1 , e 2 ) on M can be written in the form,

Lemma 2 . 3 . 2 .

 232 Given a PG structure as above, we have ω = 0, ξ = 0, η + ζ = 0. Proof. Since e 4 is geodesic, we have ξ = ω = 0. Also, in view of the Ricci formulas (2.1.6), [e a , e 4 ] = χ ab e b -∇ 4 e a -(ζ + η) a e 4 ,

e 4 ( 2 ) 2 . 3 . 6 .e 4 2 X

 4223642 u) = e 4 (θ) = e 4 (ϕ) = 0. (2.3.Proposition The following equations hold true for the coordinates (u, r, θ, ϕ) associated to an outgoing PG structure e 4 (e 3 (r)) = -2ω, (e 3 (u)) = -(Z + H) • Du , ∇ 4 (D cos θ) + 1 2 trX(D cos θ) = -1 • D(cos θ), e 4 (e 3 (cos θ)) = -(Z + H) • D(cos θ) .

2 . 1 )e 4 = λ e 4 + f b e b + 1 4 |f | 2 e 3 ,2 f a e 3 ,

 2144433 

λ = 1 -

 1 4|∇u| 2 e 3 (r) (e 3 (u) + (e 3 (u)) 2 + 4|∇u| 2 e 3 (r)) (e 3 (u)) 2 + 4|∇u| 2 e 3 (r) + 1 16 |f | 2 |f | 2

h = -e 3 - 4 e 3 4 e 3 3

 343433 (u) + (e 3 (u)) 2 + 4|∇u| 2 e 3 (r) -|∇u| 2 e 3 (r) = 4|∇u| 2 e 3 (r) -|∇u| 2 e 3 (r) e 3 (u) + (e 3 (u)) 2 + 4|∇u| 2 e 3 (r) = (u) + (e 3 (u)) 2 + 4|∇u| 2 e 3 (r) ,where we recall that assumption e 3 (u) > 0. We infer f = h∇u = -(u) + (e 3 (u)) 2 + 4|∇u| 2 e 3 (r) (u)) 2 + 4|∇u| 2 e 3 (r) ∇u as desired.

.4. 10 )

 10 Proof. Using sin θ |q| e 2 = j b e b = (J) b e b yields the formula.

1

 1 corresponding to the equator, i.e. θ = π 2 , and |(x 1 , x 2 )| = 0 corresponding to the poles. 2. (x 1 , x 2 ) are regular coordinates away from the equator, i.e. for |(x 1 , x 2 )| < 1, or equivalently for θ = π 2

.4. 35 ) 5 .

 355 We have, div f = O(sin 2 θr -5 ), ∇ ⊗f = O(sin θr -5 ), div f = O(sin 2 θr -5 ), ∇ ⊗f = O(sin θr -5 ). (2.4.36)

Since ν and e 2

 2 are tangent to Σ, and e 4 is transversal to Σ, under the condition (2.5.2), the vectorfield e 4 + f b e b + 1 4 |f | 2 e 3 is transversal to Σ. Hence, in view of (2.5.3), e 4 is transversal to Σ.

e 4

 4 being transversal to Σ, we introduce the following transversality condition on Σ for r e 4 (r ) = 1 on Σ.

  5.3) and the transversality condition (2.5.5), we have on Σ 1 = e 4 (r ) = e 4 (r ) + f b e b (r ) + 1 4 |f | 2 e 3 (r ) = e 4 (r ) + 1 4 |f | 2 e 3 (r ).

  -) := sin θ sin ϕ, J (+) := sin θ cos ϕ, (2.5.10) verify the balanced conditions S *

|

  Dq := Dq + aJ, | Dq := Dq -aJ, ẽ3 (r) := e 3 (r) + ∆ |q| 2 , | Du := Du -aJ, ẽ3 (u) := e 3 (u) -2(r 2 + a 2 ) |q| 2 .

.8. 5 )Since e 4 = e 4 , we have in particular e 4 (

 5444 

2 f a e 4 , e b + 1 2 f b e 4 =

 244 e 4 e a , e b )J b = e 4 (qJ a ) -g(D e 4 e a , e b )J b = ∇ 4 (qJ) a -g(D e 4 e a , e b ) -g(D e 4 e a , e b ) J b = -g(D e 4 e a , e b ) -g(D e 4 e a , e b ) J b . Since g(D e 4 e a , e b ) = g D e 4 e a + 1 g(D e 4 e a , e b ) -f b ξ a + f a ξ b = g(D e 4 e a , e b )

2 f a e 4 = g D e 4 e 3 , e a + 1 2 f a e 4 + 2 f a e 4 + 1 4 |f | 2 g D e 4 e 4 , e a + 1 2 f a e 4 =

 2434241444 2η a = g(D e 4 e 3 , e a ) = g D e 4 e 3 + f b e b + 1 4 |f | 2 e 4 , e a + 1 e 4 (f a ) + f b g D e 4 e b , e a + 1 2η a -2ωf a + ∇ 4 f a -f b f a ξ b + 1 2 |f | 2 ξ a and since ξ = 0, ω = 0 and η = 0, we infer 2η = ∇ 4 f . (2.8.8)

. 16 )

 16 as well as ẽ4 (r) := e 4 (r) -∆ |q| 2 , D(cos θ) := D(cos(θ)) -iJ, | Du := Du -aJ, ẽ4 (u) := e 4 (u) -2(r 2 + a 2 ) |q| 2 ,

  and (int) M ∩(top) M are essentially time-like hyper-surfaces.(M, g) is called a general covariant modulated admissible (or shortly GCM-admissible) spacetime if it is defined as in Sections 3.2.1-3.2.6 below.
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 32 Figure 3.2: The GCM admissible space-time M

( a )

 a Let r * such that S * = S(r * ). Then, r is monotonically increasing from r * . (b) The function r verifies the dominance condition 7 on S * r * u 1+δ dec * , (3.2.2)where u * denotes the value of the function u on S * , with u is specified below, see (3.2.7).

  r) := e 3 (r) + Υ, ẽ3 (u) := e 3 (u) -2,

Remark 3 . 4 . 1 . 1 0

 3411 .2) 0 , |a 0 | in the case a 0 = 0Note that we may always assume (3.4.3), even if 0 < |a 0 | 0 . Indeed, in that case, an initial data layer assumption of the type 14 I k 0 remains true by setting a 0 = 0. Using the definition of 0 , we can now make precise the condition (3.2.2) of r on S * r * = δ * u 1+δ dec * , (3.4.5)

Figure 3 . 3 :

 33 Figure 3.3: Penrose diagram of an admissible future complete spacetime

19 .r 2

 192 The estimates(3.4.8) imply, in particular: -On (ext) M ∞ , we have (u + 2r) 1+δ dec , |q ρ|, | | * ρ| min 0 , |q η|, | χ|, |q ω|, |ξ| 0 ru 1+δ dec .

  Section 3.3, verifies the following bounds BA-B (Bootstrap Assumptions on r-weighted sup norms) N (Sup)

( 4 |f | 2 e 3 , e a = e a + 1 2 f a e 3 , a = 1 , 2 ,e 3 = e 3 ,

 4331233 ext) M is obtained by performing a transformation of the form e 4 = e 4 + f a e a + 1

2 .

 2 The 1-form f appearing in (3.6.1) vanishes also on {u = u * }. In particular, the frame (e 4 , e 3 , e 1 , e 2 ) coincides with the outgoing PG frame (e 4 , e 3 , e 1 , e 2 ) of (ext) M on {u = u * }.

3 . 3 . 6 . 4 ) 4 .

 33644 The norms (ext) D k defined as (ext) D k , with Γ g , Γ b replaced by Γ g , Γ b , d replaced by d , δ dec replaced by δ dec = δ dec -2δ 0 , and Γ g , Γ b given by Definition 3.6.1, verify the estimates max 0≤k≤k small +129 (ext) D k . (The horizontal 1-form f verifies, for k ≤ k small + 130 on (ext) M, |(d

Definition 3 . 7 . 1 (

 371 Definition of U(u * )). Let 0 > 0 and = 2 3

N 32 I

 32 admissible extension verifying (3.4.5), with u * > u * , initialized by Theorem M0, which verifies N .e. the bootstrap assumptions (3.5.1) (3.5.2) hold true.

Figure 3 . 4 :

 34 Figure 3.4: The Penrose diagram of the space-time M with past boundary B 1 ∪ B 1

3 . 4 Se 4

 344 Together with (3.8.6) we deduce tr χ = tr χ + div f + O(r -3 ). Consequently δ ab g(D e a e 4 , e b ) = tr χ -div f + O(r -3 ). Hence e (h) + tr χ h -(div f )h + O(r -1 )h = S(u,r) e 4 (h) + tr χ h + f ∇ h + O(r -1 )h as stated.

e 4 ( 4 S tr χ tr χ = S e 4 (

 444 tr χ tr χ ) + (tr χ ) 2 tr χ + O(r -3

e 4 (

 4 tr χ tr χ ) = λ e 4 + f • ∇ + 1 4 |f | 2 e 3 (tr χ tr χ ) = e 4 (tr χ tr χ ) + O(r -2 )e 4 (tr χ tr χ ) + O(r -1 )∇(tr χ tr χ ) +O(r -2 )e 3 (tr χ tr χ ) = e 4 (tr χ tr χ ) + O(r -5 ) and hence e 4 (tr χ tr χ ) = -tr χ 2 χ + O(r -5 ). Integrating on S, and integrating the divergences by parts, we obtain S e 4 (tr χ tr χ ) + (tr χ ) 2 tr χ = χ + O(r -3 ).

3 . 4

 34 according to which, in view of the estimate N

e 4 Sr 3

 43 curl β J (p) = S e 4 (r 3 curl β ) + tr χ (r 3 curl β ) + O(r 3 )d ≤1 curl β .

2 onH

 2 + for any 1 ≤ u < +∞.(3.8.21) 

scalar λ and a 1 -form f such that γ = λ e 4 + f b e b + 1 4 |f | 2 e 3 ,

 1443 where λ > 0 since γ is future directed. Since ∇(r) = 0, we infer dr ds = D γ r = λ e 4 + f b e b + 1 4 |f | 2 e 3 r = λ e 4 (r) + 1 4 |f | 2 e 3 (r) .

4 .1+δ dec 1 ,λ -1 e 4 (

 414 We have in view of the control of f λ -1 e 4 (r) = e 4 (cos θ) = e 4 (cos θ) + f • ∇(cos θ) = O

Proposition 4 . 1 . 1 .

 411 (ext) M is covered by three regular coordinates patches:

186CHAPTER 4 .

 4 FIRST CONSEQUENCES OF THE BOOTSTRAP ASSUMPTIONS Proof. Recall the notations ẽ3 (r) = e 3 (r) + ∆ |q| 2 ,

2 ( 2 2 in the range π 4 <

 224 sin θ) -2 rΓ b and the conclusion follows from the control of Γ b and the fact that sin θ > √ θ < 3π 4 .

e 4 = 4 |f | 2 e 3 , e a = e a + 1 2 f a e 3 , a = 1 , 2 ,e 3 = e 3 ,

 44331233 e 4 + f b e b + 1

.2. 4 )

 4 Now, since u + r is constant on Σ * , the following vectorfield ν Σ * := e 3 + b e 4 , b := -e 3 (u + r) e 4 (u + r) ,

1

 1 

e 4 = e 4 , e a = e a + 1 2 f a e 4 , a = 1 , 2 ,e 3 = e 3 + f b e b + 1 4 |f | 2 e 4 ,

 444123344 

3 . 1 ) 4 |f | 2 e 4 , e a + 1 2 f a e 4 =

 31444 , we have 2η a = g(D e 4 e 3 , e a ) = g D e 4 e 3 + f b e b + 1 2η a -2ωf a + e 4 (f a ) + g(D 4 e b , e a )f b + 1 2 |f | 2 ξ a .

.4. 5 ) 4 . 4 . 2 .

 5442 Remark Along a level set of u in(top) M , denoting r + (u ) the maximal value of r , i.e. the one on {u = u * -4}, and r -(u ) the minimal value of r , i.e. the one on (top) Σ, we have 0 < r + (u ) -r -(u ) 1, see the analog statement in (3.2.1) for the ingoing PG structure of (top) M. In particular, the integration along e 3 is always finite in (top) M . 4.4.3 Properties of the ingoing PT structure covering (top) M Proposition 4.4.3.

.4. 10 ) 4 . 4 . 4

 10444 Proof of Proposition 4.4.3

4 . 2 )

 42 (4.4.3) (4.4.4) of the ingoing PT structure introduced in section 4.4.1, we have on {u = u * -4}

  4.11), relying on the control for (Γ b , Γ g ) provided by(4.4.15), on the local bootstrap assumptions (4.4.16) on (ext) M(u * -4 ≤ u ≤ u 1 ), and on the control for (f , λ , r-r , cos(θ )-cos θ, J -J) in (4.4.17), (4.4.18) and (4.4.20), we easily infer, for k ≤ k small + 130, sup (ext) M(u * -4≤u≤u 1 )

6 . 9

 69 follows from property (b) of Lemma 4.5.5, together with property (a) of Lemma 4.5.3 and the third property of Proposition 4.4.3. Also, properties (a) and (b) of Proposition 3.6.9 follow from property (a) and (b) of Lemma 4.5.5, together with property (b) of Lemma 4.5.3. Furthermore, properties (d), (e) and (f) of Proposition 3.6.9 follow from properties (c), (d) and (e) of Lemma 4.5.5, as well as property (c), (d) and (e) of Lemma 4.5.3. Finally, property (g) of Proposition 3.6.9 follows from the fifth property of Proposition 3.6.2 for the region (ext) M(u ≤ u * -1), and from the fourth property of Proposition 4.4.3 for (top) M(r ≥ r 0 ).

  -) := sin θ sin ϕ, J (+) := sin θ cos ϕ, (5.1.18) verify the balanced conditions S * J (p) = 0, p = 0, +, -. (5.1.19)

.1. 27 ) 3 . 4 . 5 .

 27345 where b * denotes the average of b * on the spheres foliating Σ * . The mass m is constant on Σ * and chosen to be the Hawking mass of S * , i.e., The angular momentum is constant on Σ * and chosen as Let r * , u * denote the values of r and u on S * . The function r is monotonically decreasing on Σ * and the following dominance condition is verified

.1. 32 )

 32 Also, we have b * = -y -z.(5.1.33) 

.1. 46 )

 46 where α is expressed in the global frame of Proposition 3.6.11. Now, the change of frame formula of Proposition 2.2.3 for α and the control of the change of frame coefficients from the frame of Σ * to the global frame of Proposition 3.6.11 following from property (c) of Proposition 3.6.11, (3.6.10) and (3.2.5)-(3.2.6), implies immediately

Proof. 4 . 5 . 1 . 21 .

 45121 The proof follows from Lemma 5.1.19, the definitions of Γ g , Γ b , the transversality conditions ξ = 0 and η = -ζ on Σ * , and ν = e 3 + b * e Corollary The following commutation formulas hold true for any tensor f on S ⊂ Σ * :

.1. 51 )

 51 Proof. The proof follows from Lemma 5.1.20, the transversality condition e 4 (r) = 1 on Σ * , and the fact that e 3 (r) = -Υ + rΓ b and ν(r) = -2 + rΓ b .

  follows then from applying Lemma 5.1.27.

5. 2

 2 Preliminary estimates on Σ * 5.2.1 Behavior of r on Σ * The following lemma shows that r is comparable to r * = r(S * ) on Σ * . Lemma 5.2.1. The function r satisfies on Σ * r * ≤ r ≤ r * (1 + O( 0 )) .

Proposition 5 . 3 . 1 .

 531 The following estimate holds true for all k ≤ k * -7Σ * u 2+2δ dec d k * Γ b

  2.8 by replacing the pointwise estimate of Γ b by the improved flux estimates of Proposition 5.3.1 for Γ b . 5.4 Estimates for = 0 and = 1 modes on Σ * 5.4.1 Estimates for some = 1 modes on S *

5. 4 . 2

 42 Estimates for the = 1 modes on Σ * Proposition 5.4.3 (Control of = 1 modes). The following estimates hold on Σ * .

  ν(tr χtr χ) = e 3 (tr χtr χ) + b * e 4 (tr χtr χ) = -tr χtr χ(tr χ + b * tr χ) + 2(tr χ + b * tr χ)ρ + 2tr χdiv ξ + 2tr χdiv η +tr χ 2ξ • (η -3ζ) -| χ| 2 + tr χ 2|η| 2 -χ • χ +b * -2tr χdiv ζ + tr χ 2|ζ| 2 -χ • χ -tr χ| χ| 2 , which we rewrite ν(tr χtr χ) + tr χtr χ(tr χ + b * tr χ) = 2(tr χ + b * tr χ

2 ) 5 . 5 . 2 .

 2552 Remark Note that (5.5.1) yields the proof of Theorem M3. Indeed, in view of the definition of the decay norm * D k in Section 3.3.1, (5.5.1) can be rewritten as * D k 0 for k ≤ k * -12. Thus, since k * = k small + 80 in view of (5.0.1), Proposition 5.5.1 yields in particular * D k small +60 0 and thus concludes the proof of Theorem M3. Proof. Note that the estimates for Γ b have already been established in Proposition 5.3.1.

1 2

 1 in Step 2, the control of Γ b established in Proposition 5.3.1, and the control of Γ g provided by Ref 1, we obtain, for k ≤ k * -10, ζ h k+1 (S) 0 ru +δ dec . Together with Sobolev, this implies, for k ≤ k * -11,

1 2 4 ,

 24 +δ dec . Together with Sobolev, this implies, for k ≤ k * -2, and plugging back in (5.1.42), and using (5.1.43) as well as the dominance condition (5.1.30) for r on Σ * , we moreover obtain, for k ≤ k * -2, | d / k ∇ ν α|

.

  Together with the control of ζ derived in Step 3, the control of β derived in Step 4, and the control of Γ g provided by Ref 1, we obtain, for k ≤ k * -10,χ h k+1 (S)Together with Sobolev, this implies, for k ≤ k * -11,

1 2 +δ dec . 5 . 6 . 1 1 2

 5611 Control on S * First, we derive the following corollary of Lemma 5.2.6 and Lemma 5.2.7. Corollary 5.6.5. The following holds on S * : d / ≤k * -12 φ L ∞ (S * ) 0 ru +δ dec , (5.6.7) and S *

.,

  Together with the control on S * provided by Lemma 5.6.8, we infer on Σ * , for all k ≤ k *and on Σ * , for all k ≤ k * -13

  5.2), and the control for Γ g and Γ b in Ref 1, we infer d / ≤k * -13 ∇ ⊗β L ∞ (S)

5. 7 . 2

 72 First decay estimates for the PG frame on Σ * Lemma 5.7.4. We have e 4 (r ) = 1, e 4 (u ) = e 4 (θ ) = e 4 (ϕ ) = 0, ∇ (r ) = 0, and sup Σ * ru 1+δ dec d ≤k * -12 D (cos θ ) + d ≤k * -12 D (u ) + d ≤k * -12 D (J (±) ) + sup Σ * ru 1+δ dec d ≤k * -12 e 3 (cos θ ) + d ≤k * -12 e 3 (J (±) ) + sup Σ * u 1+δ dec d ≤k * -12 ẽ 3 (r ) + d ≤k * -12 e 3 (u ) 0 . Proof. The identities e 4 (r ) = 1, and e 4 (u ) = e 4 (θ ) = e 4 (ϕ ) = 0 are true in (ext) M (and hence on Σ * ) by definition. In particular, since ∇(r ) = ∇(u ) = 0 on Σ * , this implies 18 1 = e 4 (r ) + 1 4 |f | 2 e 3 (r ), 0 = e 4 (u ) + 1 4 |f | 2 e 3 (u ), 0 = e 4 (cos θ ) + f • ∇(cos θ) + 1 4 |f | 2 e 3 (cos θ ), 0 = e 4 (J

  .1.30) on r on Σ * , and the estimates for Γ b of Corollary 5.6.18, we obtain sup Σ * ru 1+δ dec d ≤k * -12 D (cos θ ) + d ≤k * -12 D (u ) + d ≤k * -12 D (J (±) ) 0 .

  e c )B cb + g(D e b T, e c )B ac . Now, recall that k ab = g(D e a T, e b ) verifies

2 +δ dec as stated. 5 . 7 . 5

 2575 Proof of Proposition 5.7.3 The results of Sections 5.7.2, 5.7.3 and 5.7.4 imply the proof of Proposition 5.7.3 with e 3 replaced by ν and d replaced by d * . The extension from d * to d follows immediately from the null structure equations and Bianchi identities expressing derivatives in the e 4 direction in terms of angular derivatives. Finally, since ν = e 3 + b * e 4 = e 3 + r -1 d, we may replace ν by e 3 in the corresponding estimates. This concludes the proof of Proposition 5.7.3.

.1.1) and e 4

 4 (r) = 1, e 4 (u) = e 4 (θ) = e 4 (ϕ) = 0, ∇(r) = 0. (6.1.2)

|

  Dq := Dq + aJ, | Dq := Dq -aJ, ẽ3 (r) := e 3 (r) + ∆ |q| 2 , | Du := Du -aJ, ẽ3 (u) := e 3 (u) -2(r 2 + a 2 ) |q| 2 .

2. a 1 -

 1 form of the type O(r -p+1 )J where O(r -p+1 ) denotes a scalar function as above, 3. a symmetric traceless 2-tensor of the type O(r -p+2 )J ⊗J where O(r -p+2 ) denotes a scalar function as above.

.1. 18 )

 18 see Lemma 5.1.15 for the corresponding statement on Σ * .

2 3 A

 3 are due to the term f ⊗β - * f ⊗ * β in the transformation formula. -δ dec ) , (6.1.20) where δ > 0 since δ extra > δ dec . In view of Definition 6.1.4 and Ref 2, we have

.1. 21 ) 6 . 1 . 4

 21614 Main equations in (ext) M

J) b e b . ( 6 . 1 . 28 )

 6128 Lemma 6.1.19. The following hold true. 1. We have g(T, T) = -1 + 2mr |q| 2 . (6.1.29)

  a T, e 4 ), g(D 4 T, e a ) ∈ Γ g , g(D a T, e 3 ), g(D 3 T, e a ) ∈ Γ b , and k ab := g(D a T, e b ) = -2amr cos θ |q| 4 ∈ ab +Γ b .

= [e 4 , e 3 ] + e 4 ∆ |q| 2 e 4 - 4 = 2 | trχδ bc e c + 1 2

 4344422 .1.37) Proof. In view of the definition of T in (6.1.28), we have 2[e 4 , T] = e 4 , e 3 + ∆ |q| 2 e 4 -2a (J) b e b 2a∇ 4 (J) b e b + 2a (J) b ∇ b e -2(ζ + η) b e b -2ωe 4 + ∂ r ∆ |q| 2 e 4 + 2a 1 q J b e b + 2a (J) b (χ bc e c -ζ b e 4 ) = -2( q ζ + q η) b e b -2q ωe 4 + 2a (J) b 1 (a) trχ ∈ bc e c + χ bc e cq ζ b e 4 . Hence, since L / T (e 4 ) is the horizontal projection of [T, e 4 ], we obtain L / T (e 4 ) ∈ Γ b which is (6.1.35).

6. 1 . 3 Lemma 6 . 1 . 24 .

 136124 [START_REF] Chandrasekhar | On the equations governing the perturbations of the Schwarzschild black hole[END_REF] Relation between L / T and ∇ If U is a horizontal k-tensor, we have

.2. 1 )

 1 Proof. In view of the definition of ẽ3 (u), | ∇u and ẽ3 (r), and since ẽ3 (u) ∈ rΓ b , ẽ3 (r) ∈ rΓ b and | ∇u ∈ Γ b , we have e 3 (u) = 2 + O(r -2 ) + rΓ b , (e 3 (u)) 2 + 4|∇u| 2 e 3 (r) = 4 + O(r -2 ) + rΓ b . 358CHAPTER 6. DECAY ESTIMATES ON THE REGION (EXT ) M (THEOREM M4)

f = - 4 e 3

 43 (u) + (e 3 (u)) 2 + 4|∇u| 2 e 3 (r) ∇u, f = 2e 3 (r) (e 3 (u)) 2 + 4|∇u| 2 e 3 (r) ∇u as stated. Then, (6.2.1) follows from the above form of f and f , the definition of ẽ3 (u), | ∇u and ẽ3 (r), and the fact that ẽ3 (u) ∈ rΓ b , ẽ3 (r) ∈ rΓ b and | ∇u ∈ Γ b .

6. 2 . 2 d a + 1 2 f 2 f

 2222 Comparison of horizontal derivatives and derivatives tangential to S(u, r) Lemma 6.2.3. We have g(D e a e b , e c ) = δ a f d g (D e d e b , e c ) + 1 2 f a g (D e 4 e b , e c ) a g (D e 3 e b , e c ) + 1 2

6. 2 . 3 Lemma 6 . 2 . 6 . 4 Se 4

 2362644 Derivatives in e 4 of integrals on 2-spheres S(u, r) We have for a scalar function h e (h) + δ ab g(D e a e 4 , e b )h where δ ab g(D e a e 4 , e b ) = 1

6 .Thus, we deduce e 4 Se 4

 644 DECAY ESTIMATES ON THE REGION (EXT ) M (THEOREM M4) we infer 1 |g| ∂ r ( |g|) = g ab g D ∂ ∂x a e 4 , ∂ ∂x b and hence, for an orthonormal basis (e 1 , e 2 ) of S(u, r), we have 1 |g| ∂ r ( |g|) = δ ab g(D e a e 4 , e b ). (h) + δ ab g(D e a e 4 , e b )h . Next, for simplicity, we write e a = j b a e b + k a e 4 + l a e 3 where

  e a e 4 , e b ) = g D j c a ec+kae 4 +lae 3 e 4 , e b = g D j c a ec+lae 3 e 4 , e b = g D j c a ec+lae 3 e 4 , j d b e d + k b e 4 + l b e 3 = g D j c a ec+lae 3 e 4 , j d b e d + l b e 3 = j c a j d b g (D ec e 4 , e d ) + l a j d b g (D e 3 e 4 , e d ) + j c a l b g (D ec e 4 , e 3 ) + l a l b g (D e 3 e 4 , e 3 ) = j c a j d b χ cd + 2l a j d b η d + 2j c a l b ζ c -4ωl a l b . In view of (6.2.5) we infer g(D e a e 4 , e b )

Corollary 6 . 2 . 7 . 4 S

 6274 We have for a scalar function h e

e 4

 4 (h) + δ ab g(D e a e 4 , e b )h = S(u,r)

Proposition 6 . 3 . 4 . 4 S

 6344 Let [B] ren and [D•] ren be given by Definition 6.3.3. Then, the following identities hold true ∇ (u,r)

3 . 4 . 4 S

 344 According to Corollary 6.2.7 we have for a scalar function h e

  2 and the assumptions Ref 1 and Ref 2.

  by commuting the overshooting equation ∇ 4 B + 2trXB = 1 2 D • A + . . . twice with L / T and thus derive a transport equation for L / 2T which is no longer overshooting, i.e. the RHS enjoys enough decay in r for the corresponding transport equation to be integrated. Thus we can first estimate L / 2 T B from which we derive also an estimate for D ⊗L / T B. Note that this step requires the full force of the assumptions Ref 2 for A.

7 .

 7 It remains to derive estimates for L / T B from the one of D ⊗L / T B. In view of Corollary 6.2.14, we need first to estimate D • L / T B =1 . Starting with the equation for ∇ 4 L / T B + 2trXL / T B = 1 2 D • L / T A + . . . we first derive a transport equation 14 for the quantity 1

  malized quantities [H] ren , [ D cos θ] ren , [ | M ] ren , as well as S(u,r) rJ (0) Σ [D•] ren r 4 [B] ren , derived in Proposition 6.3.2 and Proposition 6.3.4.

Proposition 6 . 4 . 5 .r 2 u

 6452 We have on (ext) 1+δ dec |d k } trX| 0 .

2 . 7 4 S

 274 according to which, for a scalar function h on S = S(u, r), e

  .4.10) we deduce, since Σ = r 2 + O(1), e

390CHAPTER 6 . 4 S

 64 DECAY ESTIMATES ON THE REGION (EXT ) M (THEOREM M4) Together with the improved control on A, ∇ 3 A, ∇ 2 3 A in Ref 2, as well as the bootstrap assumptions in Ref 1, we obtain e (u,r) h = O(r 2 )L / T B + O 0 r 1+δ u 1+δ dec .

.5. 26 )404CHAPTER 6 .

