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Abstract

This paper investigates the dynamic behavior of a Van der Pol oscillator (used as an archetypal
self-sustained oscillator) coupled to a bistable nonlinear energy sink (BNES). We first show using
numerical simulations that this system can undergo a multitude of motions including different
types of periodic regimes and so-called strongly modulated responses (SMR) as well as chaotic
regimes. We also show that a BNES can be much more efficient than a classical cubic NES but this
is not robust since a little perturbation can switch the system from harmless to harmful situations.
However, even in the most unfavorable cases, it is possible to find a set of parameters for which
the BNES performs better than the NES.

A multiple time scales approach is then addressed to analyze the system. In this context, we
show that the so-called Multiple Scale/Harmonic Balance Method (MSHBM) must be modified
(compared to its usual use) to consider the specific feature of the BNES, i.e., that it can have a
nonzero-mean oscillating motion. This allows us to derive a so-called amplitude-phase modulation
dynamics (APMD) which can reproduce the complex behavior of the initial system. Because of the
presence of a small perturbation parameter (i.e., the mass ratio between the BNES and the VdP
oscillator), the APMD is governed by two different time scales. More precisely, it appears as a (3,1)-
fast-slow system whose motion is constituted in a succession of slow and fast epochs. Founding a
(3,1)-fast-slow APMD is interesting since that implies a more complex dynamics than in the case
of a classic NES whose APMD is only (2,1)-fast-slow. A fast-slow analysis is finally conducted
within the framework of the geometric singular perturbation theory. From the computation of
the so-called critical manifold and the analytical expressions of the APMD fixed points, a global
stability analysis is performed. This enables us to interpret a certain number of regimes observed
on numerical simulations of the initial system.

Keywords: Passive vibration control, Bistable nonlinear energy sink, Self-sustained oscillations,
Fast-slow analysis, Critical manifold

1. Introduction

The well-known nonlinear energy sinks (NESs) are nonlinear vibration absorbers used for
passive mitigation of unwanted oscillations caused by either free, external, parametric or self-
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excitations of a mechanical or acoustical system referred to as the primary structure. In most
cases, an NES is a light mass (compared to the total mass of the primary structure) nonlinear at-
tachment consisting of an essentially nonlinear spring (most of the time purely cubic) and a viscous
linear damper. The dependence between the vibratory amplitude and the oscillating frequency of
the NES (because of its strongly nonlinear nature) makes it able to resonate at any frequency.
After tuning to the primary structure and absorbing and dissipating its energy, the NES can de-
tune to prevent the energy from returning. This irreversible transfer of vibrational energy from
the primary structure to the NES is called targeted energy transfer (TET) or energy pumping
to the primary structure. In the seminal papers by Gendelman, Vakakis et al. [1, 2] the TET
phenomenon is explained by the interaction between two nonlinear normal modes of vibration of
the system producing a 1:1 resonance capture. Reviews of these concepts can be found in [3].

More recently, the bistable NES (BNES) consisting of a small mass connected to the primary
structure by a spring with a negative linear stiffness and a nonlinear (cubic) stiffness [4, 5] has
been introduced. These negative linear and nonlinear stiffness components can be realized for
example through the geometric nonlinearity of the transverse displacement of pre-compressed linear
springs [6] or considering the transverse vibration of a thin viscously damped fixed-fixed beam with
a small mass fixed at its centre when buckled under axial constraint [7, 8, 9]. Most studies about
BNESs consider either mitigation of free vibrations or vibrations caused by external harmonic
forcing. The seminal papers [4, 5] relate to mitigation of free vibrations. Romeo et al. shows that
BNES can produce TET even at low energies, in contrast to the classic cubic NESs. From an
analytical method, Habib and Romeo [10] propose a procedure to tune and optimize a BNES to
mitigate free vibration of a two-degree-of-freedom (2-dof) primary structure. Dekemele et al. [11]
present an analytical study of the tuning and the performance of a BNES again in the context of
mitigation of free vibrations. Mattei et al. [7] and Iurasov and Mattei [8] study both numerically
and experimentally the mitigation of forced vibrations by a beam-based BNES. An adapted semi-
analytical method to predict the energy pumping time of a BNES under harmonic forcing is
proposed by Wu et al. [12]. The vibration reduction performance of a BNES and an NES is
compared, by Wand et al. [13] and the results show that the BNES performs over the full frequency
band.

Using a cubic NES to mitigate limit cycle oscillations (LCOs) resulting from dynamic instabili-
ties has been extensively studied in the literature. Mitigation of LCOs of the Van der Pol oscillator
has been studied numerically by Lee et al. in their seminal paper [14] and then analytically by
Gendelman and Bar [15]. A number of works focus on mitigation of flutter instabilities in aircraft
wings. This problem has been first studied both numerically and experimentally, again by Lee.
et al. [16, 17, 18]. The theoretical prediction of observed operating regimes has been performed
by means of multiple time scales approaches [19, 20] and improved more recently using the center
manifold reduction technique [21]. The possibility of mitigating self-sustained oscillations of a lin-
ear friction system having two unstable modes has been studied by Bergeot et al. [22] by means
of a sophisticated multiple time scales analysis allowing the understanding of the phenomena un-
derlying the appearance of the many possible regimes of the system. Effect of stochastic forcing
on the dynamic behavior of a self-sustained oscillator coupled to a nonlinear energy sink has been
investigated in [23]. On the contrary, the use of a BNES to mitigated self-sustained vibrations is
poorly addressed in the literature. To the best of the authors’ knowledge, the only paper deal-
ing with this subject is by Franzini et al. [24]. It presents numerical and analytical studies for a
BNES-based device used to simultaneously alleviate the unwanted vibrations caused by a galloping
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phenomenon and perform electro-mechanical energy conversion by the piezoelectric effect.
In general, when an NES is attached to a primary structure, the resulting coupled model is

analyzed by introducing a small perturbation parameter related to the mass ratio between the
NES and the primary structure. It is customary to study the dynamic behavior of the system in
the neighborhood of this 1:1 resonance capture. In general, the system is simplified by averaging
it over a natural period of the primary structure using the so-called Complexification-Averaging
Method (CAM) [25, 3] or the Multiple Scale/Harmonic Balance Method (MSHBM) [26, 27]. The
resulting system, called here amplitude-phase modulation dynamics1 (APMD), is then analyzed by
means of singular perturbation techniques (by multiple scales methods [28] or geometric singular
perturbation theory [29]). The first key point of these analytical processes is the partitioning of the
APMD into two time scales (one slow and one fast2). In this representation the time evolution of the
APMD is thus described as a succession of slow and fast epochs which are analyzed independently.
The second key point is the definition of the so-called critical manifold3 whose system trajectories
converge during slow epochs.

Some of the work mentioned above on the analytical study of energy pumping by a BNES
follows this multiple time scales based methodology (or fast-slow analysis). However, in these
studies, the CAM (or MSHBM) is used in the same way as if we were considering a classical NES,
i.e., assuming that the BNES motion has the form of a zero-mean oscillating regime. This forgets
one essential feature a bistable system motion, it can have a nonzero-mean. The resulting analysis
can therefore only partially explain the dynamic behavior of the system, in particular for chaotic
and intra-well motions of the BNES.

In the present paper, the MSHBM is used and modified (compared to its usual use) to take
into account a nonzero-mean motion. This allows us to obtain an APMD and a critical manifold
that can explain numerous regimes observed in numerical simulations of a Van der Pol oscillator
(used as an archetypal self-sustained oscillator) coupled to a BNES.

The paper is organized as follows. In Section 2, the equations of motion of the full-order system
under study - i.e. a Van der Pol oscillator coupled to a BNES - are obtained. Then, the dynamic
behavior of a Van der Pol oscillator coupled to a BNES is investigated by means of numerical
simulations. Using the MSHBM, the equations of the APMD are derived in Section 3. The fast-
slow analysis of the APMD is detailed in Section 4. That allows us to perform a asymptotic
global stability analysis in Section 5, which enables us to understand the observed behavior using
numerical simulations. Finally, concluding remarks and perspectives are formulated in Section 6.

2. Equations and dynamic behavior of the model

2.1. Equations of motion of a Van der Pol oscillator coupled to a BNES

In this section we derive the equations of motion of the full-order system under study, i.e. a Van
der Pol (VdP) oscillator - used as an archetypal self-sustained oscillator - coupled to an ungrounded

1Most of the time authors name it the slow flow dynamics. It is named here in the manner of Luongo and
Zulli [26, 27] to avoid vocabulary ambiguities.

2Sometimes the terms “slow” and “super-slow” [15, 30] are used to leave the term “fast” for the oscillations on
which the averaging was carried out and therefore to be coherent with the term slow flow. In the present work
the terms “slow” and “fast” are preferred to be in agreement with the vocabulary usually used in the literature on
dynamical systems.

