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Abstract—Point clouds have become increasingly prevalent in
representing 3D scenes within virtual environments, alongside
3D meshes. Their ease of capture has facilitated a wide array of
applications on mobile devices, from smartphones to autonomous
vehicles. Notably, point cloud compression has reached an ad-
vanced stage and has been standardized. However, the availability
of quality assessment datasets, which are essential for developing
improved objective quality metrics, remains limited. In this paper,
we introduce BASICS, a large-scale quality assessment dataset
tailored for static point clouds. The BASICS dataset comprises
75 unique point clouds, each compressed with four different
algorithms including a learning-based method, resulting in the
evaluation of nearly 1500 point clouds by 3500 unique partici-
pants. Furthermore, we conduct a comprehensive analysis of the
gathered data, benchmark existing point cloud quality assessment
metrics and identify their limitations. By publicly releasing the
BASICS dataset, we lay the foundation for addressing these
limitations and fostering the development of more precise quality
metrics.

Index Terms—Point cloud quality, 3D models, point cloud
compression, subjective quality assessment, dataset.

I. INTRODUCTION

D IGITAL imaging technologies have revolutionized the
capability to capture real-world environments and recre-

ate them in different temporal or spatial contexts. This capacity
has extended to the realm of 3D scenes through the integra-
tion of computer graphics and photogrammetry techniques.
Presently, we can capture intricate 3D objects and scenes using
an array of tools, ranging from solely RGB cameras to RGB
cameras supplemented with additional sensors [1]–[5]. Within
the domain of 3D modeling, two primary representations have
gained prominence: colored point clouds and textured 3D
meshes [6]. In this paper, our focus is directed toward point
clouds, a representation widely used in numerous applications,
in particular augmented and virtual reality. The acquisition of
point clouds is typically accomplished through diverse means,
including stereo-camera arrays [3], LiDAR sensors [4] and
conventional cameras [5]. Point cloud acquisition produces
huge amounts of data, calling for compression techniques for
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efficient transmission and storage. However, evaluating the
performances of compression algorithms is time consuming
and expensive. While the field of research in this area has
witnessed notable expansion in recent years [6]–[14], there
are still many open questions and problems.

Existing datasets in the field have notable shortcomings in
terms of diversity, scale, consistency, and data accessibility.
These limitations constitute substantial challenges for research
into learning-based approaches. The absence of diversity is
frequently attributed to several factors, including the recurrent
use of the same point clouds across various datasets, limited
geometric complexity and semantic categories, as well as the
utilization of the same compression algorithms as the sole
source of distortion types. This lack of diversity is further
compounded by the relatively modest scale of the existing
datasets, rendering them ill-suited for the development of
learning-based quality metrics. Consistency issues also can
be observed in existing datasets, stemming from factors such
as the utilization of unnormalized point clouds and incon-
sistent rendering specifications. A detailed overview of the
existing datasets is presented in Table I, which summarizes the
aforementioned deficiencies. Another substantial shortcoming
is the limited data availability and incompleteness, e.g., due
to copyright constraints or repository management practices,
as well as the absence of individual opinion scores, standard
deviations and confidence intervals, which are typically needed
to develop more sophisticated metrics. The accessibility of
data in existing datasets is summarized in Table II.

In conclusion, the need for a new dataset is evident due to
aforementioned deficiencies in existing datasets. Our proposal
seeks to address these shortcomings comprehensively, pro-
viding a dataset that encompasses all essential characteristics
required for the development of more accurate quality metrics.
Furthermore, it provides further insights into the performance
of point cloud quality metrics when applied to point clouds
encoded with learning-based compression algorithms.

The contributions of this work are threefold:
• We present, and make publicly available, a broad point

cloud quality assessment dataset featuring 75 unique
point clouds that hold semantic relevance within the con-
text of telepresence scenarios (as detailed in Section II).

• We compare the performances of various state-of-the-
art methods for point cloud compression (as outlined in
Section IV).

• We provide an exhaustive benchmark of the state-of-the-
art point cloud quality metrics, including both point-based
and image-based assessment (as outlined in Section V).
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TABLE I
STATISTICAL SUMMARY OF EXISTING PC QUALITY ASSESSMENT DATASETS

Dataset nb SRC nb PPC nb obs
per PPC

total
nb obs Display Visualization Subj. test

method
Temporal
dimension Distortions

BASICS (proposed) 75 1494 60 3600 2D Passive DSIS (side-by-side) Static Compression: GPCC, VPCC, GEOCNN
vsenseVVDB2 [6] 8 136 23 23 2D Passive ACR Dynamic Compression: GPCC, VPCC
Perry et al. [7] 6 90 - 73 2D Passive DSIS (side-by-side) Static Compression: GPCC, VPCC

da Silva Cruz et al. [8] 8 48 - 50 2D Passive DSIS Static Octree pruning
Projection-based compression from 3DTK

Yang et al. [9] 10 420 16 64 2D Passive ACR Static Octree pruning, random point down-sample
Color noise, geometric gaussian noise

Su et al. [10] 20 740 - 60 2D Passive DSIS (side-by-side) Static Octree pruning, geometric gaussian noise
Compression: SPCC, VPCC, LPCC

NBU-PCD1.0 [11] 10 160 - - 2D - - Static Octree pruning
SIAT-PCQD [12] 20 340 38 76 HMD Interactive DSIS Static Compression: VPCC
Subramanyam et al. [13] 8 64 - 52 HMD Interactive ACR-HR Dynamic Compression: VPCC
PointXR [14] 5 40 20 40 HMD Interactive DSIS Static Compression: GPCC

TABLE II
PUBLIC AVAILABILITY OF THE EXISTING DATASETS

Dataset Point Clouds Subjective Annotations
BASICS (proposed) ✓ Individual Scores
vsenseVVDB2 [6] ✓ Individual Scores
Perry et al. [7] Broken URL ✗
Su et al. [10] ✓ (D)MOS only
da Silva Cruz et al. [8] ✗ ✗
Yang et al. [9] ✓ (D)MOS only
NBU-PCD1.0 [11] ✗ ✗
SIAT-PCQD [12] Broken URL ✗
Subramanyam et al. [13] ✗ Individual Scores
PointXR [14] ✓ Individual Scores

The BASICS dataset has been made publicly available1

under the Creative Commons Attribution-NonCommercial-
ShareAlike (CC BY-NC-SA 4.0) license with the aim of
fostering continued research within the field. The repository
contains individual and mean opinion scores, as well as pris-
tine and compressed point clouds. Additionally, the dataset’s
GitHub page2 provides the scripts required for the evaluation
of point cloud quality metrics. The BASICS dataset has been
successfully employed in the grand challenge on point cloud
quality assessment3 organized by some of the authors at the
2023 IEEE International Conference on Image Processing
(ICIP2023).