 266 DECAY ESTIMATES ON THE REGION (EXT ) M (THEOREM M4)

2 .1) and e 4 =

 24 λe 4 , e 3 = λ -1 e 3 , e a = e a , a = 1, 2, on T , (7.2.2)

4a 2 λ cos θ e 3

 3 (r)|q| 2 e 3 (cos θ),

4 = 3 -

 43 λe 4 , e 3 = λ -1 e 3 , and e a = e a , a = 1, 2, on T , and since e 3 -e 3 (r)e 4 is tangent to T , we have g(D e 3 -e 3 (r)e 4 e 3 , e a ) = g(D e 3 -e 3 (r)e 4 (λ -1 e 3 ), e a ), g(D e 3 -e 3 (r)e 4 e 4 , e a ) = g(D e 3 -e 3 (r)e 4 (λe 4 ), e a ), g(D e 3 -e 3 (r)e 4 e 4 , e 3 ) = g(D e 3 -e 3 (r)e 4 (λe 4 ), λ -1 e 3 ). Hence, using again that e 4 = λe 4 and e 3 = λ -1 e 3 on T , we deduce g(D λe 3 -e 3 (r)λ -1 e 4 e 3 , e a ) = λ -1 g(D e 3 -e 3 (r)e 4 e 3 , e a ), g(D λe 3 -e 3 (r)λ -1 e 4 e 4 , e a ) = λg(D e 3 -e 3 (r)e 4 e 4 , e a ), g(D λe 3 -e 3 (r)λ -1 e 4 e 4 , e 3 ) = -2(e 3 -e 3 (r)e 4 ) log(λ) + g(D e 3 -e 3 (r)e 4 e 4 , e 3 ), and hence λξ -λ -1 e 3 (r)η = λ -1 (ξ -e 3 (r)η), λη -e 3 (r)λ -1 ξ = λ(η -e 3 (r)ξ), -λω -e 3 (r)λ -1 ω = -ω -e 3 (r)ω -2(e 3 -e 3 (r)e 4 ) log(λ). Since ξ = 0, ξ = 0, ω = 0, ω = 0, η = ζ and η = -ζ, we infer η = -ζe 3 (r)e 4 ) log(λ).

(e 3 -

 3 e 3 (r)e 4 )r = (e 3 -e 3 (r)e 4 )r, (e 3 -e 3 (r)e 4 )u = (e 3 -e 3 (r)e 4 )u, (e 3 -e 3 (r)e 4 )J (p) = (e 3 -e 3 (r)e 4 )J (p) , p = 0, +, -, ∇ e 3 -e 3 (r)e 4 J = ∇ e 3 -e 3 (r)e 4 J, ∇ e 3 -e 3 (r)e 4 J ± = ∇ e 3 -e 3 (r)e 4 J ± .

e 4 = e 4 + f b e b + 1 4 |f | 2 e 3 , e a = e a + 1 2 f a e 3 , a = 1 , 2 ,e 3 =

 44433123 e 3 .

Proposition 7 . 3 . 3 . 4 A

 7334 Relative to a frame 3 in (int) M for which Ξ = 0, the complex tensors A, A ∈ s 2 (C) satisfy the following relation 4 in the region r ≤ r 0(c) ∇ 4 + 2trX = r -4 d ≤4 A + d ≤3 Γ b • Γ g .(7.3.12)Proof. See Proposition 5.4.1 of[START_REF] Giorgi | Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes[END_REF].

.5.2) and e 4 = λ e 4 + f b e b + 1 4 |f | 2 e 3 , e a = e a + 1 2 f a e 3 ,e 3 = λ -1 e 3 , 5 )

 44433335 Note in particular that h = 1 + O(r -2 ), which together with the fact that ẽ3 (r) ∈ rΓ b and∇(u) = O(r -1 ) implies f ∈ Γ b . (7.5.6) 

λ - 1 4 |f | 2 e 3 = e 4 + f b e b - 1 2 f b λe 3 + 1 4 |f | 2 λe 3 and hence e 4

 143444 e 4 = e 4 + f b e b + 1 = λ -1 e 4 -f b e b + 1 4 |f | 2 λe 3 .

Since e 4 4 |f | 2 e 3 , e a + 1 2 f a e 3 + 4 |f | 2 e 3 , λ -1 e 3 +

 4433433 is tangent to {u = u * }, this implies g(D λ -1 e 4 e 4 , e a ) = g D e 4 λ e 4 + f b e b + 1 r -1 Γ b , g(D λ -1 e 4 e 4 , e 3 ) = g D e 4 λ e 4 + f b e b + 1 r -1 Γ b , g(D λ -1 e 4 e 3 , e a ) = g D e 4 λ -1 e 3 , e a + 1 2 f a e 3 + r -1 Γ b , which yields

2 f a λe 3 ,e 3 = λe 3 , 2 f a e 3 ,e 3 = λ -1 e 3 , 4 |f | 2 e 3 , λ -1 e 3 + 4 |f | 2 e 3 , e b + 1 2 f b e 3 + 2 f b e 3 +

 333233343343323 we have on {u = u * }, since f ∈ Γ b , e a -λ e 3 (u) e a (u)e 3 = e a -1 e 3 (u) e a (u)e 3 + r -1 Γ b d. Since e a -1 e 3 (u) e a (u)e 3 is tangent to {u = u * }, and since e 4 = λ e 4 + f b e b + 1 4 |f | 2 e 3 , e a = e a + 1 (7.5.7) we infer on {u = u * } g D e a -λ e 3 (u) ea(u)e 3 e 4 , e 3 = g D ea-1 e 3 (u) ea(u)e 3 λ e 4 + f b e b + 1 r -1 Γ b , g D e a -λ e 3 (u) ea(u)e 3 e 4 , e b = g D ea-1 e 3 (u) ea(u)e 3 λ e 4 + f b e b + 1 r -1 Γ b , g D e a -λ e 3 (u) ea(u)e 3 e 3 , e b = g D ea-1 e 3 (u) ea(u)e 3 λ -1 e 3 , e b + 1 r -1 Γ b , and hence, using again f ∈ Γ b , g D e a -λ e 3 (u) ea(u)e 3 e 4 , e 3 = λ -1 g D ea-1 e 3 (u) ea(u)e 3 (λe 4 ), e 3 + r -1 d ≤1 Γ b , g D e a -λ e 3 (u) ea(u)e 3 e 4 , e b = λg D ea-1 e 3 (u) ea(u)e 3 e 4 , e b + r -1 d ≤1 Γ b , g D e a -λ e 3 (u) ea(u)e 3 e 3 , e b = λ -1 g D ea-1 e 3 (u) ea(u)e 3 e 3 , e b + r -1 Γ b . We infer on {u = u * } 2ζ a + 4λ e 3 (u) e a (u)ω = -2 e a -1 e 3 (u) e a (u)e 3 log λ + 2ζ a + 4 e 3 (u) e a (u)ω + r -1 d ≤1 Γ b , χ ab -2λ e 3 (u) e a (u)η b = λχ ab -2λ e 3 (u) e a (u)η b

Lemma 7 . 5 . 3 . 1 2

 7531 The following decay estimates hold on {u = u * } for the ingoing PG structure of(top) Msup {u=u * } ru 1+δ dec + r 2 u +δ dec |d ≤k small +39 Γ g | + sup {u=u * } ru 1+δ dec |d ≤k small +39 Γ b | 0 . (7.5.8)Proof. In view of the control of outgoing PG structure of (ext) M established in Theorem M4 and the fact that {u = u * } ⊂ (ext) M, we have sup {u=u * }

4 . 1 N ) 2 + (y 2 N ) 2 1 S ) 2 + (y 2 S ) 2

 412221222 R is covered by two coordinates charts R = R N ∪ R S such that: (a) The North coordinate chart R N is given by the coordinates (u, s, y 1 N , y 2 N ) with (y < 2. (b) The South coordinate chart R S is given by the coordinates (u, s, y 1 S , y 2 S ) with (y < 2. (c) The two coordinate charts intersect in the open equatorial region R Eq := R N ∩ R S in which both coordinate systems are defined.

.1. 3 )

 3 A2. The Hawking mass m = m(u, s) of S(u, s) verifies sup

Definition 8 . 1 . 1 .

 811 We say that S is a deformation of • S if there exist smooth scalar functions U, S defined on • S and a map a map Ψ : • S → S verifying, on either coordinate chart (y 1 , y 2 ) of • S,

Proposition 8 . 1 . 3 .

 813 Let • S ⊂ R. Let Ψ : • S → S be a deformation generated by the functions (U, S) as in Definition 8.1.1. Assume the bound (U, S)

• r that of • S. 3 .

 3 Let m = m(u, s) the Hawking mass of the surfaces S(u, s) and m S the Hawking mass of S. We have sup S |m -m S | • δ.

Definition 8 . 1 . 5 .Sφ

 815 Given a deformation map Ψ :• S → S and a fixed effective uniformizawe let (Φ, φ) be the unique effective uniformization map of S calibrated with ( ) relative to the map Ψ, in the sense of Definition 5.1.6. With this choice, we define the canonical = 1 modes of S by the formula

Corollary 8 . 1 . 6 .S 20 )

 81620 Let J (p) satisfying A4-Strong, and let J (p, • S) denotes the canonical basis of = 1 modes on • S corresponding to the effective uniformization map ( appearing in Definition 8.1.5. Let a deformation Ψ : • S → S with the corresponding deformation parameters (U, S) satisfying (U, S) Let J (p,S) be the corresponding canonical basis of = 1 modes of S calibrated according to Definition 8.1.5. Then, the following estimate holds true max p=0,-,+ sup S |J (p) -J (p,S) | r -1 • δ. (8.1.21)

  .1.25) and S div S β S J (p,S) = 0, (8.1.26) where J (p,S) is a canonical = 1 basis for S calibrated, relative by Ψ, with the canonical = 1 basis of • S. Moreover the deformation verifies the properties: 1. The volume radius r S verifies

Corollary 8 . 1 . 8 .

 818 Under the same assumptions as in Theorem 8.1.7 we have, in addition to (8.1.25) and (8.1.26),

Theorem 8 . 1 . 11 ( 5 J

 81115 Construction of GCM hypersurfaces). Assume that the spacetime region R verifies the assumptions A1-A4. We further assume that, relative to the = 1 modes of the background foliation, sup R r d ≤smax e 3 (J (p) )(p) is not assumed to be a canonical basis of = 1 modes on S.

where d := (e 3 -

 3 (e 3 (u) + e 3 (s))e 4 , d /)

  .1.36) |r -s| + |e 3 (r) -e 3 (s)| • δ, (8.1.37)

.1. 42 ) 2 . 4 . 5 .

 42245 There exists a constant c 0 such that u S + r S = c 0 along Σ 0 .(8.1.43)3. Let ν S the unique vectorfield tangent to the hypersurfaces Σ 0 , normal to S, and normalized by g(ν S , e S 4 ) = -2, and let b S be the unique scalar function on Σ 0 such that ν S is given byν S = e S 3 + b S e S 4 . (8.1.44)Then, the following normalization condition holds trueb S = -1 -2m (0) r S , (8.1.45) where b S denotes the average of b S on the spheres S foliating Σ 0 . The triplet of functions J (p) [S] verifies on Σ 0 ν S (J (p) [S]) = 0, p = 0, +, -. (8.1.46) 462CHAPTER 8. INITIALIZATION AND EXTENSION (THEOREMS M0, M6 AND M7) The following transversality conditions are assumed on Σ 0 ξ S = 0, ω S = 0, η S + ζ S = 0, e S 4 (r S ) = 1, e S 4 (u S ) = 0. (8.1.47)

  .1.50) and | d ≤smax (e 3 (r) -e 3 (s))| where d = (e 3 -(e 3 (u) + e 3 (s))e 4 , d /). Also, assume given a GCM hypersurface Σ 0 ⊂ R foliated by hypersurfaces S such that

5 )

 5 is a nonlinear transport equation for h. If h = Γ b + O(r -3

Figure 8 . 1 :Proposition 8 . 2 . 4 .

 81824 Figure 8.1: The initial data layer L 0 and the region (ext) L 0 (in red)

  r -1 ), as well as 9 g(e 3 , ∂ x a ) = O(1) and g(e 4 , ∂ x a ) = O(1), and since e 4 = λ e 4 + f c e c + 1 4 |f | 2 e 3 = λ e 4 + f c e c + O(r -2 )e 3 ,

  r), so that we have z 3 A , z 4 A = O(1), and hence g(e 3 , ∂ x A ) = -2z 4 A = O(1) and g(e 4 , ∂ x A ) = -2z 3 A = O(1).

  , s)| S( u, s) e 4 (h) + tr χh -2 e 4 ( r) r h S( u, s) = e 4 (h) S( u, s)

  Now, we have, in view of the decomposition of Step 3 for r -r, and in view of the decomposition of Step 1 for tr χ, r tr χ -2 = O(r -1 )( r -r) + r tr χ -2 = O(r -2 ) + d ≤2 Γ b and hence e 4 r tr χ S( u, s) -2 = O(r -5 ) + r -2 d ≤2 Γ b , lim r→+∞ r tr χ S( u, s)

Proposition 8 . 3 . 1 .

 831 The following estimates 11 are true on Σ * sup Σ *

3 . 2 5 .

 325 for d * / 2 d * / 1 J (p) and (∆ + 2 r 2 )J (p) , and the bootstrap assumptions for Γ b and Γ g , we infer on Σ * |(div β) =1 | r 4 u 1+δ dec + r Using the dominance condition (3.4.5) on r on Σ * , we infer on Σ * |(div β) =1 | r 4 u 1+δ dec . (8.3.7)

  . INITIALIZATION AND EXTENSION (THEOREMS M0, M6 AND M7) and using the dominance condition (3.4.5) on r on Σ * , we deduce ν S div βJ (p) 0 r 3 u 1+δ dec .

3 . 5 )r 4 r 4 .- 2am r 4 r 4 + 2 r 3 4 0r 3

 3542343 for (curl β) =1 , the control of Lemma 8.3.2 for d * / 2 d * / 1 J (p) , and the bootstrap assumptions for Γ g , we infer on Σ * |(curl ζ) =1,± | + (curl ζ) =1,0 -2am Now, note that we have from the null structure equations * ρ = curl ζ + Γ b • Γ g . Together with the above control of (curl ζ) =1 and the bootstrap assumptions for Γ g , we infer on Σ * |( * ρ) =1,± | + ( * ρ) =1,0 u 1+δ dec and using the dominance condition (3.4.5) on r on Σ * , we deduce |( * ρ) =1,± | + ( * ρ) =1,0 -2am r u 1+δ dec . (8.3.10)

3 S 3 S

 33 3.2 for (∆ + 2 r 2 )J (p) and d * / 2 d * / 1 J (p) , and the bootstrap assumptions for Γ g , we infer on Σ * ν rcurl βJ (0) -8πam 1 r + 0 + 2 u 1+δ dec .Using the dominance condition (3.4.5) on r on Σ * , we obtain ν r curl βJ (0) -8πam 0 u 1+δ dec .Integrating from S * where there holds (curl β) =1,0 = 2am r 5 on S * , we deduce on Σ * (curl β) =1,0 -

J

  

504CHAPTER 8 . 1 r 2 |

 812 INITIALIZATION AND EXTENSION (THEOREMS M0, M6 AND M7) Lemma 8.3.11. The following estimate holds true sup C (div (f )) =1 | 0 . (8.3.29)

we have obtained along C 1 r

 1 |∇ λ| + |f | 0 . (8.3.30) 

1 0

 1 Since |m-m 0 | ≤ and 20 |r-r | ≤ r, together with the estimate (8.3.31) for r 5 |(div β ) =1 | on S (δ * -), we infer on S (δ

3 .

 3 Using the transformation formulas for ζ and the control of 5 derivatives of f and λ, and of 4 derivatives of ζ , we obtain the control of 4 derivatives of f on C 1 :

  (8.3.2), we infer, for any S ⊂ C 1 ,

Lemma 8 . 3 . 15 . 1 J

 83151 The following estimates hold true.|a -a 0 | + max p=0,+,-sup S

.4. 9 )

 9 Since ν(u + r) = 0 on Σ * , we infer for k ≤ k large + 4 sup Σ * d k * b * + ν(u) -1 -2m r 0 . 540CHAPTER 8. INITIALIZATION AND EXTENSION (THEOREMS M0, M6 AND M7) Now, as part of the construction of Σ * , the following transversality conditions on Σ * are assumed, see (8.1.47) in Theorem 8.1.11, ξ = ω = 0, η = -ζ, e 4 (r) = 1, e 4 (u) = 0. (8.4.10) We infer ν(u) = e 3 (u) + b * e 4 (u) = e 3 (u) and hence, for k ≤ k large + 4, sup Σ *

.4. 13 ) 8 . 4 . 3 .

 13843 Remark In general, we have O = I in(8.4.13). In fact, the role of O corresponds in Step 1 to the application of Corollary 8.1.8 which ensures that the following holds on S * w.r.t. the canonical basis of = 1 modes J (p,S * ) , see (8.4.2), (curl β) =1,± = 0.

550CHAPTER 8 .

 8 INITIALIZATION AND EXTENSION (THEOREMS M0, M6 AND M7)

  e. they are functions of u along Σ (extend) *

.

  In particular, note that the identities (8.5.3) on Σ (extend) * are preserved under differentiation by d.

.

  Since ν is tangent to Σ (extend) * with ν = e 3 + be 4 , since e 4 (r) = r 2 κ = 1 on Σ (extend) * , and since e 4 (s) = 1 for an outgoing geodesic foliation, we have s -r = 0, e 4 (s) -e 4 (r) = 0, e 3 (s) -e 3 (r) = 0 on Σ (extend) * . 554CHAPTER 8. INITIALIZATION AND EXTENSION (THEOREMS M0, M6 AND M7)Using the above identities on Σ (extend) *

  (extend) * and s = r on Σ (extend) * 0 = ν(u + s) = e 3 (u) + b * e 4 (u) + e 3 (s) + b * e 4 (s) = e 3 (u) + e 3 (s) + b * , where we used e 4 (s) = 1 and e 4 (u) = 0 for an outgoing geodesic foliation, and hence b * = -e 3 (u) -e 3 (s) on Σ * . Together with the GCM condition on b * , we infer e 3 (u) + e 3 (s) = 1 + 2m r on Σ * , where e 3 (u) + e 3 (s) denotes the average of e 3 (u) + e 3 (s) on the spheres foliating Σ * . As above, propagating forward in e 4 , and using the bounds of Step 1 on M (extend) , and hence on R, for ẽ3 (u) and ẽ3 (s), we infer sup R e 3 (u) + e 3 (s) -1 + 2m r 0 r ∆ ext .

.

  First, recall from Corollary 5.6.5 that we have obtained on S * d / ≤k * φ L ∞ (S * ) Since we have extended φ to Σ (extend) * by ν(φ) = 0 and then to R by e 4 (φ) = 0, we easily infer in R ∩ {u ≥ u * }, for all k ≤ k * -3,

•s)

  = 0 together with the bounds of Step 7 implies that (8.5.27) (8.5.28) (8.5.29) hold for u 1 < • u with u 1 close enough to • u. By a continuity argument based on reapplying Theorem 4.1 in

  proof of (8.5.32).

566CHAPTER 8 .

 8 INITIALIZATION AND EXTENSION (THEOREMS M0, M6 AND M7)which improves (8.5.29) for D ≥ 1 large enough.

  ν(u + r) = ν(u) + ν(s) = e 3 (u) + b * e 4 (u) + e 3 (s) + b * e 4 (s) = e 3 (u) + e 3 (s) + b * , ν(r) = ν(s) = e 3 (s) + b * e 4 (s) = e 3 (s) + b * , and hence, we deduce b * = -e 3 (u) -e 3 (s), ν(r) = -e 3 (u) on Σ (extend) *

b

  * := b * + e 3 (u) + e 3 (s). (8.5.44) Lemma 8.1.13 yields, in view of the definition of b * and the control for (f, f , λ) provided by (8.5.41), for any scalar function h, any sphere S ⊂ Σ * , and any k ≤ k * -5, d k * h h smax-j ( S) sup R | d ≤k h| + 0 δ ext |d ≤k h| + d ≤k-1 * b * L 2 ( S) sup R |d ≤k h|. (8.5.45)

e 3 ((e 3 - 4 k

 334 u) + e 3 (s) = 1 + 2m r on Σ (extend) * , where e 3 (u) + e 3 (s) denotes the average of e 3 (u) + e 3 (s) on the spheres of the u-foliation. Since b * = -(e 3 (u)+e 3 (s)) on Σ (extend) * , we infer, since ν = e 3 +b * e 4 is tangent to Σ (extend) * , (e 3 -(e 3 (u) + e 3 (s)) e 4 ) k e 3 (u) + e 3 (s) -1 + 2m r = 0 on Σ (extend) * . Arguing as for (8.5.10), we propagate forward in e 4 , and using the bounds of Step 1 on M (extend) , we infer, for k ≤ k * -3, sup R (e 3 (u) + e 3 (s)) e 4 ) k e 3 (u) + e 3 (s) -On the other hand, by our GCM condition on Σ * for b * , we have b * = -1 -2 m r on Σ * , where b * denotes the average of b * on the spheres of Σ * , and hence, we have on Σ * e 3 + b * e

  r.t. to the spheres foliating Σ * . Recalling the definition b * = b * + e 3 (u) + e 3 (s), we have thus obtained, for k≤ k * -6, sup Σ * ν k b * 0 δ ext + r -1 | m -m| + r -2 sup Σ * | ν ≤k ( r -r)| + 0 sup Σ * | ν ≤k b * |.Together with (8.5.32) for m-m, (8.5.46) for r-r, and Sobolev, we deduce, for k ≤ k * -8,sup Σ * ν k b * 0 δ ext + 0 sup Σ * r -1 d ≤k * (b * ) h 2 ( S) .578CHAPTER 8. INITIALIZATION AND EXTENSION (THEOREMS M0, M6 AND M7) Using Corollary 5.2.3 and Sobolev, we obtain, for k ≤ k * -8, sup Σ * ν k (b * ) 0 δ ext + 0 sup Σ * | ν ≤k b * | + 0 sup Σ * r -1 d ≤k * (b * ) h 2 ( S)

For 0

 0 small enough, we infer, for k ≤ k * -9, sup S⊂ Σ * r -1 d k * b * h 2 ( S) 0 δ ext . Using Sobolev, and recalling the definition of b * , we infer, for k ≤ k * -9, sup Σ * d k * ( b * + e 3 (u) + e 3 (s)) 0 δ ext . Also, (8.5.46), together with the above control of b * and Sobolev, implies, for k ≤ k * -9, sup Σ * r -1 | d k * ( r -r) | 0 δ ext . (8.5.48) Next, we control ν( r) + e 3 (u). We have ν( r) + e 3 (u) = ν( r -r) + ν(r) + e 3 (u) = ν( r -r) + e 3 (r) + b * e 4 (r) + e 3 (u) = ν( r -r) + e 3 (r) + b * e 4 (r) + e 3 (u) + ( e 3 (r) -e 3 (r)) + b * ( e 4 (r) -e 4 (r)) = ν( r -r) + e 3 (r -s) + e 3 (s) + b * + b * e 4 (r -s) + e 3 (u) +( e 3 (r) -e 3 (r)) + b * ( e 4 (r) -e 4 (r)) = b * + e 3 (s) + e 3 (u) + ν( r -r) + e 3 (r -s) + b * e 4 (r -s) +( e 3 (r) -e 3 (r)) + b * ( e 4 (r) -e 4 (r)).
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 8315111 INITIALIZATION AND EXTENSION (THEOREMS M0, M6 AND M7)Together with the control of β, the fact that e 4 (J (p) ) = 0, and the control (8.5.23) for e 3 (J (p) ), we deduce max p=0,+,-S * curl βJ (p) -• S curl βJ (p) 0 Using the control of r * -Plugging in the above, using the fact that • S ⊂ R ∩ {u ≥ u * }, and using again the control of r * -• r in Proposition 8.1.3, we obtain r 5 S * | S * curl βJ (0) -2am r S * | S * curl βJ (±) 0 δ ext . Together with (8.5.32), this yields r 5 S * | S * curl βJ (0) -2a S * | S * curl βJ (±) 0 δ ext .

-

  J(p) h k * -4 ( S * )0 δ ext .Also, recall that J (p) = J (p, S * ) on S * , where J (p, S * ) is in general another canonical basis of = 1 modes on S * . In view of Definition 5.1.3, note that the canonical basis of = 1 modes on S * are unique modulo isometries of S 2 , i.e. there exists O ∈ O(3) such thatJ (p, S * ) = q=0,+,-O pq J (q, S * ) 0 , p = 0, +, -.(8.5.50) Remark 8.5.3. In general, we have O = I in (8.5.50). In fact, the role of O corresponds in Step 6 to the application of Corollary 8.1.8 which ensures that the following holds on S * w.r.t. the canonical basis of = 1 modes J (p, S * ) , see (8.5.26), ( curl β) =1,± = 0, which corresponds to fixing the axis of S * . Note that this condition (and hence the axis of S * ) is preserved by multiplying the basis J (p, S * ) by O = -I or by any O fixing J (0, S * ) , so that we may assume in (8.5.50) that O satisfies O 00 ≥ 0, O ++ ≥ 0, O +-= 0, O --≥ 0. (8.5.51) Since J (p) = J (p, S * ) on S * , we infer max p=0,+,-J (p) -q=0,+,-O pq J (q) h k * -4 ( S * ) 0 δ ext . (8.5.52)

5 . 26 ) 1 |, 1 | 2 p0

 526112 and the fact that J (p) = J (p, S * ) on S * S * | S * curl β J (0) 2 a m r 5 S * | S * curl β J (±) = 0. 582CHAPTER 8. INITIALIZATION AND EXTENSION (THEOREMS M0, M6 AND M7) Plugging in the previous estimate, we obtain m |O 00 a -a| + | a| |O ±0 | 0 δ ext , and since | m -m| δ ext 0 and |m -m 0 | 0 , we may divide by m and hence |O 00 a -a| + | a| |O +0 | + | a| |O -0 | 0 δ ext . (8.5.53) Since O ∈ O(3), we have p O 2 p0 = 1 which together with (8.5.53) implies ( a) 2 = ( a) 2 p O

  .5.54) This allows us to control, in the case |a| ≤ √ 0 δ ext , the change of frame coefficients (f , f , λ ) introduced in Step 14 and corresponding to the change from the outgoing PG frame (e 4 , e 3 , e 1 , e 2 ) of (ext) M extended to the spacetime M (extend) and the PG frame ( e 4 , e 3 , e 1 , e 2 ). Indeed, (8.5.54) and (8.5.49) yield, for ≤ k * -9, sup Σ * r d k * (f , f , λ -1) 0 δ ext if |a| ≤ 0 δ ext . (8.5.55)

  u * ) to R(u ≥ u * ), we infer, using also the control of Step 1 on M (extend) , for k ≤ k * -3, sup R(u≥u * )

586CHAPTER 8 .

 8 INITIALIZATION AND EXTENSION (THEOREMS M0, M6 AND M7)Together with the above control of J (p) -J (p) on Σ * , we infer, for k ≤ k * -.Next, we control ∇ 3 f 0 on R. Recall that we have ∇ 4 f 0 = 0 on R and ∇ ν f 0 = 0 on Σ (extend) * . Since ν = e 3 + b * e 4 , we infer ∇ 3 f 0 = 0 on Σ (extend) * . Since ∇ 4 f 0 = 0 on R, integrating from Σ (extend) * , we easily infer on R, for k ≤ k * -

  .5.61) Finally, we have obtained in this step, for ≤ k * -9, sup Σ *

  .5.63) Also (e 4 , e 3 , e 1 , e 2 ), as discussed in Step 1 to Step 3, satisfies N

  .5.65) Also, we have e 4 ( r -λ -1 r) = 1 -λ -1 e 4 (r) + λ -1 e 4 (log(λ)).

e 4 ( 4 |f | 2 e 3 J

 443 a J (0) -aJ (0) ) = -e 4 (aJ (0) ) = -aλ e 4 + f • ∇ + 1 (0) = -aλ f • ∇ + 1 4 |f | 2 e 3 J (0)

4 )Definition 9 . 1 . 5 .

 4915 An extended ingoing PT structure possesses, in addition, a function u verifying e 3 (u) = 0. An ingoing PT initial data set consists of a hypersurface Σ transversal to e 3 together with a null pair (e 3 , e 4 ), the induced horizontal structure H, scalar functions (r, θ), and a horizontal 1-form J, all defined on Σ. Lemma 9.1.6. Any ingoing PT initial data set, as in Definition 2.8.11, can be locally extended to an ingoing PT structure.

4 .

 4 The function u of the extended PT structure, i.e. such that e 3 (u ) = 0, satisfies on {u = u * } u = u + 2 r r 0

and e 4 (e 3 (

 43 cos θ)) = -(H -H) • D(cos θ) ,e 4 (e 3 (r)) = -2ω -(H -H) • Dr , e 4 (e 3 (u)) = -(H -H) • Du .

. 1 ) 2 (r 2 + a 2 ) |q| 2 ,D 9 . 2 . 4 .

 1222924 as well asẽ3 (r) := e 3 (r) + ∆ |q| 2 , D(cos θ) := D(cos(θ)) -iJ, | Du := Du -aJ, ẽ3(u):= e 3 (u) -• J := D • J -4i(r 2 + a 2 ) cos θ |q| 4 , } ∇ 3 J := ∇ 3 J -∆q |q| 4 J. (9.2.3)9.2.4 Definition of the notations Γ b and Γ g for error termsDefinition The set of all linearized quantities is of the form Γ g ∪ Γ b with Γ g , Γ b defined as follows.

1 .

 1 a scalar function depending only on (r, θ) which is smooth and such thatr p |(r∂ r , ∂ θ ) k O(r -p )| 1 for k ≥ 0 and r ≥ r 0 ,2. a 1-form of the type O(r -p+1 )J where O(r -p+1 ) denotes a scalar function as above, 3. a symmetric traceless 2-tensor of the type O(r -p+2 )J ⊗J where O(r -p+2 ) denotes a scalar function as above.

3 .Remark 9 . 3 . 6 .Remark 9 . 3 . 7 .Definition 9 . 4 . 1 .

