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Université de Strasbourg, CNRS, Laboratoire ICube, UMR 7357, F-67037 Strasbourg, France
Email Address: Evelyne.Martin@unistra.fr

Icare Morrot-Woisard
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This paper has to be intended both as a review and as an historical tribute to the ideas developed almost forty years ago by S. Nosé
establishing the theoretical foundations of the implementation and use of thermostats in molecular dynamics. The original motiva-
tion of this work is enriched by an observation related to the connection between the Nosé seminal expression of temperature control
and the extension proposed in 1985 by W. G. Hoover, known as the Nosé-Hoover thermostat. By carefully rederiving the equations
of motion in both formalisms, it appears that all features of Nosé-Hoover framework (replacement of the Nosé variables by a single
friction coefficient in the equations of motion) are already built in the Nosé approach. Therefore, one is able to work directly within
the Nosé formalism with the addition of a single variable only, by greatly extending its general impact and simplicity and somewhat
making redundant the Nosé-Hoover extension. Having been implicitly (and somewhat inadvertently) put to good use by a multitude
of users over the past 40 years (in the context of classical and first-principles molecular dynamics), this finding does not need any
specific application to be assessed.

1 Purpose and context

This paper reviews concepts and ideas inherent in the use of thermostats in molecular dynamics (MD).
It has been stimulated by the author’s continued use of the Nosé and Nosé-Hoover formalism (for some
of them over the past thirty years), both in the classical and first-principles MD frameworks. Also, in-
teractions with young colleagues and more established scientists have prompted us to realize that, un-
fortunately, running into users partially (or even totally) unaware of the basics of control temperature in
molecular dynamics is not infrequent. Therefore, one of the purposes is to be pedagogical and informa-
tive while explaining where the “best” thermostat within MD comes from and why. This work has come
to maturity during the final stages of writing of a recent book (monography) on molecular dynamics in
disordered systems [1]. 1 It occurred that treating theory appropriately in the monography required not
only a thorough account of past contributions in the area of temperature control within MD but also
a careful rehearsal of the underlying concepts. This exercise has proved highly profitable, since allow-
ing to take a “fresh” look at the Nosé and Nosé-Hoover formalism. It was a big surprise for us to realize
the existence of unmistakable evidence proving that the Nosé formalism, in its very first formulation, in-
cludes already all features of the supposedly “more manageable” Nosé-Hoover scheme. This is by itself
a valuable complement that gives to the present article the multifold flavor of historical review, critical
analysis and insightful revisiting of theory. We would like to stress that, in this context, there is no need
to show any practical applications, since we are neither proposing a new scheme nor extending the valid-
ity of an existing one. The rational developed here is purely analytical and does not affect the validity of
any of the results published over the past 40 years by using the strategies referred to above. All this will
appear clearly in what follows.

2 Introduction

The implementation of the notion of thermostat within molecular dynamics has marked an important
step toward the proper use of statistical mechanics concepts to produce atomic-scale temporal trajecto-
ries. It has to be recognized that molecular dynamics have long faced the challenge of obtaining a de-

1Such an accomplishment appeared at the end of 2022 shortly after having received, by this Editor, the invitation to publish this paper in the
context of an invited talk at the EMRS 2022 Fall meeting.
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sired target temperature (as a macroscopic quantity) by acting on the equations of motion (the micro-
scopic counterpart) for a collection of Np atoms (or, equivalently, 3Np degrees of freedom). Early at-
tempts showed the need of a rigorous theoretical framework to achieve a consistent realization of the
canonical NVT ensemble (with N playing the role of the above Np, V being the volume and T the tem-
perature) in the framework of a computer simulation based on time evolution [2, 3]. Also, the expected
formalism has to comply with the attainment of a thermodynamic limit. This means that all concepts
relevant to thermodynamics have to find their applications within a description purely based on the atomic-
scale behavior of a collection of degrees of freedom giving access to properties averaged on time.