3The critical manifold is also called slow invariant manifold in the literature.
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Figure 1: A Van der Pol oscillator coupled to a BNES.

bistable nonlinear energy sink (BNES). The BNES consists in a mass coupled to a linear damper
and to a spring with a negative stiffness and a cubic stiffness. A schematic representation of this
system is shown in Fig. 1. The equations of motion of this system, with respect to the physical
time t̂, are as follows

m1
d2x̂

dt̂2
− c1

dx̂

dt̂
+ cNL

1

dx̂

dt̂
x̂2 + k1x̂+

c2

(
dx̂

dt̂
− dŷ

dt̂

)
− k2 (x̂− ŷ) + kNL

2 (x̂− ŷ)3 = 0 (1a)

m2
d2ŷ

dt2
+ c2

(
dŷ

dt̂
− dx̂

dt̂

)
− k2(ŷ − x̂) + kNL

2 (ŷ − x̂)3 = 0 (1b)

where m1 and m2 are the masses of the primary VdP oscillator and of the BNES, respectively. The
parameter k1 is the linear stiffness of the VdP oscillator and −c1 (with c1 > 0) and cNL

1 characterize
its linear negative and nonlinear dampings, respectively. The BNES is characterized by its linear
damping coefficient c2, negative linear stiffness −k2 (with k2 > 0) and nonlinear stiffness kNL

2 .
Equation (1) is rescaled leading to the following dimensionless system of differential equations

ẍ− ϵσẋ+ ϵλẋx2 + x+

ϵµ (ẋ− ẏ)− ϵβ(x− y) + ϵα(x− y)3 = 0 (2a)

ϵÿ + ϵµ (ẏ − ẋ)− ϵβ(y − x) + ϵα(y − x)3 = 0 (2b)

where x = x̂/L, y = ŷ/L (with L a characteristic length of the motion), ω1 =
√
k1/m1, t = ω1t̂,

{̇} = d{}/dt, ϵ = m2/m1 is the mass ratio between the NES and the VdP oscillator, σ = c1/(m2ω1),
λ = cNL

1 L2/(m2ω1), µ = c2/(m2ω1), β = k2/(m2ω
2
1) and α = kNL

2 L2/(m2ω
2
1).

The static solutions of Eq. (2) are: the trivial solution

pst0 = (xst0 , y
st
0 ) = (0, 0) (3)

which is unstable and the two following non trivial solutions

pst1 = (xst1 , y
st
1 ) =

(
0,

√
β

α

)
and pst2 = (xst2 , y

st
2 ) =

(
0,−

√
β

α

)
. (4)
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which are stable if there are no self-sustained oscillations. For a classic cubic NES, i.e., β = 0, the
only equilibrium position is pst0 which is stable (again if there are no self-sustained oscillations).

Finally, for comparison purposes, we give here an approximated solution of the VdP oscillator
uncoupled from the NES whose equation of motion is ẍ− ϵσẋ+ ϵλẋx2+x = 0. This approximated
solution is obtained using the Krylov-Bogoliubov method of averaging (see e.g. [31]) as

x(t) =
2
√
σe

σtϵ
2√

4σ
r20

+ λ (eσtϵ − 1)︸ ︷︷ ︸
r(t)

cos(t+ φ0) (5)

where φ0 is the phase at the origin of time. Details on obtaining Eq. (5) are given in Appendix A.
For λ > 0, the amplitude r(t) in Eq. (A.8) tends to zero if σ < 0 and to 2

√
σ
λ if σ > 0. In other

words, for the original VdP oscillator (A.1), if σ < 0 the trivial solution (x, ẋ) = (0, 0) is stable
and becomes unstable when σ > 0. The periodic solution

(x, ẋ) =

(
2

√
σ

λ
cos(t+ φ0),−2

√
σ

λ
sin(t+ φ0)

)
(6)

exists and it is stable for σ > 0.

2.2. Response regimes of a Van der Pol oscillator coupled to a BNES

In this section, the dynamic behavior of a Van der Pol oscillator coupled to a BNES is presented
by means of direct numerical integration of Eq. (2).

We first recall briefly the response regimes observed when an NES (i.e., with no linear stiffness)
is used instead of a BNES. As it is widely discussed in the literature (see e.g. [15, 19]), in this
case, four scenarios are observed. In previous works by the authors [32, 33] these responses are
sorted into two categories. In the first category, the NES acts, resulting in three responses called
harmless situations. These three harmless regimes are: (i) the complete suppression in which the
trivial equilibrium is stabilized because of the additional linear part of the NES including mass and
damping; (ii) the mitigation through periodic responses (PRs) with an amplitude smaller than the
periodic response undergone by the VdP oscillator alone and (iii) the mitigation through a Strongly
Modulated Response (SMR) corresponding to a quasi-periodic (amplitude and phase modulated)
regime again with a maximum amplitude smaller than the periodic response undergone by the
VdP oscillator alone. In the second category, the NES does not act, resulting in a no mitigation
response called harmful situation. In this case a periodic regime with an amplitude close to what is
observed when the VdP oscillator is not coupled to the NES. The specific value of the bifurcation
parameter σ at which the system switches from a harmless regime to a harmful regime is called
the mitigation limit of the NES, denoted as σml. In the case of an NES the mitigation limit is
defined considering a set of initial conditions (for the slow flow) as a small perturbation of the
trivial equilibrium solution, i.e., (xst0 , y

st
0 ) = (0, 0).

The specific features of a BNES compared with an NES are presented first in Fig. 2 in which,
as a function of σ, the steady-state maximum amplitude of the VdP oscillator alone is compared
to the steady-state maximum amplitude of the VdP oscillator coupled to an NES on the one hand
and to a BNES on the other. The following set of parameters is used:

VdP parameter: λ = 0.5 (7a)

BNES parameters: µ = 0.06, β = 0.575, α = 2, (7b)
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Figure 2: Steady-state maximum amplitude of the VdP oscillator alone Awo
x (green) compared to the steady-state

maximum amplitudes AwNES
x and AwBNES

x of the VdP oscillator coupled to an NES (red) and to a BNES (blue),
respectively, as functions of the bifurcation parameter σ. The theoretical amplitude of the VdP alone (see Eq. (6)) is
also displayed (black dashed). Parameters: (7a) are used to compute Awo

x from Eq. (A.1); (7a) with µ = 0.4, β = 0
are used to compute AwNES

x from Eq. (2) and (7) are used to compute AwBNES
x also from Eq. (2).

The steady-state maximum amplitude of the VdP oscillator alone is defined as follows

Awo
x =

max[(x(0.9T ), x(T ))]−min[(x(0.9T ), x(T ))]

2
(8)

where x(t) is the time series of the variable x computed by means of the numerical integration of
Eq. (A.1) from t = 0 to t = T and using the parameters (7a). In a similar way, the steady-state
maximum amplitude of the VdP oscillator coupled to an NES is

AwNES
x =

max[(x(0.9T ), x(T ))]−min[(x(0.9T ), x(T ))]

2
(9)

where x(t) is the time series of the variable x computed by means of the numerical integration
of Eq. (2) with µ = 0.4, β = 0 and α = 2 (case of an NES with good properties of mitigation)
and using the VdP parameters (7b). Finally, the steady-state maximum amplitude of the VdP
oscillator coupled to a BNES is

AwBNES
x =

max[(x(0.9T ), x(T ))]−min[(x(0.9T ), x(T ))]

2
(10)

where x(t) is the time series of the variable u computed by means of the numerical integration of
Eq. (2) using the parameters (7) (case of an NES with good properties of mitigation).

The theoretical amplitude of the VdP alone (see Eq. (6)) is also displayed in Fig. 2. We can first
see that the mitigation limit of the BNES (σml ≈ 6.35) is higher than that of the NES (σml ≈ 2).
Secondly, in cases of attenuation (PRs or SMRs, the difference between these two regimes is not
visible in the figure: from σ ≈ 0.4 to σ ≈ 3 for the NES and from σ ≈ 1.75 to σ ≈ 7.86 for
the BNES) the maximum amplitude AwBNES

x is almost 10 times smaller than AwNES
x . This last

observation is of course interesting from the point of view of vibration attenuation, but we shall
see that it can have a negative impact on the robustness of the BNES.
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(a) (b) (c)

Figure 3: Mitigation limit σml as a function of β and µ in the case of an NES (blue surface) and a BNES (orange
surface) for λ given by (7a), α = 2 and ϵ = 0.0025. The initial conditions are pst0 + (per, per) for the NES and
pst1 +(per, per) for the BNES, respectively. The perturbation parameter is 0.001, 0.01 and 0.1 in (a) to (c), respectively.

How large is the perturbation does not really matter in the case a classic purely cubic NES.
This is not the case for a BNES. To show this, Fig. 3 plots the the mitigation limit σml as a function
of β and µ in the case of an NES and a BNES for λ given by (7a), α = 2 and ϵ = 0.0025. The
initial conditions are pst0 + (per, per) for the NES and pst1 + (per, per) for the BNES, respectively.
The perturbation value is 0.001, 0.01 and 0.1 in Figs. 3(a) to 3(c), respectively. The mitigation
limit σml is computed by locating the jumps on amplitude profiles such as those shown in Fig. 2.
In the latter, results have been obtained in the same way with per = 0.001.