 3936937941 Denoting, on each level set of u in(top) M (r ≥ r 0 ), by r + (u) the maximal value of r and by r -(u) the minimal value of r, we have8 0 ≤ r + (u) -r -(u) ≤ 2(2m + 1). (9.3.8) 4. In (top) M (r ≤ r 0 ), τ satisfies u * -2(m + 2) ≤ τ ≤ u * . (9.3.9)5. In M(r ≤ r 0 ), τ satisfiese 4 (τ ) = 2(r 2 + a 2 ) -m 2 r 2 ∆ |q| 2 + r -1 Γ g , e 3 (τ ) = m 2 r 2 , ∇(τ ) = a (J) + Γ b . (9.3.10)Proof. See Section D.3. In view of the third property and the fourth property of Proposition 9.3.5,(top) M is in fact a local existence type region. The fact that r+ (u) -r -(u) ≤ 2(2m + 1) in (top) M (r ≥ r 0 ) in view of Proposition 9.3.5 is crucial to recover the Ricci coefficients in (top) M (r ≥ r 0 ).In particular, it is crucial to control X from A as we have schematically| X| | X | u=u * | + (r + (u) -r -(u))|A| so that we indeed need r + (u) -r -(u) 1.Norms on Σ * We define the following PT-Ricci coefficients norms on Σ * G 2

(

  P T ) I k := (P T -ext) I k + (P T -int) I k . (9.4.13)

  .4.14) 

2

 2 and hence sup (ext) M r d ≤k large +4 f 0 . (9.4.19) Step 5. Next, let (f , f , λ ) denote the transition coefficients corresponding to the change from the ingoing PT frame of (top) M to the ingoing PG frame of (top) M. Since (top) M ⊂ (top) M , (f , f , λ ) are defined on (top) M. In view of 1. The fact that {u = u * } = (top) M ∩ (ext) M.

4 .

 4 The control in(ext) M ∩(top) M of the change of frame coefficients between the outgoing PT frame of (ext) M and the ingoing PT frame of(top) M which results from (a) the initialization of the ingoing PT frame of (top) M from the outgoing PT frame of (ext) M on {u = u * } in Section 9.1.3, (b) the transport equations for transition coefficients involving PT frames in Section 2.8.4, we easily obtain sup {u=u * } r d ≤k large +4 (f , f , log(λ )) 0 .

  (ext) M ∩ (int) M = {r = r 0 } ∩ {u ≤ u * }, and arguing as in Step 5, one easily obtains sup(int) M d ≤k large +4 (f , log(λ ) + d ≤k large +3 f 0 .Next, relying on: 1. the fact that λ = 1 and f = 0 on (ext) M according to Step 1, 2. the control of f on (ext) M in Step 4, 3. the control of (f , f , λ ) on (top) M in Step 5, 4. the above control of (f , f , λ ) on (int) M, 5. the sup norm control of the PT structures of M in Step 3, 6. the change of frame formulas of Proposition 2.2.3, we infer, for k ≤ k large + 2, sup

2 + 1 2

 21 from the initialization of the outgoing PG frame of (ext) M on Σ * of Section 3.2.5, and the initialization of the outgoing PT frame of (ext) M on Σ * of Section 9.1.3, that we have on Σ * f = a r(ν(r) + 2) -b * + 1 + 2m r 1 -1 4 b * a 2 (sin θ) 2 r O(r -2 ) f 0 . (9.4.28) 2. Next, as in Step 4 of the proof of Theorem M8 in Section 9.4.3, we control f using the above transport equation for f and the above initialization on Σ * . Based on the above control of the outgoing PG structure of (ext) M, we easily obtain sup (ext) M ru +δ dec + u 1+ 3δ dec 4 |d ≤k small f | 0 ,

(top) M (r≥r 0 ) ru 1 2u 1+ 3δ dec 4 |d

 14 +δ dec + u 1+ 3δ dec 4 |d ≤k small (f , f , log(λ ))| + sup (top) M (r≤r 0 ) u 1+ 3δ dec 4 |d ≤k small (f , f , log(λ ))| 0 . (9.4.30)4. Next, let (f , f , λ ) denote the transition coefficients corresponding to the change from the ingoing PG frame of (int) M to the ingoing PT frame of (int) M . As in Step 6 of the proof of Theorem M8 in Section 9.4.3, we control (f , f , λ ), now relying on the analog for ingoing PT structures of the transport equations of Corollary 2.8≤k small (f , f , log(λ )) 0 .(9.4.31)

Remark 9 . 4 . 14 .

 9414 2.4, d * denote weighted derivatives tangential to the hypersurface {u = u * }, and d / denote weighted derivatives tangential to the sphere Σ * ∩ {u = u * }. In view of (9.4.23), i.e.

r 5 |r 3 |( 9 . 5 . 1 )

 53951 (div β) =1 | + r 5 |(curl β) =1,± | + r 5 (curl β) =1,0 -(q ρ) =1 | + r 2 |(q κ) =1 | 0 .Steps 8'-16'. Next, as in Steps 8-16, C 1 denotes the portion of the past directed outgoing, geodesic, null cone initialized on the sphere S 1 = S 1 of Σ * and restricted to r ≥ δ * -1

Remark 9 . 5 . 3 .

 953 Recall thatStep 18 in the proof of Theorem M0 focuses on the control of ν(r ) and b * which are involved in the change from the frame of Σ * to the PG frame of (ext) M. Since the change between the frame of Σ * and the PT frame of (ext) M involves neither ν(r ) nor b * , we note that there is no need for Step 18'.

r 5 2

 5 +δ B d ≤k A L 2 (S ) 0 .(9.5.13)

(e 4

 4 , e 3 , e 1 , e 2 ) = ( (top) e 4 , (top) e 3 , (top) e 1 , (top) e 2 ), as well as r = (top) r, J (0) = cos( (top) θ), and J = (top) J, where ( (top) r, (top) θ, (top) J) is associated with the ingoing PT structure of (top) M . (b) In

(

  

2

 2 

Proposition 9 . 7 . 5 .

 975 The following estimates hold true for the integrable frame of Σ *(Σ * ) G k 0 + (Σ * ) R k , k ≤ k large + 7.(9.7.5)

∇ a (e 3

 3 (r)) = [e a , e 3 ]r = (ζ a -η a )e 3 (r) -ξ a e 4 (r) = (ζ a -η a )e 3 (r) -ξ a . Together with the estimate of Step 10 for ζ, of Step 13 for η and of Step 14 for ξ, the commutator Lemma 5.1.20, and a Poincaré inequality, we derive

∇ a (e 3

 3 (u)) = [e a , e 3 ]u = (ζ a -η a )e 3 (u) -ξ a e 4 (u) = (ζ a -η a )e 3 (u). Together with the estimate of Step 10 for ζ and of Step 13 for η, the commutator Lemma 5.1.20, and a Poincaré inequality, we derive

Step 18 .

 18 .7.21) and r -1 d / ≤2 ν k (e 3 (u)) -ν k (e 3 (u)) L 2 (Σ * ) 0 + (Σ * ) R k , k ≤ k large + 7. (9.7.22) Since u + r = c Σ * on Σ * , and since ν is tangent to Σ * , we have ν(r + u) = 0 and hence 0 = ν(u + r) = e 3 (u + r) + b * e 4 (u + r) = e 3 (u) + e 3 (r) + b * , so that b * = -e 3 (u) -e 3 (r). In view of the above estimates for e 3 (u) -e 3 (u) and e 3 (r)e 3 (r), we deduce

2 . 2 , 2 1 e 3

 2223 the definition of ν = e 4 + b * e 4 , and the GCM condition for tr χ on Σ * , to deduce e 3 (r) + b * = ν(r) = re 3 (u) (u) (tr χ + b * tr χ)

Finally, since ν(r) = e 3

 3 (r) + b * , and since ν(u + r) = 0 along Σ * , we infer, together with the control of b * in Step 19,

  d ≤k * D (r ) L 2 (Σ * ) + d ≤k fact that λ = 1, ∇(r ) = 0 and ∇(u ) = 0 on Σ * , we have on Σ * , e 4 (r ) = e 4 (r ) + 1 4 |f | 2 e 3 (r ), e 4 (u ) = e 4 (u ) + 1 4 |f | 2 e 3 (u ), e 4 (cos(θ )) = e 4 (cos(θ )) + f • ∇ cos(θ) + 1 4 |f | 2 e 3 (cos(θ )). Also, since we have e 4 (r ) = 1, e 4 (θ ) = 0, e 4 (u ) = 0 in (ext) M, since ν = e 3 + b * e 4 , and since ν(θ ) = 0 (since θ = θ on Σ * , ν(θ) = 0 and ν is tangent to Σ * ), we infer

e 4 (

 4 cos(θ )) = O(r -2 ) + O(r -1 ) D cos θ + O(r -4 ) q b * , and hence, denoting for convenience (Σ * ) Γ b and (Σ * ) Γ g of Definition 9.7.7 simply by Γ b and Γ g , we obtain e 4 (r ) = 1 + O

sup λ≥r 0 r=λ d ≤k Dr 2 1 2 0

 22 + G k + (ext) R k , k ≤ k large + 7.(9.8.12) 

  Corollary 9.8.3 with c = 1 and C = 1, (9.8.2), and the estimates of Steps 2, 3, 5 and 10 respectively for X, D(cos θ), Dr and D • J, we easily derive sup

  ab = g(D a e 3 , e b ) + g(D b e 3 , e a ) = χ ab + χ ba = tr χδ ab + 2 χ ab .

( 2 ≤

 2 int) Σ * |q| p |Φ| 2 |g(e 3 , N )| + A |q| p |Φ| 2 |g(e 3 , N )| + p (int) M * r -1 |q| p-2 |Φ| (int) M * r -1 |q| p+2 |F | 2 + T |q| p |Φ| 2 |g(e 3 , N )| + {u=1} |q| p |Φ| 2 |g(e 3 , N )| as stated.

9 . 22 )

 922 in(int) M where U is an anti-selfdual horizontal symmetric traceless 2-tensor, and H is a anti-selfdual horizontal 1-form. We prove the following non-integrable version of elliptic-Hodge estimates. where ∂ (int) M * = (int) Σ * ∪ A ∪ {u = 1} ∪ T and N the corresponding normal. In order to decompose the first boundary term on the RHS, i.e. N α D α U • U , we introduce the vectorfields 30 e b = e b + e b (r) -e b (u) e 4 (u) e 4 (r) e 3 -e b (u) e 4 (u) e 4 , b = 1, 2,

  and since (int) Σ * = {τ = τ * }, A = {r = r + -δ H }, T = {r = r 0 }, and since τ = u+f (r) for some scalar function f by construction, see the proof of Proposition 9.3.5, all parts of ∂ (int) M * are foliated by spheres S(u, r). In particular, we may integrate the term g(N, e b ) e b (U • U ) by parts on ∂ (int) M * and hence

Lemma 9 . 9 . 16 . 2 0 2 , k ≤ k large + 7

 9916227 The following estimates hold on T for the ingoing PT structure of (int) MT d ≤k (int) q Γ + (ext) G k + (int) R k

4 =

 4 (ext) M on T , see Section 9.1.3, we have u = u, r = r, θ = θ, J = J on T , and e λe 4 , e 3 = λ -1 e 3 , e a = e a , a = 1, 2, on T , where λ is given by λ = ∆ |q| 2 .

  sup r + -δ H ≤r≤r 0 S(u,r) |d k Φ| 2 S(u,r 0 ) |d k Φ| 2 + r 0 r + -δ H S(r,u)

r 0 r

 0 + -δ H S(u,r) |d k Φ| 2 S(u,r 0 ) |d k Φ| 2 + r 0 r + -δ H S(r,u)

( 2 + 2 + 0 + 2 ( 9

 22029 int) Σ * ∪A |d k Φ| 2 + (int) M * |d k Φ| 2 0 + (int) R k + (ext) G k (int) M * | q Γ k [Φ]| 2 .(9.9.39)Moreover, the remaining component X satisfies, for k ≤ k large + 7,(int) M * |d k X| 2 (int) M * | q Γ k [ X]| 2 + (int) Σ * ∪A | q Γ k [ X]| (int) R k + (ext) G k

( 2 +

 2 int) Σ * ∪A |d k Φ| 2 + (int) M * |d k Φ| 2 0 + (int) R k + (ext) G k

u 1 1 r 2 d 2 + sup u 1 1 d ≤k D cos θ 2 + d ≤k Dr 2 + sup u 1 1 r 4 d ≤k e 4 (cos θ) 2 + r 4 d ≤k ẽ4 (r) 2 + sup u 1 1 r 2 d

 1122112211422112 ≥u * (top) Mr 0 ,u ≤k (Ξ, q ω, X, } trX, q Z, | H) 2 + r 2-δ B |d ≤k } trX| + d ≤k X ≥u * (top) Mr 0 ,u ≥u * (top) Mr 0 ,u ≥u * (top) Mr 0 ,u ≤k D ⊗J| 2 + d ≤k D • J 2 + r 6 d ≤k } ∇ 4 J 2 ,

(| 2 + sup u 1 1 r 2

 2112 top) M r 0 ,u 1 := (top) M(r ≥ r 0 ) ∩ {u 1 ≤ u ≤ u 1 + 1}.For the curvature norms in (top) M, we rely in particular on the scalar function τ introduced in Section 9.3.4 and define(top) R 2 k := (top) M(r≥r 0 ) r 3+δ B |d ≤k (A, B)| 2 + r 3-δ B |d ≤k q P ≥u * (top) Mr 0 ,u |d ≤k B| 2 + |d ≤k A| 2 + sup τ (top) M(r≤r 0 )∩Σ(τ )

2 w 2 wProposition 9 . 10 . 1 .

 229101 ,k := r 3+δ B |d ≤k * (A, B)| 2 + r 3-δ B |d ≤k * q P | 2 + r 1-δ B |d ≤k * B| 2 , q Γ ,k := r 2 | d / ≤k Γ g | 2 + | d / ≤k Γ b | 2 .(9.10.2)In (9.10.2), (A, B, q P , B) denote linearized curvature components w.r.t. the the outgoing PT frame of (ext) M, Γ g and Γ b are defined w.r.t. the outgoing PT frame of (ext) M as in Definition 9.2.4, d * denote weighted derivatives tangential to the hypersurface {u = u * }, and d / denote weighted derivatives tangential to the sphere Σ * ∩ {u = u * }.The goal of Section 9.10 is to provide the proof of Proof of Proposition 9.4.19. For convenience, we restate the result below. Relative to the ingoing PT frame of (top) M, we have (top) G k 0 + L * (k) + (top) R k , k ≤ k large + 7. (9.10.3)

(top) G ≥r 0 k 0 +

 0 L * (k) + (top) R k , k ≤ k large + 7,(9.10.4) 

7 )

 7 (top) M (top) G k ≤ , k ≤ k large + 7. (9.10.5) 9.10.2 Control on the hypersurface {u = u * } Our goal in this section is to control the linearized Ricci and metric coefficients of the ingoing PT frame of (top) M on {u = u * }. We start with the following transport lemma along the hypersurface {u = u * } of (ext) M. Lemma 9.10.2. Let U and F anti-selfdual k-tensors on {u = u * }. Assume that U verifies one of the following equations, for a real constant c, In both cases we derive, for any r 0 ≤ r ≤ r * = r * (u * ) r c-1 d ≤k U L 2 (S(u * ,r)) r c-1 * d ≤k U L 2 (S(u * ,r * )) + r * r λ c-1 d ≤k F L 2 (S(u * ,λ)) dλ, (9.10.8) where d denotes weighted derivatives tangential to {u = u * }, i.e. d := r∇ 4 , r ∇ 1 -1 e 3 (u) e 1 (u)∇ 3 , r ∇ 2 -1 e 3 (u) e 2 (u)∇ 3 .

Proposition 9 . 10 . 3 . 2 L 2 2 L 2 (S) 2 0 + L 2 *

 9103222222 Along the hypersurface {u = u * }, the outgoing PT frame of (ext) M satisfies the following estimates, for k ≤ k large + 7, supS⊂{u=u * } r 2 d ≤k (Γ g \ { } trX}) 2 L 2 (S) + r 2-δ B d ≤k } trX (S)+ supS⊂{u=u * } d ≤k (Γ b \ {Ξ}) 2 L 2 (S) + r -δ B d ≤k Ξ (k)(9.10.9) 

Proposition 9 . 10 . 4 . 2 L 2

 910422 Along the hypersurface {u = u * }, the ingoing PT frame of (top) M satisfies the following estimates, for k ≤ k large + 7, supS⊂{u=u * } r 2 d ≤k (Γ g \ { } trX}) 2 L 2 (S) + r 2-δ B d ≤k } trX

0 r2 + a 2 4 =

 024 (ext) M on {u = u * }, see Section 9.1.3, we haveu = u + 2 r r r2 -2mr + a 2 dr, r = r, θ = θ, J = J on {u = u * },and e λe 4 , e 3 = λ -1 e 3 , e a = e a , a = 1, 2, on {u = u * }, where λ is given by λ = ∆ |q| 2 .

X 1 = e 1 - e 1 3 , X 4 = e 4 . 4 (

 1113444 (u) e 3 (u) e 3 , X 2 = e 2 -e 2 (u) e 3 (u) eAlso, note that we have∇(u) = a (J) + Γ b , e 3 (u) = 2(r 2 + a 2 ) |q| 2 + r Γ b ,where we have introduced the following notation 33Γ b := Γ b \ {Ξ}, Γ g := Γ g \ { } trX}.We inferX b = e b + -a|q| 2 2(r 2 + a 2 ) ( (J)) b + Γ b e 3 , b = 1, 2, X 4 = e 4 ,as well asX b = e b + -a|q| 2 2(r 2 + a 2 ) ( (J)) b + Γ b λe 3 , b = 1, 2, X 4 = λ -1 e 4 .We inferχ ba + 2 -a|q| 2 (r 2 + a 2 ) ( (J)) b + Γ b λη a = λχ ba + 2 -a|q| 2 2(r 2 + a 2 ) ( (J)) b + Γ b λη a , χ ba + 2 -a|q| 2 2(r 2 + a 2 ) ( (J)) b + Γ b λξ a = λ -1 χ ba + 2 -a|q| 2 2(r 2 + a 2 ) ( (J)) b + Γ b λ -1 ξ a , ζ b -2 -a|q| 2 (r 2 + a 2 ) ( (J)) b + Γ b λω = -e b + -a|q| 2 2(r 2 + a 2 ) ((J)) b + Γ b e 3 log λ +ζ b -2 -a|q| 2 (r 2 + a 2 ) ( (J)) b + Γ b λω, log λ) + ω.

r 2 d 2 L 2 r 2 d ≤k Γ g 2 L 2 ( 2 L 2 d ≤k X 2 L 2 (S) 2 0 + L 2 * 2 r r 0 r2 + a 2 2 L 2 2 L 2 2 * 1 . 1 r 2 L 2 1 r

 222222222222022222211221 (top) M and (ext) M,we infer on {u = u * } } trX , X , q Z = Γ g , } trX = λ } trX + O(r -1 )Ξ, X = Γ b , ≤k (Ξ , ω , } trX , X , q Z , | H ) 2 L 2 (S) + r 2-δ B d ≤k } trX S) + r 2-δ B d ≤k } trX 2 L 2 (S) + d ≤k Γ b + L 2 (S) r -δ B d ≤k Ξ 2 L 2 (S) .Together with Proposition 9.10.3 on the control of the PT structure of (ext) M on {u = u * }, we infer, for k ≤ k large + 7, supS⊂{u=u * } r 2 d ≤k (Ξ , ω , } trX , X , q Z , | H ) 2 L 2 (S) + r 2-δ B d ≤k } trX (k)where the constant in the definition of is independent of r 0 .Concerning the linearized metric coefficients, we consideru = u + r2 -2mr + a 2 dr, r = r, θ = θ, J = J on {u = u * },and apply to both sides of these identities the tangential vectorfields X to {u = u * } as above. Then, proceeding similarly to the linearized Ricci coefficients34 , we obtain on {u = u * } relations between the linearized metric coefficients on(top) M and (ext) M, which then, together with the above control for linearized Ricci coefficients, yields supS⊂{u=u * } r 2 d ≤k (Γ g \ { } trX }) 2 L 2 (S) + r 2-δ B d ≤k } trX in the definition of is independent of r 0 .Then, relying on the transport equations along e 3 of the ingoing PT structure of (top) M, and on the fact that e 3 is transversal to {u = u * } so that d is spanned by ∇ 3 and d, we infer, for k ≤ k large + 7, supS⊂{u=u * } r 2 d ≤k (Γ g \ { } trX}) 2 L 2 (S) + r 2-δ B d ≤k } trX (k)where the constant in the definition of is independent of r 0 . This concludes the proof of Proposition 9.10.4.9.10.3 Proof of Proposition 9.10.1We are now in position to prove Proposition 9.10.1 on the control of the ingoing PT structure of (top) M.Propagation lemmasNote that (top) M has by construction the following boundaries∂ (top) M = {u = u * } ∪ {u = u * } ∪ (top) Σ ∪ (A ∩ {u ≥ u * }). (9.10.11) Also, recall from the construction of the scalar function τ in Proposition 9.3.5 that the following properties hold on (top) M: The future boundary (top) Σ of M is given by (top) Σ = {τ = u * } (9.10.12) and τ ≤ u * on M. We infer the following corollary. Corollary 9.10.7. Let U and F anti-selfdual k-tensors. Assume that U verifies (9.10.15) or (9.10.16). In both cases we derive the following: 1. In (top) M(r ≥ r 0 ), we have, for any c , sup u 1 ≥u * (top) Mr 0 ,u 2c |d ≤k U | 2 sup S⊂{u=u * } r 2c d ≤k U (S) + sup u 1 ≥u * (top) Mr 0 ,u 2c |d ≤k F | 2 , (9.10.18)

  (top) M(r ≤ r 0 ), we have, for any c ,

( 2 + sup u 1 1 r

 211 top) M(r≤r 0 ) d ≤k U | 2 sup S⊂{u=u * } r 2c d ≤k U 2 L 2 (S) + sup τ (top) M(r≤r 0 )∩Σ(τ ) d ≤k F | ≥u * (top) Mr 0 ,u 2c |d ≤k F | 2 . (9.10.19)Proof. We start with the estimate for U in (top) M(r ≥ r 0 ). In view of Proposition 9.10.6 with the choice r 1 = r + (u), we have, for any r -(u) ≤ r ≤ r + (u),r c U 2,k (u, r) (r + (u)) c U 2,k (u, r + (u)) + r + (u) r λ c F 2,k (u, λ)dλ.Squaring, using Cauchy-Schwarz and the bound (9.10.13), as well as r ≥ max(r 0 , r -(u)), we inferr 2c U 2 2,k (u, r) (r + (u)) 2c U 2 2,k (u, r + (u)) + r + (u) max(r 0 ,r -(u)) λ 2c F 2 2,k (u, λ)dλ.Since S(u, r + (u)) ⊂ {u = u * } by the definition of r + (u), we deducer 2c U 2 2,k (u, r) sup S⊂{u=u * } r 2c d ≤k U 2 L 2 (S) + r + (u) max(r 0 ,r -(u))λ 2c F 2 2,k (u, λ)dλ.

r 2 L 2 1 r 2 L 2 u 1 1 r

 2212211 + (u) max(r 0 ,r -(u))r 2c U 2 2,k (u, r)dr sup S⊂{u=u * } r 2c d ≤k U (S) + r + (u) max(r 0 ,r -(u)) r 2c F 2 2,k (u, r)dr.Integrating in u on (u 1 , u 1 + 1), we infer, in view of the definition of (top) M r 0 ,u 1 ,(top) Mr 0 ,u 1 r 2c |d ≤k U | 2 sup S⊂{u=u * } r 2c d ≤k U 2 L 2 (S) + (top) Mr 0 ,u 1 r 2c |d ≤k F | 2 .Taking the supremum in u 1 ≥ u * , we deduce supu 1 ≥u * (top) Mr 0 ,u 2c |d ≤k U | 2 sup S⊂{u=u * } r 2c d ≤k U ≥u * (top) Mr 0 ,u 2c |d ≤k F | 2 ,

{u 1 ≤u≤u 1

 1 +1} r 2c |d ≤k U | 2 sup S⊂{u=u * } r 2c d ≤k U 2 L 2 (S) + {u 1 ≤u≤u 1 +1} r 2c |d ≤k F | 2 .Now, recall that u ≥ u * on (top) M. Also, τ ≤ u * on(top) M and τ = u * + f (r) for an explicit smooth function f , see the proof of Proposition 9.3.5. Thus, we have u ≤ u * -f (r) and hence max(top) M(r≤r 0 ) u ≤ u * + max r + -δ H ≤r≤r 0 f (r).Since u * ≥ u * -5 by definition, we infer max(top) M(r≤r 0 ) u -u * ≤ u * -u * + max r + -δ H ≤r≤r 0 f (r) ≤ 5 + max r + -δ H ≤r≤r 0 f (r).Thus, introducing the notation u max := max (top) M(r≤r 0 ) u, we have u max -u * ≤ 5 + max r + -δ H ≤r≤r 0 f (r) 1.

( 1 r 1 r 2 + sup u 1 1 r 2 f a e 3 = 2 f a e 3 , e b + 1 2 f b e 3 + 1 2 f a g D λ -1 e 4 e a + 1 2 f a e 3 , e 3 = 2 f a λ -1 e 4 , e b - 1 2 f b λ -1 e 4 - 1 2 f b g D λ -1 e 4 e 3 , e a + 1 2 f a e 3 = 2 f a e 3 =∇ λ -1 e 4 f + 1 2 ( 2 η 4 ), λe 3 = 4 |f | 2 λ -1 e 4 = 4 ), e 3 = 2 |f | 2 ω - 1 4 tr χ|f | 2 + 2 (

 1121123233324413323224342443222 top) M(r≤r 0 ) r 2c |d ≤k U | 2 sup u * ≤u≤u max {u 1 ≤u≤u 1 +1} r 2c |d ≤k U | 2 and sup u * ≤u≤u max {u 1 ≤u≤u 1 +1} r 2c |d ≤k F | 2 (top) M(r≤r 0 )d ≤k F | 2 + sup u 1 ≥u * (top) Mr 0 ,u 2c |d ≤k F | 2 .Thus, coming back to the above estimate{u 1 ≤u≤u 1 +1} r 2c |d ≤k U | 2 sup S⊂{u=u * } r 2c d ≤k U 2 L 2 (S) + {u 1 ≤u≤u 1 +1} r 2c |d ≤k F | 2 ,and taking the supremum on u * ≤ u ≤ u max , we infer(top) M(r≤r 0 ) d ≤k U | 2 sup S⊂{u=u * } r 2c d ≤k U 2 L 2 (S) + (top) M(r≤r 0 ) d ≤k F | 2 + sup u 1 ≥u * (top) Mr 0 ,u 2c |d ≤k F | 2 .Finally, since we have u * -2(m + 2) ≤ τ ≤ u * in (top) M(r ≤ r 0 ), see (9.10.14), we have(top) M(r≤r 0 ) d ≤k F | 2 ≤ 2(m + 2) sup τ (top) M(r≤r 0 )∩Σ(τ ) d ≤k F | 2and hence(top) M(r≤r 0 ) d ≤k U | 2 sup S⊂{u=u * } r 2c d ≤k U 2 L 2 (S) + sup τ (top) M(r≤r 0 )∩Σ(τ ) d ≤k F | ≥u * (top) Mr 0 ,u 2c |d ≤k F | 2as stated. This concludes the proof of Corollary 9.10.7.g D λ -1 e 4 e b , e a + 1 -g D λ -1 e 4 e a + 1 2 f a e 3 , e b = -g D λ -1 e 4 e a + 1 -g D λ -1 e 4 e a -1 -g D λ -1 e 4 e a , e b + f a ξ b -f b ξ a -1 2 f b g D λ -1 e 4 e 3 , e a = -g D λ -1 e 4 e a , e b -η a f b -1 2 f b f c χ ca -1 4 |f | 2 f b ξ a = -g D λ -1 e 4 e a , e b -η a f b + O(f 2 Γ),andg D λ -1 e 4 e 3 , e a + 1 2η a + O(f Γ).Plugging in the above, we infer0 = 2ξ + 2ωf + 1 2 (tr χf -(a) trχ * f ) + χ • f + (f • ζ)f + 1 2 |f | 2 η + ∇ λ -1 e 4 f -1 2 |f | 2 η + O(f 3 Γ) and hence tr χf -(a) trχ * f ) + 2ωf = -2ξ -f • χ + E 1 (f, Γ)whereE 1 (f, Γ) = -(f • ζ)f -+ O(f 3 Γ) as stated.Next, we derive the equation for λ. Assuming that ω = 0 and ξ = 0, we have 0 = 4ω = g D e 4 e 4 , e 3 = -2e 4 (log λ) + λg D λ -1 e 4 (λ -1 e -2e 4 (log λ) + λg D λ -1 e 4 (λ -1 e 4 ), e 3 + f a e a -1 -2e 4 (log λ)+ λg D λ -1 e 4 (λ -1 e 4 ), e 3 + 2λ -1 f a ξ a = -2e 4 (log λ) + λg D λ -1 e 4 (λ -1 e -2e 4 (log λ) + λg D λ -1 e 4 e 4 , e 3 + λf a g D λ -1 e 4 e a , e 3 . Next, we compute g D λ -1 e 4 e 4 , e 3 = 4ω + 2f • ζ -|f | 2 ω and g D λ -1 e 4 e a , e 3 = -2η a -f b χ ba + O(f 2 Γ).Plugging in the above, we infer 0 = -2λ -1 e 4 (log λ)+ 4ω + 2f • ζ -|f | 2 ω -2f • η -1 2 tr χ|f | 2 + O(f 3 Γ + f 2 χ)and henceλ -1 e 4 (log λ) = 2ω + f • (ζ -η) + E 2 (f, Γ)whereE 2 (f, Γ) = -1 O(f 3 Γ + f 2 χ)as stated.Finally, we derive the equation for f . Summing the transformation formula for ζ and η , and using η + ζ = 0, we have ∇ λ -1 e 4 f + 1 tr χf + (a) trχ * f ) = -2(η + ζ) + 2∇ (log λ) + 2ωf +2Err(η, η ) + 2Err(ζ, ζ ).

