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A Stable Method for Task Priority Adaptation in
Quadratic Programming via Reinforcement Learning

Andrea Testa1,2, Marco Laghi2, Edoardo Del Bianco1,2,3, Gennaro Raiola1,2,
Enrico Mingo Hoffman2,4, and Arash Ajoudani2

Abstract—In emerging manufacturing facilities, robots must
enhance their flexibility. They are expected to perform complex
jobs, showing different behaviors on the need, all within un-
structured environments, and without requiring reprogramming
or setup adjustments. To address this challenge, we introduce
the A3CQP, a non-strict hierarchical Quadratic Programming
(QP) controller. This controller seamlessly combines both mo-
tion and interaction functionalities, with priorities dynamically
and autonomously adapted through a Reinforcement Learning-
based adaptation module. This module utilizes the Asynchronous
Advantage Actor-Critic algorithm (A3C) to ensure rapid con-
vergence and stable training within continuous action and
observation spaces. The experimental validation, involving a
collaborative peg-in-hole assembly and the polishing of a wooden
plate, demonstrates the effectiveness of the proposed solution in
terms of its automatic adaptability, responsiveness, and safety.

Index Terms—Optimization and Optimal Control, Reinforce-
ment Learning, Machine Learning for Robot Control.

I. INTRODUCTION

In recent years, the rapid advancements in robotics and
automation have opened up new possibilities for enhanc-
ing industrial processes and productivity. The Industry 4.0
paradigm envisions a future where intelligent robots safely
work alongside humans, seamlessly adapting to diverse tasks
and dynamically adjusting their behavior to meet varying
demands.

In pursuit of this vision, control architectures enabling the
formulation of multiple objectives, constraints, and priorities
have been developed, with Quadratic Programming (QP) as
an illustrative and common example in robotics. The ar-
rangement of the task priorities, in particular, augments robot
functionality with inherent flexibility, also influencing various
indirect aspects, such as human safety [1]–[3]. Nevertheless,
in robotics literature, the reorganization of task importance in
QP is achieved either through direct human intervention by
reprogramming or through pre-established passive rules for
clearly defined tasks [4], [5]. This results in limited robot
autonomy, leading to poor adaptation to the multifaceted
phases of intricate and unstructured jobs [6]. Furthermore,
while machine learning-based strategies are well-established
for controller tuning to enhance performance based on defined
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Fig. 1: The proposed A3CQP scheme. The QP controller at the time
instant k reads the joint states qk, q̇k and the external wrenches
fenv,k, fope,k from the robot interface and optimizes the joint ac-
celeration q̈∗

k and wrench f∗d,k according to the desired Cartesian
pose xd,k. Using these optimal variables, the control torque τk is
computed. The adaptation module receives the system state sk ={
eL
x,k fLenv,k fLope,k

}
with respect with the frame L and returns

the adapted weights of the QP cost function wL
1,k,w

L
2,k,w

L
3,k, and

the desired contact wrench fLd,k.

metrics [7]–[10], their potential for dynamically integrating
diverse tasks remains largely unexplored.

Based on these premises, we propose the A3CQP con-
troller, a novel approach that harnesses the power of QP
to simultaneously handle diverse tasks and constraints while
dynamically modulating their weights through an adaptation
module employing a Reinforcement Learning (RL) strategy,
specifically the Asynchronous Advantage Actor-Critic algo-
rithm (A3C). Our choice for A3C is due to the algorithm
promising features such as fast convergence, stable training,
scalability, and demonstrated robustness [11]. This seamless
integration empowers the robot to stably transition between
three principal tasks: Cartesian Inverse Kinematic Task, Carte-
sian Admittance Control Task, and Cartesian Force Control
Task. These tasks can capture a broad spectrum of behaviors,
ranging from precise position tracking for manipulation to ex-
erting desired forces during physical interactions and following
operator guidance for co-manipulation [12]. The automated
reasoned task selection within this pool of options enables the
robot to autonomously organize itself and adapt to unforeseen
situations.

We summarize our contributions as follows:
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1) We introduce a non-strict hierarchical QP formulation
where the different tasks are achieved according to the
trade-off defined by their weights. This framework is
crucial for generating consistent and predictable control
inputs adherent to the specified constraints. Furthermore,
it is decisive to ensure the demonstrated stability of the
system, which plays a vital role in achieving optimal
performance during operations and guaranteeing safety
in interactions between the robot and the operator.

2) We present a RL-based adaptation module to dynami-
cally adjust the weights of tasks in the QP. This module
plays an essential role in imparting the robot with
the capability to learn from its interactions with the
environment, enabling autonomous adaptation of task
priorities based on job requirements and environmental
conditions.

The A3CQP controller, illustrated in Figure 1, can change the
robot control mode between tasks without the need for pauses,
reprogramming, or adjustments to the setup. Its versatility em-
powers the robot to handle multifunctional jobs, contributing
to the progress of automation in industries, aligning with the
vision of Industry 4.0 and 5.0 and its drive towards intelligent
and adaptive manufacturing processes.

II. RELATED WORKS

After the first pioneering work on managing multiple tasks
in redundant robots [13], there has been a notable surge of
interest in hierarchical control. Today, in this domain, two
primary approaches have been identified. The first one includes
strict hierarchies, characterized by ordered task lists wherein
the lower ones cannot interfere with the higher ones [1].
From an algorithmic point of view, this approach requires the
projection of low-priority tasks in the null-space of higher-
priority tasks. On the other hand, the second group examines
non-strict hierarchies, where there is not a sharp demarcation
between priority levels, and all objectives are concurrently
addressed through the application of appropriate weighting [2].
This alternative approach has been suggested as more fitting
and adaptable when the requirement is to dynamically adjust
priorities during the transition between tasks [4], [6]. Within
these frameworks, the utilization of QP optimization has
become standard practice, thereby enabling the incorporation
of linear constraints in both equality and inequality forms, as
well as blending of strict and non-strict hierarchical techniques
[14], [15].

Various strategies are employed to equip QP controllers
with the capacity to adapt to dynamic environments or al-
tered operational conditions. In [16], the authors propose
a comprehensive control framework accommodating diverse
parallel control modalities. Each modality addresses a dif-
ferent set of tasks, ordered with strict priorities. To ensure
environmental compliance, the priorities remain unaltered, but
a supervisor has the ability to manually switch between the
control modalities. In [5], a generalized projector is pre-
sented, which can handle both strict and non-strict priorities
with smooth transitions when task priorities are swapped.
The evolution of task priorities over time, as well as the

timing and task transitions, need to be designed manually.
In [4], the weights of soft QP tasks are adjusted according
to a predefined time schedule to adapt the behavior of a
humanoid robot with in-contact and not-in-contact motion
phases. While methodologies for automating the selection of
static priorities are well-established in the literature [7], [8],
[10], progress in achieving real-time updates of these priorities
for unstructured tasks has been limited. In [6], time-dependent
priorities are optimized offline with respect to a predetermined
job. In [17], the authors propose modulating task weights
online by considering the variance of demonstrated reference
trajectories to mitigate incompatibilities during job execution.
This method seeks to recognize instances, inferred from the
variance of the demonstration, where trajectories might deviate
from accurate tracking, in contrast to situations where specific
critical waypoints must be traversed. However, this approach
is not tailored to manage conflicts arising from inherently
hierarchical task sets, and it lacks the capability to adapt to
changes in the environment or job dynamics.

Broadly, the challenge of adjusting an agent’s behavior
in response to unfamiliar situations is often tackled using
RL strategies [18]. Initially developed for discrete problems,
these techniques can be extended to the continuous domain
by harnessing deep learning. Within the field of RL, Actor-
Critic methods stand as an amalgamation of value-based
and policy-based approaches [19]. In cases where the Actor
learns the action policy and the Critic estimates the value
function, the resulting algorithm is known as Advantage Actor-
Critic (A2C) [20]. In the context of deep learning-supported
RL, it is of primary importance to decorrelate the input
data [21]. To achieve such decorrelation, the most effective
A2C algorithms employ multiple independent agents, each
possessing their distinct weights. These agents interact in
parallel with separate instances of the environment, updating
the main network asynchronously. This method is known as
Asynchronous Advantage Actor-Critic (A3C) [21]. However,
further studies show that data decorrelation is tied more to
parallel agents than asynchronous updates. Indeed, a syn-
chronous and deterministic implementation of this algorithm,
where each agent completes its segment of experience before
an update is performed, achieves comparable performance to
the original algorithm while providing the added benefit of
improved GPU utilization efficiency [22]. In this study, we
have utilized the latest implementation of the A3C algorithm as
the basis for constructing the agent’s decision-making policy.
This implementation is employed to dynamically adjust the
priorities of the QP tasks in response to evolving circum-
stances.

