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Multispectral and hyperspectral data fusion allows the restoration of data with increased spatial and spectral resolutions. A common approach is to solve an ill-posed inverse problem by minimizing a regularized least squares criterion. This minimization usually requires an iterative gradient-based method, but this paper demonstrates the existence of an explicit solution. Direct models of the imager and the spectrometer are described, the explicit solution is developed, and an application on simulated data from the James Webb Space Telescope is presented. A potential time saving of a factor of 1 000 is highlighted by the proposed method.

INTRODUCTION

Many fields such as remote sensing, astrophysics or Earth observation use hyperspectral data for spectra observation. Several applications allow the use of integral field spectrographs to acquire spectra in a given field of view, but the images produced are generally poorly sampled. Parallel acquisition of high spatial resolution and well sampled data, such as multispectral data, opens the field of data fusion to reconstruct highly spatially and spectrally resolved data [START_REF] Yokoya | Hyperspectral and multispectral data fusion: A comparative review of the recent literature[END_REF].

Approaches for data fusion are often based on the solution of inverse problems with the minimization of a criterion including a data adequacy term [START_REF] Idier | Approche bayésienne pour les problèmes inverses[END_REF]. This method requires both knowledge of the data formation process, called forward model, and a model of the observed object.

In [START_REF] Wei | Fast fusion of multi-band images based on solving a sylvester equation[END_REF] [START_REF] Wei | Fast fusion of multi-band images based on solving a sylvester equation[END_REF], the MS/HS data fusion problem is formulated through a Sylvester equation, and an explicit solution to this inverse problem is obtained, allowing a significant reduction of the computational cost unlike iterative approaches. However, this method is not applicable to the reconstruction of astronomical data because it is developed without spatial blur variability. Guilloteau et al. (2020) [START_REF] Guilloteau | Hyperspectral and multispectral image fusion under spectrally varying spatial blursapplication to high dimensional infrared astronomical imaging[END_REF] proposes the solution of an inverse problem adapted to astronomical data with a spectrally non-stationary spatial blur by minimizing a least squares criterion with quadratic regularization. But unlike Wei et al., an iterative algorithm is then pro-posed to approximate the solution. The approach proposed here computes the exact solution in an explicit way without requiring an iterative optimization algorithm.

The instrument models are presented in section 2, and the problem and its explicit solution are presented in section 3. Section 4 presents an application of our method on simulated astronomical data acquired by instruments similar to MIRI of the James Webb Space Telescope (JWST). The results are presented in terms of reconstruction quality and time saving compared to an iterative method.

MODELS DESCRIPTION

Observed object model

The observed sky region is described as a discrete hyperspectral cube x with two spatial coordinates i ∈ [1, I] and j ∈ [1, J], and a spectral coordinate l ∈ [1, L]. As proposed in [START_REF] Hadj-Youcef | Spatio spectral reconstruction from low resolution multispectral data: application to the Mid-Infrared instrument of the James Webb Space Telescope[END_REF][START_REF] Guilloteau | Hyperspectral and multispectral image fusion under spectrally varying spatial blursapplication to high dimensional infrared astronomical imaging[END_REF][START_REF] Abi-Rizk | Super-resolution hyperspectral reconstruction with majorization-minimization algorithm and low-rank approximation[END_REF], spectral correlations are introduced within the observed object x, such that the spectral content of any location (i, j) is a linear combination of T known spectra s t . The observed object x thus writes as

x[i, j, l] = T t=1 a t [i, j] s t [l] (1) 
where a t [i, j] gives the abundance of the spectrum s t at (i, j).

This assumption, known as the Linear Mixing Model, offers several advantages: as the spectra s t are defined for all common wavelengths covered by the instruments, they enable efficient joint processing of all available data. In addition, this model reduces the number of unknowns describing the observed object from I × J × L to I × J × T , with T ≪ L, reducing the computational load. Equation 1 can be rewritten in a matrix form as

x = T a ( 2 
)
where T is the linear mixing matrix, written as

T =    s 1 [1]I P . . . s T [1]I P . . . . . . s 1 [L]I P . . . s T [L]I P    (3) 
and I P is the identity matrix of size P × P , with P = I × J the number of pixels in an image.

Imager model

This model takes into account several types of transformations on the observed object:

1. a spectrally varying spatial blur due to the instrument's impulse response h m , 2. the spectral response w m , dependent on mirrors and imager filters characteristics and detector quantum efficiency, 3. the spectral integration performed for each of the C imager filters.