As mentioned above, the mitigation limit of the NES (in blue color in Fig. 3) is not affected
by the change in initial conditions and of course it does not depend on β. On the contrary, the
mitigation limit of the BNES (in orange color in Fig. 3) it is greatly affected by the change in initial
conditions. Indeed, a very high maximum is present when per is small. This maximum decreases
until it disappears when per increases. That shows that the BNES can be very efficient but this is
not robust since a little perturbation can switch the system from harmless to harmful situations.
However, even in the case of per = 0.1 (see Fig. 3(c)) it is possible to find a set of parameters for
which the BNES performs better than the NES.

The overall results of Fig 3, in terms of mitigation limit, do not highlight the complex dynamic
behavior of the BNES. As in the case of a classic NES, when σ > σml the system (2) undergoes
a periodic regime with an amplitude for the variable x close the that of the VdP oscillator alone.
However, when σ < σml a multitude of harmless regimes can be observed, whereas there are only
four responses in the case of an NES. In Fig. 4, seven of these regimes are presented. The figure
shows the time series y(t) obtained from the numerical simulation of Eq. (2) and only steady states
are shown. The equilibrium positions yst1 and yst2 (see Eq. (4)) are also depicted. The parameters
used are λ = 0.5, α = 2 (as in Fig. 3) and those given in Tab. 1. The initial conditions are the
same as in Fig. 3(a), i.e, with per = 0.001. From Fig. 4(a) to Fig. 4(g) one has:

Fig. 4(a). The stabilization of pst2 .

Fig. 4(b). A PR centered on y = 0 (PR1).

Fig. 4(c). An SMR centered on y = 0 (SMR1).

Fig. 4(d). An intra-well (i.e., centered on y = yst1 ) PR (PR2).
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Figure 4: Time series y(t) (solid blue line) obtained from the numerical simulation of Eq. (2), only steady states are
shown. Equilibrium positions yst

1 (dashed green line) and yst
2 (dashed blue line). From (a) to (g) one has: (a) the

stabilisation of pst2 ; (b) a PR centered on y = 0; (c) an SMR centered on y = 0; (d) a PR centered on y = yst
2 ; (e) an

SMR centered on y = yst
2 ; (f) an intermittent chaotic regime of type 1 (CR1), i.e., with a succession of oscillations

centered on y = 0 and chaotic motions; and (g) an intermittent chaotic regime of type 2 (CR2), i.e., with succession
of oscillations centered on y = 0, chaotic motions and oscillations centered on y = yst

1 or y = yst
2 . The parameters

used are λ = 0.5, α = 2 and those given in Tab. 1. The initial conditions are the same as in Fig. 3(a), i.e, with
per = 0.001.
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Figure 5: Zooms of (a) Figs. 4(f) and (b) 4(g).

Fig. 4(e). An intra-well SMR (SMR2);

Fig. 4(f). An intermittent chaotic regime of type 1 (CR1), i.e., with a succession of oscillations
centered on y = 0, chaotic inter-well motions and oscillations centered on y = yst1 or
y = yst2 . A Zoom of Fig. 4(f) is shown in Fig. 5(a). On it, we can see first oscilla-
tions around y = yst2 , then a chaotic motion, then oscillations around zero and again
oscillations around y = yst2 . Concerning these oscillations around y = yst2 , we first see
amplitude-modulated oscillations that abruptly diminish to almost zero; after that we
see oscillations with exponential growth before returning to a chaotic movement. The
phase in which the oscillations around y = yst2 (or also y = yst1 ) are amplitude-modulated
only rarely appears.

Fig. 4(g). An intermittent chaotic regime of type 2 (CR2), i.e., with a succession of oscillations
centered on y = 0 and chaotic inter-well motions. This appears more clearly in Fig. 5(b)
showing a Zoom of Fig. 4(g).

For regimes of Fig. 4(d) and (e), the motions observed are centered on yst1 but similar regimes
centered on y = yst2 can also be observed depending on the chosen initial conditions. Regimes (a)
to (c) are also observed with a classic cubic NES (of course in this case the stabilization concerns
the trivial solution y = yst0 ) while the regimes (d) to (g) are specific to BNES.

The maximum of σml observed in Figs. 3(a) corresponds to a stabilization of the equilibrium
y = yst1 and y = yst2 and for the other high efficient situations, the regimes observed just before σml

are the SMR2s or less often PR2s (for even smaller values of the perturbation parameter per, these
two regimes with very small amplitudes can correspond to the highest values of σml). Responses of
type SMR2s are observed in the most efficient situations in the cases of Figs. 3(b) and 3(c). These
observations will be interpreted after the fast-slow analysis carried out in Section. 4. Before that,
the equation of the so-called amplitude-phase modulation dynamics are derived in the next section.

3. Equations of the amplitude-phase modulation dynamics

TET is due to the interaction between two nonlinear modes of the coupled structure [1, 2]. This
phenomenon, called a 1:1 resonance capture, occurs at a frequency close to the natural frequency

9



Table 1: Parameters used for numerical simulations shown in Fig. 4. The corresponding values of σml are also
indicated.

β µ σ σml

(a) 0.52 0.19 3.9 5.2
(b) 0.12 0.55 0.78 1.73
(c) 0.12 0.31 1.22 1.63
(d) 0.62 0.19 3.75 5
(e) 0.62 0.07 3.96 5.28
(f) 0.92 0.07 1.43 1.9
(g) 1 0.19 1.74 2.33

of the primary structure, here the VdP oscillator. It is customary to study the dynamic behavior of
the system in the neighborhood of this 1:1 resonance capture. In general, the system is simplified
by averaging it over a natural period of the primary structure using the so-called Complexification-
Averaging Method (CAM) [25, 3]. The resulting averaged dynamics is called amplitude-phase
modulation dynamics (APMD). The CAM is not consistent here due the bistable nature of the
BNES, i.e., the fact that its motion can have a nonzero-mean. This is the reason why the Multiple
Scale/Harmonic Balance Method (MSHBM) [26, 27] is preferred because it can easily and rigorously
be modified (compared to its usual use) to take into account a nonzero-mean motion.

First, using the following change of variable

u = x+ ϵ and v = x− y (11)

the equations of motion (2) become

ü+ u+ ϵ
[
−u− σu̇+ λu̇u2 + v

]
= 0 (12a)

v̈ + µv̇ − βv + αv3 + u = 0 (12b)

Assuming a small mass ratio between the NES and the Van der Pol oscillator (i.e., 0 < ϵ ≪ 1),
only terms of order equal to 1 or less in ϵ have been kept in Eq. (12a). In Eq. (12b) keeping only
the terms of order 0 is sufficient to correctly reproduce the essential characteristics of the dynamic
behavior of the system.

Following the Multiple Scale Method (MSM) [31] the independent time variables T0 = t, T1 = ϵt,
T2 = ϵ2t, . . . are introduced. The time derivative rules are therefore d

dt = D0 + ϵD1 + ϵ2D2 + . . .

and d2

dt2
= D2

0 + 2ϵD0D1 + ϵ2(D0D2 +D2
1) + . . . where Di =

∂
∂Ti

(i = 0, 1, 2, . . . ). The variables u
and v are expanded in power series of ϵ as

u = u0 + ϵu1 + ϵ2u2 + . . . (13a)

v = v0 + ϵv1 + ϵ2v2 + . . . (13b)

In the sequel, only the first two time scales T0 and T1 are retained. Substituting Eq. (13) and
the time derivative rules into Eq. (12) and equating coefficients of same powers of ϵ, we obtain

Order ϵ0 : D2
0u0 + u0 = 0 (14a)

D2
0v0 + µD0v0 − βv0 + αv30 = 0. (14b)
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Order ϵ1 : D2
0u1 + u1 = −λu20D0u0 + σD0u0 − 2D0D1u0 + u0 − v0 (15a)

D2
0v1 + µD0v1 − βv1 + αv31 =

− µD1v0 − 2D0D1v0 + u0 − u1 + αv31 − 3αv20v1. (15b)

The harmonic solution of Eq. (14a) is written on the following complex form

u0(T0, T1) =
A(T1)e

iT0 +A∗(T1)e
−iT0

2
(16)

where A∗ is the complex conjugate of the complex amplitude A.
Equation (14b) is the equation of motion of the BNES alone and has no analytical solution.

Then the Harmonic Balance Method (HBM) is used to find an approximated solution as the
following two-terms Fourier series

v0(T0, T1) = b0(T1) +
C0(T1)e

iT0 + C∗
0 (T1)e

−iT0

2
(17)

where the first term in the right-hand side is real and used to take into account the bistable
nature of the BNES, i.e., the fact that v0 can have nonzero-mean. The second term indicates the
simplification - due to the assumption of a 1:1 resonance capture - of the oscillating motion of v0
as a simple harmonic motion.

