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Spatial-Spectral Multiscale Sparse Unmixing for
Hyperspectral Images

Taner Ince, Member, IEEE, Nicolas Dobigeon, Senior Member, IEEE

Abstract—We propose a simple yet efficient sparse unmixing
method for hyperspectral images. It exploits the spatial and
spectral properties of hyperspectral images by designing a new
regularization informed by multiscale analysis. The proposed
approach consists of two steps. First, a sparse unmixing is
conducted on a coarse hyperspectral image resulting from a
spatial smoothing of the original data. The estimated coarse
abundance map is subsequently used to design two weighting
terms summarizing the spatial and spectral properties of the
image. They are combined to define a sparse regularization
embedded into a unmixing problem associated with the original
hyperspectral image at full resolution. The performance of
the proposed method is assessed with numerous experiments
conducted on synthetic and real data sets. It is shown to compete
favorably with state-of-the-art methods from the literature with
lower computational complexity.

Index Terms—Sparse unmixing, spatial regularization, total
variation, reweighting.

I. INTRODUCTION

REMOTE Earth sensing based on infrared hyperspectral
sensors embedded on aerial vehicles or satellite is re-

ferred to as hyperspectral imaging (HSI). Since it delivers
images of high spectral resolution, it has been used in many
areas such as agriculture, defence industry, and mineral explo-
ration. One of the main problem when analyzing hyperspectral
image is their limited spatial resolution. Thus a hyperspectral
pixel may be associated with a large area of the Earth
surface. Since these areas are not expected to be composed
of a single material, the measured spectra often consist of a
mixture of several elementary signatures associated with pure.
Spectral unmixing aims at decomposing the mixed pixels into
pure signatures (endmembers) and corresponding proportions
(abundances). Most of the unmixing algorithms assume a
linear mixture model (LMM), i.e., the observed spectra are
linear combinations of the endmember signatures, weighted by
the corresponding abundances. Basically, a spectral unmixing
pipeline first identifies the endmembers and then the corre-
sponding abundances are estimated by a dedicated inversion
algorithm. Pixel purity index (PPI) [1], N-FINDR [2] and
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vertex component analysis (VCA) [3] are popular endmember
extraction algorithms which assume that there is at least
one pixel representative of each sought endmember signature.
Besides, since the endmember and abundance matrices are
expected to be nonnegative, numerous unmixing algorithms
have also elaborated on the nonnegative matrix factorization
paradigm [4] (see, e.g., [5]–[11]).

When the endmember signatures are assumed to belong to a
given possibly large spectral library, recovering the abundance
maps is generally formulated as a sparse regression problem.
Efficient algorithms to solve the resulting problems are the
variants of the sparse unmixing by variable splitting and
augmented Lagrangian (SUnSAL) framework [12]. Several
improvements of SUnSAL have been proposed in the literature
to better exploit the expected spectral or spatial properties of
the hyperspectral data [13]–[16]. For instance, collaborative
SUnSAL (C-SUnSAL) implicitly exploits the spectral redun-
dancy between measured pixel spectra by enforcing the joint
sparsity of the abundance matrix. On the other hand, SUnSAL-
TV includes total variation (TV) in the original objective
function to promote a piece-wise spatial content [14].

Although TV based unmixing comes with good unmixing
performance, its complexity results in high computational
times. To lighten this computational burden, so-called mul-
tiscale unmixing algorithms (MUA) have been designed to
replace the TV regularization by relevant surrogates easier to
embed into an optimization scheme. These approaches consist
in solving two simple sparse regression problems defined in
two domains of distinct spatial resolutions [17]. The first
one is solved in an approximation domain resulting from a
segmentation step and provides a low-resolution abundance
map. This map is used to design a spatial regularization which
is subsequently embedded into the second problem formulated
in the full resolution domain. Thanks to its simplicity, MUA
has a much lower computational complexity than TV based
approaches but it may be shown to smooth edges [17]. Re-
cently, fast sparse unmixing (FastUn) builds on this multiscale
approach while simultaneously preserving crisp edge details
thanks to a spatial discontinuity strategy [18].