The data produced by the imager from the object x are C images, produced with a spatial sampling step equal to that of x. Therefore, the value of a pixel at position (i, j) in image c ∈ [1, C] is written as

x c m [i, j] = l (x * i,j h m )[i, j, l] w c m [l] (4) 
where * i,j

is the spatial convolution operator. This equation writes in a matrix form as

x m = W m C m x (5) 
where C m is a block diagonal matrix, whose diagonal contains L circulant convolution matrices C m,l operating the spatial blur h m for each wavelength of x, and the matrix W m operates the spectral response and spectral integration. Integrating the Linear Mixing Model of equation 2 into this equation leads to

x m = W m C m T a (6) 
where M = W m C m T is the identified matrix form imager model, made up of C × T blocks. Thus a block of M at the row c and column t is expressed as

M c,t = l w c m [l]s t [l]C m,l . (7) 

Spectrometer model

The transformations induced by the spectrometer model contain 1. a spectrally varying spatial blur due to the impulse response h h of the instrument, 2. the spectral response w h , linked to the mirrors characteristics, the diffraction grating and the detector response, 3. integration and spatial sampling of the detector, which can be insufficient and lead to spectral aliasing.

The data produced by the spectrometer from the object x are then L images with a spatial sampling step d i times greater in height and d j times greater in width than the one used in x, with d i , d j ∈ N * . Pixels are therefore located in a new reference frame with coordinates ( ī, j), and their value writes as

x h [ ī, j, l] = ( ī+1)di i= īdi ( j+1)dj j= jdj (x * i,j h)[i, j, l] w h [l] (8) 
which, as for the imager model, possesses a matrix form with the integrated linear mixing matrix T that writes

x h = SW h C h T a (9) 
where C h has the same structure as C m , i.e. with L matrices C h,l on its diagonal to operate the spatial blur h h , W h operates the spectral response at L wavelengths, and S = I L ⊗ S is a matrix operating the integration and sampling of the detector by a convolution operation with a kernel of size d i × d j filled with "1", and a selection of 1 pixel over d i pixels in height and d j pixels in width. The matrix form of the spectrometer model is identified as H = SW h C h T , built with L × T blocks, and the block at the row l and column t is expressed as

H l,t = w h [l]s t [l]SC h,l . (10) 

METHODOLOGY

This section proposes a formulation of the inverse problem to be solved for the reconstruction of the observed object, and then describes an explicit solution to the problem posed.

Formulation of the problem

The abundance maps â describing the observed object are defined as the minimizer of a quadratic criterion J , as proposed in Guilloteau et al. [START_REF] Guilloteau | Hyperspectral and multispectral image fusion under spectrally varying spatial blursapplication to high dimensional infrared astronomical imaging[END_REF], composed of two data adequacy terms and a regularization term as

â = argmin a {J (a)} = argmin a µ m ∥y m -M a∥ 2 2 +µ h ∥y h -Ha∥ 2 2 +µ r ∥Da∥ 2 2 ( 11 
)
where

µ m = 1 2σ 2 m , µ h = 1 2σ 2 h
, and σ m and σ h are the standard deviations of additive white gaussian noises assumed to be present in the imager data y m and spectrometer data y h , respectively. The regularization parameter µ r ∈ R + regulates the influence of the spatial smoothness imposed to stabilize the solution, and D = I T ⊗ D where D is a first order 2D difference matrix. The minimization of J is performed by solving ∇J = 0, giving

â = Q -1 b (12) 
with

Q = µ m M H M + µ h H H H + µ r D H D , and (13) 
b = µ m M H y m + µ h H H y h , ( 14 
)
where • H is the conjugate transpose operator. Therefore, the minimizer a of the quadratic criterion J can be calculated explicitly if the inversion of the hessian Q is possible without being a computational burden. Its inversion is explained in the next section.