λ - 1

 1 e 4 (q) = e 4 + f • ∇ + 1 4 |f | 2 e 3 q = 1 + f • ∇ + 1 4 |f | 2 e 3 q, λ -1 e 4 (q) = e 4 + f • ∇ + 1 4 |f | 2 e 3 q = 1 + f • ∇ + 1 4 |f | 2 e 3 q.

Recall that, relative to the principal frame of Kerr tr χ = 2r |q| 2 = 2r r 2 + 2 -- 2a 2 r 3 1 - 2 (

 2212 a 2 (cos θ) 2mr + a 2 ) (r 2 + a 2 (cos θ) 2 ) 2 = -2Υ r cos θ) 2 + O 1 r 4 .

+ O 1 r 3 =gg 29 .r 3 1 + O 1 r 4 .of π 33 . 3 = -2e 3 ∆ |q| 2 -|q| 2 + 4 ∆= 4a 2 2a cos θ |q| 2 ( 4 =θ |q| 2 *|q| 4 2∆ |q| 2 aqJ |q| 2 c + a - 2r∆ |q| 4 (J) c - 2a∆ cos θ |q| 4 * 2 -a 2 i cos θJ |q| 2 c- 2a 2 θ |q| 2 -

 32914333322424242442222 θθ g ϕϕ -(g θϕ )2 = Σ sin θ. Now, in view of the definition of Σ, we haveΣ = (r 2 + a 2 ) 2 -a 2 (sin θ) 2 (r 2 -2mr + a 2 ) = r 2 1 + a 2 (2 -(sin θ) 2 ) r 2 r 2 1 + a 2 (1 + (cos θ) θθ g ϕϕ -(g θϕ ) 2 = r 2 sin θ 1 + a 2 (1 + (cos θ) θθ g ϕϕ -(g θϕ ) 2 dθdϕWe make use of the refined asymptotic calculation tr χ , tr χ in (A.3.1), i.e. -2(cos θ) 2 + 3a 2 (sin θ) 2 2r 3Calculation We have, using the fact that ω= q ω + 1 2 ∂ r ∆ |q| 2 , 2g(D 3 T, e 3 ) = g D 3 e 3 + ∆ |q| 2 e 4 -2a (J) b e b , e 4∆ |q| 2 ω + 4a (J) • ξ = -2∂ r ∆ |q| 2 e 3 (r) -2∂ cos θ ∆ |q| 2 e 3 (cos θ) -4∆ |q| 2 ω + 4a (J) • ξ = -2∂ r ∆ |q| 2 ẽ3 (r) -2∂ cos θ ∆ |q| 2 e 3 (cos θ) -4∆ |q| 2 q ω + 4a (J) • ξ = Γ b . Calculation of π 44 . 2g(D 4 T, e 4 ) = g D 4 e 3 + ∆ |q| 2 e 4 -2a (J) b e b , e 4 = -4ω + 4a (J) • ξ = 0.Calculation of π 34 . Making use ofω Γ b , H + H = a(q -q) |q| 2 J + ( q Hq Z), * J = -iJ,we deduce 2g(D 3 T, e 4 ) = g D 3 e 3 + ∆ |q| 2 e 4 -2a (J) b e b , e 4 = 4ω + 4a (J) • η, 2g(D 4 T, e 3 ) = g D 4 e 3 + ∆ |q| 2 e 4 -2a (J) b e b , e 3 = -2e |q| 2 + 4a (J) • η, and hence 2g(D 4 T, e 3 ) + 2g(D 3 T, e 4 ) = 4q ω + 4a (J) • (η + η)= 4q ω + 4a (J) • a(q -q) |q| 2 J + ( q Hq Z) J) • iJ + Γ b = -4a 2 2a cos θ |q| 2 (J) • * J + Γ b = Γ b .Calculation of π 4a . Next, usingξ = 0, ζ = aq |q| 2 + Γ g , trX = 2 q + Γ g , ∇ 4 J = -q -1 J, * J = -iJ, we deduce 2g(D 4 T, e c ) = g D 4 e 3 + ∆ |q| 2 e 4 -2a (J) b e b , e c = 2η c + 2∆ |q| 2 ξ c -2a∇ 4 (J) c = -2 aq |q| 2 J c + 2a q -1 J c + Γ g = Γ g , 2g(D c T, e 4 ) = g D c e 3 + ∆ |q| 2 e 4 -2a (J) b e b , e -2ζ c + 2a (J) b χ cb = -2ζ c + a (J) b tr χδ bc + (a) trχ ∈ bc + r -1 Γ g = -2 2aq |q| 2 J c + a tr χ (J) c + (a) trχ * (J) c + Γ g (J) c + Γ g = 2a 2 cos θ |q| 2 iJ + * J c + Γ g = Γ g .Thus both g(D 4 T, e c ) and g(D c T, e 4 ) are Γ g and so is (T) π c4 .Calculation of π 3a . Since∇ 3 J = ∆q |q| 4 J + } ∇ 3 J = ∆q |q| 4 J + r -1 Γ b and η = aq |q| 2 J + Γ b , 2g(D 3 T, e c ) = g D 3 e 3 + ∆ |q| 2 e 4 -2a (J) b e b , e c = 2∆ |q| 2 η c -2a∇ 3 (J) c + Γ b = 2∆ |q| 2 η c -J c + Γ b = Γ b . Also, since * J = -iJ, 2g(D c T, e 3 ) = g D c e 3 + ∆ |q| 2 e 4 -2a (J) b e b , e 3 = 2∆ |q| 2 ζ c + 2a (J) b χ cb = 2∆ |q| 2 ζ c + 2a (J) trχ + r -1 Γ b = 2∆ |q| 2 ζ c + a tr χ (J) c + (a) trχ * (J) c + r -1 Γ b = (J) c + r -1 Γ b = 2∆ |q| ∆ cos θ |q| 4 * (J) c + r -1 Γ b = -2a 2 ∆ cos θ |q| 4 iJ + * J c + r -1 Γ b = r -1 Γ b .Thus both g(D 3 T, e c ) and g(D c T, e 3 ) are Γ b and so is (T) π 3c .Calculation of π ab . We make us of the assumptions on r D • J, r D ⊗J ∈ r -1 Γ b to deduce 2g(D c T, e d ) = g D c e 3 + ∆ |q| 2 e 4 -2a (J) b e b , e d = χ cd + ∆ |q| 2 χ cd -2a∇ c (J) d trχ -2a∇ c (J) d + Γ b 2a∇ c (J d ) + Γ b = -4amr cos θ |q| 4 ∈ ab +Γ b . Hence 2g(D c T, e d ) + 2g(D d T, e c ) = -2a ∇ c (J d ) + ∇ d (J c ) + Γ b = -2a (∇ ⊗J) cd -2a ( div J)δ cd + Γ b = Γ b .

2 S 2 JSr 2 JS

 222 1 d / ≤1 (Γ b • Γ b )as stated. This concludes the proof of Lemma 5.1.25.B.4 Proof of Corollary 5.2.12Since ν(J (p) ) = 0, we have in view of Corollary 5.2.3 for any scalar function h on Σ * and anyS ⊂ Σ * ν S hJ (p) = S ν(h)J (p) -4 r S hJ (p) + r 3 Γ b ν(h) + r 2 Γ b h (B.4.1)where we also used J (p) = O(1), and where we recall that the notation O(r a ), for a ∈ R, denotes an explicit function of r which is bounded by r a as r → +∞.Next, recall from Lemma 5.1.25 that we have along Σ *∇ ν ∆q κ + 2Υ r div ζ = O(r -1 )∆q κ + 2∆div ξ + O(r -2 )∆q y + O(r -2 )div ζ +O(r -1 )div β + O(r -2 )div η + O(r -2 )div ξ +2 1 + O(r -1 ) ∆div ζ -2 1 + O(r -1 ) ∆q ρ +O(r -1 )div β + r -2 d / ≤2 (Γ b • Γ b ).Together with (B.4.1), and noticing that the terms O(r a ) only depend on r and are thus constant on S, we inferν S ∆q κ + 2Υ r div ζ J (p) = O(r -1 ) S ∆q κJ (p) + ∆div ξJ (p) + O(r -2 ) S ∆q yJ (p) + O(r -2 ) S div ζJ (p) +O(r -1 ) S div βJ (p) + O(r -2 ) S div ηJ (p) + O(r -2 ) S div ξJ (p) +2 1 + O(r -1 ) S ∆div ζJ (p) -2 1 + O(r -1 ) S ∆q ρJ (p) + O(r -1 ) S div βJ (p) + d / ≤2 (Γ b • Γ b ).Integrating by parts, we inferν S ∆q κ + 2Υ r div ζ J (p) = O(r -3 ) S q κJ (p) + O(r -2 ) S div ξJ (p) + O(r -2 ) S ∆q yJ (p) + O(r -2 ) S div ζJ (p) +O(r -1 ) S div βJ (p) + O(r -2 ) S div ηJ (p) + O(r -2 ) S q ρJ (p) + O(r -1 ) (p) d / ≤1 Γ b + d / ≤2 (Γ b • Γ b ).Also, in view of Lemma 5.1.12, we have∆q y = div (-ξ + ζ -η)y) = -div ξ + y(div ζ -div η) + (ζ -η) • ∇y,and hence, since y = -Υ + rΓ b ,∆q y = -div ξ -Υ(div ζ -div η) + d /(Γ b • Γ b ) ) + O(r -2 ) S div ξJ (p) + O(r -2 ) S div ζJ (p) + O(r -1 ) S div βJ (p) +O(r -2 ) S div ηJ (p) + O(r -2 ) S q ρJ (p) + O(r -1 ) S div βJ (p) +r ∆ + 2 r 2 J (p) d / ≤1 Γ b + d / ≤2 (Γ b • Γ b ).Together with the GCM conditions (div η) =1 = 0 and (div ξ) =1 = 0, we inferν S ∆q κ + 2Υ r div ζ J (p) = O(r -3 ) S q κJ (p) + O(r -2 ) S div ζJ (p) + O(r -1 ) S div βJ (p) + O(r -2 ) div βJ (p) + r ∆ + 2 r 2 J (p) d / ≤1 Γ b + d / ≤2 (Γ b • Γ b )as stated.Next, recall from Lemma 5.1.25 that we have along Σ *∇ ν div β = O(r -1 )div β + ∆ρ + (1 + O(r -1 ))div div α +O(r -3 )div η + r -2 d / ≤1 (Γ b • Γ g ).Together with (B.4.1), and noticing that the terms O(r a ) only depend on r and are thus constant on S, we inferν S div βJ (p) = O(r -1 ) S div βJ (p) + S ∆q ρJ (p) + (1 + O(r -1 )) S div div αJ (p) +O(r -3 ) S div ηJ (p) + d / ≤1 (Γ b • Γ g )Together with the GCM condition (div η) =1 = 0, we inferν S div βJ (p) = O(r -1 ) S div βJ (p) + S ∆q ρJ (p) + (1 + O(r -1 )) S div div αJ (p) + d / ≤1 (Γ b • Γ g ).Integrating by parts, we deduce the desired identity for divβ ν S div βJ (p) = O(r -1 ) S div βJ (p) + O(r -2 ) (p) + d * / 2 d * / 1 J (p) Γ g + d / ≤1 (Γ b • Γ g ),where by d * / 1 J (p) , we mean d * / 1 (J (p) , 0). Similarly, starting from ∇ ν curl β = 8 r (1 + O(r -1 ))curl β -∆ * ρ + (1 + O(r -1 ))curl div α +O(r -3 ) * ρ + r -2 d / ≤1 (Γ b • Γ g ), div ζJ (p) + r ∆ + 2 r 2 J (p) Γ b +r d / ≤1 (Γ b • Γ b )

e 4 = 2 , |d k- 1 ∇ 3 f | ru 1+ δ dec 2 . 4 = e 4 + f b e b + 1 4 |f | 2 e 3 , 2 1 C 1 = 2tr χ - 2 (χ 2 - 4 (a) trχ 2 + 3 2 (a) trχ 4 tr χ 2 + 4 (

 421244432112242424 λe 4 , e 3 = λ -1 e 3 , e a = e a , a = 1, 2, view of the construction of (e 1 , e 2 , e 3 , e 4 ) in Proposition 3.6.2, and in view of the definition of (f , f , λ ), we have f = 0, λ = 1, and e 4 = e 4 + f a e a + 1 4 |f | 2 e 3 , e a = e a + 1 2 f a e 3 , a = 1, 2, e 3 = e 3 , (B.5.2) where f satisfies on (ext) M, and hence in a neighborhood of Σ * , for any k ≤ k * , view of the initialization of the PG frame of (ext) M on Σ * , see Section 3.2.5, and in view of the definition of (f, f , λ), we have λ = 1, and e |f | 2 e 3 + f b + 1 4 |f | 2 f b e b + 1 4 |f | 2 e 4 , (B.5.4)where f and f are given respectively byf 1 = 0, f 2 = a sin θ r , on S * , ∇ ν (rf ) = 0 on Σ * ,(B.5.5)andf = -(ν(r) -b * ) 1 -1 4 b * |f | 2 f on Σ * . (B.5.6)Finally, recall that the quantity q is defined with respect to the frame (e 1 , e 2 , e 3 , e 4 ) as follows, see Section 3.6.1,q = qq 3 (∇ e 3 -2ω )(∇ e 3 -4ω )A + C 1 (∇ e 3 -4ω )A + C 2 A (B.5.7)where the scalar functions C 1 and C 2 are given by i -2tr χ (a) trχ +

3 1 2 D ⊗∇ e 3 B + 1 q ∇ e 3 A + 5 2 aq |q| 2 J 3 ∇ e 3 X 2 A 1 = 1

 22233211 ⊗∇ e 3 B + 6m q + d ≤1 Γ g + r 2 d ≤1 (Γ b • Γ g ).as stated. Also, we have(∇ ⊗f -) 11 = ∇ 1 (f -) 1 -∇ 2 (f -) 2 = e 1 ((f -) 1 ) -g(D 1 e 1 , e 2 )(f -) 2 -e 2 ((f -) 2 ) + g(D 2 e 2 , e 1 )(f -) re φ -sin θ sin ϕ + 1 sin θ ∂ ϕ (φ) cos ϕ + sin ϕ sin θ -cot θ + ∂ θ (φ) cos θ sin ϕ = (f -) 2 ∇ 2 φ -(f -) 1 ∇ 1 φ,and(∇ ⊗f -) 12 = ∇ 1 (f -) 2 + ∇ 2 (f -) 1 = e 1 ((f -) 2 ) -g(D 1 e 2 , e 1 )(f -) 1 + e 2 ((f -) 1 ) -g(D 2 e 1 , e 2 )(f -) 2 = 1 re φ -1 sin θ ∂ ϕ (φ) cos θ sin ϕ + cot θ cos ϕ -cot θ + ∂ θ (φ) cos ϕ

2a 2

 2 cos θ r|q| 3 f 0 • f 0 -2a 2 cos θ |q| 3 f 0 • * ∇J (0)

2a 2 cos θ sin θ sin ϕ r|q| 3 - 2a 2

 32 sin θ cos θ cos ϕ, f -• * f 0 = sin θ cos θ sin ϕ, 0 ) -2a 2 cos θ(sin θ) 2 r|q| 3 -2a 2 cos θ |q| 3 f 0 • * ∇J (0) , D • J + = 2 |q| div (f + ) + 2a 2 cos θ r|q| 3 sin θ cos θ cos ϕ -2a 2 cos θ |q| 3 f + • ∇J (0) cos θ |q| 3 f + • * ∇J (0) ,andD • J -= 2 |q| div (f -) + 2a 2 cos θ r|q| 3 sin θ cos θ sin ϕ -2a 2 cos θ |q| 3 f -• ∇J (0) +i 2 |q| curl (f -) -2a 2 cos θ sin θ cos ϕ r|q| 3 -2a 2 cos θ |q| 3 f -• * ∇J (0) .

1 q 2 D

 2 

e 4 (

 4 e 3 (r)) = -2ω, and hence, since e 4 (r) = 1, e 4 (θ) = 0,e 4 ẽ3 (r) = e 4 e 3 (r) + ∆ |q| 2 = -2ω + ∂ r ∆ |q| 2 = -2q ω.Also, we have from Proposition 6.1.10.

∇ 4 + 1 q

 41 Du Du = O(r -1 ) } trX + O(r -1 ) X + Γ b • Γ g .

e 4 (e 3

 43 (u)) = -(Z + H) • Du .

e 4

 4 -2 ) | Du +Γ b • Γ b .Now, using e 4 (r) = 1, e 4 (θ) = 0 and J • J = 2(sin θ) 2 |q| 2 , we have-e 4 2(r 2 + a 2 ) |q| 2 -a(q + q) |q| 2 J • aJ = -∂ r 2(r 2 + a 2 ) ẽ3 (u) = O(r -1 ) q H + O(r -1 ) q Z + O(r -2 ) | Du + Γ b • Γ b .

e 4 (e 3 (

 43 cos θ)) = -(Z + H) • D cos θ

2 . 1 , we have e a = e a + 1 2 f a λ -1 e 4 + 1 2 f a e 3 . 1 2 f b λ -1 χ ac + 1 2 f b g D e a e 3 , δ d c + 1 2 f c f d e d + 1 2 f c e 4 = - 1 2 e 1 2 f a f d )ed+ 1 2 f a e 4 +( 1 2 fa+ 1 8 1 2 f a f d )ed+ 1 2 f a e 4 +( 1 2 fa+ 1 8 2 f b λ -1 χ ac + 1 2 f b g D (δ p a + 1 2 f a f p )ep+ 1 2 f a e 4 +( 1 2 fa+ 1 8 1 2 f c f d e d + 1 2 f c e 4 . 2 f 2 f c f b e a (log λ) - 1 2 f 2 f c g D (δ d a + 1 2 f a f d )ed+ 1 2 f a e 4 +( 1 2 fa+ 1 8f a f p χ pd + f a η d + f a + 1 4 |f | 2 f a ξ d + 1 4 f b f c -2 δ p a + 1 2 f 2 f

 2131421111112111142222111422 We compute g(D e a e b , e c ) = g D e a e b + 1 2 f b λ -1 e 4 + 1 2 f b e 3 , e c = 1 2 e a (f b )g(e 3 , e c ) + g(D e a e b , e c ) + 1 2 f b λ -1 g(D e a e 4 , e c ) + 1 2 f b g(D e a e 3 , e c ) = -1 2 e a (f b )f c + g(D e a e b , e c ) + 1 2 f c λ -1 g(D e a e b , e 4 ) + 1 2 f c g(D e a e b , e 3 ) + a (f b )f c + g D (δ d a + |f | 2 f a )e3 e b , e c + 1 2 f c λ -1 e a (g(e b , e 4 )) -1 2 f c λ -1 g(e b , D e a e 4 ) |f | 2 f a )e3 e b , e 3 + 1 |f | 2 f a )e3 e 3 , δ d c + We further deduce g(D e a e b , e c ) d g (D e d e b , e c ) + 1 2 f a g (D e 4 e b , e c ) a g (D e 3 e b , e c ) + 1 c λ -1 g e b , χ ad e d -ζ a e 4 -1 |f | 2 f a )e3 e 3 , e b a f p ζ p -2ωf a + ω 2f a + 1 2 |f | 2 f a and hence g(D e a e b , e c ) d g (D e d e b , e c ) + 1 2 f a g (D e 4 e b , e c ) a g (D e 3 e b , e c ) + 1 2 f c f b e a (log λ) -1 2

g(D e a e b , e c ) = δ d a + 1 2 f 2 f 2 f c λ -1 χ ab + 1 2 f b λ -1 χ ac + 1 2 ζ a f c f b - 1 4 f c λ -1 χ ad f b f d - 1 2 f c χ ab + 1 2 f

 2222 a f d g (D e d e b , e c ) + 1 2 f a g (D e 4 e b , e c ) a g (D e 3 e b , e c ) + 1 2 f c f b e a (log λ) -1 b χ ac + Err[g(D e a e b , e c )], with Err[g(D e a e b , e c )]

Lemma C. 4 . 1 .

 41 For all J = J (p) , we have∇ 4 (D ⊗DJ) + 2 q D ⊗DJ = r -2 d ≤1 Γ g and ∇ 4 (D • DJ) + 2 r D • DJ = O(r -5 ) + r -2 d ≤1 Γ g .

6 . 1 . 2 |q| 2 J|q| 2 J(ext) M r 3 u 1 2 2 D 2 . 2

 612221222 [START_REF] Chen | Quasilocal angular momentum and center of mass in general relativity[END_REF] to deduce∇ 4 (D ⊗DJ) = [∇ 4 , D ⊗]DJ + D ⊗[∇ 4 , D]J = -1 2 trX D ⊗DJ -Z ⊗DJ + r -1 Γ g • d ≤1 DJ +D ⊗ -1 2 trXDJ + r -1 Γ g • d /J = -trXD ⊗DJ -1 DtrX -trXZ ⊗DJ + r -2 d ≤1 Γ g ⊗DJ + r -2 d ≤1 Γ g ⊗DJ + r -2 d ≤1 Γ g = -2 q D ⊗DJ + ia q 2 D(cos θ) -iJ ⊗DJ + r -2 d ≤1 Γ g = -2 q D ⊗DJ + O(r -3 ) D(cos θ) + r -2 d ≤1 Γ g = -2 q D ⊗DJ + r -2 d ≤1 Γ g and hence ∇ 4 (D ⊗DJ) + 2 q D ⊗DJ = r -2 d ≤1 Γ gwhich is the first identity.Similarly, to prove the second identity, we use e 4 (J) = 0 and the commutation Lemma Integrating from Σ * , and together with the control on Σ * of Lemma 5.6.13, we infer sup +δ dec |D ⊗DJ| as desired.Also, recall that we have∇ 4 (D • DJ) + 2 r D • DJ = O(r -5 ) + r -2 d ≤1 Γ g so that ∇ 4 (r 2 D • DJ + 4) = O(r -3 ) + d ≤1 Γ g .Integrating from Σ * , we infer on (ext) M r have, for a scalar function hD • Dh = 2∆h + 2i ∈ ab ∇ a ∇ b h = 2∆h + i ∈ ab D a D b + χ ab e 3 + χ ab e 4 h = 2∆h + i (a) trχe 3 (h) + (a) trχe 4 (h) .Using this formula with h = J (p) , and since e 4 (J (p) ) = 0, e 3 (J (p) ) = O(r -2 ) + Γ b and (a) trχ = O(r -2 ) + Γ g , we inferD • DJ = 2∆J + O(r -2 ) + Γ g O(r -2 ) + Γ b = 2∆J + O(r -4 ) + r -2 Γ b .Plugging in the above, and using the control of Γ b , we infer r Together with the control on Σ * of Lemma 5.6.13, we deduce r

2 . 10 .

 210 Recall from Corollary 6.2.5 that we have∇ = 1 + O(r -2 ) ∇ + O(r -1 )L / T + O(r -1 )∇ 4 + O(r -3 ) + r -1 Γ b .We infer∇ ⊗∇ = ∇ ⊗∇ + O(r -4 ) d / ≤2 + O(r -2 )d ≤1 L / T + O(r -2 )d ≤1 ∇ 4 + O(r -4 ) + r -2 d ≤1 Γ b , ∆ = ∆ + O(r -4 ) d / ≤2 + O(r -2 )d ≤1 L / T + O(r -2 )d ≤1 ∇ 4 + O(r -4 ) + r -2 d ≤1 Γ b .Since ∇ 4 J = 0 and T(J) = Γ b , see Lemma 6.1.19, we deduce∇ ⊗∇ J = ∇ ⊗∇J + O(r -4 ) + r -2 d ≤1 Γ b , ∆ J = ∆J + O(r -4 ) + r -2 d ≤1 Γ b .Together with the above estimate for ∇ ⊗∇J and ∆J, and in view of the control of Γ b , we infer|D ⊗D J| + |r 2 ∆ J + 2| r

∇ 4 [ 2 D • A - a 4 J

 424 +O(r -3 )B + O(r -3 ) q P + O(r -4 ) } trX + Γ g • (B, A) + r -2 Γ g • Γ g .Also, we havea (J) b ∇ b [B] ren = a (J) b ∇ b B -3a 2 2 (J) b ∇ b ( q P J) + O(r -3 ) d / ≤1 A and hence ∇ 4 -a (J) b ∇ b [B] B)J -a (J) b ∇ b B + 1 • ∇ 4 A -a 4q J • A +O(r -3 )B + O(r -3 ) d / ≤1 q P + O(r -3 ) d / ≤1 A + O(r -4 ) } trX + Γ g • (B, A) + r -2 Γ g • Γ g

2 . 1 )

 21 , the horizontal 1-forms f and f satisfyf = -1 + O(r -1 ) + rΓ b ∇u, f = -1 + O(r -1 ) + rΓ b ∇uand henceF = -1 + O(r -1 ) + rΓ b Du = -aJ + O(r -2 ) + Γ b , F = -1 + O(r -1 ) + rΓ b Du = -aJ + O(r -2 ) + Γ b .

∇ 4 -

 4 a (J) b ∇ b [B] red + B)J -a (J) b ∇ b B + a 8 J • D ⊗B -4ia cos θ r 2 B +O(r -4 ) X + O(r -3 )B + O(r -3 )d ≤1 q P + O(r -4 ) } trX +O(r -2 )∇ 3 A + O(r -3 )d ≤1 A + Γ g • (B, A) + Γ b • ∇ 3 A + r -2 Γ g • Γ g .Proof. Plugging the identity of Lemma C.6.2 in the identity of Lemma C.6.1, we obtain

∇ 4 - 8 J

 48 a (J) b ∇ b [B] red + B)J -a (J) b ∇ b B + a • D ⊗B +O(r -4 ) X + O(r -3 )B + O(r -3 ) d / ≤1 q P + O(r -4 ) } trX +O(r -2 )∇ 3 A + O(r -3 )d ≤1 A + Γ g • (B, A) + Γ b • ∇ 3 A + r -2 Γ g • Γ g .

|q| 4 ∈= 2 (r 2 + a 2 ) cos θ |q| 4 ∈- 2 (r 2 + a 2 ) cos θ |q| 4 ∈B b - 4 (r 2 + a 2 ) cos θ |q| 4 *

 4224224424 ab +r -1 Γ b and henceD a J b = (∇ a -i ∈ ac ∇ c )( (J) b + i ∈ bd (J) d ) = ∇ a (J) b + ∈ ac ∈ bd ∇ c (J) d + i ∈ bd ∇ a (J) d -∈ ac ∇ c (J) b = (r 2 + a 2 ) cos θ |q| 4 ∈ ab + ∈ ac ∈ bd ∈ cd +i ∈ bd ∈ ad -∈ ac ∈ cb + r -1 Γ b ab +iδ ab + r -1 Γ b .We infer(D • J)B b + δ cd D c J b B d -D b J • B b = 4i(r 2 + a 2 ) cos θ |q| 4 B b + δ cd 2(r 2 + a 2 ) cos θ |q| 4 ∈ cb +iδ cb B d -2(r 2 + a 2 ) cos θ |q| 4 ∈ bc +iδ bc B c + r -1 Γ b • B = 4i(r 2 + a 2 ) cos θ |q| 4 B b + 2(r 2 + a 2 ) cos θ |q| 4 ∈ db +iδ db B d bc +iδ bc B c + r -1 Γ b • B = 4i(r 2 + a 2 ) cos θ |q| 4 B b + r -1 Γ b • Band hence, since * B = -iB, we obtain(D • J)B b + δ cd D c J b B d -D b J • B b = 8i(r 2 + a 2 ) cos θ |q| 4 B b + r -1 Γ b • B Since (J) = * (J), we obtain -(D ⊗B)) b + δ cd J d D c B b -J • D b B b=1 = (J) 1 -i (J) 2 ∇ 1 β 1 -∇ 2 β 2 + i(∇ 1 β 2 + ∇ 2 β 1 )

∇ 4 -

 4 a (J) b ∇ b r 4 [B] red = r 4 2 D • A -a(J ⊗B) + O(1) X + O(r)d ≤1 B + O(r 2 )∇ 3 B + O(r) d / ≤1 q P + O(1) } trX +O(r 2 )∇ 3 A + O(r)d ≤1 A + r 4 Γ g • (B, A) + r 4 Γ b • ∇ 3 A + r 2 d ≤1 (Γ g • Γ g ).