Substituting Eq. (17) into Eq. (14b) and equalizing the coefficients of e0 (mean terms) and eiT0

(first harmonic terms) the following complex algebraic equations are obtained,

−βb0 +
3

2
αC0|b0|2 + αb30 = 0 (18a)

4
(
A+ C0

(
−β + 3αb20 + iµ− 1

))
+ 3αC0|C0|2 = 0, (18b)

respectively.
Let us now deal with Eq. (15). The first step is to substitute Eqs. (16) and (17) into Eq. (15a)

and to eliminate secular terms. That leads to the following solvability condition

D1A =
1

8

(
4A(σ − i) + 4iC0 − λA|A|2

)
. (19)

The particular non-diverging solution of Eq. (15a) is then obtained, it is

u1(T0, T1) = −b0(T1)−
1

64
iλ
(
A(T1)

3e3iT0 −A∗(T1)
3e−3iT0

)
. (20)

The second step is to find v1(T1, T2) and again the HBM is used assuming the following form

v1(T0, T1) = b1(T1) +
C1(T1)e

iT0 + C∗
1 (T1)e

−iT0

2
. (21)

Substituting Eqs. (16), (17), (20) and (21) into Eq. (15b) and again equating the coefficients of e0

and eiT0 the following differential equations are obtained

D1b0 =
1

2µ

(
b1
(
2β − 3αC0C0

)
+ b0

(
2− 3α

(
C0C1 + C1C0

))
− 6αb1b

2
0

)
, (22)
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and

D1C0 =
1

4(µ+ 2i)

(
2C1

(
−3αC0C0 + 2β − 6αb20 − 2iµ+ 2

)
− 3αC0

(
C0C1 + 8b0b1

) )
, (23)

respectively.
The MSM procedure is stopped at order ϵ1. The last step of the MSHBM is then to come back

to the physical time t. To achieve that we use the rules b = b0 + ϵb1 and C = C0 + ϵC1 and the
fact that the variables A, B and C do not depend on the fast time T0, therefore for them we have
d
dt = ϵD1. First, from Eq. (19) we obtain

Ȧ =
ϵ

8

(
4A(σ − i) + 4iC − λA|A|2

)
. (24)

Then combining Eq. (18a) with Eq. (22) and Eq. (18b) with Eq. (23) and keeping only terms of
order equal to 1 or less in ϵ we have

ḃ =
C
(
−3α

(
|C|2 + 4b2

)
+ 4(β − iµ+ 1)

)
− 4b

4(µ+ 2i)
, (25)

and

Ċ =
b
(
2β − 2αb2 − 3α|C|2

)
2µ

+ ϵ
b

µ
, (26)

respectively.
Equations (24) to (26) constitute the complex form of the APMD. Finally, substituting A and C

in the complex APMD by their polar coordinates defined as A = aejθ and C = cejϕ, new equations
of motion for the real amplitudes a, b and c and the phase difference δ = θ − ϕ is obtained as

ȧ = ϵf(a, c, δ) (27a)

ḃ = g1(b, c, ϵ) (27b)

ċ = g2(a, b, c, δ) (27c)

δ̇ = g3(a, b, c, δ, ϵ) (27d)

with

f(a, c, δ) =
1

8

(
4aσ − a3λ+ 4c sin δ

)
(28a)

g1(b, c, ϵ) =
b
(
2β − 2αb2 − 3αc2

)
2µ

+ ϵ
b

µ
(28b)

g2(a, b, c, δ) = −4aµ cos δ + 8a sin δ + cµ
(
−4β + 3α

(
4b2 + c2

)
+ 4
)

4 (µ2 + 4)
(28c)

g3(a, b, c, δ, ϵ) = −4a cos δ − 2aµ sin δ + 3αc
(
4b2 + c2

)
− 2c

(
2β + µ2 + 2

)
2c (µ2 + 4)

−

ϵ
a− c cos δ

2a
. (28d)

Equation (27) constitutes the real form of the APMD.
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Due to the presence of the small parameter ϵ, the APMD is governed by two different time scales:
the fast time scale t and the slow time scale τ = ϵt (note that t and τ were denoted above T0 and
T1, respectively, in the context of the MSM). More precisely, within the framework of the geometric
singular perturbation theory [29], Eq. (27) appears as a (3, 1)-fast-slow system where b, c and δ are
the fast variables and a the slow variable. Periodic steady-state regimes of the original mechanical
system (2) correspond to non trivial fixed points of the APMD whereas periodic responses of the
latter characterize amplitude and phase modulated responses of the original dynamics.

4. Fast-slow analysis of the amplitude-phase modulation dynamics

4.1. The critical manifold

A key mathematical tool for the description of a fast-slow system such as Eq. (27) is its critical
manifold. The latter is defined in this section. First, the APMD (27) is written with respect to
the slow time τ as follows

a′ = f(a, c, δ) (29a)

ϵb′ = g1(b, c, ϵ) (29b)

ϵc′ = g2(a, b, c, δ) (29c)

ϵδ′ = g3(a, b, c, δ, ϵ) (29d)

where (.)′ denotes the derivative with respect to the slow time τ . Considering ϵ = 0 respectively
in Eqs. (29) and (27) yields the slow subsystem

a′ = f(a, c, δ) (30a)

0 = g1(a, b, c, δ, 0) (30b)

0 = g2(a, b, c, δ) (30c)

0 = g3(a, b, c, δ, 0) (30d)

which is a differential-algebraic equation, and the fast subsystem

ȧ = 0 (31a)

ḃ = g1(a, b, c, δ, 0) (31b)

ċ = g2(a, b, c, δ) (31c)

δ̇ = g3(a, b, c, δ, 0). (31d)

The critical manifold of the APMD (27) is the solution of the algebraic part of the slow sub
system (30) and it is expressed as follows

M0 =
{
(a, b, c, δ) ∈ R+3 × [−π, π]

∣∣∣
g1(b, c, 0) = 0 , g2(a, b, c, δ) = 0 and g3(a, b, c, δ, 0) = 0

}
. (32)

The functions g1(b, c, 0) = 0, g2(a, b, c, δ) = 0 and g3(a, b, c, δ, 0) = 0 are written as follows

g1(a, b, c, δ, 0) = b (b+H01(c)) (b−H01(c)) (33a)

g2(a, b, c, δ) = H02(b, c) + a (k1 cos δ + k2 sin δ) (33b)

g3(a, b, c, δ, 0) = H03(b, c) +
a

c
(k2 cos δ + k1 sin δ) . (33c)
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where the function H01 is given below in Eq. (38b) and the functions H02 and H03 and the param-
eters k1 and k2 can be easily deduced from Eqs. (28c) and (28d).

The critical manifold can be expressed as a one-dimensional manifold evolving in the four-
dimensional phase space of the APMD. Indeed, solving first Eqs. (30c) and (30d) yield

cos δ = −k1H02(b, c) + k2cH03(b, c)

a
(
k21 + k22

)
= −12αb2c+ 3αc3 − 4βc− 4c

4a
(34)

sin δ = −k2H02(b, c)− k1cH03(b, c)

a
(
k21 + k22

)
= −cµ

a
. (35)

Afterwards, combining Eqs. (34) and (35) with a > 0 leads to the following amplitude and phase
equations

a =

√
c2H03(b, c)2 +H02(b, c)2√

k21 + k22

=
1

4
c

√
(3α (4b2 + c2)− 4(β + 1))2 + 16µ2 (36)

tan δ =
k2H02(b, c)− k1cH03(b, c)

k1H02(b, c) + k2cH03(b, c)

=
4µ

3α (4b2 + c2)− 4(β + 1)
. (37)

Then solving Eq. (30b) we obtain the three possible expressions of b (which reflect the bistability
of the BNES) as functions of c

b = 0 (38a)

b = ±H01(c) = ±
√

2β − 3αc2

2α
(38b)

Equation (38b) shows that we must have c < cI, with

cI =

√
2β

3α
, (39)

for b to be real.
Finally, combining Eq. (36) with each of the equations of (38) we obtain the two amplitudes

branches of M0 (only two because b appears squared in Eq. (36))

a = H1(c) =
1

4
c

√
(3αc2 − 4(β + 1))2 + 16µ2 (40a)

a = H2(c) =
1

4
c

√
(−8β + 15αc2 + 4)2 + 16µ2. (40b)
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In the same way, combining Eq. (37) with each of the equations of (38) we obtain

sin δ = Gs
1(c) = −µ

c

a
, cos δ = Gc

1(c) =
c
(
4β − 3αc2 + 4

)
4a

, (41a)

sin δ = Gs
2(c) = −µ

c

a
, cos δ = Gc

2(c) =
c
(
−8β + 15αc2 + 4

)
4a

. (41b)