III. QP CONTROLLER ARCHITECTURE

This section will present a detailed description of the QP
control algorithm responsible for determining the joint motor
torque. Within the QP structure, we incorporate three distinct
primary tasks that the robot controller must effectively inter-
change to handle multifaceted jobs like physical human-robot
collaboration activities. These fundamental tasks, stacked at
the same priority level of the QP, are listed below.



ANDREA TESTA ET AL., A STABLE METHOD FOR TASK PRIORITY ADAPTATION IN QUADRATIC PROGRAMMING VIA REINFORCEMENT LEARNING 3

1) The Cartesian Inverse Kinematic Task (IK) is respon-
sible for driving the manipulator toward the desired
targets during unrestricted motion while ensuring safe
compliance with the environment.

2) The Cartesian Admittance Control Task (AC) is essential
for physical human-robot collaboration, allowing the
robot to follow the guidance provided by the operator.

3) The Cartesian Force Control Task (FC) allows the ap-
plication of precise desired forces when the robot enters
in contact with the target workpieces or work surfaces.

During various phases of the job, such as operator guidance,
workpiece interaction, or free motion, these tasks must be
seamlessly activated to adjust the behavior of the robot ac-
cordingly. Throughout the IK task, it is desirable to prevent the
robot from encountering singularities and to maintain a high
degree of manipulability as it follows the Cartesian reference
trajectory. To achieve this, we introduce an additional task
called the Joint-level Control Task (JC) at the same priority
level in the QP. The JC task is activated alongside the IK task
and is designed to optimize the robot joint configuration within
its nullspace. The variables to be optimized at each control step
k include the joint accelerations q̈k ∈ Rn, and the Cartesian
wrench exerted by the end effector fk ∈ R6. In the event of
contact, this wrench acts in opposition to the external one. The
control problem is formulated as the following QP:

min
q̈k,fk

∥

IK task︷ ︸︸ ︷
Jkq̈k + J̇kq̇k − ẍd,k ∥w1 + ∥

AC task︷ ︸︸ ︷
fk − fadm,k ∥w2+

∥ fk − fctc,k︸ ︷︷ ︸
FC task

∥w3 + ∥ q̈k − q̈d,k︸ ︷︷ ︸
JC task

∥ϵJT
k w1Jk

;

s.t.
q̈ ≤ q̈k ≤ ¯̈q;

f ≤ fk ≤ f̄ ,

(1)

with Jk, J̇k ∈ R6×n the end effector Jacobian and its time
derivative, q̇k ∈ Rn the joint velocities. q̈, ¯̈q ∈ Rn and
f , f̄ ∈ R6 represent the lower and upper bounds, respectively,
for the optimization variables. Regarding the target vectors,
q̈d,k ∈ Rn denotes the reference joint accelerations, ẍd,k ∈ R6

represents the desired Cartesian end effector acceleration,
while fadm,k, fctc,k ∈ R6 are the desired admittance and
contact wrenches, respectively. w1,w2,w3 ∈ R6×6 are weight
matrices used to indicate the relative importance of the first
three tasks. On the other hand, the scalar ϵ determines the
relationship between the IK and the JC tasks. By choosing
ϵ ≪ 1, the IK task is prioritized while the JC task serves
as a regularization mechanism. Section 3.5 of the book [23]
demonstrates that minimizing the quadratic norm of the vector
q̈k − q̈d,k, subject to a Cartesian constraint in the form
Jkq̈k + J̇kq̇k = ẍd,k, achieves norm minimization in the
nullspace as a secondary task. Including both terms in the
optimization process and scaling them by ϵ yields a similar
effect. The solutions sought primarily aim to reach the desired
Cartesian target, with a secondary objective to follow the ref-
erence acceleration q̈d,k, computed to prevent the robot from
adopting unfavorable joint configurations near singularities.

Fig. 2: Representation of the Cartesian reference frames W , L, and
E .

The Cartesian variables in (1) are expressed with respect
to the world reference frame W . However, in this study,
we will consistently define the desired wrenches based on a
local reference frame L centered in W but aligned with the
end effector E of the robot. This is convenient because the
adaptation module, responsible for changing task priorities,
adopts the perspective of the end effector. The reference frames
introduced are shown in Figure 2. The transformation of
wrenches from W to L is

fLadm,k = WDT
L,k fadm,k; fLctc,k = WDT

L,k fctc,k, (2)

with WDL,k ∈ R6×6 being the Adjoint matrix associated to
the homogeneous transformation matrix of L with respect to
W at control step k. Since L and W share the same origin,
WDL,k always results in a block-diagonal matrix constructed
based on the rotation matrix WRL,k ∈ R3×3:

WDL,k =

[WRL,k 0
0 WRL,k

]
. (3)

In the optimal control problem (1), the IK and JC tasks
are responsible for computing the optimal acceleration q̈∗

k,
while the optimal wrench f∗k is obtained from the AC and
FC tasks. These computed values determine the desired joint
motor torque at time instant k, as determined by the equation
derived from the computed-torque control paradigm, described
in Section 8.6 of the book [24]:

τk = Bk(q̈
∗
k + q̈pd,k) + JT

k f
∗
k + hk + gk; (4)

q̈pd,k = JT
kw1Jk (cv(q̇

∗
k − q̇k) + cp(q

∗
k − qk)) . (5)

Here, Bk ∈ Rn×n represents the joint inertia matrix, hk ∈ Rn

corresponds to the Coriolis and centrifugal term, and gk ∈ Rn

is the gravitational term. The feedback joint acceleration,
denoted as q̈pd,k, is calculated by summing the derivative
and proportional feedback terms, which are scaled by the
scalar gains cv and cp, respectively. q̇k,qk ∈ Rn represent
the measured joint velocity and position, while the desired
variables q̇∗

k,q
∗
k ∈ Rn are obtained by integrating q̈∗

k as
follows:

q̇∗
k = q̇∗

k−1 +∆tq̈∗
k; (6)

q∗
k = q∗

k−1 +∆tq̇∗
k−1 +

∆t2

2 q̈∗
k. (7)
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Since the feedback acceleration plays a role in ensuring the
tracking of desired joint positions and velocities, which are
computed based on IK and JC tasks, this term should only be
active when these tasks are in operation. Therefore, it is scaled
using the same weight matrix w1. Furthermore, as detailed
in Subsection III-B, the joint acceleration limits q̈, ¯̈q, which
also consider velocity and position constraints, ensure that the
desired variables q̇∗

k,q
∗
k adhere to these limits. Consequently,

the resulting acceleration q̈∗
k + q̈pd,k remains feasible.

In the following paragraphs, we will delve into the definition
of problem (1), specifically focusing on the management of
task weights, the constraints, and the generation of references.
Once the details have been defined, we will proceed to discuss
the stability of the control framework.

A. Task weights

To effectively handle the four concurrent tasks and deter-
mine their trade-off for each degree of freedom, we need to
assign weights that reflect their relevance. For this purpose, we
begin by using three weight diagonal matrices wL

1 ,w
L
2 ,w

L
3 .

These matrices represent the relative importance of the IK,
AC, and FC tasks, respectively, for each Cartesian degree of
freedom in the local reference frame L. The diagonal elements
of these matrices are determined and updated online using the
intelligent adaptation algorithm described in Section IV. These
terms are adjusted as C0 functions to ensure a continuous
transition in the optimal control problem (1). It is important
to note that the sum of the diagonal elements pertaining to
the same degree of freedom always equals 1 (e.g., for the
local z-axis, wL,z

1 + wL,z
2 + wL,z

3 = 1). This implies that
certain elements in this sum may be zero, indicating that
the adaptation module deems these tasks as insignificant. For
instance, when wL,z

3 = 0, the FC task along the local z-axis is
considered irrelevant. However, the simultaneous deactivation
of all the tasks associated with a particular degree of freedom
(e.g., the AC and FC tasks for fLz , or the IK and JC tasks
for ẍL

y ) does not make the associated optimal control problem
indeterminate, as the resulting QP Hessians are regularized.
Therefore, the optimization variable not associated with any
active task is set to null as a result of problem resolution. Since
the Cartesian variables in the tasks are expressed in the world
frame W , it is necessary to rotate the local diagonal matrices
as follows:

w1 = WDL wL
1

WDT
L ; w2 = WDL wL

2
WDT

L ;

w3 = WDL wL
3

WDT
L .