II. THE BASICS DATASET

The BASICS dataset has been designed and collected with
two main objectives in mind: on one hand, providing diverse
and extensive data to train learning-based point cloud quality
assessment metrics; and on the other hand, creating challeng-
ing test conditions to benchmark existing quality metrics. In
this section, we describe the various stages of the dataset
generation process.

A. Material selection

In order to construct a point cloud quality assessment dataset
that encompasses semantic diversity tailored for telepresence

1Dataset Link: https://doi.org/10.5281/zenodo.8324546
2GitHub: https://github.com/kyillene/BASICS-Public

Dataset and Github page will be made available after initial reviews.
3https://sites.google.com/view/icip2023-pcvqa-grand-challenge/

applications, we gathered a total of 75 point clouds, distributed
across three semantic categories. Despite the broad scope
of these categories, they remain highly relevant within the
context of telepresence applications. The categories we have
defined are “Humans & Animals (HA)”, “Inanimate Objects
(IA)”, “Buildings & Landscapes (BL)”, collectively covering
a comprehensive set of subjects such as animals, humans,
everyday items, vehicles, architectural structures and natural
landscapes. Figure 1 offers a visual glimpse into each of these
categories.

For the data collection and material selection part, our
primary objective was to collect a comprehensive repository
of publicly available point clouds that could be freely redis-
tributed. However, numerous data sources impose strict re-
strictions on redistribution. Consequently, we acquired the 3D
models from two sources: collaborator studios (i.e., V-SENSE
studio4 and XD Productions5) as well as an online repository
for 3D model sharing called SketchFab6. Even in this case,
availability of point clouds was somewhat limited. To address
this, we gathered 3D meshes and generated point clouds via
sampling the mesh surface, as detailed in Section II-B.

In total, 104 models were handpicked by three authors of
this paper considering the semantic categories described above.
Following the removal of materials that exhibited significant
similarity, models with highly reflective surfaces and imperfect
texturing, as well as those with loose semantic associations
to their respective categories, the total count of models was
reduced to a final selection of 75. For each model, information
regarding its source (a SketchFab URL if applicable), file
format, statistics, and licensing details can be accessed in the
dataset repository1.

B. Pre-processing
In order to mitigate potential distortions stemming from

other sources, the collected 3D models require a pre-
processing and a conversion into point clouds before any fur-
ther processing. This was necessary due to the heterogeneous
formats in which these models were originally available.

Models that were already in point cloud PLY format re-
quired minimal attention, except for voxelization. Conversely,

4https://v-sense.scss.tcd.ie/
5https://www.xdprod.com/
6https://www.sketchfab.com/
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Fig. 1. Sample renderings of 7 point clouds from each of the 3 semantic categories in the dataset (i.e., 7 of the total of 25 for each category).

3D meshes underwent through several steps. These steps are
further discussed below.

1) Making 3D meshes uniform: The collected 3D mesh
models were in various formats. All 3D meshes were converted
into OBJ format, to streamline the pre-processing chain, using
Blender7 and Meshlab8.

2) Cleaning 3D meshes: Some of the 3D meshes had either
parts that had transparent or reflective properties (e.g., glasses
in some models), which could not be replicated well during
point cloud rendering. Some other meshes had incomplete
parts (e.g., trees, some of the building façades) which would
decrease the users’ quality of experience and introduce other
sources of distraction and distortion. To avoid such effects,
these parts were removed or cleaned in Blender.

The mesh files were then unified into a single OBJ file,
so that the sampling process in the pipeline could be done
with ease. Next, the material properties (which are described
in the .mtl files) are checked to eliminate any other reflective
properties of the materials, which could not be reproduced
correctly in the point cloud format. After all these operations,
the 3D meshes were ready for the point cloud sampling step.

3) Sampling point clouds: Using CloudCompare9, point
clouds were sampled from the 3D meshes’ surfaces. During
this operation 10 million points were sampled on the surfaces
of the said meshes. The sampling operation extracted the
location, color, and normal attributes for each point in the
point clouds. At the end of this stage, all 3D models were in
(originally or after conversion) point cloud format.

4) Point cloud voxelization: We perform point cloud vox-
elization using 10 bit quantization. That is, the spatial coordi-
nates are normalized such that they are integers between 0 and
1023. This has two main advantages: first, the coordinates are
in a range that is predictable for point cloud processing but

7https://www.blender.org/
8https://www.meshlab.net/
9https://www.cloudcompare.org/main.html

also with respect to rendering and second, we use voxelized
coordinates in combination with cube based rendering to
improve stability, predictability and quality of renderings.

C. Compression

Compression is a crucial stage for various point cloud
storage and transmission applications, including streaming and
telepresence. It is also the most realistic distortion source for
point clouds. In this context, one needs to compress point
clouds to transfer them to the remote receiver under current
bandwidth limitations.

We selected four compression algorithms:
• GPCC-Octree-Predlift (noted as GPCC-Predlift),
• GPCC-Octree-RAHT (noted as GPCC-Raht),
• VPCC, and
• GeoCNN.

VPCC and GPCC were selected as they are part of MPEG
standardization efforts, and they are among the most com-
monly used compression methods. GeoCNN was selected to
introduce artifacts of a learning-based compression to BASICS
database. Sample results are shown in Figure 2.

GPCC [15] compresses the point cloud using the octree
structure which can find the occupancy of the points in 3D
space without projection to 2D space. GPCC uses either octree
or trisoup (Triangle soup) approaches – based on a pruned
octree. As octree and trisoup only focus on geometry compres-
sion, attributes (such as color) are compressed using region-
adaptive hierarchical transform (RAHT) and predicting/lifting
transform (indicated as pred/lift or predlift).

For GPCC, it was noticed during the pilot tests that the
trisoup generated uneven structure and holes on the recon-
structed point clouds. Therefore, in this database, only octree
is used for GPCC geometry coding, together with the two
attribute coding methods: Octree-Predlift and Octree-Raht.
For compression, the six quality parameter (QP) values from
common test conditions (CTC)[citation?] were used. The worst



4 AUTHOR MANUSCRIPT, OCTOBER 2023

Fig. 2. Sample frames from the video renderings of a selected processed point cloud (PPC), showing results for each compression algorithm.

quality level (i.e., r1) was discarded in the pilot tests because
its quality was too bad and this would affect the subjective
quality experiment adversely by changing the rating scale and
the participants’ votes. With this change, the number of quality
levels for GPCC became five: rGPCC ∈ {2, 3, 4, 5, 6}.