The critical manifold can be therefore expressed as M0 = M01 ∪M02 with

M01 =
{
(a, b, c, δ) ∈ R+3 × [−π, π]

∣∣∣
a = H1(c) , b = 0 , sin δ = Gs

1(c) , cos δ = Gc
1(c)

}
, (42a)

M02 =
{
(a, b, c, δ) ∈ R+2 × [0,

√
2β
3α ]× [−π, π]

∣∣∣
a = H2(c) , b = H01(c) , sin δ = Gs

2(c) , cos δ = Gc
2(c)

}
. (42b)

Note that the two branches intersect when H01(c) = 0, i.e., for c = cI (see Eq. (39)).
Exploiting the polynomial properties of H1(c) and H2(c), the local extrema of these functions,

i.e, the solutions of dH1
dc = 0 and dH2

dc = 0, respectively, can be computed. The local extrema of
H1(c), denoted as cLF1 and cRF

1 , are given by

cLF1 =
2

3

√
2β + 2−

√
(β + 1)2 − 3µ2

α
(43a)

cRF
1 =

2

3

√
2β + 2 +

√
(β + 1)2 − 3µ2

α
(43b)

if the following relation holds

µ <
β + 1√

3
. (44)

If the condition (44) is not satisfied, the function H1(c) no longer has local extrema. In the rest of
the paper, one considers that the condition (44) always holds. The superscripts ()LF and ()RF refer
to left fold point and right fold point, respectively. Indeed, in the (a, b, c, δ)-space, the two points
pLF1 = (aLF1 , 0, cLF1 , δLF) and pRF

1 = (aRF
1 , 0, cRF

1 , δRF
1 ) (where aLF1 , aRF

1 , δLF1 and δRF
1 are obtained

from cLF1 and cRF
1 using Eqs. (40a) and (41a) and the b coordinate is null by Eq. (38a)) are generally

called fold points.
Similarly, the local extrema of H2(c), denoted as cLF2 and cRF

2 , are given by

cLF2 =
2

3

√
4β − 2−

√
(1− 2β)2 − 3µ2

5α
(45a)

cRF
2 =

2

3

√
4β − 2 +

√
(1− 2β)2 − 3µ2

5α
(45b)
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if the following relations hold

β >
1

2
(46)

and

µ <
2β − 1√

3
. (47)

If the conditions (46) and (47) are not satisfied, the function H2 no longer has local extrema.
Again, we will study cases where these conditions are always satisfied. As above, for the branch
M01, one can define left and right fold points for the branch M02 as pLF2 = (aLF2 , bLF2 , cLF2 , δLF) and
pRF
2 = (aRF

2 , bRF
2 , cRF

2 , δRF
2 ) (where aLF2 , aRF

2 , bLF2 , bRF
2 , δLF2 and δRF

2 are obtained from cLF2 and cRF
2

using Eqs. (38b), (40b) and (41b)).
Other important scalars for the present study, denoted as cD1 and cU1 , are obtained solving

H1

(
cRF
1

)
= H1

(
cD1
)
and H1

(
cLF1
)
= H1

(
cU1
)

cD1 =
2

3

√√√√√2β + 2− 3

√
((β + 1)2 − 3µ2)3/2 − (β+1)2−3µ2

3
√

((β+1)2−3µ2)3/2

α
(48a)

cU1 =
2

3

√√√√√2β + 2 +
3

√
((β + 1)2 − 3µ2)3/2 + (β+1)2−3µ2

3
√

((β+1)2−3µ2)3/2

α
. (48b)

Similarly, if cRF
2 and cLF2 exist, solving H2

(
cRF
2

)
= H2

(
cD2
)
and H2

(
cLF2
)
= H2

(
cU2
)
yields

cD2 =
2

3

√√√√√4β − 2− 3

√
((1− 2β)2 − 3µ2)3/2 − (1−2β)2−3µ2

3
√

((1−2β)2−3µ2)3/2

5α
(49a)

cU2 =
2

3

√√√√√4β − 2 +
3

√
((1− 2β)2 − 3µ2)3/2 +

(
((1−2β)2−3µ2)3/2

)2/3

√
(1−2β)2−3µ2

5α
. (49b)

A typical example of the critical manifold in the (c, a)-plane is shown in Fig. 6(a). The fold
points (cLFi , aLFi ) and (cRF

i , aRF
i ) (i = 1, 2), the points (cUi , a

LF
i ) and (cDi , a

RF
i ) and the point (cI, aI)

(with aI = H1(c
I) = H2(c

I), see Eq. (39)) are represented. Moreover, a zoom has been made to
better see the shape of M01. The same example of the critical manifold in the (b, c, a)-space is
shown in Fig. 6(b).

Because the conditions (44), (46) and (47) are satisfied, we can see that both M01 and M02 are
S-shaped which suggests that several scenarios of relaxation oscillations are possible. To describe
them (and other possible regimes), that requires knowing the stability of the critical manifold as
well as the fixed points of the APMD. This is done in the next sections.

4.2. Stability analysis of the critical manifold

The stability of the critical manifold M0 is now investigated. For that, the Jacobian matrix
Jg of Eqs. (31b) to (31d) is computed and evaluated at any point of each branch of the critical
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Figure 6: Typical example of the critical manifold. (a) In the (c, a)-plane. The branches a = H1(c) (M01) and
a = H2(c) (M02) are plotted in red and green, respectively. The fold points (cLF

i , aLF
i ) and (cRF

i , aRF
i ) (i = 1, 2)

(blue points), the points (cUi , a
LF
i ) and (cDi , a

RF
i ) (gray points) and the point (cI, aI) (with aI = H1(c

I) = H2(c
I), see

Eq. (39)) (magenta point) are also represented. A zoom is made to better see the shape of M01. (b) In the (b, c, a)-
space. (c) Zoom of (b) corresponding to the orange colored rectangular cuboid area. The following parameters are
used: µ = 0.1, β = 0.65 and α = 2.

manifold. We obtain

Jg(p1) =


−H01(c)

2 0 0
∂H02

∂b
(0, c)

∂H02

∂c
(0, c) −cH03(0, c)

∂H03

∂b
(0, c)

∂H03

∂c
(0, c) +

H03(0, c)

c

H02(0, c)

c

 , (50)
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for a point p1 ∈ M01, and

Jg(p2) =


2H01(c)

2 −2H01(c)
2H ′

01(c) 0
∂H02

∂b
(H01(c), c)

∂H02

∂c
(H01(c), c) −cH03(H01(c), c)

∂H03

∂b
(H01(c), c)

∂H03

∂c
(H01(c), c) +

H03(H01(c), c)

c

H02(H01(c), c)

c

 , (51)

for a point p2 ∈ M02.
The critical manifold M0 contains both regular points defined as det (Jg(pi)) ̸= 0 (i = 1, 2)

and singular points characterized by det (Jg(pi)) = 0. Depending on the eigenvalues of Jg(pi), the
set of regular points can be split into several parts (see definitions in Chap. 3 of [34]), including
normally hyperbolic attracting parts (all the eigenvalues have strictly negative real parts), normally
hyperbolic repelling parts (all the eigenvalues have strictly positive real parts), normally hyperbolic
saddle type parts (neither attracting nor repelling) and non normally hyperbolic parts (at least
one eigenvalue has a zero real part). Note that at singular points the critical manifold is also
not normally hyperbolic. In previous definitions, normally means that each point of M0 must be
hyperbolic only in the the direction normal (i.e., non tangent) to itself (see e.g. Definition 2.3.4
and the explanations below [34]).

It can be shown that

det(Jg(p1)) = −H01(c)
2dH1

dc
(c)

√
k21 + k22

√
c2H03(0, c)2 +H02(0, c)2

c
(52)

and

det(Jg(p2)) = H01(c)
2dH2

dc
(c)

2
√
k21 + k22

√
c2H03(H01(c), c)2 +H02(H01(c), c)2

c
. (53)

From Eqs. (52) and (53) we can deduce that the singular points of the critical manifold are, if
they exist, the left and right fold points (cLFi , aLFi ) and (cRF

i , aRF
i ) (i = 1, 2) of each branch M0i

(the blue points in Fig. 6) and also the point of intersection (cI, aI) between these two branches
(the magenta point in Fig. 6).

The three eigenvalues of Jg(p1) (resp. Jg(p2)) are numerically computed; real and imaginary
parts of these eigenvalues are plotted in Fig. 7(a) (resp. Fig. 7(b)). Comparing Figs. 6 and 7,
we can see that the fold points and the point of intersection between the two branches of the
critical manifold are actually points for which the latter is not normally hyperbolic. In addition,
we can observe that the branch M02 loses its normal hyperbolicity at a regular point for c ≈ 0.33
(see Fig. 7(b) top). Using the Routh-Hurwitz stability criterion and the Cardano’s method, the
analytical expression of this regular non normally hyperbolic fixed point of the branch M02 of the
critical manifold can be obtained. The corresponding expression of c, denoted by cFP, is

cFP =
√
xk =

√
2

√
−p

3
cos

(
1

3
arccos

(
3q

2p

√
3

−p

)
+

2π

3

)
− b2

3b1
. (54)

The definitions of p and q and details on the computation of cFP are given in Appendix Appendix
B. As previously, the other coordinates of the fixed point, i.e., bFP, aFP and δI, can be deduced
from cFP using Eqs. (38b), (40b) and (41b)), respectively.