(8)

The resulting matrices w1,w2,w3 are non-diagonal, symmet-
ric and positive-definite.

B. Constraints

To ensure that the robot does not exert excessive force,
we constrain the wrench to respect the limits fmax, fmin.
Additionally, during contact phases, we aim to optimize a
feasible wrench that observes the friction cone. We implement
this constraint as

U(µ)f∗k ≤ 0, (9)

where the matrix U ∈ R4×6, which depends on the friction
coefficient µ, represents the linearized friction cone in the case
of single contact point [25]. The final boundaries, f and f̄ , are
determined by selecting the most limiting conditions.

When considering the joint acceleration limits q̈, ¯̈q, it is
necessary to account for velocity and position constraints.
Merely constraining the integrals of the controlled variables is
inadequate to ensure that the resulting integral values remain
within acceptable boundaries. This traditional approach can
ensure feasibility between control bounds and imposed integral
constraints only when they have a relative degree of 1. So,
in our scenario, the position limits would not be respected.
To fulfill all constraints within an instantaneous controller,
we adopt a methodology rooted in the invariance control
approach [26], which has demonstrated superior performance
when compared to other state-of-the-art methods in this field
[27].

C. References

In total, four references need to be generated, one for each
cost term that makes up the cost function of the QP controller
(1). In the following, we explain the definition of each of them.

1) IK task reference: The desired Cartesian acceleration
ẍd,k is computed as

ẍd,k = Kpex,k −Kvẋ. (10)

In this equation, ex,k = xd,k⊖xk represents the Cartesian pose
error, where xd,k,xk ∈ R3×S3 are the desired and measured
end effector Cartesian poses, respectively. These poses belong
to the Lie group R3 × S3, as we represent their translation
part as vectors in R3 and their rotation part as quaternions in
S3. Their difference ex,k ∈ R6 is a 6-dimensional vector since
the rotation part is converted to the axis-angle representation.
Furthermore, the Cartesian velocity, with respect to the frame
W , can be expressed as a vector in the Euclidean space R6,
which is isomorphic to the Lie Algebra of the group [28]. The
gains Kp,Kv ∈ R6×6 are defined as

Kp =

[
kpI3×3 0

0 kθI3×3

]
;

Kv =

[
2
√
kpI3×3 0
0 2

√
kθI3×3

]
,

(11)

and determine the acceleration according to the position and
the velocity error. Using these matrices, we establish the
reference acceleration to match that of a desired second-
order dynamic system critically damped. Consequently, we can
interpret the IK task as a Cartesian Impedance control task.

Therefore, the dynamics of the closed-loop system when
the IK task is active can be described by considering the
control torque expression (4) and the original dynamics of the
manipulator in Cartesian space, represented by the equation

Λk(ẍk − J̇kq̇k) +Ckẋk + ĝk = JT
k

†
τk + fext,k. (12)

Here, Λk,Ck ∈ R6×6 are respectively the Cartesian inertia
and Coriolis matrices, ĝk ∈ R6 denotes the Cartesian gravita-
tional force, JT

k

†
= ΛTJB−1T ∈ R6×n indicates the dynamic

consistent pseudo-inverse of the transposed Jacobian [29], and
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fext,k indicates the external wrench. By substituting τk with
(4) and noting that f∗k = 0 because we are optimizing only
the desired joint acceleration q̈∗

k, the Cartesian dynamics (12)
simplifies to

Λkẍk = Λk(ẍd,k + ẍpd,k) + fext,k, (13)

where the feedback acceleration ẍpd,k ∈ R6 is defined as

ẍpd,k = Jk (cv(q̇
∗
k − q̇k) + cp(q

∗
k − qk)) . (14)

Finally, by formulating the reference acceleration as in (10),
we arrive at the dynamics of the closed-loop system:

Λk (ẍk +Kvẋk +Kp(−ex,k) + ẍpd,k) = fext,k; (15)

This description captures the system behavior when only the
IK task is active.

2) AC task reference: The desired admittance force fadm,k

combines with the operator’s force to guide the manipulator
towards the desired posture. This active contribution ensures
compliance with the operator’s intentions and reduces the ef-
fort required for interaction. To determine the desired reference
for the admittance force, we need to compare the desired
dynamics with the closed-loop system dynamics when the AC
task is active. Therefore, we examine the baseline equation
for Cartesian dynamics (12) and the control torque (4). In this
context, we set q̈∗

k = q̈pd,k = 0 as our focus is currently on
optimizing only the desired wrench f∗k . By combining these
two equations, we arrive at the following expression:

Λk(ẍk − J̇kq̇k) = f∗k + fext,k. (16)

In order to obtain the desired response closed-loop dynamics

Λdẍk +Cdẋk = fext,k, (17)

where Λd = ΛdI6×6, Cd = CdI6×6 are the desired Cartesian
inertia and damping matrices, respectively, the admittance
force must be

fadm,k = f∗k =
(
[ΛkΛ

−1
d ]− I6×6

)
fext,k−(CdJk+ΛkJ̇k)q̇k,

(18)
or, alternatively,

fadm,k = f∗k = Λk(ẍk− J̇kq̇k)−Λdẍk− (CdJk +ΛkJ̇k)q̇k.
(19)

We have opted to use the formulation (18) in order to avoid
the need to calculate the Cartesian acceleration ẍk. Addition-
ally, the diagonal structure of the desired inertia matrix Λd

simplifies the matrix inversion process.
3) FC task reference: The desired contact force fctc,k is

obtained by applying the required local contact force, fLd,k,
chosen by the autonomous environment adaptation policy, to
the transformation (3):

fctc,k = WDL fLd,k ∈ R6. (20)

The local contact force fLd,k is updated online according to C0
continuity constraints and is limited to the maximum value

fLd,k ≤ f̄Ld . (21)

By incorporating (20) into (16), we obtain the closed-loop
system dynamics when the FC task is active:

Λk(ẍk − J̇kq̇k) =
WDL fLd,k + fext,k. (22)

4) JC task reference: Finally, we compute the desired joint
acceleration q̈d as

q̈d = kqeq,k − 2
√
kqq̇k, (23)

where eq,k = qd−qk represents the joint position error, with
qd a convenient joint configuration chosen to be far from the
joint limits and singularities. kq is a scalar gain.

After establishing the four control references as explained
earlier, we can substitute them into (1), leading to the final
formulation of the control problem, represented by (24). This
problem can be separated into two distinct single-variable
sub-problems. The first sub-problem (24a) is responsible for
determining the optimal joint acceleration q̈∗

k, while the second
sub-problem (24b) focuses on finding the optimal wrench f∗k .

min
q̈k

IK task︷ ︸︸ ︷
1

2
q̈T
k J

T
kw1Jkq̈k + q̈T

k J
T
kw1J̇kq̇k −

q̈T
k J

T
kw1 (Kpex,k −Kvẋk)+

JC task︷ ︸︸ ︷
1

2
q̈T
k J

T
k ϵw1Jkq̈k − q̈T

k J
T
k ϵw1Jk

(
kqeq,k − 2

√
kqq̇k

)
;

s.t.
q̈ ≤ q̈k ≤ ¯̈q.

(24a)

min
fk

AC task︷ ︸︸ ︷
1

2
fTk w2fk − fTk w2

(
[ΛkΛ

−1
d ]− I6×6

)
fext,k +

fTk w2(CdJk +ΛkJ̇k)q̇k+
FC task︷ ︸︸ ︷

1

2
fTk w3fk − fTk w3fctc,k;

s.t.
f ≤ fk ≤ f̄ .

(24b)

Examining the stability of the solution to this optimal control
problem is a crucial aspect of its performance evaluation.
This systematic analysis ensures robustness against unforeseen
external disturbances, guaranteeing a consistent level of per-
formance. The evaluation has been conducted in Appendix
A. Stability has been demonstrated without imposing specific
conditions on the task weights. However, it is crucial to restrict
the desired contact force fLd,k from aligning with the end
effector Cartesian velocity ẋk, preventing the system from
generating power. This requirement must be addressed by the
adaptation module.