VPCC [15] is the video-based point cloud compression
approach, in which the point cloud is projected to the sides
of a cube and the projection is coded using traditional video
compression methods, such as HEVC/H.265 or VVC/H.266.
The projection is done for both color information and also the
depth information (i.e., the inherent 3D structure of points
in 3D). Utilizing the inherent temporal coding capabilities
of traditional video codecs, VPCC can effectively compress
dynamic point cloud sequences.

For VPCC, we used the “all-intra” mode, and the com-
pression levels were taken from the “longdress” sequence
QP as determined in the CTC. Nevertheless, it was noticed
that the given bitrates in the CTC seemed to yield a much
higher quality than GPCC, therefore, another quality level
below the ones given in CTC was added. This quality level
is called rate zero with gQP = 36 and tQP = 47. With this
change, the number of quality levels for VPCC became six:
rV PCC ∈ {0, 1, 2, 3, 4, 5}.

GeoCNN [16] compresses voxelized point clouds by first
performing block partitioning. Then, each block is passed to
a variational autoencoder where the encoder transforms the
input binary occupancy voxel grid to a latent space. The latent
space is then quantized and entropy coded using a learned
entropy model. After entropy decoding the bitstream, the latent
space is transformed back to a voxel grid containing predicted
occupancy probabilities. The probabilities are then thresholded
to binary values which yields the decoded block. With the
result of each block, the entire decompressed point cloud is
obtained. Four different quality levels were used for GeoCNN.
rGeoCNN ∈ {1, 2, 3, 4}.

III. SUBJECTIVE QUALITY ASSESSMENT

We conducted a large-scale subjective experiment using the
Prolific [17] crowdsourcing platform with 3654 participants.
1494 processed point clouds (PPC) from 75 original point
clouds (SRC) were generated for the experiment with each
PPC were evaluated by 60 unique participants on average.
Consequently, we successfully accumulated approximately
90,000 subjective opinion scores. This section describes the
details regarding the crowdsourcing study.

A. Generating Visual Stimuli

In a voxelized point cloud, a voxel is occupied if at least
one point of the point cloud is within the voxel. Each voxel is
rendered as a cube spanning its volume. This is different from
the more common point-based method (“point” as OpenGL
point primitive) where points are rendered as screen-aligned
squares of a given window space size. The main drawback of
the point-based rendering is its susceptibility to scaling issues:
as the viewer zooms in or out, the points can either become
smaller or larger, impacting the perceived density of the point
cloud. Furthermore, point-based rendering often results in
flicker artifacts, particularly when spatial overlaps occur during
perspective changes. Cube-based rendering addresses these
issues, ensuring consistent rendering quality across various
perspectives and effectively eliminating flicker artifacts.

In practice, we specify cube sizes. For octree-based meth-
ods, the size of the cube is defined based on the number
of removed octree levels nr. With nl bit quantization, the
maximum is nl levels. Thus, we specify the size of the cube
as 2nl−nr : that is, a size of 1 when lossless, a size of 2
when removing one octree level, a size of 4 when removing
two octree levels, etc. . . For other methods, the cube size is
determined empirically to ensure water-tight rendering.

We employed a helix-like rendering trajectory, as illustrated
in Figure 3. The frontal orientation of each point cloud was
manually designated, and the rendering trajectory consistently
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Fig. 3. Visualization of the rendering trajectory from top and front views.

Fig. 4. Sample screenshots from the experiment. Rendered point cloud videos
were shown side-by-side (above), and each stimulus was followed by a voting
screen (below).

started from this predefined front side. To ensure that the front
side of the point cloud remained visible either at the beginning
or at the end of the rendered video, we introduced a slight
overlap between the trajectory’s starting and ending points.
Certain point clouds are unnatural to observe from lower
angles (e.g., landscape, buildings). Therefore, each point cloud
was individually categorized as either “low”, “mid” or “high”
to determine the initial elevation of the rendering trajectory.
While moving on the rendering trajectory, the camera was
always oriented toward the center of the point cloud.

B. Methodology

Subjective quality assessment of point cloud content can
be broadly categorized as interactive and passive [18]. In the
interactive paradigm, observers have the liberty to examine the
point cloud from any desired point of view, often within the
context of augmented reality or virtual reality applications.

In contrast, the passive approach involves rendering point
clouds in the form of a conventional video with a prede-
termined camera trajectory. Although both paradigms have
their own advantages and drawbacks, there is no statistically
significant difference between the subjective opinions collected
with each approach [19]. In order to minimize the variance
between observer opinions and facilitate a more practical data
collection through crowdsourcing, we opted for the passive
approach [20].

Several methodologies can be found in the literature and
recommendations for subjective quality assessment of tra-
ditional image and video sequences [21]. Commonly em-
ployed methodologies include, but are not limited to, Absolute
Category Rating (ACR), Double Stimulus Impairment Scale
(DSIS), Two-Alternative Forced Choice (2AFC). Several stud-
ies compared the accuracy and reliability of each methodology
for diverse types of multimedia content. In the realm of tradi-
tional images and videos, it is shown that the pair comparison
methodology tends to be more accurate due to straightforward
experiment procedure and there is no statistically significant
difference between ACR and DSIS methodology [22]. How-
ever, it’s worth noting that the pair comparison methodology
may become impractical when dealing with a substantial
number of test conditions due to the exponential increase
in required comparisons [23]. On the other hand, the recent
study by Nehme et al. [24] suggests that the DSIS method
is more accurate than ACR for 3D graphical content. The
rationale behind this assertion is that in ACR experiments,
participants unfamiliar with the pristine models may struggle
to discern various types of distortions. DSIS methodology
enhances accuracy by presenting both the reference and the
distorted model before the rating phase, allowing for a more
informed evaluation. In line with these findings, we adopted
the DSIS methodology with a side-by-side presentation format,
as recommended by Nehme et al. [24]. A screenshot depicting
the stimuli presented to the participants is featured in Figure 4.