∇ 4 -cos θ r 2 ∈= - cos θ r 2 - 2 E 1 E abcd = - 2 r 2 δ

 422212 a (J) b ∇ b , r[D] red U = -ia cos θ r D • U -a r J • U -ar[ (J) b ∇ b , D•]U + O(r -3 )d ≤1 U + O(r -2 )∇ 3 U + Γ g • d ≤1 U.Next, we compute[ (J) b ∇ b , D•]U = -D a (J) b ∇ b U a + (J) b [∇ b , D a ]U a .Recall that we have∇ a (J) b = (r 2 + a 2 ) cos θ |q| 4 ∈ ab +r -1 Γ band henceD a (J) b = (∇ a -i ∈ ac ∇ c ) (J) b = (r 2 + a 2 ) cos θ |q| 4 ∈ ab -i ∈ ac ∈ cb + r -1 Γ b = (r 2 + a 2 ) cos θ |q| 4 ∈ ab +iδ ab + r -1 Γ b = ab +iδ ab + O(r -4 ) + r -1 Γ b .We infer-D a (J) b ∇ b U a = -cos θ r 2 ∈ ab +iδ ab ∇ b U a + O(r -5 ) d /U + r -2 Γ b d /U curl (U ) + idiv (U ) + O(r -5 ) d /U + r -2 Γ b d /U = -i cos θ r 2 D • U + O(r -5 ) d /U + r -2 Γ b d /U.Also, we have, see Proposition 2.1.41 in[START_REF] Giorgi | Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes[END_REF],[∇ b , ∇ a ]U c = 1 2 ∈ ba (a) trχ∇ 3 + (a) trχ∇ 4 U c -1 cdba U d -∈ cd ∈ ba ρU dwhere E abcd := χ ac χ bd + χ ac χ bd -χ bc χ ad -χ bc χ ad .Sinceχ ab = 1 r δ ab + O(r -2 ) + Γ g , χ ab = -1 r δ ab + O(r -2 ) + χ ab , we have ac δ bd -δ bc δ ad + O(r -3 ) + r -1 Γ g and hence [∇ b , ∇ a ]U c = 1 r 2 δ cb δ da -δ db δ ca U d +O(r -3 )d ≤1 U + O(r -2 )∇ 3 U + r -1 Γ g d ≤1 U + Γ g ∇ 3 U.

  -ar[ (J) b ∇ b , D•]U = -ia cos θ r D • U -a r J • U -ar -i cos θ r 2 D • U -1 r 2 J • U +O(r -3 )d ≤1 U + O(r -2 )∇ 3 U + r -1 Γ b d ≤1 U + Γ g ∇ 3 U = O(r -3 )d ≤1 U + O(r -2 )∇ 3 U + r -1 Γ b d ≤1 U + Γ g ∇ 3 U. Coming back to ∇ 4 -a (J) b ∇ b , r[D] red U = -ia cos θ r D • U -a r J • U -ar[ (J) b ∇ b , D•]U +O(r -3 )d ≤1 U + O(r -2 )∇ 3 U + Γ g • d ≤1 U, we infer ∇ 4 -a (J) b ∇ b , r[D] red U = O(r -3 )d ≤1 U + O(r -2 )∇ 3 U + Γ g • d ≤1 U

∇ 4 -

 4 a (J) b ∇ b r 4 [B] red = r 4 2 D • A -a(J ⊗B) + O(1) X + O(r)d ≤1 B + O(r 2 )∇ 3 B + O(r) d / ≤1 q P + O(1) } trX +O(r 2 )∇ 3 A + O(r)d ≤1 A + r 4 Γ g • (B, A) + r 4 Γ b • ∇ 3 A + r 2 d ≤1 (Γ g • Γ g ).According to Lemma C.6.6 we have, withU = A -a(J ⊗B), ∇ 4 -a (J) b ∇ b , r[D] ren U = O(r -3 )d ≤1 U + O(r -2 )∇ 3 U + Γ g • d ≤1 U.We deduce∇ 4 -a (J) b ∇ b r[D•] ren r 4 [B] ren = r[D] ren r 4 2 D • A -a(J ⊗B) +O(1)d ≤1 X + O(r)d ≤2 B + O(r 2 )d ≤1 ∇ 3 B + O(r)d ≤2 q P + O(1)d ≤1 } trX +O(r 2 )d ≤1 ∇ 3 A + O(r)d ≤2 A + r 4 d ≤1 Γ g • (B, A) + r 3 d ≤1 Γ b ∇ 3 B +r 4 d ≤1 Γ b • ∇ 3 A + r 2 d ≤1 Γ g • Γ g . (C.6.8) Next we note that rD • = r[D] ren + O(r -2 )d ≤1 + O(r -1 )∇ 3 + r -1 Γ b d ≤1 + Γ b ∇ 3 .(C.6.9)

2 J • ∇ 4 - a 2 J 3 as

 223 6.7),rD • = r D • -a • ∇ 3 + O(r -2 )d ≤1 + O(r -1 )∇ 3 + r -1 Γ b d ≤1 + Γ b ∇ 3 = r[D] ren + O(r -2 )d ≤1 + O(r -1 )∇ 3 + r -1 Γ b d ≤1 + Γ b ∇ -a(J ⊗B) + O(r)d ≤2 A + O(r 2 )d ≤1 ∇ 3 A + r 2 Γ b d ≤1 A +r 3 Γ b d ≤1 ∇ 3 A + O(1)d ≤2 B + O(r)d ≤1 ∇ 3 B + rΓ b d ≤1 B + r 2 Γ b d ≤1 ∇ 3 B.

2 f a e 4 = 2 f a e 4 + 1 4 |f | 2 g D e 4 e 4 , e a + 1 2 f a e 4 =

 24241444 2η a = g(D e 4 e 3 , e a ) = g D e 4 e 3 + f b e b + 1 4 |f | 2 e 4 , e a + 1 g D e 4 e 3 , e a + 1 2 f a e 4 + e 4 (f a ) + f b g D e 4 e b , e a + 1 2η a-2ωf a + ∇ 4 f a -f b f a ξ b + 1 2 |f | 2 ξ aand since ξ = 0 and ω = 0, we infer∇ 4 f = 2(η -η).

2ζ a = g(D ea e 4 , e 3 ) = g D e a + 1 2 f a e 4 e 4 , e 3 + f b e b + 1 4 |f | 2 e 4 = g D e a e 4 , e 3 + f b e b + 1 2 f

 4344442 a g D e 4 e 4 , e 3 + f b e b = 2ζ a + f b χ ab + 2ω f a + (f • ξ )f a and since ξ = 0 and ω = 0, we infer ζ

e 4 =

 4 e 4 , f = -f , g(D e 4 e a , e b ) = g(D e 4 e a , e b ), we infer ∇ 4 f a = e 4 (f a ) -g(D e 4 e a , e b )f b = -e 4 (f a ) + g(D e 4 e a , e b )f b = -∇ 4 f a and hence

  3.5 in Kerr, see Proposition D.3.5 below. The general case follows by obvious modifications and is left to the reader.

4 . 2 (r 2 + a 2 ) -m 2 r 2 ∆ |q| 2 , e 3 (τ ) = m 2 r 2 ,

 4222232 In M(r ≤ r 0 ), τ satisfies e 4 (τ ) = ∇(τ ) = a (J).(D.3.19) 

  We have, using the fact that τ = u + f (r), e 3 (u) = 0, e 3 (r) = -1, and ∇(r) = 0,g(Dτ, Dτ ) = -e 4 (τ )e 3 (τ ) + |∇(τ )| 2 = e 4 (u) + e 4 (r)f (r) f (r) + |∇(u)| 2 . Since e 4 (u) = 2(r 2 + a 2 ) |q| 2 , e 4 (r) = ∆ |q| 2 , |∇(u)| 2 = a 2 (sin θ) 2 |q| 2 ,we inferg(Dτ, Dτ ) = 2(r 2 + a 2 ) |q| 2 + ∆ |q| 2 f (r) f (r) + a 2 (sin θ) 2 |q| 2

Lemma D. 3 . 9 .

 39 Let, for r ≥ r + -δ H ,

f 1 (

 1 r) -f 2 (r) = -2 > 0.Also, since f 2 satisfies (D.3.11), we havef 2 (r * ) = -2

r 2 (r 2 + m 2 + (r 2 + m 2 ) 2 ) ≥ m 2 4r 2 and f 1 r 2 + r 2 + a 2 ∆ + √ r 4 + a 2 r 2 + 2a 2 mr ∆ = r 2 (r 2 + a 2 + √ r 4 + a 2 r 2 + 2a 2 mr) -m 2 ∆ r 2 ∆ = r 4 -= - 1 2 for r 0

 2222212242224224120 (r) -X -(r) = -m 2 (m 2 -a 2 )r 2 + 2m 3 r -a 2 m 2 + r 2 √ r 4 + a 2 r 2 + 2a 2 mr r 2 ∆ .We inferX + (r) -f 2 (r) =for r ≥ r 0 , P (f 2 (r)) = ∆(f 2 (r) -X -(r))(f 2 (r) -X + (r)) large enough compared to m.

= 1 |q| 2 ∆ 2 r * r 0 r 2 r 3

 22023 (f (r)) 2 + 2(r 2 + a 2 )f (r) + a 2 -a 2 (cos θ) 2 ≤ -m 2 + 4a 2 (cos θ) 2 4|q| 2as desired. Corollary D.3.11. The function f in Corollary D.3.10 satisfies (D.3.9) (D.3.10) (D.3.11).Proof. Since τ = u + f (r) verifies g(Dτ, Dτ ) < 0 in view of Corollary D.3.10, f satisfies (D.3.9). Also, since f (r) = f 1 (r) for r + -δ H ≤ r ≤ r 0 , and since f 1 (r + -δ H ) = 0, f satisfies (D.3.10). Finally, since f (r) = f 2 (r) for r ≥ r 0 + m, and sincef 2 (r * ) = -+ a 2 ∆(r) drby the choice of the constant c 0, * appearing in the definition of f 2 , f satisfies (D.3.11). This concludes the proof of the corollary.D.3.3 Proof of Proposition D.3.5Let τ be given by (D.3.8), i.e. τ = u + f (r). We choose f (r) as in Corollary D.3.10. In particular, f (r) satisfies (D.3.9) (D.3.10) (D.3.11) in view of Corollary D.3.11. Also, we have, in view of Corollary D.3.10, for all r ≥ r + -δ H , g(Dτ, Dτ ) ≤ -m 2 4|q| 2 < 0 so that the first property of Proposition D.3.5 is satisfied. Next, we consider the second property of Proposition D.3.5, i.e. the upper bound for r + (u) -r -(u). First, one easily sees that on each level set of u in (top) M (r ≥ r 0 ), the maximal value r + (u) of r corresponds to the value of r on {u = u * }, and that the minimal value r -(u) of r corresponds to the value of r on (top) Σ ∪ {r = r 0 }. Since r + (u) is the value on u = u * , and since we have for r ≥ r 0 1 2 (u -u) = r -r 0 + 2m log r dr , Next, we consider the third property of Proposition D.3.5, i.e. the lower bound for τ on (top) M (r ≤ r 0 ). Since τ = u + f (r), and since u ≥ u * ≥ u * -2 on (top) M , we infer on (top) M (r ≤ r 0 ) τ = u + f (r) ≥ u * + f (r) ≥ u * -2 + min r + -δ H ≤r≤r 0 f (r).

- m 2 r 2 ∆ |q| 2 , e 3

 223 (top) M (r ≤ r 0 ) τ ≥ u * -2 + f 1 (r 0 ) = u * -2 -m 2 r + -δ H + m 2r 0 and hence τ ≥ u * -2 -m so that the third property of Proposition D.3.5 is satisfied. Finally, we consider the last property of Proposition D.3.5. Since τ = u + f ((r), since f = f 1 in for r ≤ r 0 , and since f 1 (r) = -m 2 r 2 , we have in M(r ≤ r 0 ) e 4 (τ ) = e 4 (u) + e 4 (r)f (r) = 2(r 2 + a 2 ) |q| 2 (τ ) = e 3 (u) + e 3 (r)f (r) = m 2 r 2 , ∇(τ ) = ∇(u) + f (r)∇(r) = a (J), as desired. This concludes the proof of Proposition D.3.5.

  

  Remark 2.4.3. The canonical ingoing principal null frame, i.e. the null frame obtained by adding (e 1 , e 2 ) to (e 3 , e 4 ) in (2.4.3), is regular towards the future for all r > 0.

	Remark 2.4.4. In the remaining of Section 2.4, we will only consider the outgoing PG
	structure of Kerr.

Definition 2.4.2. We refer to the null frame obtained by adding (e 1 , e 2 ) to (e 3 , e 4 ) in (2.4.2) as the canonical outgoing principal null frame. We refer to the null frame obtained by adding (e 1 , e 2 ) to (e 3 , e 4 ) in (2.4.3) as the canonical ingoing principal null frame.

  4 , e 1 , e 2 ) as defined by Lemma 2.3.7. Lemma 2.4.27. Consider the change of frame transformation in Kerr from the PG frame (e 3 , e 4 , e 1 , e 2 ) to the associated integrable frame (e 3 , e 4 , e 1 , e 2 ) as defined by Lemma 2.3.7.

  .5.17) Definition 2.5.5. We define the parameters (m, a) of a GCM hypersurface to be constant on Σ * with m being the Hawking mass of S * , i.e.

	2m r	= 1 +	1 16π S *	tr χtr χ,	(2.5.18)
	and with a given by				
	a :=	r 3 8πm S *	

J (0) curl β.

(2.5.19) Definition 2.5.6. A GCM-PG data set is a PG data set Σ * , r, (H, e 3 , e 4 ), f , as in Definition 2.5.2 such that the framed hypersurface Σ * , r, (H, e 3 , e 4 ) is a GCM hypersurface, see Definition 2.5.4.

  Lemma 2.8.3. Any outgoing PT initial data set, as in Definition 2.8.2, can be locally extended to an outgoing PT structure.

.8.2)

An extended outgoing PT structure possesses, in addition, a scalar function u verifying e 4 (u) = 0. Definition 2.8.2. An outgoing PT initial data set consists of a hypersurface Σ transversal to e 4 together with a null pair (e 3 , e 4 ), the induced horizontal structure H, scalar functions (r, θ), and a horizontal 1-form J, all defined on Σ.

  Remark 3.2.1. The initialization of u in (3.2.11) agrees with the relation between u and u in Kerr, see Section 2.4.4 and Section 2.7.2. Note also that u = u at r = r 0 .

2. Moreover, the null frame ( (top) e 3 , (top) e 4 , (top) e 1 , (top) e 2 ) is prescribed on {u = u * } by the transformation formulas

  Let (e 4 , e 3 , e 1 , e 2 ) be the outgoing PG frame of (ext) M. There exists another frame (e 4 , e 3 , e 1 , e 2 ) of (ext) M given by (3.6.1) such that:

		.6.3)
	Proposition 3.6.2. 1. The 1-form f appearing in (3.6.1) vanishes in (ext) M(r ≤ u	1 2

  Let (e 1 , e 2 , e 3 , e 4 ) be the third frame of (ext) M constructed in Proposition 3.6.5 below. With respect to that frame, the notations Γ g , Γ b are the analog of the corresponding ones in Definition 3.6.1, except that the notation Γ b is the one of Definition 2.6.7, i.e. q H ∈ Γ b .2. The norms (ext) D k defined as (ext) D k , with Γ g , Γ b replaced by Γ g , Γ b , d replaced by d , δ dec replaced by δ dec = δ dec -5 2 δ 0 , and Γ g , Γ b given by Definition 3.6.4, verify the estimates

	e 4 , e a = e a + e 3 = e 3 + f a e a + 1 2 f a e 4 , a = 1, 2, 1 4 |f | 2 e 4 , | H = 0, where Γ g , Γ b are defined below. such that 0≤k≤k small +129 (ext) D k 3. The horizontal 1-form f verifies, for k ≤ k small + 130 on (ext) M, . Definition 3.6.4. max |(d	(3.6.7) (3.6.8) (3.6.9)

  ).

	Now, we use the following computation, see the proof of Lemma 5.4.6,
	e 4 (tr χ tr χ ) = -tr χ	2 tr χ + 2tr χ ρ + 2tr χ div ξ + 2tr χ div η
	Plugging in the above identity for e 4 (m H ), we infer
	e 4 (m H ) =	m H r	+	1 32π	|S| 4π S	e 4 (tr χ tr χ ) + (tr χ ) 2 tr χ + O(r -2 ).

  3 , e 1 , e 2 ), we have the following null structure equation in(ext) M

	∇ 4 χ = -	1 2	tr χ χ + tr χ χ + ∇ ⊗η + 2ω χ + ξ ⊗ξ + η ⊗η .
	In view of N	(Dec) k small	0 and (3.8.7) (3.8.8), we deduce

  We now introduce a third frame (e 4 , e 3 , e 1 , e 2 ) on (ext) M given by

					.2.10)
	Also, since f = 0 on S * in view of (4.2.2), and in view of the transport equation (4.2.3)
	for F , and the fact that F = f + i * f , f satisfies the following addition property
	f = 0 on {u = u * }.	(4.2.11)
	Step 4. e 4 = e 4 + f	b e b +	1 4	|f | 2 e 3 ,
	e a = e a +	1 2	f a e 3 , a = 1, 2,

  Proof. Recall from Corollary 5.2.11 that the following identities hold true on Σ *

	* ξ| 2	2 0 .	(5.3.8)

3.1. To this end, we first estimate d * / 2 η and d * / 2 ξ. Lemma 5.3.3. We have for k ≤ k * -6 Σ * r 2 u 2+2δ dec | d * / 2 d k * η| 2 + | d * / 2 d k

  with the control of Γ b and Γ g provided by Ref 1 and Lemma 5.1.15, and the control of d

* / 2 d * / 1 (J (p) ) provided by Lemma 5.2.8, we infer, for k ≤ k * -6,

  / and in view of the control of Γ g and the coercivity of d * / 2 d / 2 (see (5.1.49)), we obtain, for k

  the control of Γ g provided by Ref 1, the control of d * / 2 d * / 1 J (p) provided by Corollary 5.3.4, and the local bootstrap assumption (5.4.5) on ( d / 1 β) =1 , we deduce

  Together with the control of Γ b provided by Ref 1, and since m is a constant, we infer

	|ν(m H -m)|	2 u 2+2δ dec	0 u 2+2δ dec	.

Also, recall that by definition of m, we have m = m H on S * . Integrating from S * , we deduce on Σ * |m H -m| 0 u 1+2δ dec as desired.

  7, the fact that C p ∈ Γ g and M p ∈ r -1 Γ g in view of Corollary 5.2.10, the control of Γ g provided by Ref 1, and the control of d * / 2 d * / 1 J (p) provided by Corollary 5.3.4, we deduce, for k ≤ k * -10,

  1.43). Together with the control of α and ∇ 3 α provided by Ref 2, the control of Γ b established in Proposition 5.3.1, the control of Γ g provided by Lemma 5.1.15, and the control of ( d / 1 β) =1 in Proposition 5.4.3, we obtain, for k ≤ k

* -1,

  .1.26) Remark 6.1.13. We note that the terms denoted by Γ g in (6.1.22) only contain X. Also, the terms denoted by Γ g in (6.1.23)-(6.1.26) contain only X, q Z and B.

	Corollary 6.1.14. If U denotes
	1. a scalar, we have

  In this section, we initiate the proof of the part of Theorem M5 concerning (top) M, i.e. to derive decay estimates for the ingoing PG structure of (top) M, by first controlling A in (top) M. Recall that(top) M is endowed with a PG structure defined in Sections 2.7 and 3.2.2. In particular Ξ = 0, ω = 0. The goal of this section is to prove the following proposition.

	Proposition 7.6.1. A, corresponding to the ingoing PG structure of (top) M, verifies the
	following estimate in (top) M	
		sup		
	(top) M(r≤r 0 )		
		(top) M immediately imply	
	sup	ru 1+δ dec + r 2 u	1 2 +δ dec |d ≤k small +39 Γ g | + sup	ru 1+δ dec |d ≤k small +39 Γ b |
	{u=u * }		{u=u * }	

0

as stated.

7.6 Decay estimates for

A in (top) M u 1+δ dec |d ≤k small +31 A| + sup (top) M(r≥r 0 )

ru 1+δ dec |d ≤k small +31 A| 0 . (7.6.1)

  .2.20) Remark 8.2.8. According to (3.4.7), we have the stronger bound I k large +10 ≤ 2 0 . As it turns out, we only need the weaker bounds I k large +10 ≤ 0 and (ext) I 3 ≤ 2 0 as emphasized in Remark 3.4.8. In particular, (ext) I 3 ≤ 2 0 is only used to ensure (8.2.20) which will be used in the proof of Theorem M0 and Theorem M6. Proof. We start with the first estimate. In view of the definition of (ext) I k , Proposition 8.2.4 and Lemma 8.2.6 imply
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  In fact, under(3.4.7), we have the stronger bound I k large +10 ≤ 2 0 . As it turns out, we only need the weaker bounds I k large +10 ≤ 0 and (ext) I 3 ≤ 2 0 as emphasized in Remark 8.2.8.

  8.3.2 for d * / 2 d * / 1 J (p), and the bootstrap assumptions for Γ g , we infer on Σ *

	|(div ζ) =1 |	r 4 .	(8.3.6)

  Remark 8.3.6. The discrepancy between the top number of derivatives in(8.3.16) and (8.3.17) is due to the fact that the former depends only on the total number of derivatives allowed in (ext) L 0 while the latter reflects the total number of derivatives allowed by the global bootstrap assumptions on (ext) M. Remark 8.3.7. The anomalous behavior for f and λ in (8.3.15) (8.3.16), i.e. the fact that they display a r loss compared to f , does not affect the desired estimates for the curvature components, see(8.3.70). This is due to the fact that, in the change of frame formulas for the curvature components, λ and f are multiplied by terms that decay faster in r. We refer to Remark 8.3.10 for a heuristic explanation of this anomalous behavior.

	Remark 8.3.8. Note that the control of J under the change 13	(±) (ext) L 0	provided by Proposition 8.2.7 is invariant

.3.17) Remark 8.3.5. (8.3.16) will be improved in Step 13, (8.3.15) will be improve in Step 14, and (8.3.17) will be improved in Step 17.

  . , together with the estimate(8.3.21) for f to estimate the linear terms ρf and * ρ * f , the estimate (8.3.16) for (f, f , λ) to estimate the other terms, and the control provided by Proposition 8.2.7 for the part (ext) L 0 of the initial data layer to control16 the h j (S 1 ) norm of the Ricci coefficients and curvature components of the initial data foliation of (ext) L 0 in terms of their sup norm, we have

	sup k≤k large	r 2 d / k β L 2 (S 1 )	0 .	(8.3.23)
	Also, we have			

  Step 15. In Steps 15-16, we estimate 23 a -a 0 . Proceeding as in Step 12b we obtain

	512CHAPTER 8. INITIALIZATION AND EXTENSION (THEOREMS M0, M6 AND M7)
	.3.39)

  .5.58)The above control of the deformation (U, S), together with the estimate (8.5.19),(8.5.20) and (8.5.21) that hold on any sphere S of R ∩ {u ≥ u * }, and hence in particular on

	•
	S,
	imply corresponding estimates with the metric g on

• S, and the scalar functions φ and J (p) on •

35

  Based on Theorem 7.3 and Corollary 7.7 of[START_REF] Klainerman | Effective results in uniformization and intrinsic GCM spheres in perturbations of Kerr[END_REF] (restated here as Theorem 8.1.7 and Corollary 8.1.8).

  An outgoing PT structure {(e 3 , e 4 , H), r, θ, J} on M consists of a null pair (e 3 , e 4

	9.1.1 Outgoing PT structures
	We recall Definitions 2.8.1 and 2.8.2 and Lemma 2.8.3 of Section 2.8.1.
	Definition 9.1.1.

  .1.2) An outgoing PT initial data set consists of a hypersurface Σ transversal to e 4 together with a null pair (e 3 , e 4 ), the induced horizontal structure H, scalar functions (r, θ), and a horizontal 1-form J, all defined on Σ.We recall Definitions 2.8.10 and 2.8.11 and Lemma 2.8.12 of Section 2.8.5. An ingoing PT structure {(e 3 , e 4 , H), r, θ, J} on M consists of a null pair (e 3 , e 4

	An extended outgoing PT structure possesses, in addition, a scalar function u verifying
	e 4 (u) = 0.
	Definition 9.1.2. Lemma 9.1.3. Any outgoing PT initial data set, as in Definition 2.8.2, can be locally
	extended to an outgoing PT structure.
	9.1.2 Ingoing PT structures
	Definition 9.1.4.

  1 , e 2 , e 3 , e 4 ), consisting of the null pair (e 3 , e 4 ) and the horizontal structure H , is obtained from the null frame (e 1 , e 2 , e 3 , e 4 ) of the outgoing PT structure of (ext) M on T by The frame (e 1 , e 2 , e 3 , e 4 ), consisting of the null pair (e 3 , e 4 ) and the horizontal structure H , is obtained from the null frame (e 1 , e 2 , e 3 , e 4 ) of the outgoing PT structure of (ext) M on {u = u * } by

	1. e a = e a , a = 1, 2,	e 4 =	∆ |q| 2 e 4 ,	e 3 =	|q| 2 ∆	e 3 .	(9.1.8)
	e a = e a , a = 1, 2,	e 4 =	∆ |q| 2 e 4 ,	e 3 =	|q| 2 ∆	e 3 .	(9.1.7)

  . Straightforward verification. Compare with the proof of Proposition 9.2.6, and Lemmas 9.2.8 and 9.2.9 for the corresponding equations for outgoing PT structures. Compare also with Lemma 7.1.2, Lemma 7.1.3 and Lemma 7.1.4 for the corresponding equations for ingoing PG structures.

  M, ν = e 3 + b * e 4 is tangent to Σ * with (e 3 , e 4 ) denoting the null pair attached to Σ * , and d * corresponds weighted derivatives tangent to Σ * , i.e. d * = (∇ ν , d /) with d / associated to Σ * . 4+δ B |d ≤k A| 2 + |d ≤k B| 2 + r 4 |d ≤k q P | 2 + r 2 |d ≤k B| 2 + |d ≤k A| 2 , (9.4.2)

	Definition 9.4.2. We define the curvature norm on Σ *
	R 2 k :=
	Σ *

r

  .5.8) which follows immediately from the bootstrap assumptions BA-PT, see(9.4.21).As in Step 17 of the proof of Theorem M0, using Lemmas 8.3.16, 5.6.6 and 5.6.7 and simple elliptic estimates, we derive first the estimates, for k ≤ k large + 6,

	φ h k+2 (S * )	Γ b h k (S * ) ,
	max p=0,+,-	r	∇ J (p)	h k+2 (S * )

  ).

	Then, one propagates J -J similarly to Step 21'. Finally, we propagate f similarly to
	Step 22'. We finally obtain			
	sup	d ≤k (f , f , log λ ) L 2 (S )	0 ,	k ≤ k large + 7	(9.5.19)
	S ⊂{u =1}				
	and				
	sup				
	S ⊂{u =1}				

  .7.10) 

	Step 6. Next, recall that we have already established an estimate for ( | trχ) =1 on Σ * in
	(8.3.8), i.e.	
	sup	r
	Σ *	

  First, we control | trχ. Recall the definition of the Hawking mass m H

	2m H r	= 1 +	1 16π S	tr χtr χ.

Since we have tr χ = 2 r by our GCM conditions on Σ * , we infer on Σ * tr

  Together with the control of | trχ in Step 1, of | trχ in Step 7, of η in Step 13, of ẽ3 (r) in Step 20, and (9.7.6), we infer

  .8.1)To prove Proposition 9.8.1, we rely in particular on our bootstrap assumption BA-PT, see (9.4.21), which implies for the Ricci and metric coefficients of the outgoing PT frame of (ext) M

	(ext) G k ≤ ,	k ≤ k large + 7.	(9.8.2)

  .8.5)Proof. The proof is completely analogous of the one of Proposition 6.4.2 where one simply has to replace L ∞ (S(u, r)) based norms by by L 2 (S(u, r)) based norms.

	Corollary 9.8.3. If U verifies (9.8.3) or (9.8.4), we obtain, for any C > c -1 2 , and for
	any r 1 ≥ r 0 ,
	sup
	λ≥r 1 r=λ

  .8.10) Multiplying by r 2 , and integrating in u, we derive, for k ≤ k large + 7,

	sup	
	λ≥r 0	r=λ

  Step 7. Estimate for e 3 (cos θ).

	We apply Proposition 9.8.2 to the following equation, see Lemma 9.2.8,
	e 4 (e 3 (cos θ

.8.13) 

  To conclude, we need to derive an improved asymptotic for λ compared to the one in Lemma 2.4.27. Recall from (2.3.3) that Together with the above asymptotic for f and f , this yields

				r 3		2	-	3a 2 (sin θ) 2 2r 3	+ O	1 r 4 ,
	λtr χ = -	2 1 -2m r r	-	2a 2 r 3 1 -2(cos θ) 2 +	a 2 (sin θ) 2 2r 3	+ O	1 r 4 .
				λ = 1 +	1 2	f • f +	1 16	|f | 2 |f | 2 .
				λ = 1 +	a 2 (sin θ) 2 2r 2	+ O(r -3 )
	and hence							
	tr χ =	2 r	-	2a 2 (cos θ) 2 r 3	-	a 2 (sin θ) 2 2r 3	+ O	1 r 4 ,
	tr χ = -	2 1 -2m r r	-	2a 2 r 3 1 -2(cos θ) 2 +	3a 2 (sin θ) 2 2r 3	+ O	1 r 4 ,
	as stated.							

  r 2 + a 2 ) cos θ

				|q| 4	+ D • J +	aq 2 |q| 4 D(q) • J -D • q Z +	2a 2 (sin θ) 2 |q| 4
		+	aq |q| 2 J • q Z +	aq |q| 2 J • q Z + Γ g • Γ g		
	=	4aiq(r 2 + a 2 ) cos θ |q| 6	+	2a 2 (sin θ) 2 |q| 4	-	aq |q| 2 D • J -	ia 2 q 2 |q| 4 iJ +	D(cos θ) • J -D • q Z
		+	aq |q| 2 J • q Z +	aq |q| 2 J • q Z + Γ g • Γ g		
	=	4aiq(r 2 + a 2 ) cos θ |q| 6	+	2a 2 (sin θ) 2 |q| 4	+	a 2 q 2 |q| 4	2(sin θ) 2 |q| 2
		-	aq |q| 2 D • J -					

  2 + 2(r 2 + a 2 )X + a 2 .