Explicit solution

The three matrices M H M , H H H and D H D consist of T × T blocks. An explicit expression for the block at the row t and column t ′ of each of these matrices is

(M H M ) t,t ′ = c M H c,t M c,t ′ (15) 
(H H H) t,t ′ = l w h [l] 2 s t [l]s t ′ [l]C H h,l S H SC h,l (16) 
(D H D) t,t ′ = D H D (17) 
with M c,t described equation 7. Since the blocks of these matrices are circulant, they are diagonalizable in Fourier space. Indeed, 1. (M H M ) t,t ′ is written as products and weighted sums between circulant convolution matrices C m,l , so each block is also circulant, 2. (H H H) t,t ′ is also circulant, as C H h,l S H SC h,l writes in the Fourier space

C H h,l S H SC h,l = F H Λ H l F S H SF H Λ l F (18) 
with F the Fourier matrix, and Λ l the diagonal matrix of the eigenvalues of C h,l . However, since S corresponds to a spatial decimation and S H to a filling of "0", S H S has as its diagonal a Dirac comb with a "1" every d i d j coefficients. Thus F S H SF H is a circulant convolution matrix, as presented in Wei et al.

(2015) [START_REF] Wei | Fast fusion of multi-band images based on solving a sylvester equation[END_REF], such that

F S H SF H = 1 d i d j J didj ⊗ I P ′ (19) 
with ⊗ standing for the Kronecker product, J didj is a square matrix of size d i d j × d i d j and full of 1, and P ′ = P didj is the number of pixels in an image after applying S. Therefore, C H h,l S H SC h,l is a matrix of diagonal blocks in Fourier space, and so are the blocks of H H H. 3. D H D is also circulant by approximating D as a circulant matrix.

Consequently, according to equation 13, the T × T blocks of Q are also diagonalizable in Fourier space. An expression for Q is then

Q = F H B Q F (20)
where B Q is a matrix of diagonal blocks, and F = I T ⊗ F . Inverting B Q is possible by transforming this matrix into a block-diagonal matrix ∆ Q with a permutation matrix P , such that

B Q = P ∆ Q P . (21) 
According to equations 20 and 21, the inversion of Q is calculated as follows

Q -1 = F H P ∆ Q P F -1 (22) = F H P T ∆ -1 Q P T F (23)
where • T is the matrix transpose operator, and ∆ -1 Q is computable by inverting each of its blocks individually. The data are then reconstructed explicitly with the equation 12, as proposed in [START_REF] Hadj-Youcef | Spatio spectral reconstruction from low resolution multispectral data: application to the Mid-Infrared instrument of the James Webb Space Telescope[END_REF], thus avoiding the use of an iterative optimization method [START_REF] Guilloteau | Hyperspectral and multispectral image fusion under spectrally varying spatial blursapplication to high dimensional infrared astronomical imaging[END_REF].

EXPERIMENTAL RESULTS

One targeted application of this work concerns the fusion of imaging and spectrometry data from the mid-infrared instrument MIRI of the JWST. The instrument models described in parts 2.2 and 2.3 have been adapted to the imager MIRIM [START_REF] Bouchet | The mid-infrared instrument for the james webb space telescope, iii: Mirim, the miri imager[END_REF] and Medium Resolution Spectrometer (MRS) [START_REF] Wells | The mid-infrared instrument for the james webb space telescope, vi: The medium resospectrometer[END_REF] of MIRI.

The impulse response h used here is simulated by webbpsf [START_REF] Marshall D Perrin | Simulating point spread functions for the james webb space telescope with webbpsf[END_REF], and figure 1 illustrates its spectral dependency. The imager contains C = 9 filters and its spectral response is taken into account with the real Photon Conversion Efficiency (PCE) curves of MIRIM [START_REF] Stsci | JWST documentation website[END_REF] the values of each 4 × 4 pixel region into 1), inducing spectral aliasing of the received signal for wavelengths below 20 µm.

The MRS has 4 spectral channels with 3 sub-channels each, leading to 12 different PCE curves [START_REF] Wells | The mid-infrared instrument for the james webb space telescope, vi: The medium resospectrometer[END_REF]. However, the spectrometer considered here is simplified with a single channel and a PCE curve produced by concatenating the PCE curves of the MRS [START_REF] Stsci | JWST documentation website[END_REF].