C. Test Procedure

Previous studies have indicated that crowdsourcing experi-
ments can yield results of comparable accuracy to traditional
laboratory experiments across various Quality of Experience
(QoE) tasks and with diverse experiment designs [20], [25].
In light of these findings, we chose to leverage the Prolific
crowdsourcing platform to recruit participants and conduct
our subjective experiment. Prolific ensures transparency and
ethical participation by clearly communicating to participants
that they are taking part in a research study. The experi-
ment requirements are thoughtfully balanced to benefit both
researchers and participants alike [26]. This approach not
only provides access to a broad pool of participants but also
expedites the data collection process.

Test sessions & Duration: In crowdsourcing settings
where participants lack supervision during the experiment,
it is essential to limit both the number of stimuli and the
duration of the test compared to laboratory experiments [25].
To accommodate this requirement, we divided the experiment
into 60 sessions, each containing 25 stimuli and 2 “dummies”.
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Fig. 5. Selected frames from the SRC and PPC video renderings of the 2
dummies used in all playlists.

Sample frames from the two dummy stimuli are presented in
Figure 5. For training purposes, one dummy from the highly
compressed stimuli and one dummy from the least compressed
stimuli were uniformly presented to every participant. These
dummy stimuli remained consistent for all participants, and
participants were not informed that these stimuli were included
for training purposes. In total, each participant rated 27 stimuli
of 10-seconds rendered videos. With unlimited voting time
after each stimulus presentation, the average duration of the
test sessions amounted to approximately 5 minutes and 30
seconds.

Participants & Requirements: We recruited 60 partici-
pants (50% female - 50% male) on average per session, 3654
participants in total. The age of the participants range from
18 to 70. Each participant was compensated for their time
and effort in line with the Prolific requirements. Moreover,
to uphold the integrity of the experiment and guarantee that
all stimuli were presented as intended, participants were
constrained to use specific browsers operating in full-screen
mode at a resolution of 1080p. Additionally, participants were
required to meet specific qualifications, namely completing at
least 200 submissions on the Prolific platform with a 100%
approval rate. These stringent prerequisites helped ensure the
reliability and commitment of the participants.

IV. SUBJECTIVE EXPERIMENT RESULTS

This section presents our analysis on the collected subjective
quality scores. In Section IV-A, we discuss the observer
reliability and provide an overview of the results obtained from
the observer screening tools we have applied. Additionally, in
Section IV-B, we present our findings on the performance of
compression algorithms.

A. Observer Screening

In addition to the recruitment requirements of the partic-
ipants (see Section III-C), the “dummy stimuli” described
above were also used as trap questions to detect participants
engaging in malicious behavior. Moreover, post-experiment
observer screening tools were employed to enhance the re-
liability of the subjective opinion scores.

As described in Section III, the dataset underwent evaluation
by a total of 3,654 participants, divided into 60 smaller
playlists, each receiving an average of 60 participants. Within
each playlist, we included 2 dummy stimuli (depicted in
Figure 5) designed to calibrate participants’ expectations re-
garding the extent of distortions present in the experiment.
Participants were not informed that these initial 2 stimuli were
for training purposes and evaluated them like regular stimuli.
Source and processed point cloud renderings were displayed
side-by-side like the rest of the stimuli in the experiment (see
Figure 4 for what is displayed to observers). We selected the
first dummy with the highest level compression in the dataset
(resulting in a low-quality PPC), and the second dummy with
the lowest level of compression (resulting in a high-quality
PPC). This deliberate selection allowed us to expose each
participant to both ends of the quality scale, aligning their
expectations regarding the extent of degradation. Notably, if
a subject rated the first dummy as ”imperceptible” due to
its clear distortions, we excluded them from the experiment,
removing a total of 22 subjects.

As post-experiment observer screening, we applied the two
common ITU standards as well as a recently proposed model
called ZREC [21], [27], [28]10. Our objective in employing
these methodologies was to assess the validity of the collected
subjective opinion scores and establish reliable MOS. While
the three methods differ fundamentally, their primary aim
is to reduce confidence intervals (CI) by identifying and, if
necessary, excluding outliers from the collected data. Although
there is a high correlation between the MOS obtained through
each method, the average 95% CIs differ significantly.

Initially, we calculated the average 95% CI by taking the
mean of the 95% CI of all stimuli without applying any post-
screening methods, referred to as raw-MOS. Subsequently,
we implemented the outlier rejection as recommended in
ITU.BT500 [21]. Notably, BT500 identified only 43 subjects
as outliers out of the total 3,633 participants. As a result, the
impact on both the MOS and the 95% CI was minimal, with
the 95% CI (0.1982) remaining almost as high as the raw-MOS
95% CI. Conversely, we observed a more substantial shift in
the acquired MOS when using P913-12.6 and ZREC, which
yielded much lower confidence interval values. Specifically,
we calculated an average 95% CI of 0.1697 and 0.1463 for
P913-12.6 and ZREC, respectively. Based on these findings,
we utilized the MOS acquired via ZREC due to the lower
CI. To promote further investigation, we provide both the raw
opinion scores and estimated MOS using ZREC in the public
repository of the dataset.
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Fig. 6. Heatmaps represent the MOS-BPP curve densities of each compression
algorithm. Centers of the 2 dimensional Gaussian distribution fit over each
compression level for each algorithm is plotted as a line.

B. Performance of compression algorithms

Although BASICS dataset contains 4 compression algo-
rithms, in this analysis, we excluded GeoCNN. Since GeoCNN
only compresses geometry and is complemented with un-
compressed color information for visualization, it is not fair
to directly compare it with GPCC-Predlift, GPCC-Raht and
VPCC, which code both geometry and color. When comparing
the performance of GPCC-Predlift, GPCC-Raht and VPCC
codecs, we employed two complementary approaches that an-
alyze and visualize the MOS vs Bit-Per-Point (BPP) behavior
of each compression algorithm. Due to large differences over
BPP values per SRC, we first normalized all BPP values per
SRC. We achieved this by dividing each PPC with the highest
BPP value of the PPC across all compression algorithms that
belongs to the corresponding SRC. Consequently, we could
operate within a BPP range of 0 to 1, allowing a relative
comparison of the compression algorithms.