	-	r 2 + a 2 ∆	-	√	r 4 + a 2 r 2 + 2a 2 mr ∆
	= -	2 + 3a 2 2r 2 + O m 3 r 3 1 -2m r + a 2 r 2
	= -2 +	3a 2 2r 2 + O	m 3 r 3	1 +	2m r	+	4m 2 -a 2 r 2	+ O	m 3 r 3
	= -2 -	4m r	-	8m 2 -1 2 a 2 r 2	+ O	m 3 r 3 ,
	and								
	-	r 2 + a 2 +	√	a 2 r 4 + a 2 r 2 + 2a 2 mr	= -	a 2 2r 2 + O	m 3 r 3 ,
	which concludes the proof of the lemma.
										(D.3.21)

  a 2 r 2 + a 2 + √ r 4 + a 2 r 2 + 2a 2 mr + m 2 r 2 = m 2 (r 2 + a 2 + √ r 4 + a 2 r 2 + 2a 2 mr) -a 2 r 2 r 2 (r 2 + a 2 + √ r 4 + a 2 r 2 + 2a 2 mr) = (m 2 -a 2 )r 2 + m 2 a 2 + m 2 √ r 4 + a 2 r 2 + 2a 2 mr r 2 (r 2 + a 2 + √ r 4 + a 2 r 2 + 2a 2 mr) ≥ (2m 2 -a 2 )r 2 + m 2 a 2 r 2 (r 2 + a 2 + √ r 4 + a 2 r 2 + 2a 2 mr)

	≥	m 2 r 2

The most recent Nobel prize in Physics was awarded to R. Penrose for his theoretical foundations and to R. Genzel and A. Ghez for providing observational evidence for the presence of super massive black holes in the center of our galaxy.[START_REF] Dafermos | Linear stability of the Schwarzschild solution to gravitational perturbations[END_REF] 

Other such properties concern the rigidity of the Kerr family or the dynamical formations of black holes from regular configurations.

If the Kerr family would be unstable under perturbations, black holes would be nothing more than mathematical artifacts.

This presupposes the existence of an event horizon. Note that the existence of such an event horizon can only be established upon the completion of the proof of the conjecture.

Method based on the symmetries of Minkowski space to derive uniform, robust, decay for nonlinear wave equations, see[START_REF] Klainerman | Uniform decay estimates and the Lorentz invariance of the classical wave equations[END_REF],[START_REF] Klainerman | The Null Condition and global existence to nonlinear wave equations[END_REF],[START_REF] Klainerman | Remarks on the global Sobolev inequalities[END_REF],[START_REF] Christodoulou | Asymptotic properties of linear field theories in Minkowski space[END_REF].

A precursor of the method, based on introducing fractional power weights modifications of the Morawetz conformal Killing vectorfield of Minkowski space, which leads to positive bulk integrals, appeared earlier in[START_REF] Lindblad | Global Stability for charged scalar fields in Minkowski space[END_REF].

To pass to the limit requires one to understand all global in time solutions of (1.1.1) with Λ = 1, not only those which are small perturbations of Kerr-de Sitter, treated by[START_REF] Hintz | The global non-linear stability of the Kerr-de Sitter family of black holes[END_REF].

Major differences between formally close equations occur in many other contexts. For example, the incompressible Euler equations are formally the limit of the Navier-Stokes equations as the viscosity tends to zero. Yet, at fixed viscosity, the global properties of the Navier-Stokes equations are radically different from that of the Euler equations.

While there is exponential decay in the stationary part treated in[START_REF] Hintz | The global non-linear stability of the Kerr-de Sitter family of black holes[END_REF], note that lower degree polynomial decay is expected in connection to the stability of the complementary causal region (called cosmological or expanding) of the full Kerr-de Sitter space, see e.g.[START_REF] Schlue | Decay of the Weyl curvature in expanding black hole cosmologies[END_REF]

].[START_REF] Chandrasekhar | On the equations governing the perturbations of the Schwarzschild black hole[END_REF] Responsible for carrying gravitational waves at large distances so that they are detectable.

The nonlinear stability of Schwarzschild result in[START_REF] Klainerman | Global Non-Linear Stability of Schwarzschild Spacetime under Polarized Perturbations[END_REF] is, one the other hand, the first such result in the more demanding case of asymptotically flat solutions of EVE.

Asymptotically null as we pass to the limit.

As constructed in the works[START_REF] Klainerman | The evolution problem in general relativity[END_REF],[START_REF] Klainerman | Peeling properties of asymptotic solutions to the Einstein vacuum equations[END_REF],[START_REF] Caciotta | The non linear perturbation of the Kerr spacetime in an external region and the peeling decay[END_REF] and[START_REF] Shen | Kerr stability in external regions[END_REF].

Generalizing those used in the nonlinear stability of Schwarzschild in the polarized case, see[START_REF] Klainerman | Global Non-Linear Stability of Schwarzschild Spacetime under Polarized Perturbations[END_REF].

The result in[START_REF] Shen | Construction of GCM hypersurfaces in perturbations of Kerr[END_REF], where Σ * is actually constructed from these GCM pieces, generalizes the construction of GCMH from[START_REF] Klainerman | Global Non-Linear Stability of Schwarzschild Spacetime under Polarized Perturbations[END_REF] to the non-polarized case needed here.

We note that the null frames of the PG structure are not adapted to the sphere foliation, in the same way that the principal null frame in Kerr is not adapted to the S(t, r) spheres in the Boyer-Lindquist coordinates. They do however verify specific compatibility assumptions described in this paper in connection to what we call principal geodesic structures, see Section 2.4.

In fact, we use yet another frame, namely the integrable frame associated to Σ * .

Or rather the complexified vectors m = e 1 + ie 2 and m = e 1 -ie 2 .

The scalar µ := -div ζ -ρ + 1 4 χ • χ is the familiar mass aspect function, as in[START_REF] Christodoulou | The global nonlinear stability of the Minkowski space[END_REF] and[START_REF] Klainerman | Global Non-Linear Stability of Schwarzschild Spacetime under Polarized Perturbations[END_REF].

Our first GCM result, in[START_REF] Klainerman | Construction of GCM spheres in perturbations of Kerr[END_REF], is based in fact on prescribing the = 1 modes of div f and div f .

They become null at infinity.

The passage from the PG frame (e 3 , e 4 , H) to the integrable one (e 3 , e 4 , H ) is obtained by the transformation formulas (2.2.1) with parameters (f, f , λ) given by (2.3.3).

Linearization consists for scalar quantities in subtracting Kerr values, but is slightly more subtle for 1-forms. See Definition 2.6.6.

In fact A, B behave even better, see (3.3.13) (3.3.14).

This loss can be overcome for integrable foliations such as geodesic foliations and double null foliations relying on elliptic Hodge systems on 2-spheres of the foliation, but not for non-integrable structures such as PG structures.

Thus establishing that the bounds depend only on the initial conditions and universal constants.

In[START_REF] Klainerman | Global Non-Linear Stability of Schwarzschild Spacetime under Polarized Perturbations[END_REF] we relied instead on a nonlinear version of the well known Teukolsky-Starobinsky identity which relates ∇ 2 3 derivatives of q to four angular derivatives of α, see Proposition 2.3.15 in[START_REF] Klainerman | Global Non-Linear Stability of Schwarzschild Spacetime under Polarized Perturbations[END_REF], from which we can, in principle, recover α. The non-integrable situation treated here requires in fact that we use both the gRW equations for q and an appropriate version of the Teukolsky-Starobinsky identities.

Note that the definition of ξ ⊗η is the same as in[START_REF] Christodoulou | The global nonlinear stability of the Minkowski space[END_REF].

Note that the term ξ ∧ (-η + η + 2ζ) in ∇ 3(a) trχ differs from that in[START_REF] Christodoulou | The global nonlinear stability of the Minkowski space[END_REF], see(7.4.1c) on page 165.

Here ⊗ is the usual standard notation from[START_REF] Christodoulou | The global nonlinear stability of the Minkowski space[END_REF].

In full generality, one could also rotate e 1 , e 2 , but this would not change the horizontal structure and, as it turns out, is in fact not needed. The dot product and magnitude | • | are taken with respect to the standard euclidian norm of R 2 .

Note that we need to take the transversality condition into account since H is not necessarily included in the tangent space of Σ.

That is X(r) = 0 for any X ∈ H.

Here, (e 1 , e 2 ) denotes an arbitrary orthonormal basis of the horizontal space H.

Note that all complex 1-forms are expressed with respect to J.

Note that they are regular everywhere including the axis of symmetry.

Note that f is well defined thanks to the condition (2.5.2).

See definition 2.4.11 in Kerr.

This loss can be overcome for integrable foliations such as geodesic foliations and double null foliations relying on elliptic Hodge systems on 2-spheres of the foliation, but not for non-integrable structures such as PG structures.

We use here a more precise transformation formula for η than the one derived in Proposition 2.2.3.

In the case of PG frames, these terms are replaced by first order derivatives of Z leading to a loss of derivative.

Since H = -aq |q| 2 J, H does not need to be included in Definition 2.8.6.

This corresponds to the analog of Section 2.2.3 where transport equations for (f, f , λ) are derived in the case where the second frame is an outgoing PG frame.

|q| 2 J, H does not need to be included in Definition 2.8.14.

We will write L 0 (a 0 , m 0 ) whenever we need to emphasize the dependence on (a 0 , m 0 ).

This topology will be specified in our initial data layer assumptions, see(3.4.7) as well as Section

3.3.6. 

Recall that L 0 , defined in Section 3.1, is a spacetime region in which the metric on M is specified to be a small perturbation of the Kerr data.

This is in fact automatic since Σ * is spacelike.

The fact that(ext) h is well defined will follow from our bootstrap assumptions.

We stress the fact that the linearized quantities appearing in the definitions of Γ g and Γ b are done with respect to the constants (a, m) of (ext) M.

Recall that the initial data layer foliations satisfy η + ζ = 0, as well as ξ = ω = 0 on (ext) L 0 , and η = ζ as well as ξ = ω = 0 on (int) L 0 .

See Section 3.3.6 for the definition of the initial data layer norm I k .

See Definition 3.4.5. The integrable frame is such that (e 1 , e 2 ) is tangent to S(u, r). Recall, on the other hand, that the outgoing PG frame of (ext) M is non-integrable.

See Definitions 5.2.2 and 5.3.4 in[START_REF] Giorgi | Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes[END_REF] for the choice of C 1 , C 2 , C 1 and C 2 .

This was η and ξ in[START_REF] Klainerman | Global Non-Linear Stability of Schwarzschild Spacetime under Polarized Perturbations[END_REF].

In fact, this will be achieved only in(ext) M(u ≤ u * -1) which turns out to be sufficient.

In fact H satisfies H = -Z for an ingoing PG structure.

Note that all quantities in Γ b,2 vanish identically in the case of an ingoing PG structure.

Even though we only state below estimates on (int) M ∪ (ext) M, which is not causal, the actual estimates are in fact proved on the full spacetime M which is itself causal.

Indeed, recall that u ≥ u * and u ≥ u * on(top) M by the construction of our GCM admissible spacetime.

Note that the formula trχ = 1 + O(r -2 ) tr χ + O(r -3 ) + O(r -2 )d ≤1 Γ b is not good enough.

Recall that for the second frame, the Ricci coefficients and curvature components are also linearized using the scalar function r and θ and the complex 1-form J attached to the principal frame of (ext) M.

We need additional estimates for ∇ 3 Γ g , α, β, ∇ 3 α and ∇ 3 β compared to (4.2.6). They are easily obtained in the same way, i.e by interpolation between the bootstrap assumptions on decay and boundedness for the outgoing PG frame (e 4 , e 3 , e 1 , e 2 ) of (ext) M.

[START_REF] Chandrasekhar | On the equations governing the perturbations of the Schwarzschild black hole[END_REF] Indeed, even after being extended beyond u = u * , it does not cover part of a neighborhood of S * in (ext) M ∩ {u ≥ u * -

1}.[START_REF] Chandrasekhar | The mathematical theory of black holes[END_REF] It turns out to be simpler to ensure the property ξ ∈ r -1 Γ g stated in Proposition 4.4.3 with an ingoing PT structure than with an ingoing PG structure due to the simpler initialization on a hypersurface.

Note in particular that we have |d(ψ)| |d(u)| 1 for r ≥ r 0 + 1.

Recall that c * is fixed such that c * = 1 + r(S 1 ) where S 1 is the only sphere of Σ * intersecting the curve of the south poles, see Section 3.2.5.

In other words, all the solutions are of the form (Φ • O, u • O) for O ∈ O(3).

Recall that the pair (Φ, u) is unique up to isometries of S 2 .

We refer to (5.1.59) for the definition of the standard weighted Sobolev spaces h k (S).

In particular, one can choose N = (0, 0, 1) and v = (1, 0, 0).

Note that these were denoted by Γ * g , Γ * b in Definition 3.3.3.

k i=0 d i * f 2 (u).(5.1.36) Throughout this chapter we rely on the following assumptions.Ref 1. According to our bootstrap assumptions BA-D on decay, and BA-B on r-weighted sup norms, we have on Σ *1. For 0 ≤ k ≤ k small , Γ g ∞,k ≤ r -2 u -1 2 -δ dec , ∇ ν Γ g ∞,k-1 ≤ r -2 u -1-δ dec , Γ b ∞,k ≤ r -1 u -1-δ dec .

Recall that k * = k small + 80 throughout this chapter, see (5.0.1).

Note that we have in view of (3.4.1) and(3.4.6) 

Note that the vanishing integrals in (5.1.7) are equivalent to the balanced condition(5.1.19).

In view of (5.1.17)-(5.1.19), J (p) is a canonical basis of = 1 mode of S * in the terminology of Definition 3.10 in[START_REF] Klainerman | Effective results in uniformization and intrinsic GCM spheres in perturbations of Kerr[END_REF] (restated here as Definition 5.1.3), so Lemma 3.12 in[START_REF] Klainerman | Effective results in uniformization and intrinsic GCM spheres in perturbations of Kerr[END_REF] applies.

In fact ∆J(p) should be replaced by either (∆J (p) , 0) or (0, ∆J (p) ) depending whether we consider d * / 1 (J (p) , 0) or d * / 1 (0, J (p) ).

For k > 1, we neglect all higher order terms involving (rΓ b ) j Γ b , 1 ≤ j ≤ k -1, since they satisfy at least the same estimates as the corresponding ones involving Γ b .

Note that the term O(r -3 )α appearing in the change of frame formula for β claimed here is better by one power of r than what is consistent with Proposition 2.2.3. This gain of one power of r can easily be checked by signature considerations.

This auxiliary bootstrap assumption will be improved in Proposition 6.4.5.

Similar equations hold for J (0) = cos θ, see Lemma 6.1.16.

The main terms in the RHS come from the corresponding calculations in Kerr carried out in Lemma 2.4.27. The additional error terms d ≤1 Γ g and d ≤1 Γ b are due to the perturbation.

Here and below, by abuse of notations, we do not distinguish between Err and |Err|.

Recall from (6.0.1) that k * = k small + 60 in this chapter.

Recall from (6.0.1) that k * = k small + 60 in this chapter.

Note that the corresponding transport equation for L / T B is still overshooting in r, but the one for L / 2 T B is not.

Note that this is simpler to derive than the renormalized version of the quantity 1 Σ q D • (q 4 B)J (p) in Proposition 6.3.4. 

Recall that r ≥ r 0 on (ext) M for a sufficiently large r 0 , and that the small constant δ > 0, appearing in the estimate for L / T B, is given by δ = 1 2 δ extra -δ dec .

Similar equations hold for J (0) = cos θ, see Lemma 7.1.3.

We also use the fact that u is constant along the integral curves of e 4 since e 4 (u ) = 0, and that u ∼ u along such integral curves as shown below in(7.3.10).

Both A, A here are defined relative to the frame for which Ξ = 0 in (int) M. Below, we will thus apply the identity as one relating A and A .

See (7.3.2) for the definition of notation (c) ∇ 4 which has been introduced in section 2.2.9 of[START_REF] Giorgi | Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes[END_REF].

The estimate(7.3.21) follows immediately from the definition (7.3.20) of the energy norm and from the definition of the Morawetz norm Mor s [ψ] given in section

6.1.5 of[START_REF] Giorgi | Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes[END_REF].[START_REF] Blue | Errata for "Global existence and scattering for the nonlinear Schrödinger equation on Schwarzschild manifolds[END_REF] Note that the choice of τ in section D.3 is such that τ ∼ u in (int) M.

Note that r is bounded on(int) M and that all quantities behave the same in (int) M.

Along a level set of u in (top) M, denoting r + (u) the maximal value of (top) r, i.e. the one on {u = u * }, and r -(u) the minimal value of (top) r, i.e. the one on (top) Σ, we have 0 < r + (u) -r -(u) 1, see (3.2.1). In particular, the integration along e 3 is always finite in(top) M and hence easy.

Note that this definition differs from the one in[START_REF] Klainerman | Effective results in uniformization and intrinsic GCM spheres in perturbations of Kerr[END_REF] by a factor of r -2 .

Note that in Kerr, the axis corresponds to the zeros of J (0,S) .

Recall that 0 ≤ u ≤ 3 and r ≥ r 0 in (ext) L 0 , so that we have indeed (ext) L 0 ⊂ (ext) L 0 in view of the asymptotic of u provided by Lemma 8.2.2 and the asymptotic for s provided by Proposition 8.2.4.

In practice, as in Sections 2.4.4 and 2.4.7, we cover the spheres S(u, r) with the coordinates systems (x 1 , x 2 ) = (θ, ϕ) and (x 1 , x 2 ) = (J (+) , J(-) ).

Recall that d * refers to the properly normalized tangential derivatives along Σ * , i.e. d * = ( d /, ∇ ν ).

Note that each sphere S of C 1 intersects a unique sphere S of (ext) L 0 at its south pole. Hence, we may consider S as a deformation of S.

In fact, all intermediate estimates in Step 8 to 13 are only needed to derive this improvement on f .

In order to control h j (S 1 ) norms by sup norms, we use, here and in the remainder of the proof, Lemma 7.3 in[START_REF] Klainerman | Construction of GCM spheres in perturbations of Kerr[END_REF] restated here in Lemma 8.1.4. 

Recall that a is defined in Section 3.2.4.

Note the change of notation, the unprimed quantities in (8.3.2) are primed here.

Note that while the control of the Ricci coefficients | trχ of Σ * in (8.3.34) displays a loss of r -1 , this allows nevertheless to obtain the correct power of r of } trX and X on S 1 .

Note that we could not have used this transport equation in(ext) L 0 in view of the lack of decay in r for λ -1. This is why we avoided this transport equation in Step 21 and used instead the control of } trX . On the other hand, r is bounded in(int) L 0 so that one can simply rely on the transport equation for e 3 (r -r) in (int) L 0 .

The global frame used for the curvature estimates is constructed from the PT frames in section 9.6.1.

That is the null ingoing geodesics generated by the PT structure end up either at A or (top) Σ.

Note that the proof must be adapted from the case of a PG frame, i.e. H = -Z, to the case of a PT frame, i.e. H = -aq |q| 2 J. This introduces a slight change in the commutators [∇ 4 , ∇] and [∇ 4 , ∇ 3 ].

At the linear level and excluding curvature terms.

Since H = aq |q| 2 J, H does not need to be included in Definition 9.3.1.

Note that r ≤ r 0 in (int) M so that powers of r do not matter. As a consequence, we may simply denote linear terms by Γ b and nonlinear terms by Γ b • Γ b .

Note that (9.3.8) depends on the choice of (top) Σ and hence on the choice of τ .

Note that u * -2(m + 1) ≤ τ * < u * in view of Proposition 9.3.5.

In Kerr, we have R = ∆ r 2 +a 2 ∂ r in Boyer Lindquist coordinates.

In view of(9.4.21), the error terms appearing in sections 9.6-9.10 will be simply estimated by O( 2 ) and hence by O( 0 ).

Sharper in terms of derivatives. Indeed, the conclusions of Theorem M0 hold for k ≤ k large -2 while the ones of Theorem M0-PT hold for k ≤ k large + 7.

Note that u is associated both to the PT and to the PG structure of (ext) M in view of Lemma 9.2.11.

Note that we could not have used this transport equation in(ext) L 0 in view of the lack of decay in r for λ -1. This is why we avoided this transport equation in Step 21' and used instead the control of } trX . On the other hand, r is bounded in(int) L 0 so that one can simply rely on the transport equation for e 3 (r -r) in (int) L 0 . This is in fact crucial: proceeding as in Step 21' would only lead to the control k large + 6 derivatives of r -r, and hence to a loss of at least one derivatives in Theorem 9.4.12.

The trapped region is in fact located in(int) M ∪ (top) M . Note that the part of the trapped region in M \ (int) M (u ≤ u * -1) is harmless for wave estimates as it lies inside a local existence type region.

Lemma 9.6.1 only provides the control of u -u on Match 1 ∩ (ext) M, but one can immediately extend the control to Match 1 ∩ (int) M by the same method.

Notice that Match 2 ( (ext) r ≤ r 0 + 1) ∪ Match 2 (u ≥ u * ) = Match 2 .

Note in particular that we have |d(ψ)| |d(u)| 1 for r ≥ r 0 + 1.

See Definition 9.2.5 for our notation O(r -p ).

In order to obtain an estimate that will be useful in Step 5, see (9.8.10), we proceed differently compared to previous steps.

Recall that r ≤ r 0 in (int) M so that weights in r do not matter and are hence dropped.

(ext) G 2 k + T |d k-1 ∇

q Γ | 2 + |d k-1 q Γ | 2 .

See Lemma 7.2.1 for more precise formulas concerning the analog situation for PG structures.

loss compared to the other components.

See Lemma 7.5.2 for the analog situation for PG structures.

Note that (9.10.13) depends on the choice of (top) Σ and hence on the choice of τ .

And in fact significantly simpler since(top) M is a local existence type region, see Remark 9.10.5.

We use here a more precise transformation formula for η than the one derived in Proposition

2.2.3.[START_REF] Andersson | Hidden symmetries and decay for the wave equation on the Kerr spacetime[END_REF] We use here a more precise transformation formula for ζ than the one derived in Proposition 2.2.3.

Note that (D.3.17) depends on the choice of (top) Σ and hence on the choice of τ .

4. If f is a 1-form

We have the following corollary of Proposition 6.2.13.

Corollary 6.2.14. For any sphere S = S(u, r) ⊂ (ext) M we have for k ≤ k large :

1. If U is an anti-selfdual 1-form

2. If U is an anti-selfdual 1-form

. (6.2.12)

3. If U is an anti-selfdual symmetric traceless 2-tensor

Proof. We start with the first identity. Since U is an anti-selfdual 1-form, f = (U ) is a real 1-form and

In particular, we have

Thus, since

the first identity follows immediately from the last estimate of Proposition 6.2.13.

Then, we consider the second identity. Since U is an anti-selfdual 1-form, f = (U ) is a real 1-form and

In particular, we have

Differentiating this identity with respect to ( d / ) k , using the estimates for ∇ 2 3 A, ∇ 3 A and A in Ref 2, the improved estimates for L / T X in Step 1, the improved estimate for L / 2 T B in Step 2, and the bootstrap assumptions for Γ b , Γ g and B, we deduce on any sphere S = S(u, r) of (ext) M, for k ≤ k * -2, ( d / ) k D ⊗L / T B L 2 (S) O(r -2 ) ( d / ) ≤k+1 L / T B L 2 (S) + 0 r -3-δ u -1-δ dec . (6.4.7)

Step 4. Next, we derive a first estimate for L / T B. To this end, we apply the first elliptic estimate of Corollary 6.2.14 to derive

In view of (6.4.7), we deduce on any sphere S = S(u, r) of (ext) M, for k ≤ k * -2,

Thus, recalling that r ≥ r 0 on (ext) M, and provided that r 0 is sufficiently large, we can absorb the first term on the RHS and deduce, for k ≤ k * -2, ( d / ) k+1 L / T B L 2 (S) r 2 D • L / T B =1 + 0 r -2-δ u -1-δ dec . (6.4.8)

Using again

and the above improved estimate for L / 2 T B, we further deduce, for k ≤ k * -2,

By Sobolev, we finally obtain on any sphere S = S(u, r) of (ext) M, for k ≤ k * -3,

r D • L / T B =1 + 0 r -3-δ u -1-δ dec . (6.4.9)

Step 5. Next, we estimate (D • L / T B) =1 . Starting from

Step 5. We start with equation (6.5.8) of Step 3.

We appeal again to Corollary 6.2.5 to write

(6.5.11)

Together with the control of L / T B provided by Proposition 6.4.7, we infer

We appeal to the first elliptic estimate of Corollary 6.2.14 to derive for k ≤ k * -3,

+r -2 ( d / ) ≤k X L 2 (S(u,r)) + 0 r -1-δ u -1-δ dec .

Using again (6.5.11) and the control of L / T B as above we deduce

+ 0 r -1-δ u -1-δ dec .

Since r ≥ r 0 on (ext) M, we infer, for r 0 large enough, for all k ≤ k * -3,

/ ≤k X L 2 (S(u,r)) + 0 r -1-δ u -1-δ dec . (6.5.12)

Step 6. We start with the last equation of (6.5.6) rD • q Z = -2r q P + O(r -1 ) q Z + O(r -1 ) d / ≤1 X + O(1) q P + O(1) d / ≤1 B + r -2 Good k * -1 .

Differentiating w.r.t. rD, we infer

On the other hand, recall (6.5.10),

Plugging in the previous identity, we infer

q P +r -1-δ Good k * -3 .
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Using again formula (6.5.11) to pass to the prime frame, as well as the control of L / T q Z provided by Proposition 6.4.7, we deduce

Using the second elliptic estimate of Corollary 6.2.14, we deduce for all k ≤ k * -3,

+r -1 d / ≤k+2 X L 2 (S(u,r)) + d / ≤k+1 q P L 2 (S(u,r)) + 0 r -δ u -1-δ dec .

Using again formula (6.5.11), to pass back to the un-prime frame, as well as the control of L / T q Z provided by Proposition 6.4.7, we deduce for all k ≤ k * -3,

+r -1 d / ≤k+2 X L 2 (S(u,r)) + d / ≤k+1 q P L 2 (S(u,r)) + 0 r -δ u -1-δ dec .

Since r ≥ r 0 on (ext) M, we infer, for r 0 large enough, and for k ≤ k * -3,

+ d / ≤k+1 q P L 2 (S(u,r)) + 0 r -δ u -1-δ dec .

(6.5.13)

Step 7. So far we have established for k ≤ k * -3, see (6.5.12) and (6.5.13) ,

/ ≤k X L 2 (S(u,r)) + 0 r -1-δ u -1-δ dec , d / ≤k+2 q Z L 2 (S(u,r)) r d / ≤k+2 B L 2 (S(u,r)) + r -1 d / ≤k+2 X L 2 (S(u,r))

+ d / ≤k+1 q P L 2 (S(u,r)) + 0 r -δ u -1-δ dec .

Combining them we derive, for k ≤ k * -4,

Therefore, for any S = S(u, r)

+ d / ≤k * -2 q P L 2 (S) + 0 r -δ u -1-δ dec .

(6.5.14)

It thus remains to eliminate the terms in q P , X on the RHS.

Chapter 7

Decay estimates on (int) M and (top) M (Theorem M5)

The goal of this chapter is to prove Theorem M5, i.e. to derive decay estimates on (int) M and (top) M.

Linearized equations for ingoing PG structures

Ingoing PG structures have been introduced in Section 2.7. In particular, recall that such structures verify the following identities, see Section 2.7.1, ξ = 0, ω = 0, η = ζ, e 3 (r) = -1, ∇(r) = 0, e 3 (u) = e 3 (θ) = e 3 (ϕ) = 0, ∇ 3 J = 1 q J, ∇ 3 J ± = 1 q J ± , e 3 (J (p) ) = 0, p = 0, +, -.

In this section we provide the linearized equations for ingoing PG structures that will be used to derive decay estimates for the ingoing PG structures of (int) M and (top) M. Recall that the definition of the linearized quantities for ingoing PG structures can be found in Definition 2.7.2.

Remark 7.1.1. The equations for ingoing PG structures stated in this section can be easily deduced from their analog for outgoing PG structures by performing the following where the quantities and the definition of the = 1 modes correspond to the frame of Σ * .

Proof. The proof, which uses the GCM conditions on S * and the results of Section 5.4.1 is outlined in Steps 1-7 below.

Step 1. We start by recalling Lemma 5.2.8 on the control of the = 1 basis on Σ * .

Lemma 8.3.2. The functions J (p) verify the following properties 1. We have on Σ * S J (p) = O ru -δ dec , S J (p) J (q) = 4π 3 r 2 δ pq + O ru -δ dec . 4. We have for any k ≤ k small on Σ *

where by d * / 1 J (p) , we mean either d * / 1 (J (p) , 0) or d * / 1 (0, J (p) ).

Also, we recall Lemma 5.4.2 on the control of (q ρ - Note that the quadratic terms involving χ • χ , χ ∧ χ and ∇ (K ) ⊗ζ are estimated using the transformation formulas 18 , the estimates (8.3.16) for (f, f , λ), and the control provided by Proposition 8.2.7 for the curvature components and the Ricci coefficients of the part (ext) L 0 of the initial data layer.