The previous stability analysis is summarized in Fig. 8 in which each branch M01 and M02 of
the critical manifold is decomposed as follows

M01 = Mst,1
01 ∪ pI ∪Ma,1

01 ∪ pLF1 ∪Mst,2
01 ∪ pRF

1 ∪Ma,2
01 (55)
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Figure 7: The three eigenvalues of (a) Jg(p1) given by (50) and (b) Jg(p2) given by (51). Top: real parts; Bottom:
imaginary parts. The eigenvalues are numerically computed using the same BNES parameters as in Fig. 6.

with pI = (aI, 0, cI, δI) (where aI and δI are obtained from cI using Eqs. (40a) and (41a) and the b
coordinate is null by Eq. (38a)), and

M02 = Ma,1
02 ∪ pLF2 ∪Mst,1

02 ∪ pRF
1 ∪Ma,2

01 ∪ pFP ∪Mst,2
02 ∪ pI (56)

with pFP = (aFP, bFP, cFP, δFP) (where aFP, bFP and δFP are obtained from aI using Eqs. (38b),
(40b) and (41b)). In both previous expressions the superscripts “st” and “a” indicate the saddle-
type and attracting natures of the critical manifold, respectively.

The structure of M02 can be modified if (46) or (47) does not hold, in this case M02 is not
S-shaped anymore and Mst,1

02 disappears. Moreover, if pFP joins pI, the branch Mst,2
02 diseppears.
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Figure 8: The different parts of the critical manifold M0. (a) In the (c, a)-plane. For the branch M01 (in red) one
has (see Eq. (55)) from left to right: the first saddle-type branch Mst,1

01 , the first attracting branch Ma,1
01 , the second

saddle-type branch Mst,2
01 and the second attracting branch Ma,2

01 . These branches are respectively connected to each
other by the point pI (magenta point) and the left and right fold points pLF

1 and pRF
1 (blue points). For the branch

M02 (in green) one has (see Eq. (56)) from left to right: the first attracting branch Ma,1
02 , the first saddle-type

branch Mst,1
02 , the second attracting branch Ma,2

02 and the second saddle-type branch Ma,2
02 which ends at the point

pI . These branches are respectively connected to each other by the left and right fold points pLF
2 and pRF

2 (blue
points) and the point pFP (green point). (b) In the (b, c, a)-space. (c) Zoom of (b) corresponding to the orange
colored rectangular cuboid area.
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From the previous analysis, we can already give a partial description of the APMD behavior.
In phase space, if the trajectory is not in the vicinity of the critical manifold, it evolves fast to
an attracting part of the critical manifold. These fast epochs are approximately described by the
fast subsystem (31). Bistability has been observed since several points of the critical manifold
can be stable for a given set of parameters and a given value of the slow variable a (which, due
to (31a), is a parameter for the fast subsystem). In the present paper the basins of attraction of
each attracting branch of the critical manifold are not rigorously investigated, together with the
possible other kinds of solutions of the fast subsystem (such as periodic, quasiperiodic or even
chaotic motions). This can be investigated in the future.

In the vicinity of the critical manifold, the trajectory evolves slowly. These slow epochs are
approximately described by the slow subsystem (30), its analysis is performed in the next section.

4.3. Asymptotic analytical expression of the fixed points of the amplitude-phase modulation dynam-
ics

As mentioned previously, the fixed points of the APMD (29) (or (27)) characterize periodic
solutions of the original system (2). Since 0 < ϵ ≪ 1, these fixed points can be asymptotically
approximated by those of the slow subsystem (30). Moreover, to obtain a simple analytical ex-
pression of these fixed points, it is first necessary to linearize the function f (see Eq. (28a)) around
a = 0.

Then, using successively Eqs. (38a), (40a) and (41a) and Eqs.(38b), (40b) and (41b) the slow
dynamics (30) on the branches M01 and M02 can be considered only with respect to c as

dH1

dc
(c)c′ = F1(c) (57)

and
dH2

dc
(c)c′ = F2(c), (58)

respectively. The expressions of the functions F1 and F2 in the previous equations are

F1 =
c
(
σ
(
3αc2 − 4(β + 1)

)2
+ 16µ(µσ − 1)

)
8

√
(3αc2 − 4(β + 1))2 + 16µ2

, (59a)

F2 =
c
(
σ
(
−8β + 15αc2 + 4

)2
+ 16µ(µσ − 1)

)
8

√
(−8β + 15αc2 + 4)2 + 16µ2

. (59b)

Consequently, the desired fixed points are solutions of F1(c) = 0 and F2(c) = 0 of which c = 0
is a trivial solution. In the (b, c, a)-space, on M01 this gives (0, 0, 0) which correspond to pst0 (see

Eq. (3)). On M02 that yields (0,±
√

β
α , 0) (see Eq. (38b)) which correspond to pst1 and pst2 (see

Eq. (4)).
Then the non trivial solutions of F1(c) = 0 and F2(c) = 0 are computed. The terms in

parentheses in the numerator of F1 and F2 are quadratic polynomials with respect to c2. The
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corresponding positive solutions in terms of the variable c are

c∗1,1 =

√√√√1 + β −
√

µ
(
1
σ − µ

)
3α

(60a)

c∗1,2 =

√√√√1 + β +
√

µ
(
1
σ − µ

)
3α

(60b)

obtained solving F1(c) = 0, and

c∗2,1 = 2

√√√√2β − 1−
√

µ
(
1
σ − µ

)
15α

(61a)

c∗2,2 = 2

√√√√2β − 1 +
√

µ
(
1
σ − µ

)
15α

(61b)

obtained solving F2(c) = 0.
One can easily verify from Eqs. (60) and (61) that c∗2,1 < c∗2,2 < c∗1,1 < c∗1,2 and that these fixed

points no longer exist when they become complex for

σ > σS =
1

µ
. (62)

Other sets of parameters can make the above expressions complex, except c∗1,2 which is always real
if Eq. (62) holds.

Finally, the stability of the fixed points c∗1,i and c∗2,i (i = 1, 2) is obtained checking the sign of

d
dc

(
F1(c)
dH1
dc

(c)

)∣∣∣∣
c=c∗1,i

and d
dc

(
F2(c)
dH2
dc

(c)

)∣∣∣∣
c=c∗2,i

(i = 1, 2), respectively.

The analysis presented in this section provides an approximate description of the slow dynamics
of the APMD in the vicinity of an attracting branch of the critical manifold. However, slow
dynamics around families of periodic, quasiperiodic or chaotic solutions of the fast subsystem is
not investigated. Studies inspired from the work of Berglund and Gentz [35] on invariant manifold
tracking the family of periodic orbits could be again the subject of future works.

5. Asymptotic global stability analysis of the amplitude-phase modulation dynamics

Knowing the fixed points of the APMD and their stability, obtained in Section 4.3, together
with the analysis of the critical manifold presented in Section 4.2, allow to perform the global
stability analysis of the APMD, again asymptotically in the case of ϵ → 0. This will enable us to
interpret the observations made in Fig. 4. The analysis is possible analytically because the critical
manifold is one-dimensional. Therefore the slow dynamics is also one-dimensional and described
by Eqs. (57) and (58).

From Eqs. (11), (16), (17), (20), (21) and the rules b = b0 + ϵb1 and C = C0 + ϵC1, one has

y(t) = −b(t)ϵ+ b(t)− a(t) cos(θ(t) + t) + c(t) cos(t+ φ(t)) + 1
32a(t)

3λϵ sin(3(θ(t) + t))

ϵ+ 1
. (63)

22



For comparison purposes, the time series y(t) reconstructed from numerical simulations of the
APMD using Eq. (63) are shown in Fig. 9. In Figs. 9(a) to 9(e) the parameters used are the same
as in Figs. 4(a) to Figs. 4(e). We can see that the APMD can reproduce regimes of the same nature
as those obtained with the full order system (2). In Figs. 9(f) and 9(g), even if the APMD can
reproduce these two chaotic regimes, they are here obtained for smaller values of the bifurcation
parameter of σ, namely σ = 1.22 and 0.77 for Figs. 9(f) and 9(g), respectively. In general when
chaotic regimes occur the mitigation limit observed on the numerical simulation of the APMD is
smaller than that obtained with the full order system (2).