The first approach draws inspiration from DenseLines [29],
a method originally devised to visualize vast quantities of time
series data. To construct a Mean Opinion Score-Bit-Per-Point
(MOS-BPP) curve density map for each compression algo-
rithm, we partitioned the grid into square cells. Subsequently,
for a given compression algorithm and SRC, we assigned a
value of 1 to each cell intersecting with the polygon defined
by the MOS and 95% CI values of each PPC. For each SRC,
we normalized the marked cell values by dividing them by
the total number of intersecting cells, effectively illustrating
the effect of lower 95% CI and BPP values. Then, for each
compression algorithms, we aggregated the normalized cell
values from all SRCs and performed a linear mapping to scale
the results into [0,1] range. Outputted values then plotted as
overlaying heatmaps (with increasing transparency from 0 to
1), as showcased in Figure 6.

In the second approach, we employed a 2D Gaussian
distribution to model each compression level within each com-
pression algorithm. Subsequently, we extracted the centers of
these 2D Gaussian distributions and utilized them to generate
lines that captured the average MOS-BPP curves for each
compression algorithm. These results were then plotted as lines

10https://github.com/kyillene/ZREC

superimposed upon the curve density heatmaps, providing a
concise representation of each compression algorithm’s per-
formance.

As depicted in Figure 6, there is no significant difference
between the GPCC-Predlift and GPCC-Raht. At lower BPP
values, VPCC exhibits superior performance compared to
both GPCC variants. However, as BPP values increase, the
distinction between these compression algorithms becomes
less pronounced. It’s worth noting that while there may be
occasional exceptions to these observations, they are minor
in nature and do not substantially deviate from the trends
observed in the analysis. We encourage interested readers to
check the dataset public repository, where the MOS-BPP plots
for each SRC is provided.

V. BENCHMARK OF OBJECTIVE QUALITY METRICS

Point cloud objective quality metrics can be categorized into
three classes, based on the input to the metrics: image-based,
color-based and geometry-based. Image-based metrics take
the rendered point cloud image or image sequences as input
and assess the quality of the point clouds. Geometry-based
metrics primarily rely on the geometric information stored
at each point in the point cloud, without considering color
attributes. Color-based metrics, on the other hand, use the color
information of each point to assess point cloud quality. Some
metrics, such as PCQM [30], have the capability to utilize both
geometry and color information for quality assessment.

Furthermore, each metric can be categorized into three
based on the presence of reference point cloud information as
full-reference (FR), reduced-reference (RR) and no-reference
(NR). FR metrics access all information from the reference
point cloud in addition to the distorted point cloud. RR
metrics can access only partial information (features) from the
reference point clouds. NR metrics assess the quality of the
point cloud without any access to the reference point cloud.

In this section, we benchmark 14 image-based, 9 color-
based and 17 geometry-based metrics from the literature. Some
of these metrics were omitted from the results due to minor
differences to their variants. An introduction to the selected
metrics is provided in Section V-A. We employ various figures
of merit and evaluation scenarios to assess the performance of
these metrics, which are outlined in Section V-B. The results
of the metric evaluations are presented in Section V-C, Section
V-D, and Section V-E.

A. Selected Metrics

For all image-based metrics, average pooling over 30 fps
video renderings has been used to predict the final quality
as recommended in [31]. Image-based metrics have been
computed on the rendered frames used during the subjective
test, and include simple measures such as MSE, PSNR,
SSIM [32], MS-SSIM [33], and 11 other more sophisticated
metrics. Feature Similarity Index (FSIM [34]) and its color-
dependent variant, FSIMc [34], fall under the category of
full-reference metrics. They rely on phase congruency and
gradient magnitude to locally quantify image quality, utilizing
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phase congruency as a weighting function to yield a sin-
gle quality score. Gradient Magnitude Similarity Deviation
(GMSD [35]) is another full-reference metric that employs
pixel-wise gradient magnitude similarity to predict image
quality. D-JNDQ [36] is a learning-based full-reference metric
trained on the first Just Noticeable Difference (JND) points of
JPEG compression artifacts. It combines a white-box optical
and retinal pathway model with a Siamese neural network to
predict image quality. MW-PSNR [37], [38] relies on mor-
phological wavelet decomposition and the Mean Squared Error
(MSE) of the wavelet sub-bands. Our evaluation includes both
full-reference (MW-PSNR-FR) and reduced-reference (MW-
PSNR-RR) versions of this metric. ADM2 [39] assesses image
quality by separating detail losses and additive impairments.
It encompasses features also used in the Video Multi-method
Assessment Fusion (VMAF) metric [40]. VIF [41] quantifies
the information present in the reference image and how
much of this reference information can be extracted from
the distorted image. It is another feature used in the VMAF
metric [40]. VMAF [40], proposed by Netflix, fuses several
image-based features, including ADP2 and VIF, along with a
simple temporal feature to evaluate video quality. FVVDP [42]
models the response of the human visual system to differences
across the temporal domain and the visual field.

In addition to image-based metrics, several geometry-based
metrics were also evaluated over the dataset. In the last decade,
three fundamental approaches were proposed to evaluate PC
quality focusing on point-to-point [43] (p2point), point-to-
plane [44] (p2plane) and plane-to-plane [45] (pl2plane) dif-
ferences in 3D space. The p2point and p2plane metrics are
computed using either mean square error (MSE) or peak
peak signal-to-noise ratio (PSNR). In this context, the term
“plane” refers to the surface of a point defined by its nor-
mal vector. The pl2plane metrics are computed using either
MSE or root mean square (RMS). While categorized as a
geometry-based metric, PCQM [30] uses a linear combination
of several geometry-based (curvature comparison, curvature
contrast, and curvature structure) and color-based features
(lightness comparison, lightness contrast, lightness structure,
chroma comparison, and hue comparison) to assess the visual
quality of a point cloud. PointSSIM [46] offers three geometry-
based variants with slight differences in both implementation
and performance.

Moreover, color differences between the points in reference
and distorted PC can be quantified with PSNR to estimate the
visual quality of the distorted PC. We applied this metric on Y,
U, and V channels separately and referred as Color-Y-PSNR,
Color-U-PSNR, and Color-V-PSNR respectively. 3 color-based
variants of the PointSSIM [46] metric were also included in
the evaluation.