Another line of work consists in designing regularizations
that jointly capture the spatial content and the spectral re-
dundancy inherent to hyperspectral data. For instance, double
reweighted sparse regression and TV (DRSU-TV) overcomes
the high mutual correlation between spectral signatures by
exploiting the spatial-spectral properties in a single regularizer
with a reweighting strategy [15]. Spectral-spatial weighted
sparse unmixing (S2WSU) enhances the sparsity of the solu-
tion thanks to a double reweighting term in a single regularizer
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governed by a unique parameter [16]. Other works extract the
spatial and spectral information by using superpixel segmenta-
tion strategies. Superpixel-based reweighted low-rank and total
variation (SUSRLR-TV) promotes low-rank abundance maps
in each superpixel with a complementary TV regularization
[19]. Superpixel based graph Laplacian for sparse unmixing
(SBGLSU) minimizes the differences in each superpixel using
a graph Laplacian summarizing the spatial-spectral content
[20]. Double spatial graph Laplacian regularization for sparse
unmixing (DSGLSU) employs a transformation in each su-
perpixel to produce coarse abundances [21]. They are subse-
quently used in a weighting term when recovering the full
resolution abundance maps, granted with a graph Laplacian-
based regularization in each superpixel. However, these later
works remain computational demanding because of the use of
a graph Laplacian.

Combining the advantages brought by the two families of
unmixing methods mentioned above, this paper proposes a
so-called spatial-spectral multiscale sparse unmixing (S2MSU)
method. Following a multiscale approach, it consists in solving
two sparse unmixing problems defined at two different scales.
The first one is formulated in a coarse domain, where the
approximated data is obtained by a sliding window strategy
which extracts the spatial-spectral properties of the hyperspec-
tral data. The second one is formulated in the full resolution
domain where the low-resolution abundance map estimated in
the first step is used to derive a spatial-spectral regularization.
The computational complexity of the method is significantly
lower than those of competitive algorithms without sacrificing
the unmixing accuracy. Even though the recently proposed
FastUn algorithm [18] shares some similarities with the pro-
posed S2MSU method, it is worth noting that the former
does not exploit the spectral redundancy inherent to the
hyperspectral data. Contrary to the proposed S2MSU method,
the design of the FastUn regularization is only motivated by
spatially motivated arguments.

The paper is organized as follows. The proposed method
is described in Section II. Section III provides experimental
results obtained on simulated and real data sets. Section IV
concludes the paper.

II. SPATIAL-SPECTRAL MULTISCALE SPARSE UNMIXING
(S2MSU)

Like most unmixing methods from the literature, the pro-
posed approach builds on the LMM, i.e., neglecting multiple
scattering effects. This model states that each pixel spectrum
results from the linear combination of endmember signatures
whose contributions are weighted by the abundances. More
precisely, let Y = [y1, . . . ,yn] ∈ RL×n denote the matrix
whose columns are the L-band spectra measured in the n
pixels. According to LMM, this matrix can be modeled as

Y = AX+N (1)

where A ∈ RL×m and X ∈ Rm×n are the endmember and
abundance matrices, respectively and N ∈ RL×n accounts
for any mismodeling and observation noise. This work frames
the unmixing task into a supervised context, i.e., the end-
member matrix is assumed to be known as a (possibly) large

spectral library composed of endmember candidates. In such
a context, unmixing the hyperspectral image boils down to
estimating the abundance matrix A. This task is generally
formulated as a sparse regression problem [22]. The proposed
S2MSU algorithm elaborates on this formulation by designing
a simple yet sound regularization. Similarly to the multiscale
approaches, it consists in solving two subproblems defined
at two distinct spatial resolutions. First, essential spatial and
spectral information is extracted by unmixing a low-resolution
counterpart of the original image. Then the recovered low-
resolution abundance map is used to regularize a sparse
unmixing problem formulated in the original full resolution
domain. These steps are detailed in what follows.

A. Extracting the spatial and spectral information

In a first step of the proposed S2MSU algorithm, a low-
resolution version of the original image is generated by
applying an averaging filter chosen as square window with
fixed size. The spatially smooth image is denoted as Ȳ =
[ȳ1, . . . , ȳn̄] ∈ RL×n̄ whose ith column is given by

ȳi =
1

|Pi|
∑
l∈Pi

yl. (2)

where Pi represents the set of pixel indices in the window
centered in the ith pixel and |Pi| is the window size (with
n̄≪ n). A low-resolution abundance map X̄ can be obtained
by solving the sparse unmixing problem

min
X̄

1

2
∥Ȳ −AX̄∥2F + λ̄∥W ⊙ X̄∥1 + ι+(X̄) (3)

where λ̄ is regularization parameter and ι+(·) is the indicator
function ensuring the nonnegative constraint. The solution of
(3) can be efficiently approximated by using a splitting trick
after introducing auxiliary variables. The resulting algorithmic
scheme is summarized in Algo. 1, where ϵ is a small value
to prevent numerical instabilities and the maximum max(·),
the soft-thresholding soft(t, δ) = sign(t)max{|t| − δ, 0} and
the inversion ·−1 should be understood as component-wise
operators. Besides, it is worth noting that the matrix W is
adjusted along the iterations to enhance the sparsity of the
solution, following a standard iterative re-weighting strategy
(see Steps 4 and 5 in Algo. 1).