3 The Nosé thermostat

This issue has been solved in the eighties by Shuichi Nosé [4, 5]. Nosé showed that a molecular dynamics
trajectory can be created to produce a canonical ensemble within a formalism that preserves the Hamil-
tonian character of the equations of motion. This goal can be achieved by coupling a system of Nind in-
dependent degrees of freedom to a new dynamical variable s in a way compatible with the Hamiltonian
character of the extended global dynamical quantity, provided the time t inherent in Equations 1 through
6 can be considered as a virtual physical parameter. The virtual time t and the real time tr are linked by
the equality t = str. Accordingly, the Nosé Hamiltonian reads:

HNosé =
Np∑
i=1

p2
i

2ms2
+ Epot[ri] +

p2
s

2η
+ (3Np + 1)KbT

TG ln s (1)

with the equations of motion derived straightforwardly as follows for the coordinates ri, the momentum
pi, the variable s and its momentum ps

dri
dt

= ṙi =
∂H
∂pi

=
pi

ms2

dpi

dt
= ṗi =

∂H
∂ri

= −∂Epot[ri]

∂ri
(2)

ds

dt
= ṡ =

∂H
∂ps

=
ps
η

dps
dt

= ṗs = −∂H
∂s

=
Np∑
i=1

pi
2

ms3
− (3Np + 1)KbT

TG

s
(3)

Note that η is the mass associated with s and ps and T TG is the target temperature to be obtained (in
average on time) via application of the thermostat. For sake of completeness, it is worth pointing out
that the above formalism can be also expressed in Lagrangian terms by maintaining the same framework
well adapted to be checked numerically, i.e. the existence of a constant of motion from which the time
behavior of ṙi, ṙi, ṡ, s̈ can be directly derived:

LNosé =
Np∑
i=1

mṙi
2s2

2
− Epot[ri] +

ṡ2η

2
− (3Np + 1)KbT

TG ln s (4)

d

dt
(ms2ṙi) = −∂Epot[ri]

∂ri
or r̈i = − 1

ms2

∂Epot[ri]

∂ri
− 2ṡ ṙi s

−1 (5)

d

dt
(ηṡ) =

Np∑
i=1

mṙi
2s− (3Np + 1)KbT

TG

s
(6)

The presence of the potential energy, namely ln s, pertaining to the variable s is critical to ensure that
the time average taken over the extended Nosé phase space (the one defined with respect to the virtual
time t and the associated variables ri, pi) is equivalent to a time average in the canonical ensemble for
the real variable in real time tr, namely pr

i and rri . This assertion has been explicitly demonstrated by
Nosé in Ref. [4] and Ref. [5] to which we refer to interested reader, together with other relevant papers
by the same author (see, for instance, Ref. [6] and Ref. [7]). The quoted proof shows also explicitly that
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the above equivalence holds provided the factor (3Np+1) multiplying KbT
TG ln s in Equation 1 is em-

ployed in conjunction with the virtual variables at the place of 3Np, to be selected when real variables pr
i

and rri evolving in real time tr are adopted.

4 From the Nosé to the Nosé-Hoover thermostat

4.1 Origin and motivations: from virtual time to real time

When it came out in 1984, the breakthrough by Nosé was unanimously considered as the most impor-
tant achievement of the late 20th century for both statistical mechanics and atomic-scale modelling. As
such, it was readily implemented in molecular dynamics codes available or on the verge of being devel-
oped as softwares open to the whole community. However, some experts acknowledged to feel uncomfort-
able with the appearance of additional variables and the notion of virtual time by pointing out that their
physical meaning could be hard to grasp since all statistical averages are expected to refer to a real time.
This objection was partially counteracted by Nosé himself in Ref. [4] by showing how Equation 2 and
Equation 3 can be expressed by working in a real time framework, the time evolution of the variable s
and its momentum ps to be followed along with atomic coordinates rri and momenta pr

i in real time. The
first step consists in defining the relationships involving the dynamical variables in the descriptions of
the Nosé formalism based on real and virtual time, respectively. The basic definitions to begin with are
the following:

rri = ri pr
i = pi/s sr = s tr =

∫ t

dt/s prs = ps/s (7)

where we have introduced the superscript r for all variables evolving in real time. Given the above rela-
tionship, and by employing the previous Equations 5 and 6 for evolution in virtual time, we obtain the
time derivative of the above quantities and the related expression ready to use to implement numerically
the Nosé formalism in the real, physical time.