IV. ADAPTATION MODULE

This section presents a comprehensive description of the
adaptation module implemented to dynamically adjust the
behaviour of the robot. As mentioned earlier, this automatic
policy directly works on the QP parameters, enabling the robot
to adapt to the job requirements by updating the task priorities.
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It employs a RL strategy to dynamically select the local
weight matrices wL

1,k,w
L
2,k,w

L
3,k and the most appropriate

local contact force fLd,k, based on the continuous observed state
sk ∈ R18. The latter is defined as

sk =
{
eLx,k fLenv,k fLope,k

}
, (25)

where, in addition to the previously defined error pose ex,k,
we have the external forces originating from contact with
the environment, denoted as fLenv,k ∈ R6, and the external
forces exerted by the operator, represented as fLope,k ∈ R6. The
RL algorithm is specialized for a particular axis of the local
frame L. Therefore, the observed state, represented by three 6-
dimensional vectors, is processed by six distinct agents, each
responsible for handling one direction, corresponding to a set
of three scalars. Hence, at each time step k, an agent receives
the normalized state

s̃k =
{

|eLx,k|
ēLx

|fL
env,k|
f̄L
env

|fL
ope,k|
f̄L
ope

}
∈ R3, (26)

with the elements being normalized to enhance learning stabil-
ity. On the basis of s̃k, the agent determines an action denoted
as:

ak =
{
ẇL

1,k ẇL
2,k ẇL

3,k ḟL
d,k

}
∈ R4; (27a)

ẇL
1,k, ẇ

L
2,k, ẇ

L
3,k, ḟ

L
d,k ∈ [−1, 1], (27b)

representing the selected rate of change for task priorities
and the desired contact force. This action (27a) is selected
according to the agent’s policy π, which maps states s̃k to
actions ak. In response to the action, the agent receives the
subsequent state s̃k+1 and a scalar reward rk. While the rate of
change can be discontinuous, as there are no constraints on the
difference between two consecutive actions (e.g., ak − ak−1),
the resulting module output, defined as

ok =
{
wL

1,k wL
2,k wL

3,k fL
d,k

}
∈ R4; (28a)

wL
1,k, w

L
2,k, w

L
3,k ∈ [0, 1]; (28b)

wL
1,k + wL

2,k + wL
3,k = 1, (28c)

is C0, and is calculated using the following equations:

w̆L
1,k = w̆L

1,k−1 + σw∆tẇL
1,k if − σw

2 ≤ w̆L
1,k ≤ σw

2 ; (29a)

w̆L
2,k = w̆L

2,k−1 + σw∆tẇL
2,k if − σw

2 ≤ w̆L
2,k ≤ σw

2 ; (29b)

w̆L
3,k = w̆L

3,k−1 + σw∆tẇL
3,k if − σw

2 ≤ w̆L
3,k ≤ σw

2 ; (29c)

fL
d,k = fL

d,k−1 + σf∆tḟL
d,k if 0 ≤ fL

d,k ≤ f̄L
d ; (29d)

wL
1,k =

exp w̆L
1,k∑3

i=1 exp w̆
L
i,k

; wL
2,k =

exp w̆L
2,k∑3

i=1 exp w̆
L
i,k

;

wL
3,k =

exp w̆L
3,k∑3

i=1 exp w̆
L
i,k

.

(29e)

In this context, scalar parameters σw and σf are employed
to adjust the rate of change of the variables in ok according
to the desired system responsiveness. They also define upper
and lower limits to bound w̆L

i,k, which represents the weights
before the normalization process executed by the softmax
function (29e). This ensures compliance with the constraints
(28b) and (28c).

In the following paragraphs, we will provide a detailed
explanation of the RL algorithm used in this study. We will
specify the reward function chosen, explain the RL methods
employed, and describe the approach used to tune the various
hyperparameters of the algorithm.

A. Reward function
The reward received at each learning step plays a crucial

role in assessing the current behavior of the robot and guiding
it towards appropriate actions. In our scenario, this function
involves the three terms of the normalized state variables
defined in (26), providing a metric for the desirability of
each region in the state-space. In many applications where
collaborative robots are employed today, three key and general
objectives can be identified.

• The first objective is to reach the target position by
minimizing the positional error ex,k relative to the target
location for picking or working.

• The second objective arises when an operator physically
interacts with the robot. Here, the robot must minimize
the external force exerted by the operator fope,k to align
with the operator’s intentions while minimizing resistance
and maximizing compliance.

• The third objective comes into play when the robot has
to interact with the workspace, sensing an environmental
contact force fenv,k. The control of the force exerted
in this contact is crucial for the successful execution of
various practical tasks where the end-effector needs to
manipulate an object or perform operations on a surface.
Typical examples in industrial settings encompass activi-
ties such as polishing, deburring, machining, or assembly.
The execution of these tasks with only motion control
would be feasible only if an accurate geometric model is
available.

The agent needs to shape its policy by balancing these three
general requirements. To effectively achieve this, we define
the reward function as a sum of four terms:

rk =

4∑
i=1

r̂i,k; (30a)

r̂1,k = −α1

|eLx,k|
ēLx

; (30b) r̂2,k = −α2

|fL
ope,k|
f̄L
ope

; (30c)

r̂3,k = α3

|fL
env,k|
f̄L
env

; (30d) r̂4,k = −α4

fL
d,k

f̄L
d,k

. (30e)

Here, α1, α2, α3, and α4 represent the positive weights as-
signed to each term. All the variables have been normalized
within the range of [0, 1]. In the following list, the purpose of
each reward term is described.

• The first term (30b) discourages significant positional
errors between the present manipulator coordinate and
the target, encouraging the robot to address the primary
objective. It assigns a negative value to states farther from
the target, prompting an increase in wL

1,k accordingly.
• The second term (30c) penalizes large forces applied by

the operator, caused by intense collaboration effort re-
sulting from the reactive response of the robot. This term
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is crucial for achieving the second objective, promoting
the activation of the AC task by increasing wL

2,k when
needed.

• The third term (30d) incentivizes the robot to enhance
its interaction force with the environment by increasing
wL

3,k. This helps the robot to establish contact with the
target workpiece or worksurface when required.

• The fourth term (30e) penalizes a nonzero desired contact
force. This prompts the robot to increase fL

d,k only when
in contact, i.e., when the penalty is outweighed by the
beneficial effect resulting from the increase in fL

env,k

through the third reward term (30d). Consequently, this
discourages any reference contact force that produces
work, conditioning the agent to adhere to the requirement
outlined in the stability proof in Appendix A.

By combining these four terms, we create the comprehensive
reward function (30a) that guides the robot towards desired
behaviors in different scenarios.

B. RL methodology

Given the adeptness of the A3C algorithm in addressing
deep learning-supported RL challenges [21], we have chosen
it to implement the automatic environment updating module
in our control solution. This algorithm approximates both
the policy π(a|s; θπ) and the value function Vπ(sk; θv) by
leveraging parallel agents interacting with separate copies
of the environment. In the chosen implementation variant,
instead of using two artificial neural networks, both functions
are approximated by a single convolutional neural network,
where the learning parameters θπ and θv are partially shared.
Consequently, for training the unique network we minimize a
global loss function obtained from the sum of three terms:

Lk(θπ, θv) =

3∑
i=1

L̂i,k; (31a)

L̂1,k(θπ, θv) = − log π(ak|sk; θπ)(Rk − V (sk; θv)); (31b)

L̂2,k(θv) = λv(Rk − V (sk; θv))
2; (31c)

L̂3,k(θπ) = λβH(π(ak|sk; θπ)). (31d)

Here, λv and λβ are hyperparameters used to scale the
importance of the value loss (31c) and the entropy loss (31d)
terms, respectively. The single loss functions are specified in
the following list.

• The policy loss term (31b) is derived from the unbiased
estimate of the expected return E[Rk] [21]. Therefore,
minimizing this loss translates to maximizing E[Rk]. Sub-
tracting V (sk; θv) from Rk helps to lower the variance
of the estimator [30].

• The value loss term (31c) aims to improve the return
prediction capabilities of the value function estimator
V (sk; θv). This estimator learns the return associated
with the state sk following the current policy π. Thus,
the difference Rk − V (sk; θv) represents the advantage
of taking a certain generic action compared to the one
suggested by the current policy [20].