B. Including the spatial and spectral information

Since X̄ is expected to capture the spatial and spectral
properties of the image, it is subsequently used to design two
weighting matrices defining a data-informed regularization.
First, a coarse abundance map S = [s1, . . . , sn] ∈ Rm×n

at full resolution is obtained using a piece-wise constant
interpolation1

∀i ∈ {1, . . . , n̄}, ∀j ∈ Pi, sj = x̄i. (4)

1Shared pixels should be averaged in case of the use of overlapping sliding
windows.
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Algorithm 1 1st subproblem: low-resolution unmixing.
Input: Ȳ, A, λ̄, µ > 0, ϵ,
Initialization: k = 0, V(0)

1 , V(0)
2 , D(0)

1 , D(0)
2

1: Λ = ATA+ 2µI
2: while not converged do
3: X(k+1) = Λ−1(AT Ȳ+µ(V

(k)
1 +V

(k)
2 +D

(k)
1 +D

(k)
2 ))

4: wi =
1

∥(X(k+1)−D
(k)
1 )i,:∥2+ϵ

i = 1, . . . ,m

5: W:,i = [w1, . . . ,wm]T i = 1, . . . , n̄

6: V
(k+1)
1 = soft(X(k+1) −D

(k)
1 , (λ̄/µ)W)

7: V
(k+1)
2 = max(0,X(k+1) −D

(k)
2 )

8: D
(k+1)
1 = D

(k)
1 − (X(k+1) −V

(k+1)
1 )

9: D
(k+1)
2 = D

(k)
2 − (X(k+1) −V

(k+1)
2 )

10: k ← k + 1
11: end while

Output: X̄ = X(k)

Then, this low-resolution abundance map is used to defined
the two weighting matrices

W1 = diag
([

1

∥S1,:∥+ ϵ
, . . . ,

1

∥Sm,:∥+ ϵ

])
(5)

[W2]ij =
1

sij + ϵ
(6)

The full-resolution abundance map is finally estimated by
solving

min
X

1

2
∥Y −AX∥2F + λ∥W1W2 ⊙X∥1 + ι+(X) (7)

where the matrix product W1W2 acts as a weighting term.
This formulation has the great advantage of combining both
spectral and spatial information in the form of a single
regularizer. First, akin to collaborative unmixing, the matrix
W1 enforces a group sparsity of the abundance matrix. It
penalizes the abundance coefficients in the row associated with
endmembers that have been identified as hardly present over
the whole set of pixels. Indeed only a few materials in the
endmember matrix A is expected to contribute jointly to the
mixtures. Second, the matrix W2 penalizes the abundance
associated with neighboring pixels in the same way. It can be
interpreted as a surrogate of the conventional TV. Solving (7)
can be achieved with the same strategy as for the problem (3),
summarized by Algo. 2. It is worth noting that the weighting
term W1W2 is now constant along the iterations, which
ensures the algorithm convergence more easily.

The computational complexity of S2MSU is driven by Algo.
1 and Algo. 2. Algo. 1 solves the unmixing problem in a low
resolution domain following an optimization scheme similar
to SUnSAL [12]. Algo. 2 adopts the same strategy to solve
the unmixing problem in the full resolution domain, after
precomputing the weighting matrices W1 and W2. Since
n̄ ≪ n, Algo. 2 dominates the computational complexity of
S2MSU, which is of the order of O(nmL) per iteration.