drri
dtr

= s
drri
dt

= s
dri
dt

=
pi

ms
=

pr
i

m
(8)

dpr
i

dtr
= s

dpr
i

dt
= s

d(pi/s)

dt
=

dpi

dt
− 1

s

ds

dt
pi (9)

dpr
i

dtr
= −∂Epot[r

r
i ]

∂rri
− 1

s

ps
η

pi = −∂Epot[r
r
i ]

∂rri
− srprsp

r
i

η
(10)

dsr

dtr
= s

dsr

dt
= s

ds

dt
=
srps
η

=
sr2prs
η

(11)

dprs
dtr

= s
dprs
dt

= s
d(ps/s)

dt
=

dps
dt
− 1

s

ds

dt
ps (12)

dprs
dtr

=
Np∑
i=1

(pi
r)2

msr
− 3NpKbT

TG

sr
− sr(prs)

2

η
(13)

Therefore, by using these new set of equations of motion one can totally disregard the notion of virtual
time and work in a framework strictly equivalent to the one employed to follow the evolution in the mi-
crocanonical (NVE) ensemble. A straightforward rewriting allows obtaining the equivalent of Equation 1
in terms of the real variables:

Hr
Nosé =

Np∑
i=1

(pi
r)2

2m
+ Epot[r

r
i ] +

(sr)2(prs)
2

2η
+ 3NpKbT

TG ln sr (14)
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and the corresponding equivalent of Equation 4 in the form

Lr
Nosé =

Np∑
i=1

m(ṙi
r)2

2
− Epot[r

r
i ] +

(ṡr)2η

2(sr)2
− 3NpKbT

TG ln sr (15)

together with the Lagrangian equations of motion expressed in real time:

d

srdtr
(
m(sr)2ṙi

r

sr
) = −∂Epot[r

r
i ]

∂rri

d

dtr
(m(sr)ṙi

r) = −sr ∂Epot[r
r
i ]

∂rri
(16)

d

dtr
(
η

sr
dsr

dtr
) =

Np∑
i=1

m(
drri
dtr

)2 − 3NpKbT
TG (17)

It is important to realize that the Nosé equations as depending on the real variables change the purely
Hamiltonian character of the formalism, since Equations 8 through 13 cannot be derived directly from
Equation 14. In other terms, Equation 14 is not a Hamiltonian (i.e. Equation 15 is not a Lagrangian),
both expressing now “mere” constants of motion. Also, what we have obtained above as the Hamilto-
nian and Lagrangian equations of motion in real time have been derived directly from the equations of
motion in virtual time, since one could not obtain them from Equation 14 and Equation 15. Once again,
the reason being that the Nosé formalism is a Hamiltonian one only in virtual time.

4.2 Can we attach to the Nosé variables a physical meaning ?

We have seen that the Nosé framework, although established in virtual time and holding a fully hamil-
tonian character in this framework only, can be reformulated within the customary temporal scale (the
real one) inherent in any molecular dynamics application. Is this going to settle the issue of its straight-
forward and manageable use to implement a temperature control ? What makes it still cumbersome to
the eyes of pratictioners is the presence of the s variable to which one cannot attach a transparent phys-
ical meaning. However, it appears that careful anlysis of the equations provides a clear hint to address
favorably this issue and recover a more palatable analytical expression. The route followed in this paper
is alternative to the one proposed by Hoover [8] even though we shall demonstrate later that the present
derivation and the one of Hoover are strictly identical. More, we would like to demonstrate that what
Nosé has shown in his seminal papers is largely sufficient to obtain a theory of thermostats for molecular
dynamics bearing a clear physical meaning and not carrying any unneeded awkwardness because of the
presence of the s variable.
Let’s first concentrate on Equation 10 by defining ξ = srprs/η. One can first rewrite Equation 10 in the
following form:

dpr
i

dtr
= −∂Epot[r

r
i ]

∂rri
− srprsp

r
i

η
= −∂Epot[r

r
i ]