B. Evaluation Criteria

We evaluate the performance of the selected metrics in
three different scenarios. In Section V-C, we aim to assess
the perceptual quality of the PPC covering the entire quality
range. This is the most generic and traditional evaluation
scenario for quality metrics. In Section V-D, we evaluate

Fig. 7. Ideal distributions of metric score differences for “Different vs
Similar” and “Better vs Worse” analysis. A greater metric score difference
is expected for different pairs in “Different vs Similar” analysis. For “Better
vs Worse” analysis, metric score differences are expected to be positive and
negative respectively for better and worse pairs.

the performance of the metrics in the high-quality range.
This scenario is particularly relevant for applications such as
content production, high-quality streaming, and digital twins,
where maintaining the highest visual fidelity is crucial. In
Section V-E, we evaluate the metric performances for their
sensitivity to quality differences within different versions of
the same point cloud content. This evaluation scenario is
especially suitable to optimization scenarios such as point
cloud compression and enhancement, and as loss functions in
end-to-end PC learning pipelines. For broad and high-quality
range evaluation scenarios, we employ traditional correlation
measures, while Krasula’s method [47] is used for the Intra-
SRC evaluation scenario.

Correlation measures: Pearson’s linear correlation coeffi-
cient (PLCC) measures the prediction accuracy of the objec-
tive metrics and Spearman’s rank-order correlation coefficient
(SROCC) measures the strength of prediction monotonic-
ity [48]. Following the recommendations [21], [48], a 5-
parameter logistic function was fitted prior to evaluation. For
both PLCC and SROCC, the values are in the range [0, 1] and
higher values indicate a better correlation.

Krasula’s method [47]: It involves two stages of analysis:
“Different vs Similar” and “Better vs Worse”. In the “Different
vs Similar” analysis, pairs of PPC from the dataset are split
into two categories as pairs with (i.e., different) and without
(i.e., similar) statistically significant differences. For a given
pair of PPC, one way ANOVA followed by Tukey’s honest
significance difference test [49] is used to measure the sta-
tistical significance of the differences. The assumption is that
the absolute differences in metric predictions for “different”
pairs should be larger than the “similar” pairs. Receiver
Operating Characteristic (ROC) analysis is used to quantify
the performance, and expressed as Area Under the ROC Curve
(AUC). In the “Better vs Worse” analysis, pairs identified as
“different” in the first stage are used. In this stage, the aim is to
measure how well the metrics identify the better PPC in pairs
with statistically significant difference. Metric performance
in this stage can be expressed as the correct classification
percentage as well as AUC values, similar to the first stage.
An illustrative example of how metric score differences should
be distributed for each stage is depicted in Figure 7. In
“Different vs Similar” analysis, higher metric score differences
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TABLE III
COLUMNS ”ALL” PRESENT THE PEARSON AND SPEARMAN CORRELATION COEFFICIENTS BETWEEN THE LISTED METRIC PREDICTIONS AND MOS (WITH
ZREC [28]) OF THE ALL PPC IN THE BROAD QUALITY RANGE. MOREOVER, METRIC PERFORMANCES FOR EACH COMPRESSION ALGORITHM ARE ALSO

INDIVIDUALLY REPORTED IN THE CORRESPONDING COLUMNS.

All GeoCNN GPCC
Predlift

GPCC
Raht VPCC

Category Metric PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC

Image
Based

MSE 0.2387 0.2226 0.4099 0.4183 0.3349 0.2578 0.3194 0.2387 0.1306 0.0649
PSNR 0.2488 0.2269 0.4220 0.4231 0.3395 0.2621 0.3238 0.2429 0.1149 0.0691
SSIM [32] 0.6119 0.5431 0.5496 0.5373 0.7491 0.6145 0.7599 0.6365 0.4034 0.3675
MS-SSIM [33] 0.5481 0.4607 0.4944 0.4813 0.6744 0.5286 0.6847 0.5473 0.3553 0.2951
FSIM [34] 0.6335 0.5612 0.5724 0.5714 0.7610 0.6308 0.7683 0.6501 0.4042 0.3748
FSIMc [34] 0.6334 0.5608 0.5713 0.5703 0.7607 0.6298 0.7679 0.6495 0.4040 0.3745
GMSD [35] 0.6716 0.6113 0.6331 0.6336 0.7988 0.6718 0.7944 0.6854 0.4556 0.4390
D-JNDQ [36] 0.6732 0.6313 0.7215 0.7229 0.7891 0.6762 0.8017 0.7001 0.4352 0.4402
MW-PSNR-FR [37] 0.3479 0.3296 0.4590 0.4577 0.4471 0.3766 0.4366 0.3668 0.1956 0.1624
MW-PSNR-RR [38] 0.5110 0.4975 0.5704 0.5647 0.6250 0.5591 0.6275 0.5600 0.3011 0.3107
ADM2 [39] 0.7283 0.6520 0.6434 0.6216 0.8408 0.6887 0.8362 0.7073 0.5513 0.5386
VIF-scale3 [41] 0.6492 0.5947 0.5962 0.6035 0.7705 0.6525 0.7745 0.6717 0.4311 0.4249
VMAF [40] 0.7419 0.6686 0.6572 0.6391 0.8540 0.7091 0.8532 0.7310 0.5541 0.5412
FVVDP [42] 0.6936 0.6417 0.6312 0.6457 0.8197 0.6983 0.8300 0.7255 0.4676 0.4631

Color
Based

Color-Y-PSNR 0.5376 0.5282 0.2166 0.2448 0.7407 0.7018 0.7567 0.7208 0.4251 0.4335
Color-U-PSNR 0.5432 0.5105 0.2585 0.1254 0.6814 0.6529 0.6602 0.6291 0.3838 0.3751
Color-V-PSNR 0.5729 0.5411 0.3034 0.2661 0.7014 0.6755 0.6893 0.6614 0.4428 0.4238
PointSSIM-ColorAB [46] 0.7291 0.6907 0.5855 0.3936 0.8021 0.7962 0.8249 0.8278 0.7378 0.7675
PointSSIM-ColorBA [46] 0.7241 0.6928 0.6044 0.4312 0.8033 0.7984 0.8257 0.8288 0.7287 0.7611
PointSSIM-ColorSym [46] 0.7250 0.6919 0.6021 0.4296 0.8028 0.7975 0.8253 0.8279 0.7317 0.7633