Step 10. Recall Codazzi for χ

We differentiate w.r.t. d * / 2 and use the GCM condition κ = 2/r which holds on Σ * and S 1 ⊂ Σ * to deduce

Together with the estimate of Step 8 for β , the estimate of Step 9 for d * / 2 ζ , dealing with the quadratic terms as above, and using an elliptic estimate, we infer, max

Next, recall from Proposition 2.2.3 the transformation formula 18 In fact, in view of the Gauss equation K = -ρ -1 4 κ κ + 1 2 χ χ , the GCM conditions for κ and κ , and the control of ρ in Step 8, we only need the transformation formulas for χ and χ . These formulas involve at most one angular derivative of f and f , and no transversal derivative.

Together the above control on S * and the dominance condition for r on Σ * , we deduce

) L ∞ (Σ * ) 0 , p = 0, +, -.

In view of the above, using Definition 5.6.2 of ∇ J (p) , we infer on S 1

On the other hand, from the control of (ext) L 0 , the change of frame formula for ∇ , the control of the change of frame (f, f , λ) from (ext) L 0 to Σ * of Step 13, and the control of r -r on S 1 provided by (8.3.33), we have

and hence

We deduce

Steps 6-13

Step 6. We fix the following sphere of the (u (extend) , s

and the small spacetime neighborhood of

In view of (8.5.6), (8.5.8), (8.5.11), (8.5.22) and (8.5.24), we are in position to apply Theorem 7.3 and Corollary 7.7 of [START_REF] Klainerman | Effective results in uniformization and intrinsic GCM spheres in perturbations of Kerr[END_REF] (restated here in Theorem 8.1.7 and Corollary 8.1.8), with s max = k small + k * -4, which yields the existence of a unique sphere S * , which is a deformation of

, and is such that the following GCM conditions hold on it

where

• the tilde refer to the quantities and tangential operators on S * ,

• J (p, S * ) denotes the canonical basis of = 1 mode on S * in the sense of Definition 3.10 of [START_REF] Klainerman | Effective results in uniformization and intrinsic GCM spheres in perturbations of Kerr[END_REF] (recalled here in Definition 5.1.3),

• the = 1 modes in (8.5.26) are defined w.r.t. the basis of = 1 modes J (p, S * ) ,

• m denotes the Hawking mass of S * , r denotes the area radius of S * , and the identity for ( curl β) =1,0 in (8.5.26) should be understood as providing the definition of a.

Step 7. Starting from S * constructed in Step 6, and in view of (8.5.6), (8.5.7), (8.5.9), (8.5. with s max = k small + k * -4, which yields the existence of a smooth small piece of spacelike hypersurface Σ * starting from S * towards the initial data layer, together with a scalar function u defined on Σ * , whose level surfaces are topological spheres denoted by S, so that

• The following GCM conditions are verified on Σ * q κ = 0,

where the tilde refer to the quantities and tangential operators on Σ * .

• C 0 , C p , M 0 and M p are constant on each leaf of the u-foliation of Σ * .

• We have, for some constant c Σ * ,

where r denotes the area radius of the spheres S of the u-foliation of Σ * .

• The following normalization condition holds true

where b denotes the average of b on the spheres foliating Σ * , and where b is such that we have

with ν the unique vectorfield tangent to the hypersurface Σ * , normal to S, and normalized by g( ν, e 4 ) = -2.

• The basis of = 1 modes J (p) is given by J (p) = J (p, S * ) on S * , and extended to Σ * by ν( J (p) ) = 0. Also, the = 1 modes of div η and div ξ above are computed with respect to this basis.

• The transition functions (f, f , λ) from the frame of M (extend) to the frame of Σ * satisfy on each sphere

and

Integrating from Σ * where a J (0) -aJ (0) and a J -aJ are under control in view of (8.5.63), and using the control (8.5.65) for f and λ as well as the control (8.5.64) for the foliation of M (extend) , we infer, for ≤ k * -9, sup

Then, using the outgoing PG structure of (ext) M, we initialize

as in Section 3.2.5. Using the control of (f, f , λ), r -r, a J (0) -aJ (0) and a J -aJ induced on { r = r 0 } and { u = u * } by (8.5.65), (8.5.66) and (8.5.67), and using the analog in the e 3 direction for ingoing PG structures of the above transport equation in the e 4 direction for outgoing PG structures, we obtain for (int) M and ≤ k * -10 sup

and a similar estimate for (top) M.

Let now

Then, in view of (8.5.65)-(8.5.68), the control of a -a and m -m in (8.5.63), and (8.5.64), and using the transformation formulas of Proposition 2.2.3, and well as the definition of the linearized quantities based on a, m, r, aJ (0) = a cos θ and aJ, we deduce

In particular, since k * = k small + 20, we infer

k small ( M) 0 which concludes the proof of Theorem M7.

Chapter 9

Top order estimates (Theorem M8)

The goal of this chapter is to prove Theorem M8, i.e. to improve our bootstrap assumptions on boundedness on Σ * , and for the PG structures of (ext) M, (int) M and (top) M. Now, while the PG structures we have studied so far are perfectly adequate for deriving decay estimates, they are deficient in terms of loss of derivatives and thus inadequate for deriving boundedness estimates for the top derivatives of the Ricci coefficients. Hence, we cannot rely on PG structures in the proof of Theorem M8, and will instead rely on the PT structures introduced in Section 2.8. Once boundedness estimates for top order derivatives are obtained for the PT structures, see Theorem 9.4.10, they will induce the improvement of our bootstrap assumptions on boundedness on Σ * , and for the PG structures of (ext) M, (int) M and (top) M, see Section 9.4.3.

Remark 9.0.4. Recall that we in fact only prove part of Theorem M8 in this paper. Indeed, the estimates for the curvature components in a global frame 1 , see Theorem 9.6.7, are done in Part III of [START_REF] Giorgi | Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes[END_REF].

Principal temporal structures in M

Before introducing the temporal structure of M, we recall the main definitions of outgoing and ingoing temporal structures, see Section 2.8.

We renormalize below all other quantities, not vanishing in Kerr 6 , by subtracting their Kerr(a, m) values. Definition 9.3.1. We consider the following renormalizations, for given constants (a, m),

as well as

and 1. The set 

so that N τ is the future unit normal to Σ(τ ).

We will consider a subregion (int) M * of (int) M defined as follows.

Definition 9.3.9. Let τ * the supremum 10 of the values of τ such that Σ(τ ) ∩ (int) M = ∅ and Σ(τ ) does not intersect {u = u * }. We denote by (int) M * the subset of (int) M with τ ≤ τ * , i.e.

(int) M * := (int) M ∩ {τ ≤ τ * }. (9.3.12)

Remark 9.3.10. Note that the region (int) M has as future boundary the hypersurface {u = u * } which is not spacelike, while the region (int) M * ⊂ (int) M has as future boundary the hypersurface {τ = τ * } which is spacelike in view of Proposition 9.3.5.

Control of top order derivatives in the PT frame

In this section, we state our main result concerning the control of top order derivatives in the PT frame, see Theorem 9.4.10. As a consequence, this yields the control of the PG frame and concludes the proof of Theorem M8, see Section 9.4.3.

Main norms

We introduce here the main norms appearing in the statement of our main PT-Theorem in Section 9.4.2.

9 Note from Proposition 9.3.5 that

Norms of (top) M

In the norms on (top) M introduced below, we separate (top) M in (top) M (r ≤ r 0 ) and (top) M (r ≥ r 0 ), and we discard r-weights in the region (top) M (r ≤ r 0 ).

Definition 9.4.7. We define the following norms for the Ricci coefficients in (top) M .

where q Γ denotes the set of all linearized Ricci and metric coefficients with respect to the ingoing PT frame of (top) M as above, and where

with Ξ, q ω, } trX, X, q Z, | H, } trX, X the linearized Ricci coefficients of the ingoing PT frame of (top) M , and with the notation

For the curvature norms in (top) M , we rely in particular on the scalar function τ introduced in Section 9.3.4.

Definition 9.4.8. We define the following norms for the curvature coefficients in (top) M .

where q R is the set of all linearized curvature coefficients w.r.t. the ingoing PT frame of (top) M as above, and A, B, q P , B, A denote the linearized curvature components relative to the ingoing PT frame of (top) M .

Bootstrap assumptions for the Main PT-Theorem

The nonlinear error terms in the proof of Theorem 9.4.10 may all be controlled by the standard estimate

The systematic use of (9.4.20) would result in carrying the term (R k large +7 + G k large +7 ) on the RHS of all estimates throughout sections 9.6-9.10. Thus, to lighten notations, it will be convenient to make instead the following assumption which, by abuse of language, we call BA-T bootstrap assumptions 12 :

BA-PT. Relative to the global norms defined in Section 9.4.1 for the PT frames of M, we have

Control of the initial data in the PT frames

Recall that the control of the initial data for the PG frames of M is provided by Theorem M0, see Section 3.7.1. We will need a sharper 13 analog for the PT frames of M which we state below.

Theorem 9.4.12 (Theorem M0-PT). Assume that the initial data layer L 0 , as defined in Section 3.1, satisfies

Then, under the bootstrap assumptions BA-PT, relative to the initial data norms defined in Section 9.4.1 for the PT frames of M, we have

The proof of Theorem M0-PT is postponed to Section 9.5.

Control of low derivatives of the PT frame

The following lemma will allow us to initiate an iterative procedure in Section 9.4.7.

Lemma 9.4.13. Relative to the global norms defined in Section 9.4.1 for the PT frames of M, we have the following bounds

In addition, we have, for k ≤ k small -1, sup

where in each case, (Γ g , Γ b ) is defined w.r.t. the linearized quantities in the PT frame of the corresponding region.

Proof. The PG structures of M satisfy in view of Theorem M7, stated in Section 3.7.2, the following decay estimates, for k ≤ k small , sup

where in each case, (Γ g , Γ b ) is defined w.r.t. the linearized quantities in the PG frame of the corresponding region.

The proof is similar is spirit to the proof of Theorem M8 in Section 9.4.3. Here, instead of transferring the control of the PT frames to the PG frames of M, we instead transfer the above control of the PG frames to the PT frames. We proceed as follows:

1. We start with the control in (ext) M. Let (f, f , λ) denote the transition coefficients corresponding to the change from the outgoing PG frame of (ext) M to the outgoing PT frame of (ext) M. Also, we denote the quantities corresponding to the outgoing PG frame without primes, and the quantities corresponding to the outgoing PT frame with primes. In view of Lemma 9.2.11, the following identities hold in (ext) M:

(a) We have f = 0 and λ = 1. In particular, we have

Proof. The proof is given in Section 9.8, see Proposition 9.8.1.

Proposition 9.4.18. Let J such that k small -1 ≤ J ≤ k large + 6. The following estimates hold true for the Ricci and metric coefficients of the ingoing PT frame of (int) M

Proof. The proof is given in Section 9.9, see Proposition 9.9.2.

Proposition 9.4.19. Let J such that k small -1 ≤ J ≤ k large + 6. The following estimates hold true for the Ricci and metric coefficients of the ingoing PT frame of (top)

In particular, we have

in which case the constant in is independent of r 0 .

Proof. The proof is given in Section 9.10.

The following is a corollary of the above propositions.

Corollary 9.4.20. Let J such that k small -1 ≤ J ≤ k large + 6. Let

J .

(9.4.44)

Then:

1. We have

where the constant in is independent of r 0 .

2. We have or the one from ( (int) e 4 , (int) e 3 , (int) e 1 , (int) e 2 ) to (e 4 , e 3 , e 1 , e 2 ).

(e) In the matching region, we have, for 1 ≤ k ≤ k large + 8,

Proof. See Section 9.6.4.

Finally, we glue a renormalization of the outgoing PT frame of (ext) M to the frame of Lemma 9.6.3 in the matching region Match 2 := (ext) M(u ≥ u * -1) ∪ (ext) M( (ext) r ≤ r 0 + 1). (9.6.3) Remark 9.6.4. Note that the frame of Lemma 9.6.3 is defined on

In particular, the outgoing PT frame of (ext) M and the frame of Lemma 9.6.3 are both defined in Match 2 .

The following lemme provides the desired global frame on M.

Lemma 9.6.5. Let (e 4 , e 3 , e 1 , e 2 ) be the frame of Lemma 9.6.3. There exists a global null frame ( (glo) e 4 , (glo) e 3 , (glo) e 1 , (glo) e 2 ) defined on M, as well as a pair of scalar functions ( (glo) r, (glo) J (0) ), and a complex 1-form (glo) J, such that:

(a) In (ext) M \ Match 2 , we have ( (glo) e 4 , (glo) e 3 , (glo) e 1 , (glo) e 2 ) = ( (ext) λ (ext) e 4 , (ext) λ -1(ext) e 3 , (ext) e 1 , (ext) e 2 )

where (ext) λ := (ext) ∆ | (ext) q| 2 , as well as (glo) r = (ext) r, (glo) J (0) = cos( (ext) θ), and (glo) J = (ext) J.

(b) In (int) M ∪ ( (top) M \ (ext) M), we have ( (glo) e 4 , (glo) e 3 , (glo) e 1 , (glo) e 2 ) = (e 4 , e 3 , e 1 , e 2 ), as well as (glo) r = r , (glo) J (0) = J (0) , and (glo) J = J .

(c) In the matching region, we have, for 0 ≤ k ≤ k large + 7,

where

and

with the notation Match 2,u 1 := Match 2 ∩ {u 1 ≤ u ≤ u 1 + 1}, (9.6.4)

and with (glo) Γ g and (glo) Γ b only containing linearized metric and Ricci coefficients, but not curvature components.

(d) In the matching region, we have, for

where (f, f , λ) denotes either the change of frame coefficients from (e 4 , e 3 , e 1 , e 2 ) to the global frame ( (glo) e 4 , (glo) e 3 , (glo) e 1 , (glo) e 2 ),

or the one from ( (ext) λ (ext) e 4 , (ext) λ -1(ext) e 3 , (ext) e 1 , (ext) e 2 ) to the global frame ( (glo) e 4 , (glo) e 3 , (glo) e 1 , (glo) e 2 ).

(e) In the matching region, we have, for

and

Proof. See Section 9.6.5.

Remark 9.6.6. By construction, the global frame of Lemma 9.6.5 coincides with the ingoing PT frame of (int) M in (int) M (u ≤ u * -1). In particular, we infer from (9.4.24) that the global frame of Lemma 9.6.5 satisfies, for k ≤ k small -1, sup

u 1+ 3δ dec 4 |d ≤k(glo) q Γ| + |d ≤k(glo) q R| 0 . (9.6.5)

The decay in (int) M (u ≤ u * -1) for d ≤k small -1(glo) q Γ and d ≤k small -1(glo) q R at an integrable rate, provided by (9.6.5), is used in the wave estimates of [START_REF] Giorgi | Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes[END_REF] to control nonlinear terms in the trapped region 21 . 9.6.2 Proof of Theorem 9.4.15

The proof of Theorem 9.4.15 relies on the following theorem which provides the control of curvature components in the global frame of Lemma 9.6.5.
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Theorem 9.6.7 (Control of Curvature). Let J such that J ≤ k large + 6. Under the iteration assumption (9.4.35), we have the following estimate in M 

J+1

(glo)

J , (9.6.6)

where the constant in is independent of r 0 , where (glo) J = (glo) G J + (glo) R J , and where (glo) R k and (glo) G k are the analog for the global frame of Lemma 9.6.5 of the norms of Section 9.4.1 for the PT structures of M. Remark 9.6.8. Theorem 9.6.7 is proved in a separate paper, see Theorem 13.6.3 in [START_REF] Giorgi | Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes[END_REF]. The proof relies on energy, Morawetz and r p weighted estimates for the Bianchi system.

We are now ready to prove Theorem 9.4.15.

Proof of Theorem 9.4.15. According to Theorem 9.6.7, we have, for J such that J ≤ k large + 6, 

J+1

(glo)

where the constant in is independent of r 0 . Since we have, in view of properties (a), (b) and (c) of Lemma 9.6.5, for any k ≤ k large + 7,

we deduce, for J such that J ≤ k large + 6, 

J

where the constant in is independent of r 0 . In particular, for r 0 large enough and |a| r 0 small enough, we may absorb the terms in R J+1 on the RHS which yields, for J such that J ≤ k large + 6,

where the constant in is independent of r 0 .

Next, let (f, f , λ) denote the change of frame coefficients:

• from the ingoing PT frame of (int) M to the global frame of Lemma 9.6.5 in (int) M ,

• from the ingoing PT frame of (top) M to the global frame of Lemma 9.6.5 in (top) M ,

• from ( (ext) λ (ext) e 4 , (ext) λ -1(ext) e 3 , (ext) e 1 , (ext) e 2 ) to the global frame of Lemma 9.6.5, where

Then, according to Lemma 9.6.5, we have

and, for 1

where

and

Now, using the change of frame formulas of Proposition 2.2.3, we have

Together with the control of (f, f , λ) provided by (9.6.8) and (9.6.9), and using the bootstrap assumption (9.4.21) for G k and R k , we infer, for J ≤ k large + 6,

and, for 1

Using Bianchi for ∇(glo) e 3 (glo) A, we have, for 1

In view of the above, we deduce

and

Also, using again the change of frame formulas of Proposition 2.2.3, we have

Together with the control of (f, f , λ) provided by (9.6.8) and (9.6.9), and using the bootstrap assumption (9.4.21) for G k and R k , we infer, for J ≤ k large + 6,

where we have also used the fact that (glo) r = r and (glo) J (0) = cos(θ) on M \ Match in view of Properties (a) and (b) of Lemma 9.6.5. Using in particular a trace theorem for the integral on Match(r ≤ r 0 ) ∩ Σ(τ ), we infer

.

Together with property (e) of Lemma 9.6.5, we deduce

In view of (9.6.10), this yields

Next, we use Bianchi identities to derive

Together with (9.6.12) and (9.6.11), we deduce, for

In view of (9.6.7), this yields, for J ≤ k large + 6,

J

as stated. This concludes the proof of Theorem 9.4.15.

Proof of Lemma 9.6.1

To simplify the notations, in this section, we denote

Step 3. In this step, we obtain the stated control for q Γ . To this end, we integrate the transport equations for the linearized equations of the ingoing PT structure of (int) M provided by Proposition 9.3.3 from T in the following order, taking advantage of a triangular structure:

Together with the control for q R provided by (9.6.20), we deduce, for

In view of (9.6.21), we need to control q Γ on T . According to the proof of Lemma 9.9.16, we have the following estimates on T for the ingoing PT structure of

which by iteration implies

Using the trace theorem, this yields

which implies, in view of (9.6.20),

Together with (9.6.21), we deduce, for k ≤ k large + 7, R

which is the stated estimate for q Γ .

Similarly, arguing as in Step 4 above, we infer, for 1

Step 6. To conclude the proof of Lemma 9.6.1, it remains to control u -u in the spacetime region R (1) ∩ (top) M . We first control u -ũ where

Note that

which implies

We rewrite it as

where

We have, for 1

By iteration, we deduce, for 1

Also, we have

Together with the above control of (f , f , λ ), we infer

Integrating this transport equation from {u = u * } where u = ũ in view of Section 9.1.3, we infer

Plugging in the above, we deduce, for 1

Arguing as above for u -ũ, we estimate u -ũ and obtain first, for 1

where we have used in particular the control for the extension of the ingoing PT structure of (int) M into R (1) derived in Steps 1 to 4. By iteration, we deduce, for 1

Also, arguing again as above for u -ũ, we obtain

where we have used in particular the control for the extension of the ingoing PT structure of (int) M into R (1) derived in Steps 1 to 4. Integrating this transport equation from T where u = u in view of Section 9.1.3, and where u = ũ, we infer

Plugging in the above, we deduce, for 1

In particular, since

as stated. This concludes the proof of Lemma 9.6.1.

Proof of Lemma 9.6.3

To simplify the notations, in this section, we denote

• by (e 4 , e 3 , e 1 , e 2 ) the ingoing PT frame of (int) M slightly extended into (ext) M in Lemma 9.6.1,

• by (u, r, θ) and by J respectively the triplet of scalar functions and the complex 1-form associated to the ingoing PT structure of (int) M ,

• by (e 4 , e 3 , e 1 , e 2 ) the ingoing PT structure of (top) M ,

• by (u , r , θ ) and by J respectively the triplet of scalar functions and the complex 1-form associated to the ingoing PT structure of (top) M ,

• by (f, f , λ) the change of frame coefficients from (e 4 , e 3 , e 1 , e 2 ) to (e 4 , e 3 , e 1 , e 2 ).

Recall the definition of the matching region in (9.6.2)

and that, in view of the definition of (top) M , Remark 9.6.2 and the control of u -u in Lemma 9.6.1, we also have 22

In particular, the above mentioned frames, scalars and complex 1-forms exist on Match 1 .

Let ψ be a smooth cut-off function of u such that ψ = 0 for u ≤ u * -1 and ψ = 1 for u ≥ u * . Then, we define the null frame (e 4 , e 3 , e 1 , e 2 ) on

and the quantities (r , J (0) , J ) as follows

we have (e 4 , e 3 , e 1 , e 2 ) = (e 4 , e 3 , e 1 , e 2 ), r = r , J (0) = cos(θ ), J = J .

• In

we have (e 4 , e 3 , e 1 , e 2 ) = (e 4 , e 3 , e 1 , e 2 ), r = r, J (0) = cos(θ), J = J.

• In the matching region Match 1 , (e 4 , e 3 , e 1 , e 2 ) is defined from (e 4 , e 3 , e 1 , e 2 ) using the change of frame coefficients (f , f , λ ) with

where we recall that (f, f , λ) denotes the coefficients corresponding to the change of frame from (e 4 , e 3 , e 1 , e 2 ) to (e 4 , e 3 , e 1 , e 2 ).

which concludes the proof of property (e) of Lemma 9.6.3.

Finally, the change of frame formulas of Proposition 2.2.3, the above control of the change of frame coefficients (f , f , λ ), and the control of (r -r, J (0) -cos(θ), J -J) yields, for k ≤ k large + 7,

which is property (c). This concludes the proof of Lemma 9.6.3. 9.6.5 Proof of Lemma 9.6.5

To simplify the notations, in this section, we denote

• by (e 4 , e 3 , e 1 , e 2 ) the frame of Lemma 9.6.3,

• by (r, J (0) ) and by J respectively the pair of scalar functions and the complex 1-form of Lemma 9.6.3,

• by (e 4 , e 3 , e 1 , e 2 ) the null frame associated to the outgoing PT structure of (ext) M,

• by (u, r , θ ) and by J respectively the triplet of scalar functions and the complex 1-form associated to the outgoing PT structure of (ext) M.

Recall the definition of the matching region in (9.6.3)

Note that the above mentioned frames, scalars and complex 1-forms exist on Match 2 . Also, in view of the change of frame formulas of Proposition 2.2.3, and the control of (e 4 , e 3 , e 1 , e 2 ) provided by Lemma 9.6.1 and Lemma 9.6.3, we have, for k ≤ k large + 7,

We define the following null frame (e 4 , e 3 , e 1 , e 2 ) on (ext) M

We define the linearized quantities (Γ g , Γ b ) using (r , θ ) and J , with the ingoing normalization. Let also (f, f , λ) denote the coefficients corresponding to the change of frame from (e 4 , e 3 , e 1 , e 2 ) to (e 4 , e 3 , e 1 , e 2 ). In view of the control of the change of frame coefficients in Proposition 3.6.2, Lemma 9.6.1 and Lemma 9.6.3, we have, for 1

Also, in view of Lemma 9.6.1 and Lemma 9.6.3, we have, for 1

Next, we complete the estimates (9.6.22) and (9.6.23) by considering the spacetime region Match 2 (u ≥ u * ) 23 where, in view of property (a) of Lemma 9.6.3, (e 4 , e 3 , e 1 , e 2 ) coincides with the ingoing PT frame of (top) M , and (r, J (0) = cos(θ)) and by J are the scalar functions and complex 1-form associated to the ingoing PT structure of (top) M . It thus suffices to compare the ingoing PT structure of (top) M with the outgoing PT structure of (ext) M on Match 2 (u ≥ u * ). First, as a consequence of the change of frame formulas of Proposition 2.2.3 for Ricci coefficients, we have, for 1

Also, we have, for 1

By iteration, we deduce, for 1

(9.6.24)

Next, we control the RHS of (9.6.24). Recalling that (e 4 , e 3 , e 1 , e 2 ) coincides with the ingoing PT frame of (top) M , and that (r, J (0) = cos(θ)) and by J are the scalar functions and complex 1-form associated to the ingoing PT structure of (top) M , we may thus estimate (f, f , λ) and (r -r, cos(θ ) -cos θ, J -J)

We then proceed by deriving transport equations along e 3 as in Step 1 of Section 9.6.3. Integrating these transport equations from u = u * where

in view of Section 9.1.3, we easily infer sup

where the above estimate is first derived on (ext) M(u ≥ u * ) and then restricted to Match 2 (u ≥ u * ). Pluggin in (9.6.24), we deduce, for 1

Together with (9.6.22) and (9.6.23), we infer, for 1

and sup

We are now ready to construct the global frame of Lemma 9.6.5. Let ψ be a smooth cut-off function of (r , u) such that ψ = 0 on (ext) M \ Match 2 , ψ = 1 for M \ (ext) M, and such that ψ only depends on u for r ≥ r 0 + 1. Then, we define the global null frame (e 4 , e 3 , e 1 , e 2 ) of M and the quantities (r , J (0) , J ) as follows

• In (ext) M \ Match 2 , we have (e 4 , e 3 , e 1 , e 2 ) = (e 4 , e 3 , e 1 , e 2 ), r = r , J (0) = cos(θ ), J = J .

• In M \ (ext) M, we have (e 4 , e 3 , e 1 , e 2 ) = (e 4 , e 3 , e 1 , e 2 ), r = r, J (0) = J (0) , J = J.

• In the matching region Match 2 , (e 4 , e 3 , e 1 , e 2 ) is defined from (e 4 , e 3 , e 1 , e 2 ) using the change of frame coefficients (f , f , λ ) with

where we recall that (f, f , λ) denotes the coefficients corresponding to the change of frame from (e 4 , e 3 , e 1 , e 2 ) to (e 4 , e 3 , e 1 , e 2 ).

• In the matching region Match 1 , r , J (0) and J are defined by

In view of the above definitions, properties (a) and (b) of Lemma 9.6.3 are immediate. Also, using the definition of (f , f , λ ), the fact that ψ only depends on 24 u for r ≥ r 0 + 1 and the control of (f, f , λ) in (9.6.25), we have, for 1

Also, if (f , f , λ ) denotes the coefficients of the change of frame from (e 4 , e 3 , e 1 , e 2 ) to (e 4 , e 3 , e 1 , e 2 ), we easily obtain from the above control of (f , f , λ ) and (f,

which concludes the proof of property (d) of Lemma 9.6.5.

Next, in view of the definition of r , J (0) and J in Match 1 , and the control of r -r, cos(θ ) -J (0) and J -J in (9.6.26), we have, for 1

which concludes the proof of property (e) of Lemma 9.6.5. Together with the change of frame formulas of Proposition 2.2.3, the above control of the change of frame coefficients (f , f , λ ), and the above control for (Γ b , Γ g , A, B), we infer, for k ≤ k large + 7,

which is property (c) of Lemma 9.6.5. This concludes the proof of Lemma 9.6.5.

Control of the PT-Ricci coefficients on Σ *

The goal of this section is to provide the proof of Proposition 9.4.16. For convenience, we restate the result below.

Proposition 9.7.1. The Ricci and metric coefficients of the outgoing PT frame of (ext) M verify the following estimates on Σ * , for all k ≤ k large + 7,

Recall, see Definition 5.6.1, the tangential 1-form f 0 on Σ * given by

where, on S * , we consider the orthonormal basis (e 1 , e 2 ) of S * given by (5.6.1).

Also, recall from Section 9.1.3 that we initialize the PT frame of (ext) M from the integrable frame on Σ * , by relying on the change of frame formula with the transition coefficients

In order to prove Proposition 9.7.1, we proceed as follows:

1. We first derive analogous estimates for the integrable frame of Σ * in Section 9.7.1.

2. Then, we derive estimates for the 1-form f 0 on Σ * in Section 9.7.2.

Using a Poincaré inequality on S, the fact that ∇(C 0 ) = 0 and ∇(C (p) ) = 0, (9.7.6), and the following commutator formula of Lemma 5.1.20

we easily obtain

Then, coming back to the above identity for ν k ( | trχ), multiplying it respectively with 1 or J (p) , and integrating on S, we easily obtain, using the properties of J (p) in Lemma 5.2.8, for k ≤ k large + 8,

.