∂rri
− ξpr

i (18)

by showing that an actual friction term can be identified as acting on the time evolution of pr
i . At first

sight, this postulate does not correspond to any simplification in the equations of motions, since one is
bound to follow the time evolution of both sr and prs.
However, it turns out that focusing on the product of the two variables sr and prs (defined above as pro-

portional to ξη) has a quite insightful meaning when attention is drawn on its time derivative ξ̇ as it re-
sults from the following equations:

d(srprs)

dtr
= sr

dprs
dtr

+ prs
dsr

dtr
= sr(

Np∑
i=1

(pi
r)2

msr
− 3NpKbT

TG

sr
− sr(prs)

2

η
) + prs

sr2prs
η

(19)

d(srprs)

dtr
= sr

dprs
dtr

+ prs
dsr

dtr
= sr(

Np∑
i=1

(pi
r)2

msr
− 3NpKbT

TG

sr
) = (

Np∑
i=1

(pi
r)2

m
− 3NpKbT

TG) (20)
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dξ

dtr
= (

Np∑
i=1

(pi
r)2

m
− 3NpKbT

TG)/η (21)

Equation 21 has a form clearly reminiscent of the time evolution of a friction variable, as it appears when
grouping and considering as a whole the three equations expressing the Nosé evolution in real time of
the variables rri , pr

i and ξ:

drri
dtr

= s
drri
dt

= s
dri
dt

=
pi

ms
=

pr
i

m
(22)

dpr
i

dtr
= −∂Epot[r

r
i ]

∂rri
− srprsp

r
i

η
= −∂Epot[r

r
i ]

∂rri
− ξpr

i (23)

dξ

dtr
= (

Np∑
i=1

(pi
r)2

m
− 3NpKbT

TG)/η (24)

What is the form taken by the constant of motion as a result of the introduction of the ξ variable ? It
appears that the first expression one can come up with (obtained from Equation 14 with the appropriate
changes) can contain ξ explicitly and yet, the sr variable is still present, undermining the postulate that
only ξ has to be followed in time:

Hr
Nosé =

Np∑
i=1

(pi
r)2

2m
+ Epot[r

r
i ] + η

ξ2

2
+ 3NpKbT

TG ln sr (25)

However, it is possible to eliminate the sr variable by exploiting Equation 11

ξ =
1

sr
dsr

dtr
=
srprs
η

∫ 1

sr
dsr

dtr
dtr = ln sr (26)

This gives an expression for the Nosé constant of motion in real time in which the ξ variable appears
both in the kinetic and in the potential part of the time evolution of the thermostat, the only inconve-
nient feature being the presence of a time integral that, in principle, one should perform over the run-
ning time trajectory to make sure that the constant of motion is well conserved.

Hr
Nosé =

Np∑
i=1

(pi
r)2

2m
+ Epot[r

r
i ] + η

ξ2

2
+ 3NpKbT

TG
∫
ξdtr (27)

The rationale developed in this section shows unambiguously that the Nosé formalism as developed in
Refs. [4, 5] does not imply (as claimed in the literature, see Ref. [8] and reiterated over the years) any
mandatory use of the s variable in the equation of motions. Also the Nosé formalism is not characterized
by an unnecessary “scaling of the time”, since a set of equations in real variables (time and coordinates)
can be straightforwardly obtained, by reducing the application of a thermostat to a skillful use of the ξ
variable.
To summarize what shown in the above sections, the following points have to be underlined

• To preserve the Hamiltonian (or, equivalently, Lagrangian) character of the equations of motion,
the Nosé formalism has to be expressed, at the outset, in virtual time by connecting virtual and real
time in the form dtr = dtv/s = dt/s through the s variable, where the superscript r stands for real,
and we do not use throughout the paper the superscript v standing for virtual (note also that for
“real” and “virtual” we use both italic and standard characters depending on the context).

• The Nosé formalism can be expressed in real time by applying the suitable relationship connect-
ing these two frameworks (Equations 7 through 13). However this can be done at the price of the
Hamiltonian character of Eq. 1, that becomes a constant of motion only, quite useful to be followed
in time to monitor the correctness of the time integration of the equations of motion.