Geometry
Based

p2point-MSE [43] 0.8427 0.7759 0.6060 0.6114 0.9718 0.8863 0.9707 0.9002 0.7221 0.7154
p2point-PSNR [43] 0.6827 0.4850 0.2798 0.2257 0.7697 0.5876 0.7822 0.6164 0.5172 0.4294
p2plane-MSE [44] 0.8866 0.8370 0.6865 0.6415 0.9681 0.8886 0.9678 0.9028 0.7915 0.8068
p2plane-PSNR [44] 0.7001 0.5164 0.3216 0.3113 0.7576 0.5794 0.7708 0.6071 0.5880 0.4816
pl2plane-Mean [45] 0.1393 0.1272 0.3390 0.1193 0.1730 0.1368 0.1753 0.1610 0.1029 0.0994
pl2plane-RMS [45] 0.1197 0.1002 0.2205 0.0553 0.1511 0.1195 0.1565 0.1448 0.0942 0.0777
pl2plane-MSE [45] 0.1189 0.1002 0.3334 0.2193 0.1508 0.1195 0.1562 0.1448 0.0942 0.0777
PCQM [30] 0.8878 0.8102 0.4475 0.2965 0.9510 0.8746 0.9584 0.8953 0.8507 0.8332
PointSSIM-GeomAB [46] 0.7760 0.7196 0.5497 0.5469 0.9067 0.8510 0.9091 0.8784 0.5439 0.5527
PointSSIM-GeomBA [46] 0.7644 0.7145 0.5572 0.5783 0.9075 0.8477 0.9107 0.8757 0.5102 0.5148
PointSSIM-GeomSym [46] 0.7731 0.7226 0.5566 0.5767 0.9094 0.8510 0.9116 0.8782 0.5677 0.5493

are expected for “Different” pairs and lower differences for
“Similar” pairs. In the “Better vs Worse” analysis, for pairs
categorized as “Better”, positive metric score differences are
expected, indicating that the first point cloud in the pair is
better than the second one. Conversely, for pairs categorized
as “Worse”, negative metric score differences are expected,
indicating that the first point cloud in the pair is worse than
the second one.

C. Broad Quality Range Evaluation

Broad quality range evaluation scenario is the generic and
commonly used use-case in the literature and it typically
involves calculating metric performances with the traditional
correlation measures (e.g., PLCC, SROCC, etc.). The entire
dataset is used for this evaluation, and resultes reported as
PLCC and SROCC values between the metric predictions and
the collected MOS.

Table III presents the PLCC and SROCC of each metric
in this evaluation scenario. The metrics are categorized into
three group based on input type that they are operating on,
as previously discussed in Section V-A. The first two column
show the metrics’ PLCC and SROCC scores on the entire
dataset. Additionally, metric performances were evaluated for
individual compression algorithms and the results are pre-
sented in subsequent columns as indicated above each column.

PCQM [30] and p2plane-MSE [44] exhibit the best perfor-
mance on the entire dataset among the selected metrics, despite
their poorer performance in predicting GeoCNN compression
distortions. Among color-based metrics, we again notice a
similar pattern on the accuracy of metrics when it comes
to GeoCNN compression distortions. PointSSIM [46] variants
perform relatively better than other metrics in this category.

Simple image-based metrics (e.g., MSE, PSNR, SSIM [32],
MS-SSIM [33]) have low accuracy across all compression
categories and consequently on the whole dataset. VMAF [40]
shows the best performance among image-based metrics in
the whole dataset. We also observe a general trend among
image-based metrics towards a lack of accuracy on VPCC
compression distortions. On another note, we observe that D-
JNDQ [36] performs the best to predict GeoCNN distortions
among the selected metrics, despite not being retrained on the
dataset.

D. High Quality Range Evaluation

High-quality range evaluation is crucial for applications that
aim to deliver top-tier content, such as high-quality streaming
and digital twins. It’s important to note that metrics that
perform well in the general quality range may not exhibit the
same level of accuracy in the high-quality range. Therefore, we
conducted an analysis to assess the accuracy of quality metrics
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TABLE IV
COLUMNS PRESENT THE PEARSON AND SPEARMAN CORRELATION

COEFFICIENTS BETWEEN THE LISTED METRIC PREDICTIONS AND MOS
(WITH ZREC [28]) OF THE PPC IN THE HIGH-QUALITY RANGE WHERE

MOS ≥ 3.5.

Category Metric PLCC SROCC

Image
Based

MSE 0.1187 0.0920
PSNR 0.1476 0.1397
SSIM [32] 0.2901 0.2119
MS-SSIM [33] 0.2697 0.1600
FSIM [34] 0.3100 0.2508
FSIMc [34] 0.3100 0.2502
GMSD [35] 0.3503 0.2993
D-JNDQ [36] 0.4120 0.3771
MW-PSNR-FR [37] 0.1548 0.1490
MW-PSNR-RR [38] 0.2795 0.2633
ADM2 [39] 0.3171 0.2750
VIF-scale3 [41] 0.2697 0.1600
VMAF [40] 0.3466 0.3067
FVVDP [42] 0.3598 0.3278

Color
Based

Color-Y-PSNR 0.2751 0.2728
Color-U-PSNR 0.1808 0.1808
Color-V-PSNR 0.2192 0.2051
PointSSIM-ColorAB [46] 0.4530 0.3938
PointSSIM-ColorBA [46] 0.4545 0.4052
PointSSIM-ColorSym [46] 0.4547 0.4004

Geometry
Based

p2point-MSE [43] 0.4898 0.4221
p2point-PSNR [43] 0.1077 0.0774
p2plane-MSE [44] 0.5708 0.5418
p2plane-PSNR [44] 0.1067 0.1512
pl2plane-Mean [45] 0.0292 0.0511
pl2plane-RMS [45] 0.0770 0.0939
pl2plane-MSE [45] 0.0494 0.0642
PCQM [30] 0.5038 0.4775
PointSSIM-GeomAB [46] 0.4418 0.4527
PointSSIM-GeomBA [46] 0.4466 0.4617
PointSSIM-GeomSym [46] 0.4455 0.4615

specifically on the high-quality part of the dataset, where the
MOS is greater than or equal to 3.5. This evaluation helps
identify which metrics excel in scenarios where maintaining
exceptionally high quality is a priority.

In this evaluation scenario, metric performances are rela-
tively low overall, as indicated in Table IV. However, the
relative order of the metrics in terms of their performances
remains relatively consistent with the broad quality range
evaluation. p2plane-MSE [44] performs the best overall while
D-JNDQ [36] is the best performing image-based metric and
the PointSSIM-ColorBA [46] is the best performing color-
based metric for this use-case.

E. Intra-SRC Evaluation

Intra-SRC evaluation focuses on assessing metrics’ perfor-
mance when comparing PPC derived from a single pristine
SRC at various compression levels. It allows us to gauge how
well metrics can discriminate between different compression
levels originating from the same SRC, helping us optimize
processes that rely on such discrimination. This evaluation
scenario is valuable for applications like fine-tuning compres-
sion and enhancement algorithms, training machine learning
models for end-to-end processing, and other situations where
fidelity is a primary concern.