To explain the nature of the different regimes shown in Figs. 4 and 9, the trajectories of the
APMD in the (c, a)-plane (obtained from the same simulations as in Fig. 9) are superimposed
on the critical manifold given by Eq. (40) in Fig. 10. The structure of the critical manifold (i.e,
stability, fold points (cLFi , aLFi ) and (cRF

i , aRF
i ) (i = 1, 2), points (cUi , a

LF
i ) and (cDi , a

RF
i ) and the

point (cI, aI)) is depicted in the same way as in Figs. 6 and 8. Fig. 10 shows also the fixed points
of the APMD obtained in Section 4.3, i.e. the trivial fixed points4 and the non trivial fixed points
(c∗1,i, H1(c

∗
1,i)) (in black color) and (c∗2,i, H2(c

∗
2,i)) (in orange color) with i = 1, 2 and c∗1,i and c∗2,i

given by Eqs. (61) and (61), respectively. These fixed points are depicted by a ⋆ when they are
stable and a • when they are unstable.

The different regimes can now be explained as follows:

Fig. 10(a). The trivial fixed point on Ma,1
02 is stable (depicted by an orange ⋆). The other fixed

points on Ma,1
02 is unstable (depicted by an orange •). As long as the initial condition

causes the APMD trajectory to arrive (after a fast epoch) onMa,1
02 between the unstable

fixed point and the stable fixed point, the latter is reached after a slow epoch along
Ma,1

02 , as in Fig. 10(a). The initial condition in the zoom (orange frame in Fig. 10(a))
is depicted by a blue •.

Fig. 10(b). There is only the unstable trivial fixed point on Ma,1
02 (for this set of parameters one

has M02 = Ma,1
02 ). The trajectory follows slowly Ma,1

02 until it disappears at (cI, aI)

and then follows Ma,1
01 , slowly again. Finally, the trajectory stops on a stable fixed

point (depicted by a black ⋆). Because on M01 b = 0 (see Fig. 8(b)), this scenario of
the APMD explains the periodic regime PR1 observed in Fig. 4(b).

Fig. 10(c). The fixed point on Ma,1
01 moves to the saddle-type part Mst,2

01 . Consequently, the
trajectory evolves slowly to the left fold point (cLF1 , aLF1 ) and undergoes a fast jump to
Ma,2

01 . Because the unstable point on Ma,2
01 (the black •) is above (cUi , a

LF
i ) (the gray

■) we then observe a succession of slow evolutions near the attracting branch of M01

and fast jumps (from (cLF1 , aLF1 ) to (cUi , a
LF
i ) and from (cRF

1 , aRF
1 ) to (cDi , a

RF
i )). These

so-called relaxation oscillations on M01 explain the SMR1 observed in Fig. 4(c).

Fig. 10(d). There is a stable non trivial fixed point on Ma,1
02 (the orange ⋆). The trivial fixed point

and the other non trivial fixed point on Ma,1
02 are unstable (the two orange •). As

long as the initial condition causes the APMD trajectory to arrive on Ma,1
02 below the

unstable non trivial fixed point, the stable fixed point is reached after a slow epoch
along Ma,1

02 , as in Fig. 10(c). This scenario for the APMD corresponds to the periodic
intra-well motion PR1 observed in Fig. 4(d).

4Remember that they correspond to pst0 when they are on M01 and to pst1 (or pst2 ) when they are on M02. They
are superimposed in the (c, a)-plane but not in the (b, c, a)-space (see Section 4.3).
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Figure 9: Time series y(t) reconstructed from numerical simulations of the APMD using Eq. (63). Equilibrium
positions yst

1 (dashed green line) and yst
2 (dashed blue line). From (a) to (e) the parameters used are the same as in

Figs. 4(a) to Figs. 4(e). In (f) and (g) the value of σ is changed compared to Figs. 4(f) and 4(g), namely σ = 1.22
and 0.77, respectively.

24



Fig. 10(e). A scenario of relaxation oscillations on M02 (similar to that observed on M01 in
Fig. 10(c)) is observed in agreement with the intra-well SMR2 of Fig. 4(d). Again,
as long as the initial condition causes the APMD trajectory to arrive on Ma,2

02 below
the unstable non trivial fixed point, these relaxation oscillations will occur.

Fig. 10(f). For the sake of readability of the figure, only steady state motion is shown. This scenario
is also illustrated in Fig. 11(a), showing the time series of the variables b(t), c(t) and
y(t) (computed again using Eq. (63)), and in Fig. 12(a) depicting the trajectory of the
APMD in the (b, c, a)-space. For this scenario and the next one, when we speak of an
equilibrium (resp. a periodic) regime during a slow epoch of the APMD, this means
that for the set of parameters and the value of a considered, the fast subsystem has a
stable equilibrium (resp. periodic) solution. The APMD therefore follows an invariant
manifold tracking these equilibrium (resp. periodic) solutions and parameterized by
the slow variable a. For full order dynamics (referred to as FOD in Fig. 11(a)), which
includes oscillations at the natural frequency of the VdP oscillator, that corresponds to
invariant manifold tracking of periodic (resp. quasiperiodic solutions). Chaotic motions
are also encountered. The successive phases of the motion are described in Fig. 11(a).
During a complete cycle, the trajectory of the APMD: follows Ma,1

02 (SE1: APMD,
equilibrium 1; FOD, periodic 1); undergoes a fast jump (FE2) from (cLF2 , aLF2 ) and the
corresponding left branch of M02 is saddle-type (i.e., Mst,2

02 ); is periodic (quasiperiodic
for the FOD) precisely because M02 is saddle-type and then chaotic (SE2); undergoes
a fast jump (FE3) to Ma,2

01 ; follows Ma,2
01 (SE3: APMD, equilibrium 2; FOD, periodic

2); finally undergoes a fast jump (FE1’) from (cRF
1 , aRF

1 ) to Ma,1
02 ; and so on. At each

cycle there is the possibility of reaching one or other of the opposite M02 branches (see
Fif. 12(a)). Concerning the start of the chaotic phases, we do not know whether this
is really a chaotic movement of the fast subsystem or a quasi-periodic solution. Again,
this may be subject of future work. This scenario of the APMD is in agreement with
what we observed in Fig. 5(a) except that the Periodic 1 and Quasiperiodic 1 phases
(for the FOD) appear to be reversed.

Fig. 10(g). Again, only steady state motion is shown and the scenario is also illustrated in Fig. 11(b),
showing the time series of the variables b(t), c(t) and y(t) (computed again using
Eq. (63)), and in Fig. 12(b) depicting the trajectory of the APMD in the (b, c, a)-space.
The successive phases of the motion are described in Fig. 11(b). When we observe
the APMD, we see a periodic and then a chaotic regime during phases 1 and 1’. It
is difficult to differentiate between these two phases on the y(t) signal from the FOD.
However, the latter is qualitatively equivalent to what we observed in Fig. 5(b).

In each of the previous situations we can see that if there is a passage on M01, it is the
largest unstable fixed point (black • on Ma,1

02 ) which prevents the system from tipping over into a

harmful situation. If the trajectory ends up on Ma,1
02 , above this fixed point, it runs along Ma,1

02

towards infinity (i.e. harmful situation) when the linearized VdP is considered (see Section 4.3). If
the nonlinear VdP is considered, the trajectory reaches a stable fixed point with large amplitude
similar to that of the VdP alone (i.e. also harmful situation).

Of course, the global stability analysis presented here is only partial. In the future, it will
be necessary to rigorously research the possible solutions of the fast subsystem, as well as their
stability. It will then be necessary to find the invariant manifolds of the APMD tracking these
solutions. However, this study enables us to interpret a certain number of regimes observed on
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numerical simulations.

6. Conclusion

In this paper a Van der Pol oscillator (used as an archetypal self-sustained oscillator) coupled
to a bistable nonlinear energy sink BNES) has been studied. Numerical simulations have shown
that this system can undergo a multitude of motions including different types of periodic regimes
and so-called strongly modulated responses (SMR) as well as chaotic regimes. We also show that
a BNES can be much more efficient than a classical cubic NES but this is not robust since a little
perturbation can switch the system from harmless to harmful situations. However, even in the
most unfavorable cases, we were able to find a set of parameters for which the BNES performs
better than the NES.

Then, in an original way, the so-called Multiple Scale/Harmonic Balance Method (MSHBM) is
used and modified (compared to its usual use) to consider the specific feature of the BNES, i.e.,
that it can have a nonzero-mean oscillating motion. This allowed us to derive an amplitude-phase
modulation dynamics (APMD) which can reproduce the complex behavior of the initial system.

Because of the presence of a small perturbation parameter (i.e., the mass ratio between the
BNES and the VdP oscillator), the APMD is governed by two different time scales. More precisely,
in its real form it appears as a (3,1)-fast-slow system. The motion of such a fast-slow system consists
in a succession of slow and fast epochs. In the case of a classic cubic NES, the APMD is a (2,1)-
fast-slow system whose behavior is now well understood. For example, the most complex responses
are relaxation oscillations leading to so-called strongly modulated responses (SMR) for the initial
system. Here, due to its (3,1)-fast-slow nature, the APMD can undergo a multitude of different
motions including periodic and quasiperiodic regimes of different types and even chaotic regimes,
in agreement with what has been observed on numerical simulations of the initial system. The fast-
slow analysis of the APMD has been conducted within the framework of the geometric singular
perturbation theory. By the computation of the so-called critical manifold and the analytical
expressions of the APMD fixed points, a global stability analysis has been performed. This enabled
us to interpret a certain number of regimes observed on numerical simulations of the initial system.