6



• By focusing on the variable ξ = srprs/η and on its time derivative, one can reformulate the entire
Nosé formalism by using three equations of motion for the variables rri , pr

i and ξ.

4.3 The Hoover derivation of the Nosé thermostat

Shortly after the publication of the two main papers by Nosé (Refs. [4, 5]) featuring the breakthrough
methodology of rigorous thermostats for molecular dynamics, W. G. Hoover proposed alternative expres-
sions for the equations of motion meeting exactly the same purposes (see Ref. [8]). He pointed out that
friction coefficients could be employed at the place of the original s and ps, by claiming that the set of
equations developed were “free of time scaling”. The formalism by Hoover, known as Nosé-Hoover ther-
mostat, became immediately very popular in the field of molecular dynamics, to the point of (almost)
supplanting the original Nosé ideas as if the actual discovery of right thermostats for molecular dynamics
were the offspring of Ref. [8]. This is somewhat unfair since, Hoover has only rewritten a set of equation
already existing in Ref. [4] by interpreting in his own way the concepts of real time and variables. This
will become quite evident in the following.
In practice, Hoover introduces first a change in the time variable by imposing dtNosé= s dtHoover (dtHoover=
dt hereafter for simplicity, for instance as in dri/dt). This amounts to rewriting Equation 2 and Equa-
tion 3 as multiplied by s:

dri
dt

= ṙi =
∂H
∂pi

=
pi

ms

dpi

dt
= ṗi =

∂H
∂ri

= −s∂Epot[ri]

∂ri
(28)

ds

dt
= ṡ =

∂H
∂ps

=
sps
η

dps
dt

= ṗs = −∂H
∂s

=
Np∑
i=1

pi
2

ms2
− (3Np + 1)KbT

TG (29)

r̈i =
ṗi

ms
− pi

ms

ṡ

s
= − 1

m

∂Epot[ri]

∂ri
− ps
η

ṙi (30)

At this point, Hoover introduces the variable ζ = ps/η (analogous to the variable ξ first used in Equa-
tion 18) to rewrite Equation 30 as

r̈i =
ṗi

ms
− pi

ms

ṡ

s
= − 1

m

∂Epot[ri]

∂ri
− ζ ṙi (31)

By taking advantage of Equation 29 one has for the time derivative of ζ

ζ̇ =
ṗs
η

=
1

η
(
Np∑
i=1

pi
2

ms2
− (3Np + 1)KbT

TG) =
1

η
(
Np∑
i=1

mṙi
2 − (3Np + 1)KbT

TG) (32)

At this point, the formalism expressed in Ref. [8] can be made equivalent to the original one by Nosé by
redefining ṙi = pi/m and by replacing 3Np+1 by 3Np. The final set of equations according to Hoover’s
strategy reads:

ṙi =
pi

m
mr̈i = −∂Epot[ri]

∂ri
−mζ ṙi ṗi = −∂Epot[ri]

∂ri
− ζpi ζ̇ =

1

η
(
Np∑
i

ṗi
2

m
− 3NpKbT

TG) (33)

It appears that the three relationships contained in Equation 33 have the same physical meaning than
what we have expressed through Equation 22, Equation 23 and Equation 24, with ξ in the Nosé formal-
ism acting as ζ in the Hoover’s one. However, we reiterate that the route taken by Hoover to obtain Equa-
tion 33 does not follow any specific protocol based on the introduction of a real time together with real
variables, the only advantage of it being the simpler link ζ = ps/η between friction and Nosé variables.
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5 Extending the Nosé ideas: multiple thermostats and first-principles molec-
ular dynamics

5.1 Constant of motion and the friction variable made simpler

As a prerequisite to any other thoughts on the Nosé scheme, particularly in the context of first-principles
molecular dynamics (that is to say, a scheme where the potential energy depends on the electronic struc-
ture, unlike in classical molecular dynamics) it is useful to focus on the expression for the conserved quan-
tity given in Equation 27 that we rewrite in the form