Imagery data y m and spectrometry data y h data have been created by applying the imager and spectrometer models on a set a of T = 5 spectral abundance maps [START_REF] Guilloteau | Simulated jwst data sets for multispectral and hyperspectral image fusion[END_REF][START_REF] Habart | High angular resolution near-ir view of the Orion bar revealed by keck/nirc2[END_REF], associated to their respective spectrum s t [START_REF] Pi Team | Pdrs4all: A jwst early release science program on radiative feedback from massive stars[END_REF], to describe the observed object using the Linear Mixing Model of equation 1. These maps were simulated from real observational data from the Orion Bar, and contain 125 × 250 pixels. The spectra cover the MIRI band (5 to 28 µm), and contain L = 300 values. These observation data y m and y h were corrupted with an additive white gaussian noise of standard deviations σ m and σ h , respectively.

Figure 3 illustrates the quality of the spatial reconstruction of the observed object for two different noise cases: a case of low noise where the signal to noise ratio SNR dB is 50 dB for both the imagery data y m and the spectrometry data y h (see figure 3a), and a case of high noise where SNR dB = 20 dB for both sets of data (see figure 3b). Reconstruction errors are evaluated using the Normalized Root Mean Square Error (NRMSE) [START_REF] Fienup | Invariant error metrics for image reconstruction[END_REF], given under each figure, where NRMSE = ∥ x -x∥ 2 / ∥x∥ 2 , where x is the original hyperspectral cube describing the object, and x is the estimated cube. The first case demonstrates an effective deconvolution effect, as spatial features are successfully deblurred compared to the instrument data. The second case illustrates the algorithm resilience to gaussian noise as most spatial features, which disappeared in the instrument data, are recovered. Moreover, the average error between the spectra observed by the spectrometer and the original spectra can exceed 30 mJy arcsec -2 for both noise cases, whereas the average error with the reconstructed spectra does not exceed 1 mJy arcsec -2 . Furthermore, tests were carried out to compare the iterative approach [START_REF] Guilloteau | Hyperspectral and multispectral image fusion under spectrally varying spatial blursapplication to high dimensional infrared astronomical imaging[END_REF] and the proposed explicit approach in terms of the computation time required to solve the equation 11. The two approaches were tested by choosing the value of µ r that minimizes the NRMSE with respect to the original data. The iterative approach LCG (Linear Conjugate Gradient) requires a computation time exponentially proportional to the SNR dB of the data y m and y h , as shown figure 2. For a very low noise case (SNR dB = 100 dB), more than 8 minutes are needed with LCG to reach 1% of min(J ). Indeed, the less noisy the data, i.e. the higher the SNR dB , the less spatial regularization is required for optimal reconstruction, and the more high frequencies need to be restored, requiring a greater number of iterations. This problem is avoided with the proposed explicit solution, as the time needed to reach min(J ) is constant: 1.34 seconds with precalculations (creation and inversion of the hessian Q), but only 0.5 seconds without precalculations (single calculation of â = Q -1 b).

CONCLUSION

The imager and spectrometer models were described by considering spectrally varying blurs, instrument spectral responses, imager spectral integrations, and spectrometer spatial integrations and subsampling. The data fusion problem was posed by formulating a least-squares quadratic criterion to be minimized. The existence of an explicit solution has been demonstrated.

The results showed not only improved spatial and spectral resolutions, deconvolution and noise reduction, but also considerable time savings compared to an iterative approach: a factor of 1 000 for a low noise case (SNR dB = 100 dB) without precalculations (factor greater than 300 when precalculations are taken into account), for the reconstruction of 5 abundance maps of size 125 × 250, and thus of a cube of size 125 × 250 × 300 thanks to a linear mixing model.

Edge-preserving techniques, such as the use of semiquadratic or convex regularization, would improve the quality of the reconstructed cubes. Studies will be carried out to verify the existence of an explicit solution for such methods. 
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 1 Fig. 1: MIRI PSF [7] (logarithmic scale).
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 2 Fig.2: Time required by the LCG algorithm to reach 10% and 1% of the minimum of the criterion min(J ) (equation 11), compared with the time required by the proposed explicit solution as a function of the SNR dB of the instrument data. Calculations with i9-10885H processor, 2.40 GHz (x 16), RAM 64 GB.

  SNRdB of instruments data : 50 dB, NRMSE = 0.0103. SNRdB of instruments data : 20 dB, NRMSE = 0.0226.
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 3 Fig. 3: Imagery data y m at the sixth spectral band, spectrometry data y h , reconstructed data x, and original data x. SNR dB = 50 dB for the instrument data for figure 3a, and SNR dB = 20 dB for figure 3b. All images are those observed (or centered for the imager) at 15.5 µm. Unit in mJy arcsec -2 .