Prior to the analysis, we preprocess the subjective scores
as described in Krasula’s method [47]. First, 20 PPCs were
paired within each source point cloud, generating (20× (20−
1)/2) pairs per SRC. In total, we end up with 14143 pairs.

Afterwards, a one-way ANOVA test is applied to individual
scores collected for each stimulus in each pair, followed by
Tukey’s Honest test. 5019 pairs among the total 14143 were
identified as “Similar” whereas 9124 contains a statistically
significant different between the two PPC and thus identified
as “Different”. From those “Different” pairs, we split them
into two roughly equal-sized groups as “Better” and “Worse”
depending on the order of the pair. There are 4075 “Better”
and 5049 “Worse” pairs.

Due to space limitations of the manuscript, we report the
result of the analysis only on the selected 6 metrics among the
initial list presented in Section V-A. The rest of the results can
be acquired via the provided scripts in the GitHub repository
of the dataset.

Different vs Similar Analysis: The top row in Figure 8
presents the results of the analysis as histograms of metric
score differences for “Different” and “Similar” pairs. We
expect better-performing metrics to provide metric score dis-
tributions similar to the ideal case as depicted in Figure 7.
Additionally, performance of each metric quantified with AUC
values, reported under each metric name. We observe a better
performance from PCQM, providing a higher AUC value
and a very similar distribution to the ideal case. Statistical
significance tests on this task also reveals that PCQM performs
significantly better than all other metrics in “Different vs
Similar” task.

Better vs Worse Analysis: Similar to the previous stage,
bottom row of the Figure 8 presents the results as histograms
of metric score differences and quantifies the performance of
each metric with AUC and CC values. We observe that most
metrics perform relatively well on identifying “Better” and
“Worse” pairs apart. PCQM shows a very similar distribution
to the ideal case depicted in Figure 7 as also reflected by the
AUC and CC values.

VI. CONCLUSION

We conducted a large-scale crowdsourcing study on point
cloud compression quality assessment. To the best of our
knowledge, this is the largest publicly available point cloud
quality assessment dataset. It contains 75 source point clouds,
each compressed with 4 different compression algorithms
resulting in nearly 1500 processed point clouds. More than
3500 naive observers participated to the experiment.

Our study revealed several noteworthy insights regarding
objective quality metrics’ performances. While most point
cloud objective quality metrics perform well in predicting
GPCC distortions, the majority of the metrics still struggle
with VPCC distortions. Furthermore, an even larger majority
fall short in assessing the quality GeoCNN distortions, a
learning-based compression algorithm. This highlights a press-
ing need for improved quality metrics capable of accurately
evaluating learning-based compression distortions. Given the
scarcity of learning-based compression algorithms in publicly
available datasets (see Table I), the need for better quality
metrics that can accurately predict learning-based compression
distortions is revealed in this work.

Additionally, we observed significant room for improvement
in metrics designed for high-quality content. The correlations
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Fig. 8. The plots in the top row depict the metric score differences for pairs categorized as “Different” and “Similar” for the Intra-SRC evaluation. Each
metric’s score differences are individually normalized within minimum and maximum ranges. The height of the bars represents the number of occurrences,
and each bar ranges between 0 and 1500. The metric names are indicated at the top of each plot, and the AUC values are reported below each metric name.
Similarly, the plots in the bottom row show the metric score differences for pairs categorized as “Better” and “Worse” for the Intra-SRC evaluation. Again,
the metric score differences are individually normalized within minimum and maximum ranges. The height of the bars denotes the number of occurrences,
and each bar ranges between 0 and 800. The metric names are indicated at the top left corner of each plot and the AUC and CC are reported in the top right
corner of each plot.

between the MOS and the best-performing metric predic-
tions (p2plane-MSE in this scenario) remained below 0.60.
On a more positive note, our intra-SRC evaluation scenario
yielded more promising results. The best-performing metrics
demonstrated more promising results for distinguishing the
higher-quality point cloud. Nevertheless, there remains room
for improvement in predicting the statistical significance of
quality differences between point clouds.

As part of our commitment to advancing point cloud quality
assessment, we are making our dataset publicly available.
This dataset includes mean and individual opinion scores,
along with scripts for metric evaluation in various scenarios.
It also comprises all point clouds and their associated video
renderings, forming what we call the BASICS dataset. We
believe that the release of the BASICS dataset will contribute
significantly to the improvement of existing point cloud qual-
ity metrics, the development of more robust ones, and the
resolution of the challenges highlighted in this study.
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quality metric for colored 3d point clouds,” in 2020 Twelfth International
Conference on Quality of Multimedia Experience (QoMEX), 2020, pp.
1–6.

[31] A. Ak, E. Zerman, S. Ling, P. L. Callet, and A. Smolic, “The effect
of temporal sub-sampling on the accuracy of volumetric video quality
assessment,” in 2021 Picture Coding Symposium (PCS), 2021, pp. 1–5.

[32] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assess-
ment: from error visibility to structural similarity,” IEEE Transactions
on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.

[33] Z. Wang, E. Simoncelli, and A. Bovik, “Multiscale structural similarity
for image quality assessment,” in The Thrity-Seventh Asilomar Confer-
ence on Signals, Systems & Computers, 2003, vol. 2, 2003, pp. 1398–
1402 Vol.2.

[34] L. Zhang, L. Zhang, X. Mou, and D. Zhang, “Fsim: A feature similarity
index for image quality assessment,” IEEE Transactions on Image
Processing, vol. 20, no. 8, pp. 2378–2386, 2011.

[35] W. Xue, L. Zhang, X. Mou, and A. C. Bovik, “Gradient magnitude
similarity deviation: A highly efficient perceptual image quality index,”
IEEE Transactions on Image Processing, vol. 23, no. 2, pp. 684–695,
2014.

[36] A. Ak, A. Pastor, and P. Le Callet, “From just noticeable differences
to image quality,” in Proceedings of the 2nd Workshop on Quality

of Experience in Visual Multimedia Applications, ser. QoEVMA ’22.
New York, NY, USA: Association for Computing Machinery, 2022, p.
23–28. [Online]. Available: https://doi.org/10.1145/3552469.3555712

[37] D. Sandić-Stanković, D. Kukolj, and P. Le Callet, “DIBR synthesized
image quality assessment based on morphological wavelets,” in 2015
Seventh International Workshop on Quality of Multimedia Experience
(QoMEX), 2015, pp. 1–6.
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