• The entropy loss term (31d) is optional but aids in en-
hancing exploration and prevents premature convergence
to a local minimum.

To update the shared common parameters θπ and θv using
the computed deltas ∆θπ and ∆θv from each independent
agent, we employ the RMSProp algorithm [31]. The update is
performed according to the following equations:

gπ ← λαgπ + (1− λα)∆θπ
2; θπ ← θπ − λη

∆θπ√
gπ + λϵ

;

gv ← λαgv + (1− λα)∆θv
2; θv ← θv − λη

∆θv√
gv + λϵ

,

(32)
where λα is the decay factor, λη is the learning rate, and λϵ is a
hyperparameter chosen to stabilize square root computation in
denominator of RMSProp update. Excessively large computed
deltas can have a detrimental effect on the learning process. To
mitigate this issue, we apply a clipping operation on ∆θ after
a specific limit denoted by λζ . This ensures that the updates
to the parameter values remain within a reasonable range.

C. Hyperparameters tuning

To effectively employ the A3C algorithm, the identification
of an appropriate set of hyperparameters is crucial. We denote
this set as

H =
{
λη λβ n λϵ λζ λγ λv λα

}
. (33)

To tailor this set to our specific problem, we assess the
performance reached by the algorithm at the end of the
training. We use the mean reward rk averaged over the last N
training episodes as the fitness function. With a training size
of T episodes, the fitness function is defined as:

Fλ =
1

N

T∑
k=T−N

rk. (34)

To maximize this function, a gradient-free approach is nec-
essary. Among the possible choices, we opted for a genetic
algorithm, a well-established methodology widely employed
for similar problems [32], [33].

V. EXPERIMENT SETUP

In this section, we provide details on the practical imple-
mentation of the proposed A3CQP controller and present the
setup for the experiments carried out to assess its performance.
In the following paragraphs, we will elaborate on the manip-
ulator in use, the sensors and tools employed, and provide
specific information about the algorithm parameters.

A. Hardware setup

This controller has been deployed and tested on a Franka
EMIKA Panda robot. Two different force and torque sensing
methods are used to distinguish between the operator’s in-
teractions with the last link of the robot and contact of the
end effector with the workspace. An ATI mini45 F/T (force
and torque) sensor is mounted between the last link of the
robot and its end effector to specifically detect any contact
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TABLE I: QP control parameters

Parameter Value
cp 3
cv 5
kp 150
kθ 20
kq 10
Λd 5
Cd 5
ϵ 1× 10−4

µ 0.4

TABLE II: State limits

Limit Value
ēLx 1 m

f̄L
env 30 N

f̄L
ope 15 N

f̄L
d 20 N

TABLE III: Reward parameters

Parameter Value
α1 0.5
α2 20
α3 2
α4 1

with the workpiece or worksurface. This sensor provides
the contact force fLenv,k, already oriented in the local frame
L. During collaborative tasks, it is crucial for the operator
not to touch the robot below the F/T sensor to prevent the
misclassification of his interaction force as the environmental
contact force. On the other hand, torque sensors embedded
in each joint of the robot measure the external torque τs.
The total external force applied at the end effector is then
computed as fext,k = JT

k

†
τs = fenv,k + fope,k. By subtracting

the contribution measured by the installed F/T sensor, we can
isolate and determine the operator’s interaction force alone.
The first experiment entails a collaborative peg-in-hole assem-
bly. A 20 mm diameter peg is directly connected to the F/T
sensor, while a 20.5 mm diameter hole is securely clamped
to a known position in the worktable using a bench vise.
This setup is depicted in Figure 3a. The second experiment
centers around collaborative wooden board polishing. For this
purpose, we design a flange to connect an Einhell drill to the
F/T sensor. The drill is equipped with a polishing disc, and
we control its motor speed using an Arduino1 controller, as
shown in Figure 3b.

B. Software implementation

The QP controller operates at a frequency of 1 kHz, is
integrated with the ROS framework, and is based on the
Franka Control Interface2. The control parameters of the QP
have been carefully tuned to achieve a reactive behavior,
allowing the robot to track the desired trajectory accurately
with smooth control torque profiles and gentle movements.
The final values of these control parameters are described in
Table I. The wrench limits are defined as ± 20N for the
forces and ±5 Nm for the torques. The position, velocity
and acceleration boundaries are directly retrieved by the robot
specifications. The adaptation module has been implemented
as a standalone Python ROS node, running at a frequency
of 100 Hz. The elements of the normalized input state s̃k
are scaled to fall within the range of [0, 1] before being
fed into the neural network. This normalization enhances
learning stability and is also applied when processing these
elements and the desired contact force fL

d in the reward

1https://www.arduino.cc
2https://frankaemika.github.io/docs

TABLE IV: A3C hyperparameters

Hyperparameter Value
λη (Learning Rate) 4.25339846× 10−6

λβ (Entropy Loss Term Weight) 3.371768978× 10−4

n (Number of Steps) 4

λϵ (RMSProp Parameter) 3.938214948× 10−5

λζ (Clipping Threshold) 4.24498881

λγ (Discount Coefficient) 0.99

λv (Value Loss Term Weight) 0.5

λα (RMSProp Decay Factor) 0.99

TABLE V: Genetic Algorithm Settings

Setting Value
Number of Generations 50
Number of Solutions to be Selected as Parents 4
Number of Solutions within the Population 8
Number of Genes in the Solution/Chromosome 5
Parent Selection Type Steady-State
Number of Parents to Keep in the Next Population 1
Type of Crossover Operation Single Point
Mutation Type Random
Percentage of Genes to Mutate 10

function. During the normalization process, each element is
divided by its empirically determined upper bound, which
is set at reasonably high values to prevent excessive values
under typical conditions. These parameters are listed in Table
II. The weights of the reward function have been selected
to establish a hierarchy among the objectives of the agent.
Details of these weights can be found in Table III. The rate
scaling parameters have been set to σw = 6 and σf = 10 in
order to achieve task transitions from complete deactivation
to complete activation within 1 or 2 seconds. The A3C
algorithm has been implemented using the RL library Stable-
Baselines33. The hyperparameters of the algorithm, resulting
from the tuning procedure, are summarized in Table IV. The
genetic algorithm used for tuning the RL hyperparameters
has been implemented using the library pygad4. The specific
settings applied in this implementation are presented in Table
V. The training of the A3C algorithm has been performed in a
virtual Gym5 environment. The robot dynamics are simplified
by modeling them as a one-degree-of-freedom point mass
system. In this system, we omit the QP controller for the
sake of simplicity. The control force applied is a weighted
sum of several components: a PD position control contribution
for inverse kinematic tracking, an admittance control force
designed to achieve desired virtual dynamics, and the desired
contact force. The dynamic equation for the simplified system
is as follows:

Λẍk = fL
ext,k + w1Λ(Kpex,k −Kvẋk + ẍpd)+

w2

(
Λ

Λd
− 1

)
fL
ext,k − w2Cdẋ+ w3f

L
d ,

(35)

with Λ = 10.

3https://stable-baselines3.readthedocs.io/en/master/modules/a2c.html
4https://pygad.readthedocs.io/en/latest/
5https://www.gymlibrary.dev/index.html

https://www.arduino.cc
https://frankaemika.github.io/docs
https://stable-baselines3.readthedocs.io/en/master/modules/a2c.html
https://pygad.readthedocs.io/en/latest/
https://www.gymlibrary.dev/index.html
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(a) Setup for the collaborative peg-in-hole assembly experiment. (b) Setup for the collaborative polishing experiment.

Fig. 3: The experimental setups. It is important to note that the operator must interact with the robot above the F/T sensor to prevent the
misclassification of his interaction force fope as the environment contact force fenv .

VI. RESULTS

In this section, we begin by presenting and discussing
the results of training the A3C algorithm. Subsequently, we
provide an overview of the two experimental tests that were
carried out to validate the entire pipeline. The first experiment
centers around a collaborative peg-in-hole assembly, while
the second one is focused on collaboratively polishing a
wooden board. Both of these experiments are showcased in
the accompanying video6 associated with this paper.