Together with the above estimate for | trχ, and the one of Step 6 for ( | trχ) =1 , we infer

Step 7c. We finally control d k * | trχ. First, the above identity for ν k ( | trχ) and the above control of ν k (C 0 ) and ν k (C (p) ) implies

Next, to recover the other derivatives, we rely on Corollary 5.2.9 which yields

Together with the above estimate for | trχ, and the one of Step 6 for ( | trχ) =1 , we infer

Also, differentiating the above identity for ν k ( | trχ), and since ∇(C 0 ) = ∇(C (p) ) = 0, we have

Using the above commutator formula for [∇ ν , ∇], (9.7.6), and the control for d * / 2 d * / 1 J (p) of Step 4, we infer

and hence

Together with the above estimate for ν k ( | trχ), we deduce

(9.7.12)

Step 8. In view of the definition of µ, we have

Together with (9.7.6) and the control of ν k (div ζ) =1 in Step 5, we infer

Next, as in Step 5, we use the fact that ν = e 3 + b * e 4 and the Bianchi identities, as well as the commutator Lemma 5.1.20, to derive

Plugging in the above and integrating the angular derivatives by parts to avoid a loss of derivatives, we infer

Step 9. In view of the proof of Proposition 5.4.7, the average of q µ is given by

which together with the control of m H -m in Step 7a implies

Also recall the GCM condition for µ on Σ *

In view of the above formula for q µ on Σ * , the above control of q µ, and the estimate for (q µ) =1 in Step 8, the control of q µ is completely analogous to the one of | trχ in Step 7, and we infer the corresponding estimate

(9.7.13)

Step 10. Next, recall that we have

In view of (9.7.6) and the control of q µ in Step 9, as well as the commutator Lemma 5.1.20, we infer

which together with the elliptic estimate of Lemma 5.1.27 implies

To control ∇ k+1 ν ζ, we come back to the above system and differentiate it w.r.t. ∇ k+1 ν . We obtain

where h k+1 satisfies, in view of (9.7.6) and the control of q µ in Step 9, as well as the commutator Lemma 5.1.20,

Next, as in Step 5, we use the fact that ν = e 3 + b * e 4 and the Bianchi identities, as well as the commutator Lemma 5.1.20, to derive

Plugging in the above, and using the above estimate for h k+1 , we infer

Using the ellipticity of (r d / 1 ) -1 d / on the spheres S, this yields

Together with the above estimate for d

Step 11. Using Codazzi for χ, (9.7.6), the control of Step 1 for | trχ, and the control of Step 10 for ζ, as well as the commutator Lemma 5.1.20, we have

which together with the elliptic estimate of Lemma 5.1.27 implies

Note that this is not yet the desired control for χ as we still need to recover ∇ k+1 ν χ which will be done in Step 15.

Step 12. Using Codazzi for χ, (9.7.6), the control of Step 7 for | trχ, and the control of Step 10 for ζ, as well as the commutator Lemma 5.1.20, we have

which together with the elliptic estimate of Lemma 5.1.27 implies

Note that this is not yet the desired control for χ as we still need to recover ∇ k+1 ν χ which will be done in Step 15.

Step 13. Recall the equation for d / 2 d * / 2 η derived in Proposition 5.1.22

We infer

where h k satisfies in view of (9.7.6), the estimate of Step 1 for | trχ and of Step 10 for ζ, and the commutator Lemma 5.1.20,

Using the ellipticity of (r d / 2 ) -1 d / ≤1 on the spheres S, and the elliptic estimate for d * / 2 of Lemma 5.1.28, we infer

Together with the above estimate for h k and the dominance condition for r on Σ * , this yields

Since d / 1 = (div , curl ), and using the null structure equation curl η = * ρ-1 2 χ∧ χ, (9.7.6), and the commutator Lemma 5.1.20, we infer

Together with the GCM condition (div η) =1 = 0 on Σ * , the fact that ν is tangent to Σ * , (9.7.6), and Corollary 5.2.3, we finally obtain

(9.7.17)

Step 14. Recall the equation for d / 2 d * / 2 ξ derived in Proposition 5.1.22

We infer

where h k satisfies in view of (9. 

Definition 9.7.7. We denote by (Σ * ) Γ b and (Σ * ) Γ g the set of linearized quantities below

where | trχ, χ, ζ, η, | trχ, χ, q ω, ξ are the Ricci coefficients of the integrable frame of Σ * .

Corollary 9.7.8. We have on Σ * , for k ≤ k large + 7,

Proof. This is an immediate consequence of Proposition 9.7.5 and Lemma 9.7.6.

Proof of Proposition 9.7.1

Throughout this section, to avoid confusion between the integrable frame of Σ * and the outgoing PT frame of (ext) M:

• the frame and quantities associated to the integrable frame of Σ * are denoted without prime,

• the frame and quantities associated to the outgoing PT frame of (ext) M are denoted with prime.

Recall that we have in the outgoing PT frame on

while the integrable frame of Σ * satisfies the transversality conditions (9.7.2), i.e.

Recall also that J satisfies on

We denote:

i.e. q Γ contain all the linearized Ricci coefficients of the PT frame of (ext) M. Also, we denote for convenience (Σ * ) Γ b and (Σ * ) Γ g of Definition 9.7.7 simply by Γ b and Γ g . In particular, we have in view of (9.7.30)

and in view of Corollary 9.7.8

With these notations, recall from Lemma 5.7.8 the following consequence of the change of frame formulas of Proposition 2.2.3

Together with the form of (f , f , λ ) in Lemma 9.7.10 and the asymptotic for large r of the Kerr values of the PT frame, we infer

Lemma 9.7.14 is then an immediate consequence of the above identities, the above control of q Γ and Γ b , the control of ∇ ⊗f , ∇ ν f , ∇ ν f and ν(log λ ) provided by Lemma 9.7.11, and the dominant condition for r on Σ * .

Step 4. We prove the following lemma. Lemma 9.7.15. The following estimates hold true, for k ≤ k large + 7,

Proof. We use again the notations q Γ , Γ b and Γ g of Lemma 9.7.14. Then, we have in view of Lemma 5.7.8 the following consequence of the change of frame formulas of Proposition 2.2.3

Together with the form of (f , f , λ ) in Lemma 9.7.10 and the asymptotic for large r of the Kerr values of the PT frame, we infer

Lemma 9.7.15 is then an immediate consequence of the above identities, the control of ( χ , q η , Ξ , q ω ) in Lemma 9.7.14, the control of q Γ and Γ b recalled in Lemma 9.7.14, the control of ∇ ⊗f , ∇ ν f , ∇ ν f and ν(log λ ) provided by Lemma 9.7.11, and the dominant condition for r on Σ * .

The proof of Proposition 9.7.1 follows immediately from Lemmas 9.7.12-9.7.15 above.

Estimates for transport equations

We shall make use of the following divergence lemma in (int) M * . Lemma 9.9.8 (Divergence Lemma in (int) M * ). Consider a vectorfield X in (int) M and the region (int) M * = (int) M ∩ {τ ≤ τ * }. We have,

where N is the exterior unit normal to each portion of the boundary.

Proof. This follows immediately from the standard divergence lemma and the fact that the region (int) M * has the boundary

Next we state an application of the divergence theorem to transport equations. Lemma 9.9.9. Suppose Φ and F are two anti-selfdual horizontal tensors of the same type satisfying

Then, we have on (int) M * , for any real number p,

.9.20) Remark 9.9.10. Recall that r ≤ r 0 on (int) M so that powers of r are a priori irrelevant. They will be however useful in Proposition 9.9.11 to produce an arbitrary large positive bulk term on the LHS, by choosing p large enough in (9.9.20), to allow to absorb terms on the RHS. This is analogous to the use of a Gronwall lemma for the transport equation (9.9.19).

Proof. Let p a real number. In view of Lemma 9.9.3, we have

Also, we have, since e 3 (|q|) = -r |q| ,

Proposition 9.9.12. Given U is an anti-selfdual horizontal symmetric traceless 2-tensor, we have the estimate

Proof. We rely on the following identity.

Lemma 9.9.13. Given a horizontal structure, and given U is an anti-selfdual horizontal symmetric traceless 2-tensor, the following point-wise identity holds 29

(9.9.24)

Proof. See Proposition 2.1.47 in [START_REF] Giorgi | Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes[END_REF].

We rewrite Lemma 9.9.13 schematically in (int) M.

Corollary 9.9.14. We have for an anti-selfdual horizontal symmetric traceless 2-tensor

Proof. In view of the following simple calculation for an anti-selfdual 1-form V

this follows immediately from Lemma 9.9.13.

We next integrate (9.9.25) in (int) M * and apply the divergence lemma to derive

(a) trχ (a) trχ-ρ+Γ g •Γ b is a non-integrable version of the Gauss curvature appearing in section 2.1.4 of [START_REF] Giorgi | Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes[END_REF].

we infer 31 

In view of the definition of (ext) G k , we have

We thus infer

where d ≤k denote tangential derivatives to T . Since d is generated by e 3 and d, we obtain

Concerning the linearized metric coefficients, we consider

and apply to both sides of these identities the tangential vectorfields X to T as above.

Then, proceeding similarly to the linearized Ricci coefficients 32 , we obtain on T relations between the linearized metric coefficients on (int) M and (ext) M, which then, together with the above control for linearized Ricci coefficients, yields

Arguing by iteration on k, we deduce, for k ≤ k large + 7,

Together with (9.4.23), we infer, for k ≤ k large + 7,

as desired.

9.9.6 Proof of Proposition 9.9.2

We are now ready to control (int) G k for k ≤ k large + 7.

Iteration assumption

Note first from (9.4.23) that we have

0 . (9.9.28)

This allows us to prove Proposition 9.9.2 by iteration. To this end, consider the following iteration assumption

In view of (9.9.28), (9.9.29) holds for k = k small -1. From now on, we assume (9.9.29) for k small ≤ k ≤ k large + 7. The proof of Proposition 9.9.2 will follow from proving (9.9.29) for k replaced by k + 1.

Control on (int) M \ (int) M * and on 1 ≤ u ≤ 2

We start with controlling the solution in {1 ≤ u ≤ 2} and in (int) M \ (int) M * . Note from the definition of (int) M * = {τ = τ * } and τ * , see Definition 9.3.9, and the properties of the scalar function τ constructed in Proposition 9.3.5 that we have

.9.30)

Together with the notation q Γ k [ X] = d k } trX, we deduce, for k ≤ k large + 7,

as stated. This concludes the proof of Corollary 9.9.18.

Recall from Proposition 9.9.7 and Corollary 9.9.18 that q Γ k [Φ] given for each component of q Γ by

, e 4 (cos θ) .

(9.9.42)

We now proceed as follows to control q Γ on (int) M * . We use (9.9.39) to control all the components in q Γ\{ X} and (9.9.40) to control X. The components of q Γ are then recovered in the following order, suggested by the triangular structure in (9.9.42),

The crucial point of this triangular structure is that at each step, when estimating a component Φ on q Γ, all the components in the term q Γ k [Φ] on the RHS have been already estimated. We easily obtain, for k ≤ k large + 7, Remark 9.10.5. In view of (9.10.13) and (9.10.14), (top) M is in fact a local existence type region.

We introduce the following norms on

which allow us to state a first propagation lemma.

Proposition 9.10.6. Let U and F anti-selfdual k-tensors. Assume that U verifies one of the following equations, for a real constant c,

.10.16)

In both cases we derive, for any c , and for any r

where the constant in the definition of is independent of r 0 .

Proof. Note first that we have for any

whose proof is completely analogous of the one of Proposition 9.8.2. The stated estimate follows then by multiplying by r c -c+1 and by noticing that r ≤ r 1 ≤ r + 2(2m + 1) in view of (9.10.13).

Control of (top) M(r ≥ r 0 )

In the region (top) M(r ≥ r 0 ), we proceed as follows:

1. We rely on the transport equation in e 3 of the ingoing PT structure of (top) M for the linearized Ricci and metric coefficients, see Proposition 9.3.3.

2. We control the transport equations using the first estimate of Corollary 9.10.7 according to which, for U satisfying a transport equation with RHS F , there holds, for any c , sup

+ sup

where the constant in the definition of is independent of r 0 .

3. We control the first term of the RHS of (9.10.20), i.e. the term involving the control of U on {u = u * }, thanks to Proposition 9.10.4 on the control of the linearized Ricci and metric coefficients of the ingoing PT frame of (top) M on {u = u * } by L * (k).

4. We control the second term on the RHS of (9.10.20), i.e. the term involving the control of F on (top) M r 0 ,u 1 , using:

(a) The bootstrap assumption (9.10.5) to control the quadratic terms.

(b) The definition of the norm (top) R k to control the curvature terms.

(c) The triangular structure to control the linear terms involving the Ricci and metric coefficients. More precisely, we need the linear terms appearing on the RHS of the estimate of any given Ricci or metric coefficient to be already under control. As in Section 9.9.6, this is possible by estimating the quantities in the following order

The above scheme yields the desired estimate in (top) M(r ≥ r 0 ), i.e.

where the constant in is independent of r 0 . Since the proof is reminiscent 36 of the strategy used both in (ext) M, see Section 9.8.2, and (int) M, see Section 9.9.6, we leave the details to the reader.

Control of (top) M(r ≤ r 0 )

In the region (top) M(r ≤ r 0 ), the control on solutions of transport equations given by (9.10.20) is replaced by the second estimate of Corollary 9.10.7 according to which, for U satisfying a transport equation with RHS F , there holds, for any c ,

Then, the proof in the region (top) M(r ≤ r 0 ) follows the same steps as the one in the region (top) M(r ≥ r 0 ) and we finally obtain

Again, since the proof is reminiscent 37 of the strategy used in (int) M, see Section 9.9.6, we leave the details to the reader. This concludes the proof of Proposition 9.10.1.

Appendix A Proof of results in Chapter 2

A.1 Proof of Corollary 2.2.4

We start with the equation for f . Assuming that ξ = 0, we have 

Now, in view of the form of Err(η, η ) and Err(ζ, ζ ), and since ξ = 0, we have

where

as stated. This concludes the proof of Corollary 2.2.4.

A.2 Proof of Corollary 2.2.5

The first three identities, i.e.

above identities for λ -1 e 4 (q) and λ -1 e 4 (q), we have, using also e 4 (e 3 (r)) = -2ω,

We infer

where E 5 (∇ ≤1 f, f , ∇ ≤1 λ, D ≤1 Γ) is given by

as stated. This concludes the proof of Corollary 2.2.5.

A.3 Proof of Proposition 2.4.29

In the following lemma, we prove refined asymptotic for tr χ , and tr χ which will be used in the proof of Proposition 2.4.29 below.

Lemma A.3.1. We have, for large r,

Proof. We write, making use of the transformation formulas in Proposition 2.2.3,

Also, recall from Lemma 2.4.27 the following asymptotic:

• We have f 1 = f 1 = 0, and

• We have,

Together with the asymptotic for the outgoing principal frame of Kerr, Corollary 2.4.26, we deduce

Since the area radius r of S(u, r) verifies, in view of Lemma A.3.2,

and since we have by definition

we deduce

Since the O(r -3 ) terms in the expansion of } tr χ and } tr χ do not depend on ϕ, and in view of the form of J (+) and J (-) , we immediately deduce that

It remains to consider the case p = 0. In view of (A.3.2) and the form of J (0) , this case follows from the calculation π 0 1, (cos θ) 2 , (sin θ) 2 cos θ sin θdθ = (0, 0, 0).

This concludes the proof of Proposition 2.4.29.

A.4 Proof of Proposition 2.6.10

We decompose the proof in the following steps.

Appendix B Proof of results in Chapter 5

The proofs in this section rely on the the linearized null structure and null Bianchi identities of Proposition 5.1.18.

B.1 Proof of Proposition 5.1.22

We proceed as follows.

Step 1. Recall from Proposition 5.1.18 the linearized the null structure equation for

which is the first stated identity of the proposition.

Step 2. We make use of the equations for κ and curl η in Proposition 5.1.18
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Recalling that d / 1 = (div , curl ), we rewrite in the form

Next, recall that for a pair of scalar functions (f, h), d * / 1 (f, h) = -∇f + * ∇h. Hence

Now, in view of Lemma 5.1.12, we have

where we have also used y = -Υ + rΓ b . We infer

We make use the commutation formula of Lemma 5.1.19 in the particular case of a scalar

Making use of the equations

Hence,

and therefore,

We now make use of Step 1 to substitute ∇ω and deduce

as stated.

Step 3. We start with the equation

which we write in the form

We also have

Hence,

Plugging the identity ∇q y = -ξ

Next, as in Step 2, we have

Using the equations for ∇ 3 q κ and ∇ 4 q κ, we infer

Therefore

Making use of

Step 1 to substitute ∇ω we deduce

This ends the proof of Proposition 5.1.22.

B.2 Proof of Proposition 5.1.23

We start with the following identity of Proposition 5.1.22

Making use of the commutation formulas of Lemma 5.1.20, we have

Since the null structure equations for

and hence

Next, recalling that

and hence

From Proposition 5.1.18, we have on Σ *

which, together with the commutation formulas of Lemma 5.1.20, implies

Also, we have in view of Proposition 5.1.18

We deduce

and hence

as desired.

Next, we focus on the second identity. We consider the following identity of Proposition 5.1.22

Recall from above that we have

Also, since the null structure equations for ∇ 3 q κ and ∇ 4 q κ on Σ * imply ∇ 4 q κ = r -1 d / ≤1 Γ g and ∇ 3 q κ = r -1 d / ≤1 Γ b , and making use of the commutation formulas of Lemma 5.1.20, we infer, arguing as for the commutator

and hence

Now, recall from above that we have

We deduce

Also, we have

and hence

Now, from Proposition 5.1.18, we have

Γ b on Σ * , which, together with the commutation formulas of Lemma 5.1.20, implies

and hence

as stated. This concludes the proof of Proposition 5.1.23.

B.3 Proof of Lemma 5.1.25

Below, recall that the notation O(r a ), for a ∈ R, denotes an explicit function of r which is bounded by r a as r → +∞.

First identity. We start with the following equation, see Proposition 5.1.18,

Commuting the first equation with the Laplacian we deduce

According to Lemma 5.1.20, we have

and, using again the equation for ∇ 3 κ,

Thus

To remove the term involving ∆ω, we consider the null structure equation for ζ in the form

Differentiating w.r.t. div , and using the commutation

we obtain

from which we easily deduce

Combining this with the previous identity (B.3.1), we deduce

Similarly, proceeding as above, starting with the following equations, see Proposition 5.1.18,

we deduce

Also, using

and differentiating w.r.t. div , we have

and hence

Combining, we obtain

Since

we infer from the above

as stated.

Identities 2 and 3. We have, see Proposition 5.1.18,

Taking the divergence and the curl, we infer

According to Lemma 5.1.20, using the equation for ∇ 3 β and ∇ 4 β,

Hence

Since curl η = * ρ + Γ b • Γ g , we infer

Also, we have

Taking the divergence and the curl, we infer

According to Lemma 5.1.20, using again the equation for ∇ 3 β and ∇ 4 β,

Hence

Since ν = e 3 + b * e 4 and b * = -1 -2m r + rΓ b , we infer

Identity 4. We have, see Proposition 5.1.18,

Also, using the equation for χ and χ, we have

Hence, we deduce

Also, we have

where by d * / 1 J (p) , we mean d * / 1 (0, J (p) ).

Finally, recall from Lemma 5.1.25 that we have along Σ *

Together with (B.4.1), and noticing that the terms O(r a ) only depend on r and are thus constant on S, we infer

Next, recalling from the above that

we write, using also integration by parts,

Together with the GCM conditions (div η) =1 = 0 and (div ξ) =1 = 0, we infer

Next, we use the null structure equation for ∇ e 3 X of Proposition 2.1.8 and the Bianchi identities for ∇ e 3 B and ∇ e 3 A of Proposition 2.1.9 according to which we have

where we recall that O(r a ) denotes, for a ∈ R, a function of (r, cos θ) bounded by r a as r → +∞. We infer

and hence

This yields in particular

Next, we deduce an identity in the second frame of (ext) M, i.e. in the frame (e 1 , e 2 , e 3 , e 4 ). In view of (B.5.1), the change of frame coefficients (f , f , λ ) from (e 1 , e 2 , e 3 , e 4 ) to (e 1 , e 2 , e 3 , e 4 ) satisfy

Together with the transformation formulas of Proposition 2.2.3, we obtain

and hence

Next, we deduce an identity in the frame of (ext) M, i.e. in the frame (e 1 , e 2 , e 3 , e 4 ). Recall that the change of frame coefficients (f , f , λ ) from (e 1 , e 2 , e 3 , e 4 ) to (e 1 , e 2 , e 3 , e 4 ) satisfy in particular f = 0 and λ = 1, see (B.5.2). Together with the transformation formulas of Proposition 2.2.3, we obtain

We deduce

Finally, we derive an identity in the frame of Σ * , i.e. in the frame (e 1 , e 2 , e 3 , e 4 ). Recall that the change of frame coefficients (f, f , λ) from (e 1 , e 2 , e 3 , e 4 ) to (e 1 , e 2 , e 3 , e 4 ) satisfy in particular λ = 1, as well as f = O(r -1 ) and f = O(r -1 ) + Γ b , see (B.5.4). Together with the transformation formulas of Proposition 2.2.3, we obtain

We deduce

As Γ b and Γ g , r -1 f , satisfy for k ≤ k * the same estimates as Γ b , respectively Γ g , we write, by a slight abuse of notations

Since we have

which is the desired identity (5.1.57).

B.5.2 Proof of (5.1.58) Recall (B.5.9)

We multiply by r and differentiate w.r.t. ∇ e 3 . Using e 3 (r) = -1 + rΓ b and

we infer

Next, we use the null structure equation for ∇ e 3 X of Proposition 2.1.8 and the Bianchi identity for ∇ e 3 P of Proposition 2.1.9 according to which we have

and hence

Since D (q) = O(r -1 ) + rΓ g , we have

and thus

As in the above proof of (5.1.57), we now come back to the frame of Σ * . First, since f = 0, f = 0, and λ = 1 + O(r -1 ), we have, together with the transformation formulas of Proposition 2.2.3,

and hence

Next, since f = 0 and λ = 1, we have, together with the transformation formulas of Proposition 2.2.3,

We deduce

Finally, since λ = 1, as well as f = O(r -1 ) and f = O(r -1 ) + Γ b , together with the transformation formulas of Proposition 2.2.3, we have

We infer

As Γ b and Γ g , r -1 f , r -1 q, satisfy for k ≤ k * the same estimates as Γ b , respectively Γ g , we write, by a slight abuse of notations

Since we have

we infer

which is the desired identity (5.1.58). This concludes the proof of Proposition 5.1.26.

B.6 Proof of Lemma 5.6.7

Let the orthonormal basis (e 1 , e 2 ) of S * given by (5.6.1), i.e.

In order to prove Lemma 5.6.7, we will need the following simple lemma.

Lemma B.6.1. On S * , for (e 1 , e 2 ) given by (5.6.1), we have 

as stated.

We are now ready to prove Lemma 5.6.7. We start with the identities for f 0 . We have

as stated. Also, we have

Next, we consider the identities for f + . We have

as stated. Also, we have

as stated.

Finally, we consider the identities for f -. We have

Proof of results in Chapter 6

C.1 Proof of Lemma 6.1.15

The proof relies on the null structure equations and Bianchi identities of Proposition 6.1.9, the definition of the linearized quantities and of Γ g and Γ b in Section 6.1.2, the notation O(r -p ) made in Definition 6.1.3, the fact that a and m are constants, and the following identities e 4 (r) = 1, e 4 (θ) = 0, ∇ 4 J = -1 q J, e 4 (q) = 1, e 4 (q) = 1, ∇(r) = 0, where we used in particular the fact that q = r + ai cos θ and q = r -ai sin θ.

We start with the equation for } trX. Recall

Since e 4 (q) = 1, we infer

We infer

Next, recall that

which we rewrite

We infer

Now, using J • J = 2(sin θ) 2 |q| 2 , we have 1 2

and hence

We infer

Next, recall

We infer

Now, we have

and hence

Finally, recall

We infer

Now, we have

and hence

This concludes the proof of Lemma 6.1.15.

6.1.12 to deduce

Corollary C.4.2. For all J = J (p) , we have

Proof. Recall that we have

Our goal is to prove the following three identities

First identity. To check

we start with, see Lemma 6.1.15,

The goal is to eliminate the presence of B and X on the RHS. We first combine the two as follows

To eliminate (qq)B we make use of the equation

To eliminate a q 2 -rq |q| 2

J • X we make use of

We infer, using also ∇ 4 J = -q -1 J, J = O(r -1 ) and q -q = O(1),

Combining the above three identities we deduce

Second identity. To check

we start with the equation, see Lemma 6.1.16,

We infer

Summing with the previous identity, we infer

To eliminate the term in D • B we make use of the equation

Differentiating w.r.t. D•, we infer

and hence

We then compute

It remains to eliminate the term in X. To do this we write

. Summing with the previous identity above, we infer that

as stated. This concludes the proof of Proposition 6.3.2.

C.6 Proof of Lemma 6.3.5

The goal of this section is to prove the following identity

where the D is taken with respect to the integral frame (e 1 , e 2 ) adapted to S(u, r), see Section 6.2.1, and where the error term has the following structure

Step 1. We start with the following lemma.

Lemma C.6.1. We have

Step 2. Next, we prove the following lemma.

Lemma C.6.2. The following holds true, with ∇ the covariant derivative on S(u, r) and D the corresponding complex operator,

as desired. This concludes the proof of Corollary C.6.3.

Step 4. Next, we derive the following lemma.

Lemma C.6.4. We have

Proof. The proof follows immediately by combining the following three identities

and

Thus, from now on, we focus on the proof of (C.6.2), (C.6.3) and (C.6.4). To prove (C.6.2), we write

as stated in (C.6.3).

Next, to prove (C.6.4), we write

(C.6.5)

Next we make use of the following identity

Using (C.6.6), the identity (C.6.5) becomes

which we rewrite in the form

as stated in (C.6.4).

It only remains to check the identity (C.6.6). Since B = β + i * β and J 2 = -iJ 1 , we have

and applying it to V = J ⊗B we obtain

We deduce

Since e 4 (r) = 1 and e 1 (r) = e 2 (r) = 0, we infer

and hence

which yields

and hence

Using the Bianchi identity for ∇ 3 B, i.e.

as desired. This concludes the proof of Corollary C.6.5.

Step 6. Next, we derive the following lemma.

Lemma C.6.6. For a complex horizontal 1-form U , we have Proof. We compute, using e 1 (r) = e 2 (r) = 0,

Since ∇ 4 (qJ) = 0, and, for a complex 1-form U ,

Inserting this on the right hand side of (C.6.8), since e 1 (r) = e 2 (r) = 0, we deduce 

as desired. This concludes the proof of the Lemma 6.3.5.

Appendix D

Proof of results in Chapter 9

D.1 Proof of Proposition 9.2.6

Recall that we have

We infer

and since e 4 (q) = 1, we deduce

as desired.

Next, recall

We infer Also, we compute ∇ 4 (qJ ). Since e 4 = e 4 , q = q, and ∇ 4 (q J ) = 0, we have 0 = ∇ 4 (q J ) a = e 4 (q J a ) -g(D where we used the fact that ξ = 0, we infer ∇ 4 (qJ ) = 0 on (ext) M. Hence, since ∇ 4 (qJ) = 0, we deduce on (ext) M ∇ 4 q(J -J ) = 0.

D.3.1 Setting in Kerr

Let r 0 m a fixed large constant. In the Boyer-Lindquist coordinates, we introduce u := t - The following lemma will be useful. Proof. We compute D P (r) = 4(r 2 + a 2 ) 2 -4a 2 ∆ = 4 r 4 + 2a 2 r 2 + a 4 -a 2 (r 2 -2mr + a 2 ) = 4 r 4 + a 2 r 2 + 2a 2 mr so that D P (r) > 0 for any r > 0. In particular, for r > r + , since ∆ > 0 in this case, P is a second order polynomial in X, and hence, P has two distinct roots X ± (r) given by

Note that we may rewrite X -(r) and X + (r) as X -(r) = -r 2 + a 2 ∆ -√ r 4 + a 2 r 2 + 2a 2 mr ∆ , X + (r) = -a 2 r 2 + a 2 + √ r 4 + a 2 r 2 + 2a 2 mr .

Also, for r > r + , since ∆ > 0, we have P (X) < 0 if and only if X -(r) < X < X + (r) as desired.

Lemma D.3.8. For r large, we have the following expansions

Proof. For r large, we have the expansions For r > r + , we infer

Also, we have for r + -δ H ≤ r ≤ r + P (f 1 (r)) = -|∆|(f 1 (r)) 2 + 2(r 2 + a 2 )f 1 (r) + a 2 ≤ 2(r 2 + a 2 ) -m 2 r 2 + a 2 ≤ -2m 2 + a 2 ≤ -m 2 . Thus, we have for r ≥ r + -δ H P (f 1 (r)) ≤ -m 2 4 .

Next, we derive an upper bound for P (f 2 (r)) when r ≥ r 0 . Recall that we have for r large the following expansions

2. f (r) = f 2 (r) for r ≥ r 0 + m.

3. For all r ≥ r + -δ H , τ := u + f (r) verifies g(Dτ, Dτ ) ≤ -m 2 + 4a 2 (cos θ) 2 4|q| 2 < 0 so that the level sets of τ are spacelike in r ≥ r + -δ H .

Proof. Recall from Lemma D.3.9 that 1. We have, for all r ≥ r + -δ H , f 1 (r) > f 2 (r).

2. there exists a unique solution r 1 ≥ r + -δ H of f 1 (r 1 ) = f 2 (r 1 ).

3. We have r 1 ∈ (r 0 , r 0 + m).

4. For r + -δ H < r < r 1 , we have f 1 (r) < f 2 (r), and for r > r 1 , we have f 1 (r) > f 2 (r).

We deduce the existence of a smooth function f on r ≥ r + -δ H such that 1. f (r) = f 1 (r) for r + -δ H ≤ r ≤ r 0 .

2. f (r) = f 2 (r) for r ≥ r 0 + m.

3. For all r 0 ≤ r ≤ r 0 + m, f (r) verifies

It remains to check the property of the level sets of τ = u + f (r). From the above properties of f , we have, for all r ≥ r + -δ H P (f (r)) ≤ -m 2 4 and hence ∆(f (r)) 2 + 2(r 2 + a 2 )f (r) + a 2 ≤ -m 2 4 .