Algorithm 2 2nd subproblem: full-resolution unmixing.
Input: Y, A, W1,W2, λ, µ > 0, ϵ
Initialization: k = 0, V(0)

1 , V(0)
2 , D(0)

1 , D(0)
2

1: Λ = ATA+ 2µI
2: while not converged do
3: X(k+1) = Λ−1(ATY+µ(V

(k)
1 +V

(k)
2 +D

(k)
1 +D

(k)
2 ))

4: V
(k+1)
1 = soft(X(k+1) − X̌−D

(k)
1 , (λ/µ)W1W2)

5: V
(k+1)
2 = max(0,X(k+1) −D

(k)
2 )

6: D
(k+1)
1 = D

(k)
1 − (X(k+1) − X̌−V

(k+1)
1 )

7: D
(k+1)
2 = D

(k)
2 − (X(k+1) −V

(k+1)
2 )

8: k ← k + 1
9: end while

Output: X̂ = X(k)

III. EXPERIMENTAL RESULTS

The proposed S2MSU algorithm2 is compared to several
sparse unmixing from the literature: SUnSAL [12], SUnSAL-
TV [14], S2WSU [16], DRSU-TV [15], MUA [17], FastUn
[18] and SUSRLR-TV [19]. Their performance is assessed by
computing the signal reconstruction error (SRE) defined as
SRE = 10 log10

∥X∥2
F

∥X−X̂∥2
F

where X and X̂ are the reference
and estimated abundance matrices, respectively. Moreover,
the behavior of sparse unmixing algorithms is frequently
monitored by evaluating the sparsity degree of the recovered
abundance maps. Thus, the algorithms are also compared with
respect to the smooth sparsity measure ρ = numel(X̂ ≥
5 × 10−3)/numel(X̂) where numel(·) count the number of
elements.

A. Simulated data sets

Two hyperspectral images of sizes 100×100 pixels, referred
to as SD1 and SD2, are simulated according to LMM (1).
The corresponding abundance maps are generated to mimic
plausible spatial material distributions, as depicted in Fig. 1
for two particular endmembers. SD1 is mostly composed of
crisp regions and homogeneous regions while SD2 is mostly
composed of homogeneous regions. A spectral library A is
created by selecting m = 240 signatures from the spectral
library splib06 [23] with L = 224 spectral bands ranging
from 0.4 to 2.5µm. The two images SD1 and SD2 are
generated by selecting 9 active signatures from A and adding
Gaussian noises with different signal-to-noise ratios (SNR):
SNR∈ {20dB, 30dB, 40dB}. All algorithms are run using their
optimal parameters as prescribed in their original papers. The
window and step size for the proposed S2MSU algorithm
are selected as 10 and 5, respectively. This choice obeys a
certain bias-variance trade-off. Indeed too small windows do
not capture the key spatial structures and are expected to
be more sensitive to noise or outliers. Conversely too large
windows tend to smooth small details.

SRE and ρ values obtained by the compared algorithms
are reported in Table I. The proposed method S2MSU is
shown to reach the best SRE and sparsity levels for SNR∈
{20dB, 30dB}. This good performance obtained in the high

2The code is available at https://ndobigeon.github.io/soft/demo S2MSU.rar.

https://ndobigeon.github.io/soft/demo_S2MSU.rar
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Reference SUnSAL-TV S2WSU MUA DRSUTV FastUn SUSLR-TV S2MSU

Fig. 1. Estimated abundance maps for endmember #1 in SD1 (top) and endmember #9 in SD2 (bottom) with SNR= 30dB.

TABLE I
SIMULATED DATA SETS: SRE AND SPARSITY LEVELS OBTAINED BY THE

COMPARED ALGORITHMS.

SUnSAL
TV S2WSU DRSU

TV MUA FastUn SUSLR
TV S2MSU

S
D

1
2
0

dB SRE 6.23 6.35 6.82 6.45 12.19 7.54 13.38
ρ 0.0899 0.0382 0.0480 0.0752 0.0229 0.0652 0.0122

3
0

dB SRE 11.12 20.73 13.80 8.15 19.55 11.91 21.85
ρ 0.0500 0.0187 0.0281 0.0664 0.0174 0.0325 0.0125

4
0

dB SRE 17.32 30.95 17.96 11.43 28.47 21.12 30.41
ρ 0.0413 0.0136 0.0179 0.0568 0.0152 0.0170 0.0122

S
D

2
2
0

dB SRE 11.81 6.92 13.75 14.13 16.25 15.21 17.38
ρ 0.0723 0.0351 0.0418 0.0583 0.0233 0.0510 0.0126

3
0

dB SRE 17.87 21.22 13.55 18.15 20.70 21.03 21.76
ρ 0.0433 0.0230 0.0362 0.0492 0.0223 0.0332 0.0190

4
0

dB SRE 20.79 27.43 13.77 19.34 27.24 24.89 27.22
ρ 0.0515 0.0251 0.0314 0.0486 0.0260 0.0316 0.0245

noise scenarios can be explained by the contribution of the
proposed regularization. Informed by the low-resolution abun-
dance maps estimated in the 1st stage of the algorithm, the
weighting matrix acts as an averaging filter to mitigate the
noise. For SNR = 40dB, S2MSU provides competitive results.