A. Training results

In order to train the A3C algorithm, which is utilized by
the adaptation module to dynamically adjust QP priorities and
select the desired contact force in real-time, we conducted
simulations over a total of 1e6 time steps using four parallel
virtual environments. We followed the approach described in
the algorithm version mentioned in [22], where the four par-
allel agents each complete their own segments of experience
before updating the global network. The learning process took
approximately one hour. To thoroughly assess the learning
performance of the algorithm, we conducted 20 repetitions of
the process to gather data on the behavior of the policy loss
L̂1,k and value loss L̂2,k during training. These trends are
depicted in Figure 4, where the means are averaged across all
four agents, and the interquartile range represents the spread
between the 25th and 75th percentiles. The policy loss L̂1,k,
as defined in equation (31b), increases as the expected return
E[Rk] of the agent’s choices increases. On the other hand, the
value loss L̂2,k, expressed in equation (31c), decreases as the
estimator V progressively fits the return Rk more accurately.

Figure 5 presents the policy optimized by the algorithm at
the end of the training. Each subplot visualizes one component
of the action ak within the state space Sk. The combination
of these components describes the behavior of the adaptation
module in various situations. The visual representation effec-
tively divides Sk into distinct colored regions based on the

6https://youtu.be/ykRe4dzah6o
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Fig. 4: Visual representation depicts the trends of policy loss L̂1,k

and value loss L̂2,k over 1e6 time steps in the training process. This
data is aggregated from 20 training processes, presenting the mean
and interquartile range for clarity and comprehensive insight.

decided prioritization. In the edge characterized by a large
operator force fL

ope and a minimal contact force with the
fixed environment fL

env , the AC task priority wL
2 tends to

rise, while the priorities of other tasks decrease. A higher
position error eLx contributes to accelerating the activation of
the AC task. This region proves to be the sole area where
the AC task is strongly encouraged, yielding positive results
and confirming that the relationship between this task and
the operator presence has been learned. Conversely, in the
opposing edge where fL

ope is low and fL
env is high, the priority

for the FC control task and the value of the desired contact
force fL

d increase. Thus, the combined effect of the third
(30d) and fourth (30e) reward terms manifests in linking the
dynamics of these two variables. This is the region of the state
space Sk allocated by the autonomous agent to the interaction
with the workspace. Lastly, the IK task priority increases more
significantly when both fL

ope and fL
env are absent. However, it

can also rise in the presence of fL
env if the positional error eLx

is substantial. This implies that activities related to reaching a
target are prioritized when the manipulator is not interacting
with the environment, but the robot can cease interaction

https://youtu.be/ykRe4dzah6o


10

(a) Visualization of ẇL
1,k reveals

that high positive values correspond
to large positional errors eLx,k and
low operator and environment forces
fL
ope,k, f

L
env,k .

(b) Visualization of ẇL
2,k displays

high positive values when there are
large positional errors and operator
forces eLx,k, f

L
ope,k , and low environ-

mental forces fL
env,k .

(c) Visualization of ẇL
3,k demon-

strates high positive values for sig-
nificant environmental forces fL

env,k
and low positional errors and operator
forces eLx,k, f

L
ope,k .

(d) Visualization of ḟL
d,k demonstrates

high positive values for significant en-
vironmental forces fL

env,k and low
positional errors and operator forces
eLx,k, f

L
ope,k .

Fig. 5: Plot of the four action components ak ={
ẇL

1,k ẇL
2,k ẇL

3,k ḟL
d,k

}
according to the three component of

the state sk =
{
eLx,k fL

env,k fL
ope,k

}
. In this visualization, the

color yellow indicates high positive rate of change values near 1,
while the dark blue color represents high negative rate of change
values near -1.

with the workspace if the target changes. Remarkably, in
the learned behavior, the desired contact force fL

d along a
Cartesian direction can only increase when the end-effector
is already in contact and the associated Cartesian velocity
is null. Therefore, the contact force cannot perform positive
work while the manipulator is approaching the desired target.
Starting from a contact condition, when the target changes, the
transition from the FC task to the IK task begins. During this
continuous transition, the manipulator moves in a direction
opposite to the reference contact force, generating negative
work that does not compromise the stability of the system.

B. Experimental validation

The performance of the proposed A3CQP controller has
been evaluated in two collaborative industrial scenarios: a
peg-in-hole assembly and the polishing of a wooden plate.
These comprehensive jobs engage all the functionalities the
controller can manage. They involve stages where the robot
needs to precisely follow a predefined Cartesian position xd,k

generated by a trajectory planner, phases where the robot must
establish a robust physical connection with the workpiece
or the worksurface to accomplish the task effectively, and
intervals where the operator directly interacts with the robot
to physically guide its movements in the workspace.

Successful attempts (23) Failed attempts (3)
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Fig. 6: Box plots depict the stochastic distribution of translation 6b
and rotation 6a misalignments in the peg-in-hole experiment. Above
the dashed line, the translation misalignment is substantial, causing
the peg to make contact with the hole structure outside its edges.
Notably, failed tests show values of translation misalignment around
this line, resulting in minimal contact with the hole edge. Despite
rotation misalignments exceeding the average in these cases, the
controller could effectively manage them if accompanied by lower
translation misalignments.

1) Peg-in-hole experiment: A total of 26 peg insertions
were executed throughout this test. Figure 7 illustrates the
operation of the adaptation module and depicts the dynamics
of peg-hole misalignment for three successively insertions.
For comprehensive experiment results, please consult Table
VI. The robot starts from an initial home position, and the

TABLE VI: Peg-in-Hole Experiment Results

Success
Total attempts 26

Successful attempts 23

89%

Speed Insertion time 8.21± 0.24 s

Robustness
Rotation Misalignment 3.66± 0.45 deg

Translation Misalignment 12.30± 4.24 mm

Equipment
Peg ∅ 20.0 mm

Hole ∅ 20.5 mm

controller guides it to an approach pose, aligning with the hole.
When the alignment is achieved within a specified tolerance,
the reference position xd,k is adjusted again to begin the peg
insertion going to the contact pose. Owing to the relatively
lenient alignment tolerances enforced during the IK task phase,
the peg typically initially enters into the FC task along the
z-axis while in contact with the external hole border. These
moments correspond to time instants at 7.7 s, 41.0 s, and 96.9
s, during which the misalignment error primarily manifests
as translation error. These moments are depicted in snapshot
(A) of Figure 7. The transition from IK to the FC task along
the z-axis is triggered by the detection of an initial minor
environmental force. This detection prompts the adaptation
module to simultaneously increase both wL,z

3 and fL,z
d while

reducing wL,z
1 . These dynamics are visually represented in

Figures 5c, 5d, and 5a. This phase results in a sudden, slight
deviation in eL,z

x as the system ceases to track the Cartesian
reference in that particular direction. Notably, following the
initial minor force fL,z

env measured after the first contact, there
is a significant increase in fL,z

env to match the desired fL,z
d . This

leads to noticeable steps in the plot. At this point, the synergy
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A B C D E F

Fig. 7: Peg-in-hole experiment results. The top two plots display the action az determined by the adaptation module in the z Cartesian
direction during the peg-in-hole experiment. The latter is based on the input state sz , which is depicted in the subsequent three plots. The
bottom plot illustrates the dynamics of the peg-hole translation and rotation misalignment. Color-coded patches are employed to highlight
the primary controller task: blue signifies the IK task phases, red corresponds to the FC task phases, and green represents the AC task
phases. At the upper portion of the image, six snapshots obtained during the experiment are situated. The first three snapshots capture the
different phases of the FC task. In (A), the initial contact of the peg with the external hole border is visible. Moving on to (B), it illustrates
the peg successfully intercepting the hole while maintaining contact. Finally, (C) displays the peg being inserted into the hole. Snapshot (D)
documents the transition from the FC task to the AC task as the operator manually disengages the peg-hole assembly. After the interaction
with the operator in (E), the robot returns to its ”approach” pose. Snapshot (F) represents a moment of inspection captured during the final
collaborative interaction.