HConserved =
Np∑
i=1

(pi)
2

2m
+ Epot[ri] + η

ξ2

2
+ 3NpKbT

TG
∫
ξdt (34)

by dropping the upperscript r standing for real since from now on we shall refer to real time. Careful
analysis of Equation 34 reveals that the cumbersome presence of a time integral within a constant of
motion can be eliminated by resorting to a new variable α such as α̇ = ξ. Accordingly, Equation 33 and
Equation 34 take the form:

ṙi =
pi

m
mr̈i = −∂Epot[ri]

∂ri
−mα̇ṙi ṗi = −∂Epot[ri]

∂ri
− α̇pi α̈ =

1

η
(
Np∑
i=1

ṗi
2

m
− 3NpKbT

TG) (35)

HConserved =
Np∑
i=1

pi
2

2m
+ Epot[ri] + η

α̇2

2
+ 3NpKbT

TGα (36)

The above equations, linking a quantity constant in time (HConserved) to non-Hamiltonian equations of
motion can be easily generalized to the case of multiple thermostats. One can consider the case of two
subsystems made of Np1 and Np2 atoms of coordinates and momenta rl, pl (for the subclass made of Np1

atoms) and rk, pk ((for the subclass made of Np2 atoms) kept at two different temperatures T TG1, T TG2.
Here we made the choice of two subsystems only for simplicity, the number of subsystems not being lim-
ited. Calculations of thermal conductivity with the AEMD are revealing examples of application of mul-
tiple thermostats to sub-sets of atoms belonging to the same system but kept at different (initial) tem-
peratures [9, 10, 11, 12].

The corresponding equations of motion read (note that the friction variables α̇ and β̇ have masses η and
γ, respectively):

ṙl =
pl

m
mr̈l = −∂Epot[rl]

∂rl
−mα̇ṙl ṗl = −∂Epot[rl]

∂rl
− α̇pl α̈ =

1

η
(
Np1∑
l=1

ṗl
2

m
− 3Np1KbT

TG1) (37)

ṙk =
pk

m
mr̈k = −∂Epot[rk]

∂rk
−mβ̇ṙk ṗk = −∂Epot[rk]

∂rk
− β̇pk β̈ =

1

γ
(
Np2∑
k=1

ṗk
2

m
− 3Np2KbT

TG2)

(38)

with the constant of motion HC12 accounting for the presence of two different friction variables α̇ and β̇
and their associated kinetic and potential energy:

HC12 =
Np1∑
l=1

pl
2

2m
+

Np2∑
k=1

pk
2

2m
+ Epot[rl, rk] + η

α̇2

2
+ 3Np1KbT

TG1α + γ
β̇2

2
+ 3Np2KbT

TG2β (39)
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5.2 First-principles (Car-Parrinello) molecular dynamics with thermostats: part 1

The ideas developed so far have found a natural application within first-principles molecular dynamics
(in the version pioneered by Roberto Car and Michele Parrinello [13], FPMD-CP herafter). First, it ap-
pears that the formalism by Nosé is perfectly suited to be employed in the FPMD-CP framework to con-
trol the temperature of the ionic degrees of freedom (corresponding to the atomic degrees of freedom in
the classical MD description). Also, the combination of Nosé and FPMD-CP ideas is essential to achieve
an overall manageable use of the whole FPMD-CP approach, by ensuring adiabatic separation between
ionic and electronic dynamical sub-systems. This stems from the possibility to control the temperature
of different families of degrees of freedom, as we have explicitly shown via Equation 37 and Equation 38.
In what follows we shall slightly change our previous notation to allow for the introduction of electronic
degrees of freedom coupling to the ionic ones. Let’s consider a Lagrangian collection of ions of coordi-
nates RI with masses MI and orbitals ψi(r) accounting for the electronic structure. µ is a mass inher-
ent in the so-called fictitious movements of the orbitals, its value, in Hartree atomic units, being much
smaller than the one of MI . In this way, one has ions and orbitals dynamically decoupled since mov-
ing with drastically different frequencies. This postulate and its correct implementation are at the very
heart of the FPMD-CP methodology, for which these conditions are best fulfilled by insulators and, at
not too high temperatures, semiconductors, due to the the presence of a gap separating valence and con-
ductions states. By assuming that the total energy is obtained within the density functional Kohn-Sham
framework (and by imposing as it should be the constraint that the orbitals are orthonormal via Eorcnstr(ψi(r))),
one has:

LCP = Efic(ψi(r)) + Ekin({RI})− Etot[{ψi}; {RI}] + Eorcnstr(ψi(r)) (40)

LCP = µ
∑
i

∫
|ψ̇i(r)|2dr +

1

2

N∑
I=1

MIṘ
2
I − Etot[{ψi}; {RI}]−

∑
ij

λij

(∫
ψ∗
i (r)ψj(r)dr− δij

)
(41)

For future purposes (as it will be the case when making explicit the action of thermostats), it is conve-
nient to express Etot[{ψi}; {RI}] in the form Etot[{ψi}; {RI}, αl], by implying that l variables can be in-
cluded in the dynamical evolution of the system. Therefore, in analogy with what developed in Sec. 5.1
we can first rewrite Equation 41 in the generic form

LCPCons
= µ

∑
i

∫
|ψ̇i(r)|2dr+

1

2

N∑
I=1

MIṘ
2
I−Etot[{ψi}; {RI}, αl]−

∑
ij

λij

(∫
ψ∗
i (r)ψj(r)dr− δij

)
+

1

2

∑
l

ηlα̇
2
l

(42)
that contains explicitly the potential and the kinetic parts due to a thermostat as follows:

LCPCons
= µ

∑
i

∫
|ψ̇i(r)|2dr+

1

2

N∑
I=1

MIṘ
2
I−Etot[{ψi}; {RI}]−

∑
ij

λij

(∫
ψ∗
i (r)ψj(r)dr− δij

)
+

1

2
ηI α̇

2
I+F (αI)

(43)
This is exactly the FPMD-CP equivalent of the constant of motion made explicit in the previous sec-
tions for the case of a thermostat applied to the ionic (atomic) degrees of freedom (see Equation 36).
Note that we have termed the new constant of motion LCPCons

to underline the conceptual difference
between LCPCons

and LCP , the former having lost, due to the presence of the thermostat variables, the
Lagrangian character of the latter, i.e. no Lagrangian equation of motion can be derived directly from it.
In analogy with the above rationale on the Nosé formalism in real time (see Sec. 4.2) one can associate
to the variable αI the kinetic term 1

2
ηI α̇

2
I as well as the potential energy term in the form

F (αI) = 2EI−TG
kin αI (44)

where 2EI−TG
kin is the targetted average ionic kinetic energy, typically expressed via the target temper-

ature so as 2EI−TG
kint = NindkBT

TG , Nind being the number of degrees of freedom (the strict equivalent
of 3Np employed to introduce the Nosé formalism within classical molecular dynamics). This holds true
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provided one keeps in mind that only the average value of the kinetic energy can be taken to correspond
to a temperature, even though often both kinetic energy and temperature are employed as instantaneous
and average quantities. Having obtained the expression for a conserved quantity within FPMD-CP after
application of a thermostat on the ionic family of degrees of freedom, it is now straightforward to write
down the expression for the FPMD-CP equations of motions along the same lines followed in the classi-
cal case via Equation 35:

µψ̈i(r, t) = −δEtot [{ψi}, {RI}]
δψi

∗(r, t)
+
∑
j

λijψj(r, t) (45)

MIR̈I = −∇IEtot [{ψi}, {RI}]−MIṘI α̇I (46)

ηI α̈I = 2(
1

2

N∑
I=1

MIṘ
2
I −

1

2
NindkBT

TG) (47)

5.3 First-principles (Car-Parrinello) molecular dynamics with thermostats: part 2

In addition to the use of Nosé formalism to control the temperature of a system (as expressed through
the average kinetic energy of the atoms, or, better, of the ions if one considers also electronic degrees
of freedom), one can take advantage of the whole scheme to make sure the FPMD-CP time evolution is
as much as possible adiabatic. This means that the notion of temperature control can be employed to
hamper the increase of Efic(ψi(r)) that favors unwanted transferof energy from the ionic to the fictitious
electronic degrees of freedom. Based on what we have seen in Sec. 5.1, Equation 37, Equation 38 and
Equation 39 this can be achieved by considering a variable αl acting as a thermostat for Efic(ψi(r)) (as
first proposed in Ref. [14]). While this approach is not bound to work on extended intervals for dramatic
cases of gapless systems (as metals), it remains quite valid to ensure adiabaticity for a wide class of sys-
tems featuring electronic density of states at least depleted (exhibiting pseudogaps) around the Fermi
energy level. The corresponding FPMD-CP conserved quantity reads