The methodology proposed here is applied to the study of passive mitigation of self-sustained
oscillations using a BNES. Because of its general nature, it could be used in the future to study
passive attenuation of free and forced vibrations. It could also be generalized to the case of a
multistable NES.

Appendix A. Approximate analytical solution of the Van der Pol oscillator

The equation of motion of the VdP oscillator alone is

ẍ+ ϵh(x, ẋ) + x = 0. (A.1)

with h(x, ẋ) = −σẋ+ λẋx2.
An approximate analytical solution of Eq. (A.1) is found using the Krylov-Bogoliubov method

of averaging (see e.g. [31]). For that, an amplitude phase representation of the motion is first
introduced as

x = r(t) cos (t+ φ(t)) (A.2a)

ẋ = −r(t) sin (t+ φ(t)) (A.2b)
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Figure 10: Trajectories of the APMD in the (c, a)-plane (obtained from the same simulations as in Fig. 9) are
superimposed on the critical manifold given by Eq. (40). The structure of the critical manifold (i.e, stability, fold
points (cLF

i , aLF
i ) and (cRF

i , aRF
i ) (i = 1, 2), points (cUi , a

LF
i ) and (cDi , a

RF
i ) and the point (cI, aI)) is depicted in the

same way as in Figs. 6 and 8. Fixed points of the APMD obtained in Section 4.3, i.e. the trivial fixed points and
the non trivial fixed points (c∗1,i, H1(c

∗
1,i)) (in black color) and (c∗2,i, H2(c

∗
2,i)) (in orange color) with i = 1, 2 and c∗1,i

and c∗2,i given by Eqs. (61) and (61), respectively. These fixed points are depicted by a ⋆ when they are stable and
a • when they are unstable.
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Figure 11: Same numerical simulations as in (a) Figs. 9(f) and (b) 9(g). For both (a) and (b) from top to bottom
one has the time series b(t) (gray), (c) (gray) and y(t) (blue). The equilibrium positions yst

1 (dashed green line) and
yst
2 (dashed blue line) are depicted in the plot of b(t). One has APMD for amplitude-phase modulation dynamics,

FOD for full order dynamics, FE for fast epoch and SE for slow epoch.
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(a) (b)

Figure 12: Same numerical simulations as in (a) Figs. 9(f) and (b) 9(g) depicting the trajectory of the AMPD
(blue) superimposed on the critical manifold M01 (attracting: red solid line; saddle-type: red dashed line) and M02

(attracting: green solid line; saddle-type: green dashed line). Unstable fixed points of the AMPD on M01 are also
represented by black •.

The desired form of Eq. (A.2) requires that

ṙ cos γ − rφ̇ sin γ = 0, (A.3)

with γ = t+ φ which yields

φ̇ =
ṙ

r

cos γ

sin γ
and ṙ = rφ̇

sin γ

cos γ
. (A.4)

The time derivative of Eq. (A.2) is

r̈ = −r cos γ − ṙ sin γ − rφ̇ cos γ. (A.5)

The substitution of (A.2) and (A.5) into (A.1) and the use of (A.4) leads to

ṙ = h (r cos γ,−r sin γ) sin γ (A.6a)

φ̇ = h (r cos γ,−r sin γ)
cos γ

r
. (A.6b)

For 0 < ϵ ≪ 1, ṙ and γ̇ are small. Therefore, r and φ vary much more slowly with t than γ = t+φ.
Consequently, the Krylov-Bogoliubov approximation is used, i.e., Eq. (A.6) is averaged over the
period 2π considering r, φ, ṙ and φ̇ are constant. That yields the following system

ṙ = ϵ
1

8
r
(
4σ − λr2

)
(A.7a)

φ̇ = 0 (A.7b)

that approximates Eq. (A.6).
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In this approximation, the phase φ is constant (and equal to the initial phase denoted as φ0)
and uncoupled from the amplitude r. The amplitude equation (A.7a) can be solved analytically as

r(t) =
2
√
σe

σtϵ
2√

4σ
r20

+ λ (eσtϵ − 1)
, (A.8)

where r0 = r(t = 0).

Appendix B. Expression of the regular non normally hyperbolic fixed point of the
branch M02 of the critical manifold

Substituting the explicit expressions of the functions H01, H02 and H03 and their derivative
into Eq. (51) we obtain

Jg(p2) =


3αc2−2β

µ
3
√
αc
√

2β−3αc2√
2µ

0

3
√
2
√
αcµ

√
2β−3αc2

µ2+4

µ(−8β+9αc2−4)
4(µ2+4)

− c(−8β+15αc2+2µ2+4)
2(µ2+4)

6
√
2
√
α
√

2β−3αc2

µ2+4
−8β+9αc2+2µ2+4

2cµ2+8c

µ(−8β+15αc2−4)
4(µ2+4)

 (B.1)

whose third-order characteristic polynomial pJg(p2)(z) has the following form

pJg(p2)(z) = a0z
3 + a1z

2 + a2z + a3. (B.2)

For such a third-order system, the Routh-Hurwitz stability criterion (see e.g. [36]) states that
the roots of (B.2) have negative real parts if and only if the following inequalities

a0 > 0, a1 > 0, a2 > 0, a3 > 0, d2 = a1a2 − a0a3 > 0 (B.3)

are satisfied.
The coefficient ai (i = 0, . . . , 3) and d2 are plotted in Fig. B.13 as functions of c for the

same parameters as used in Fig. 6. Comparing Figs. 7 and B.13 we deduce that the value of c
corresponding to the regular non normally hyperbolic fixed point of the branch M02 of the critical
manifold is one of the solutions of d2 = 0.

The coefficient d2 is a third-order polynomial with respect to x = c2 with the following form

d2 = b1x
3 + b2x

2 + b3x+ b4. (B.4)

The roots of d2 are computed by means of the Cardano’s method (see e.g. [37]). First, the
following parameters are introduced

p = − b22
3b21

+
c3
b1
, q =

b2
27b1

(
2b22
b21

− 9b3
b1

)
+

b4
b1
.

The discriminant ∆ is defined as ∆ = −
(
4p3 + 27q2

)
. Then:

1. If ∆ < 0, one root is real and two are complex conjugate.

2. If ∆ = 0, all roots are real and at least two are equal.

3. If ∆ > 0, all roots are real and unequal.
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Figure B.13: The coefficients ai (i = 0, . . . , 3) and d2 are plotted in Fig. B.13 as functions of c for the same parameters
as used in Fig. 6.

For the parameters used in this paper one has ∆ > 0. In this case, the three real roots xk
(k = 0, 1, 2) are given by

xk = 2

√
−p

3
cos

(
1

3
arccos

(
3q

2p

√
3

−p

)
+

2kπ

3

)
− b2

3b1
, k = 0, 1, 2. (B.5)

The wanted root is x1. Then for the parameters used in Fig. 6 we obtain c =
√
x1 = 0.325914.

References

[1] O. V. Gendelman, L. I. Manevitch, A. F. Vakakis, R. M’Closkey, Energy Pumping in Nonlinear Mechanical
Oscillators: Part I - Dynamics of the Underlying Hamiltonian Systems, Journal of Applied Mechanics 68 (1)
(2001) 34. doi:10.1115/1.1345524.

[2] A. F. Vakakis, O. V. Gendelman, Energy pumping in nonlinear mechanical oscillators: Part II - Resonance
capture, Journal of Applied Mechanics 68 (2001) 42–48.

[3] A. F. Vakakis, O. V. Gendelman, L. A. Bergman, D. M. McFarland, G. Kerschen, Y. S. Lee, Nonlinear Tar-
geted Energy Transfer in Mechanical and Structural Systems, 1st Edition, no. 156 in Solid Mechanics and Its
Applications, Springer, 2009.

[4] L. I. Manevitch, G. Sigalov, F. Romeo, L. A. Bergman, A. Vakakis, Dynamics of a linear oscillator coupled to
a bistable light attachment: Analytical study, Journal of Applied Mechanics, Transactions ASME 81 (4) (2014)
1–10. doi:10.1115/1.4025150.

[5] F. Romeo, G. Sigalov, L. A. Bergman, A. F. Vakakis, Dynamics of a linear oscillator coupled to a bistable
light attachment: Numerical study, Journal of Computational and Nonlinear Dynamics 10 (1) (2015) 1–13.
doi:10.1115/1.4027224.

[6] M. A. Al-Shudeifat, Highly efficient nonlinear energy sink, Nonlinear Dynamics 76 (4) (2014) 1905–1920. doi:
10.1007/s11071-014-1256-x.
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