between the FC task in the z-direction, exerting downward
pressure on the peg, and the IK task in the x and y directions,
which continue to guide the peg toward the desired position
in the x-y plane, allows the peg to slip into the hole when it
intercepts it during the approach maneuvers. These maneuvers
are accompanied by force shocks measured in both fL,z

env

and fL,z
ope but do not result in any perceivable change in the

task weights, indicating that the controller dynamics remain
robust against these disturbances. When the peg intercepts
the hole at time instants 12.2 s, 45.5 s, and 101.5 s, there
is an increase in misalignment due to the rotation caused by
the reaction forces of the hole walls. This specific moment
is observable in snapshot (B) of Figure 7. In this situation,
the downward force exerted by the FC task guides the peg
within the hole. As a result, at time instants 15.9 s, 49.3 s,

and 105.9 s, the misalignment is nullified, demonstrating the
successful insertion of the peg. This moment is captured in
snapshot (C). The large eL,z

x value registered at 26.2 s is a
result of the robot return to the home position after the initial
insertion. During the subsequent two insertions, the operator
manually disengages the peg from the hole at 54.4 s and
112.6 s. This leads to a noticeable presence of a consistent
operator force fL,z

ope , causing a subsequent increase in wL,z
2 in

line with the expected agent behavior represented in Figure
5b. This transition, represented by snapshot (D), results in a
sharp increase in misalignment and position error eL,z

x since
the reference xd and the hole placement remain unchanged.
Following the decrease in fL,z

ope , wL,z
1 , driven by the objective

to reduce eL,z
x , takes the lead again at time instants 75.1 s and

124.4 s, allowing the manipulator to smoothly return to the
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A B C D E F

Fig. 8: Polishing experiment results. The top two plots showcase the action az determined by the adaptation module in the z Cartesian
direction throughout the polishing experiment. This action is based on the input state sz , visualized in the following three plots. The bottom
plot illustrates the behavior of the desired reference position in the Cartesian x-y plane, specifically xx

d and xy
d. These reference positions

describe circles whose centers are modified in response to the operator’s intervention. To highlight the prevailing controller task at any given
time, color-coded patches are utilized. Just as before, the color blue denotes the IK task phases, red represents the FC task phases, and green
corresponds to the AC task phases. At the upper portion of the image, six snapshots obtained during the experiment are situated. The first
snapshot (A) portrays the robot in its initial rest position before making contact with the plate. The second snapshot (B) illustrates the first
phase of polishing, with the robot concentrating on the central part of the plate. Following some moments of work, (C) shows the operator
shifting the end effector to the right, with the robot continuing its work in position (D). In (E), the operator opts to move the robot to the
left, allowing it to complete the polishing on that side of the plate (F).

home position. This moment is depicted in snapshot (E).
As illustrated in Table VI, the adoption of the proposed

A3CQP controller in the selected peg-in-hole assembly en-
ables successful and autonomous task execution. This ef-
fectiveness persists even in the face of uncertainties in the
hole position, thanks to the controller adept utilization of
the FC task, which effectively eliminates peg-hole misalign-
ment. As demonstrated in Figure 6, the controller reliably
handles significant misalignment errors and exhibits reduced
reliability only when the peg center point contacts the hole
structure outside its edges. Controllers designed specifically
for this task, such as [34], utilize a contact model to ad-
dress alignment uncertainties and can handle stricter coupling
clearances. However, these controllers exhibit effectiveness
within limited initial misalignment ranges, typically within

1 mm. On the other hand, other task-specific learning-based
controllers, such as those discussed in [35] and [36], which
operate with clearances and initial misalignments closer to
our setup, exhibit slower insertion times, approximately 15 s
and 30 s as reported in the respective papers. In contrast, our
proposed general approach can accommodates multiple tasks
in series, allowing uninterrupted execution. An other essential
feature is its adaptability to operator intervention at any point
during the operation. The controller smoothly transitions to
accommodate the operator’s commands, even when the robot
is already in contact with the workpiece.

2) Polishing experiment: To assess the flexibility of the
proposed controller, a polishing job was conducted as the
second experiment. The actions of the adaptation module and
the behavior of the desired reference position are illustrated
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in Figure 8. The robot starts from an initial rest position, with
the tool not yet in contact with the wooden plate intended for
polishing. After a brief interval in which the system velocity
is maintained null, the A3CQP controller directs the robot
to make contact with the work surface, moving towards the
polishing pose. There, the planar translation components of
the desired Cartesian position xd, specifically xx

d and xy
d, are

adjusted to trace a circular trajectory on the work surface.
Simultaneously, the Arduino controller activates the drill motor
to spin at 50 rpm. The robot makes contact with the wooden
plate three times to polish specific areas until the operator
intervenes to change the working zone. As shown earlier, when
the agent senses the initial contact force with the plate, it
triggers the FC task in the z Cartesian direction. This results
in three distinct steps in the environment contact force fL,z

env at
time instants of 13.6 s, 43.3 s, and 79.2 s. In this phase, the
desired reference position is continuously adjusted to follow
a circular trajectory, corresponding to sinusoidal references
for the coordinates xx

d and xy
d. Unlike before, due to the

periodic motion in the x-y plane, the fL,z
env no longer remains

mainly flat during the contact phase. Instead, it exhibits
sinusoidal oscillations, which are also visible in the position
error eL,z

x and introduce measurement noise in the operator
interaction force fL,z

ope . However, despite these movements, the
manipulator, leveraging the FC task, maintains the polishing
head aligned with the plate and exerts the necessary force for
the polishing task. When the operator intervenes, indicated by
the sudden rise in fL,z

ope at time instants 29.7 s, 62.2 s, and
101.5 s, the transition to the AC task phase occurs. In these
moments, the operator grabs the manipulator end effector,
physically guides it to a new working region, and then releases
it. During this interval, the planar references xx

d and xy
d change

to align with the new positions the robot assumes under the
operator’s guidance. Once released, at time instants 37.2 s,
68.5 s, and 107.3 s, the robot reactivates the IK task to
stabilize the last position taught by the operator. After a brief
period of maintaining this position at zero velocity, the robot
is prepared to return to the wooden plate and recommence
the polishing activity from the new position. The snapshots of
the experiment, as illustrated in Figure 8, document the various
phases of the polishing process. At first, the robot concentrates
on the central area of the plate, as captured in (B). It is then
repositioned to the right by the operator, depicted in snapshots
(C) and (D). Subsequently, the robot is shifted to the left, as
seen in snapshots (E) and (F), where it concludes the polishing
task.

In conclusion, the presented A3CQP controller is not limited
to a single category of jobs. Instead, it equips the robot with
the flexibility to adapt to a diverse range of activities. These
activities may require autonomous tasks involving interaction
with the environment, and the operator is free to step in and
collaborate with the robot. In this case, the operator indicates
which areas of the plate require attention.

VII. CONCLUSION

In this work, we have devised an innovative A3CQP con-
troller aimed at enhancing the robot adaptability when tackling

complex, unstructured tasks. This controller is grounded in
a non-strict hierarchical Quadratic Programming algorithm,
seamlessly incorporating both motion and interaction capabil-
ities. It ensures that control inputs remain stable, consistent,
and predictable while adhering to specific constraints. What
distinguishes this controller is its ability to dynamically and
autonomously adjust task priorities. It employs a Reinforce-
ment Learning-based adaptation module, which leverages the
Asynchronous Advantage Actor-Critic algorithm. This ap-
proach ensures swift convergence and steady training within
the continuous action and observation spaces. This adaptation
module plays a pivotal role in endowing the robot with the
ability to learn from its interactions with the environment.
It empowers the robot to smoothly transition between three
essential tasks: the Cartesian Inverse Kinematic Task, Carte-
sian Admittance Control Task, and Cartesian Force Control
Task. These tasks span a wide range of behaviors, from precise
position tracking for manipulation to exerting specific forces
during physical interactions and following operator guidance
for co-manipulation. To assess the validity of our proposed
solution, we conducted a series of experiments. These tests
encompassed both collaborative peg-in-hole assembly and
the cooperative polishing of a wooden plate, employing the
Franka Emika Panda robot. The outcomes of these evaluations
demonstrate the robot adeptness in combining a variety of
tasks to fulfill the specific needs of different job phases.
These activities necessitate autonomous operations involving
interactions with the environment, and the operator retains
the flexibility to intervene and collaborate with the robot as
needed.