These conclusions can also be validated with visual inspec-
tions. Fig. 1 shows the reference and estimated abundances
for SNR =30dB. In particular, the maps recovered by S2MSU
seem to better preserve the homogeneous regions as well as
the crisp details, contrary to SUnSAL-TV and DRSU-TV.

B. Real data sets

Two real data sets are used to validate the efficiency of
S2MSU. In a first experiment, a 250 × 191-pixel portion
of the Cuprite data set3 is extracted. This portion includes
most of the active minerals in the region. The original data
includes 224 bands but some water absorption and noisy
bands have been removed prior to analysis. The spectral
library A is chosen as a collection of m = 498 spectral
signatures from the splib06 library. Since this data set is not
accompanied by a ground truth in terms of abundance maps,
the results are evaluated qualitatively by visual comparison
with the classification map provided by Tetracorder 4.4 [24].
Fig. 2 shows the estimated abundance maps obtained by the
compared algorithms for chalcedony mineral. The algorithms
S2WSU, FastUn and S2MSU seem to better preserve the
details, contrary to TV-based methods.

3Available at http://aviris.jpl.nasa.gov/html/aviris.freedata.html.

TABLE II
JASPER RIDGE DATA SET: SRE AND SPARSITY LEVELS OBTAINED BY THE

COMPARED ALGORITHMS.

SUnSAL
TV S2WSU DRSU

TV MUA FastUn SUSLR
TV S2MSU

SRE 8.42 14.00 10.67 9.37 15.16 9.09 14.87
ρ 0.0163 0.0051 0.0087 0.0184 0.0051 0.020 0.0050

TABLE III
SIMULATED AND REAL DATA SETS: COMPUTATIONAL TIMES REQUIRED BY

THE COMPARED ALGORITHMS.

SUnSAL
TV S2WSU DRSU

TV MUA FastUn SUSLR
TV S2MSU

SD1 103 37 161 5 11 173 14
SD2 102 36 160 4 10 188 11

Cuprite 1200 373 1293 116 132 2094 152
Jasper Ridge 215 72 231 82 29 425 58

A second experiment is performed on the Jasper Ridge
data set4. The considered region-of-interest is composed of
100× 100 pixels with L = 198 spectral bands after removing
bad bands. The endmember matrix A is made of 498 spectral
signatures from the splib06 complemented by 4 endmembers
provided with data set, namely tree, water, soil and dirt (m =
502). Since ground truth abundance maps are also provided
with this data set, Table II reports the SRE and ρ values for
all compard algorithms. These results show that FastUn and
S2MSU reach the best results. This can also be assessed by
visual inspection in Fig. 3.

The computation times required by the compared algorithms
are reported in Table III. MUA has the lighter computational
burden while FastUn and S2MSU behave similarly.

IV. CONCLUSION

This paper proposes a two step sparse unmixing adopting
a multiscale approach. The 1st step consists in performing
a conventional sparse unmixing in a domain of low spatial
resolution. This domain is defined by degrading the resolution
of the original hyperspectral data. The estimate low resolu-
tion abundance map is used to design two weighting terms
which are combined to form a spatial-spectral regularization.
Embedded into a sparse unmixing problem formulated in the
original full resolution domain, this regularization jointly acts
as a surrogate of group sparsity and data-informed spatial
smoothing. Thanks to their simplicity, the two optimization
problems can be efficiently solved thanks to variable splitting

4Available at https://rslab.ut.ac.ir/data.

http://aviris.jpl.nasa.gov/html/aviris.freedata.html
https://rslab.ut.ac.ir/data
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Tetracorder SUnSAL-TV S2WSU MUA DRSUTV FastUn SUSLR-TV S2MSU

Fig. 2. Cuprite data set: abundance maps estimated by the compared algorithms (top to bottom: chalcedony, alunite and buddingtone).

Tetracorder SUnSAL-TV S2WSU MUA DRSUTV FastUn SUSLR-TV S2MSU
Fig. 3. Jasper Ridge data set: abundance maps for the tree endmember estimated by the compared algorithms.

strategy. The algorithm is shown to provide satisfactory unmix-
ing performance when compared to state-of-the-art algorithms
from the literature, as assessed by extensive experiments
conducted on two synthetic and two real data sets.
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