LCPCons
= Efic(ψi(r)) +Ekin({RI})−Etot[{ψi}; {RI}, αI , αe] +Eorcnstr(ψi(r)) +Eext(αI) +Eext(αe) (48)

LCPCons
= Efic(ψi(r))+Ekin({RI})−Etot[{ψi}; {RI}]+Eorcnstr(ψi(r))+

1

2
ηI α̇

2
I+2EI−TG

kin αI+
1

2
ηeα̇

2
e+2Ee−TG

kin αe

(49)

in which Ee−TG
kin plays the role of a value to be reached (in average) by µ

∑
i

∫
|ψ̇i(r)|2dr. The correspond-

ing equations of motion are as follows

µψ̈i(r, t) = −δEtot [{ψi}, {RI}]
δψi

∗(r, t)
+
∑
j

λijψj(r, t)− µψ̇iα̇e (50)

MIR̈I = −∇IEtot [{ψi}, {RI}]−MIṘI α̇I (51)

ηI α̈I = 2(
1

2

N∑
I=1

MIṘ
2
I −

1

2
NindkBT

TG) (52)

ηeα̈e = 2(µ
∑
i

∫
|ψ̇i(r)|2dr− Ee−TG

kin ) (53)

where we have simply adapted and rewritten for the combined ionic/electronic degrees of freedom of the
FPMD-CP method the set of equations shown in Sec. 5.1 when introducing the notion of multiple tem-
perature control 2.

2for a more complete and detailed view on the methodology and applications of FPMD-CP see Refs. [15, 1]
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6 Conclusions

The main motivation of this paper was to review and highlight some very fundamental features of early
temperature control approaches within molecular dynamics. Despite the fact that we are referring here
to a formalism proposed back in 1985, we were driven by the conviction that some refocusing on the foun-
dations and the underlying theory of thermostats application in atomic-scale dynamical simulation was
very much needed. While reviewing the Nosé ideas for the benefit of those that did not have the oppor-
tunity to go through the original derivation, we realized that, quite surprisingly, the so-called extension
and improvement due to Hoover (the Nosé-Hoover thermostat) can be easily traced back and identified
in the original Nosé expressions. This is way the present paper, in addition to its predominant review
character, contains also some new observation that can be taken as an valuable contribution to the tem-
perature control ideas.
We showed that the Nosé formalism as it stands does not require, to increase its manageability and ac-
quire a sound physical interpretation, any of the rearrangements put forth by Hoover and leading to the
so-called Nosé-Hoover thermostat. Therefore, our analysis provides a form for the equations of motion
easily understandable, containing the required friction force and yet based uniquely on a skillful rework-
ing on what Nosé has presented in his seminal papers. As a complement to our rationale, we include the
explicit expressions for the use of multiple thermostats by considering the case of separate families of de-
grees of freedom as it occurs in the Car-Parrinello version of first-principles molecular dynamics. We can
also observe that the temperature of any additional dynamical variable, not necessarily atoms or ficti-
tious electronic degrees of freedom, can be controlled with the scheme proposed by Nosé and revisited
here. This is the case, for instance, of reaction coordinates or collective variables driving an activated
process from reactants to products and included in the so-called metadynamics scheme [16, 17].
It would be unfair to conclude this paper without doing justice to those that, over the years, contributed
to a better understanding of the theoretical foundations of the Nosé thermostat and the underlying non-
hamiltonian dynamics. The references that follow (and those quoted therein) are not only highly repre-
sentative of these theoretical efforts but provide important clues to capture the differences between mi-
crocanonical and canonical dynamics. As such, they have to be considered of the outmost importance
when reviewing concepts and ideas related to temperature control within molecular dynamics [18, 19, 20,
21, 22].
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