APPENDIX

To demonstrate the stability of the optimal control problem
outlined in (24), it is essential to derive the analytical expres-
sions for the two optimization variables q̈∗

k and f∗k . To achieve
this, we utilize the Karush-Kuhn-Tucker (KKT) conditions
[37], and apply them to the associated sub-problems. For the
initial sub-problem (24a) pertaining to q̈∗

k, the KKT conditions
are as follows:

(1 + ϵ)JT
kw1Jkq̈

∗
k − JT

kw1

(
Kpex,k −Kvẋ− J̇kq̇k

)
−

JT
k ϵw1Jk

(
kqeq,k − 2

√
kqq̇k

)
+ µ̄T

q + µT
q
= 0;

(36a)

q̈∗
k − ¯̈q ≤ 0; µ̄T

q

(
q̈∗
k − ¯̈q

)
= 0; µ̄T

q ≥ 0. (36b)

q̈∗
k − q̈ ≥ 0; µT

q

(
q̈∗
k − q̈

)
= 0; µT

q
≤ 0. (36c)

The KKT conditions associated to the second sub-problem
(24b) concerning f∗k are:

[w2 +w3]f
∗
k −w2

(
[ΛkΛ

−1
d ]− I6×6

)
fext,k+

w2(CdJk +ΛkJ̇k)q̇−w3fctc,k + µ̄T
f + µT

f
= 0;

(37a)

f∗k − f̄ ≤ 0; µ̄T
f

(
f∗k − f̄

)
= 0; µ̄T

f ≥ 0. (37b)

f∗k − f ≥ 0; µT
f
(f∗k − f) = 0; µT

f
≤ 0. (37c)
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The stability of the presented QP controller can be discussed
using Lyapunov theory, with the following positive definite
candidate function:

V =
1

2
ẋT
k ẋk+

1

2(1 + ϵ)
eTx,kKpex,k+

ϵkq
2(1 + ϵ)

eTq,kJ
T
k Jkeq,k;

(38)
The associated time derivative is

V̇ = ẋT
k ẍk +

1

1 + ϵ
ėTx,kKpex,k+

ϵkq
1 + ϵ

ėTq,kJ
T
k Jkeq,k +

ϵkq
1 + ϵ

eTq,kJ
T
k J̇keq,k.

(39)

This equation can be rewritten by explicating the acceleration
ẍk using the Cartesian dynamics (12), where we incorpo-
rate the analytical expression of τ as given in (4). In this
context, we substitute the optimal variables q̈∗

k and f∗k with
their analytical expressions derived from the KKT conditions
(36), (37). The feedback joint acceleration q̈pd,k, as defined
in (5), does not affect system stability when the gains are
appropriately tuned [24]. Consequently, we opt to exclude it
from consideration, leading us to the subsequent formulation
for the derivative of the Lyapunov candidate:

V̇ =
1

1 + ϵ
ẋT
k

(
ϵJ̇kJ

†
k −Kv − 2ϵ

√
kqI6×6

)
ẋk+

1

1 + ϵ
ẋT
kKpex,k +

ϵkq
1 + ϵ

q̇T
k J

T
k Jkeq,k−

1

1 + ϵ
q̇T
k [J

T
kw1Jk]

−1(µ̄T
q + µT

q
)+

1

1 + ϵ
ėTx,kKpex,k +

ϵkq
1 + ϵ

ėTq,kJ
T
k Jkeq,k+

ϵkq
1 + ϵ

eTq,kJ
T
k J̇keq,k + Pext + Pint;

(40)

Pext = ẋT
kΛ

−1
k fext,k; (41)

Pint = ẋT
kΛ

−1
k f∗k = ẋT

kAkw2

(
[ΛkΛ

−1
d ]− I6×6

)
fext,k+

ẋT
kAkw2

(
ΛkJ̇kJ

†
k −Cd

)
ẋk+

ẋT
kAkw3fctc,k − ẋTAk(µ̄

T
f + µT

f
);

(42)

Ak = Λ−1
k [w2 +w3]

−1. (43)

In this context, Pext represents the mass-normalized external
power introduced into the system due to interaction with
the operator. On the other hand, Pint indicates the mass-
normalized power internally generated when either the AC or
the FC tasks, or both, are active. The matrix Ak ∈ R6×6 is
symmetric and positive definite.
In the subsequent discussion, through the application of Lem-
mas 1 and 2, Theorem 4 will illustrate that the expression
Pext+Pint, denoting the introduced and generated power, does
not jeopardize the intrinsic stability of the system. Following
this, by building upon the obtained result and utilizing Lemma
3, Theorem 5 will establish the overall stability of the system.

Lemma 1. The damping component of the admittance force
fadm constitutes a purely dissipative contribution, i.e.,

ẋT
kAkw2

(
ΛkJ̇kJ

†
k −Cd

)
ẋk < 0. (44)

Proof. Akw2 is a multiplication of symmetric positive definite
matrices, and

(
ΛkJ̇kJ

†
k −Cd

)
is symmetric and negative

definite when Cd > ΛkJ̇kJ
†
k.

Lemma 2. The Lagrange multipliers introduced by the wrench
constraints µ̄T

f ,µ
T
f

, do not contribute to the generation of
power, i.e.,

−ẋT
kAk(µ̄

T
f + µT

f
) ≤ 0. (45)

Proof. [JT
kw1Jk]

−1 is symmetric and positive definite. µ̄T
q =

0,µT
q
= 0 whenever q̈∗

k is far from the limits. When q̈∗
k = ¨̄q,

the KKT conditions (36) result in µ̄T
q > 0. Additionally, with

sufficiently small sampling time ∆t, the constraints employed
lead to q̇k > 0 [27]. Similarly, when q̈∗

k = q̈, µT
q

< 0 and
q̇k < 0.

Lemma 3. The inclusion of joint limits in the optimization
problem (24) does not impact the stability of the system, i.e.,

− 1

1 + ϵ
q̇k[J

T
kw1Jk]

−1(µ̄T
q + µT

q
) ≤ 0 ∀ q̇k, µ̄

T
q ,µ

T
q
. (46)

Proof. µ̄T
f = µT

f
= 0 whenever f∗k is far from the limits.

At the limits, when f∗k = f̄ , the KKT conditions (37) result
in µ̄T

f > 0, and ẋk > 0 if f∗k is performing positive work.
Equivalently, when f∗k = f , µT

f
< 0 and ẋk < 0.

Theorem 4. The power introduced into or generated by the
robot, operating according to the QP controller formalized in
(24), does not compromise the intrinsic stability of the system,
i.e.,

Pext + Pint < 0. (47)

Proof. In light of the lemmas 1 and 2, the total power can be
limited as follows:

Pext + Pint < ẋT
k Λ̃

−1
k fext,k + ẋT

kAkw3fctc,k;

Λ̃−1
k = Λ−1

k +Akw2

(
[ΛkΛ

−1
d ]− I6×6

)
.

(48)

The first term of the upper bound ẋT
k Λ̃

−1
k fext,k represents an

external disturbance with a bounded dependency on the robot
state. Consequently, it does not impact the intrinsic stability
of the system and can be excluded from the discussion [38].
The second term ẋT

kAkw3fctc,k denotes the power generated
by the contact force. To ensure a non-positive contribution,
it is essential for the reference contact force fctc,k and the
end effector Cartesian velocity ẋk not to be oriented in the
same direction. This requirement leads to the necessity for the
adaptation module to adapt fLd,k to satisfy this condition. By
adhering to this requirement, the equation (48) equals (47),
thereby proving the theorem.

Theorem 5. The QP controller formalized in (24) is asymp-
totically stable, as per the positive definite and continuously
differentiable Lyapunov candidate V given by (38).

Proof. To prove the theorem, it is necessary to demonstrate
that the time derivative of the Lyapunov candidate V̇ is
negative definite.
Building upon Theorem 4, we can revisit (40) by omitting the
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term Pext + Pint. Additionally, recognizing that ėx,k = −ẋk

and ėq,k = −q̇k, we can simplify the equation as follows:

V̇ =
1

1 + ϵ
ẋT
k

(
ϵJ̇kJ

†
k −Kv − 2ϵ

√
kqI6×6

)
ẋk−

1

1 + ϵ
q̇k[J

T
kw1Jk]

−1(µ̄T
q + µT

q
) +

ϵkq
1 + ϵ

eTq,kJ
T
k J̇keq,k.

(49)

The terms involving the product ϵJ̇k can be considered small
and negligible. The matrix

(
−Kv − 2ϵ

√
kqI6×6

)
is symmetric

and negative definite, making the associated quadratic form
strictly negative. Finally, the term − 1

1+ϵ q̇k[J
T
kw1Jk]

−1(µ̄T
q +

µT
q
) is non-positive, as indicated by Lemma 3. Consequently,

this leads to V̇ < 0 due to the properties of the matrices in-
volved. Thus, we have successfully demonstrated the intrinsic
stability of the system.
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