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In quantum metrology, one of the major applications of quantum technologies, the ultimate
precision of estimating an unknown parameter is often stated in terms of the Cramér-Rao bound.
Yet, the latter is no longer guaranteed to carry an operational meaning in the regime where few
measurement samples are obtained, which we illustrate through a simple example. We instead
propose to quantify the quality of a metrology protocol by the probability of obtaining an estimate
with a given accuracy. This approach, which we refer to as probably approximately correct (PAC)
metrology, ensures operational significance in the finite-sample regime. The accuracy guarantees
hold for any value of the unknown parameter, unlike the Cramér-Rao bound which assumes it is
approximately known. We establish a strong connection to multi-hypothesis testing with quantum
states, which allows us to derive an analogue of the Cramér-Rao bound which contains explicit
corrections relevant to the finite-sample regime. We further study the asymptotic behavior of
the success probability of the estimation procedure for many copies of the state and apply our
framework to the example task of phase estimation with an ensemble of spin-1/2 particles. Overall,
our operational approach allows the study of quantum metrology in the finite-sample regime and
opens up a plethora of new avenues for research at the interface of quantum information theory and
quantum metrology.

Metrology, the scientific study of measurements, has
naturally evolved to encompass the realm of quantum
theory. Quantum metrology seeks to realize practical
advantages by harnessing quantum effects. The grow-
ing quantum technologies sector, especially, holds high
expectations for achieving unparalleled sensitivity with
quantum sensors. Anticipated applications range from
the calibration of atomic clocks over gravitational-wave
detection to potential medical uses [1–5]. It is crucial
that the theory of quantum metrology accommodates the
emerging technological capabilities of near-term quantum
sensors, which necessitates an in-depth understanding of
their performance in realistic settings, where the size of
experiments might be limited.

A standard question in quantum metrology is to deter-
mine the value of an unknown parameter that has been
encoded in a quantum state. For instance, suppose we
wish to estimate the difference of time t between two
events. One might prepare an initial clock state ρ0, e.g.,
an ensemble of spin- 12 particles, in some standard state
when the first event occurs, let the system evolve un-
der its natural dynamics – say, a magnetic field of fixed
strength – resulting in a state ρ(t), and perform a mea-
surement on the system when the second event occurs.
The accuracy to which t is determined can be improved
through suitable choices of the initial state, the dynam-
ics, and the final measurement. A similar scheme can be
employed to sense the value of an unknown parameter in
a Hamiltonian, such as the strength of an external field.
In this case, one lets the system evolve under the un-
known Hamiltonian for a fixed amount of time. In either
case, the problem reduces to estimating the value of a
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FIG. 1. The setup we consider for quantum metrology in the
finite-sample regime consists in applying a measurement onto
the quantum state ρ(t), and inferring an estimate t̂ of the
value of the unknown parameter t from the outcome of the
measurement. The estimation process is successful if the esti-
mate t̂ and the true parameter value t differ by at most some
fixed error tolerance δ. Our approach quantifies the probabil-
ity that the estimation procedure is successful. In contrast,
the standard quantum Cramér-Rao bound quantifies the vari-
ance of the outcome t̂ for a given estimation procedure that
reveals the correct parameter in expectation; its operational
meaning is guaranteed only after collecting many outcomes.

parameter t among a parametrized set of states t 7→ ρ(t).
A standard treatment of this problem proceeds as fol-

lows [1, 2, 5, 6]. One assumes that t is already known
to be close to some value t0. The task is to refine one’s
knowledge of t by accessing the expectation value of some
observable. A central result in quantum metrology quan-
tifies the variance σ2 of a quantum measurement whose
expectation value is equal to t. The quantum Cramér-
Rao bound states that [5, 7–9]

σ2 ≥ 1

F , (1)

where F is the quantum Fisher information, a quantity
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that measures how distinguishable the states of the fam-
ily ρ(t) are around t0. Furthermore, there exists a quan-
tum measurement which achieves equality in Eq. (1).
One thus frequently resorts to the quantum Fisher in-
formation as a measure of sensitivity, including when
quantifying the advantages of using entangled states for
quantum sensing [1], the effect of noise on the sensitivity
of probe states [10, 11], as well as the advantages of using
quantum error correction in metrology [12]. The quan-
tum Fisher information naturally generalizes the classical
Fisher information and enjoys the geometrical interpreta-
tion of being the metric tensor associated with the fidelity
of quantum states [5, 6, 13].

In this work, we consider the regime where few mea-
surement samples are available. This regime is increas-
ingly expected to be relevant when considering the lim-
ited capabilities of quantum sensors in the near term.
Specifically, we revisit some of the founding assumptions
that lead to the quantum Cramér-Rao bound which are
difficult to justify in the few-sample regime. First, the ex-
pectation value of an observable can only be reliably es-
timated if sufficiently many samples are available. Thus,
access to few samples of the measurement that achieves
equality in the quantum Cramér-Rao bound might not
provide meaningful information about the unknown pa-
rameter. Second, few samples from a quantum measure-
ment are unlikely to yield the degree of precision that
is compatible with the assumption that the parameter
is already approximately known. Relaxing this second
assumption furthermore enables us to consider general
families of states ρ(t) without the smoothness properties
required to apply the quantum Cramér-Rao bound.

We establish a general finite-sample analysis of quan-
tum metrology rooted in fundamental principles of quan-
tum information theory. We consider a general one-
parameter family of states t 7→ ρ(t), where t is known
to belong to some real interval I ⊆ R (Fig. 1). We then
consider a quantum measurement whose outcome leads
to an estimate t̂ of the value t. In our model, the measure-
ment is applied only once. Access to a finite number n of
samples is modeled by explicitly considering the copies of
the state in parallel, ρ⊗n(t). The estimation procedure
is successful if t̂ is within some fixed estimation error
tolerance δ of the true parameter value t. We then ask,
“What is the probability that our estimate of the underly-
ing parameter is within a given estimation error tolerance
around the true value?” and “What is the smallest esti-
mation error tolerance such that this success probability
is at least some given threshold?” For these questions to
have a well-defined answer, we can either assume prior
knowledge about the underlying parameter t or we take
the worst-case among all possible values of t. In our work,
we explore both settings in depth.

We show that computing the optimal success proba-
bility over all possible measurements for a fixed estima-
tion tolerance belongs to a class of convex optimization
problems known as semi-infinite programs, which are es-
sentially semi-definite programs with an infinite number

of semi-definite constraints. We explicitly show how the
semi-infinite program reduces to a semi-definite program
upon discretization.

We also establish close connections between metrology
in the finite-sample regime and multi-hypothesis testing
of quantum states [14–17]. In quantum multi-hypothesis
testing, one receives an unknown state from a fixed set
of quantum states, and seeks to identify which state was
provided. The metrological task considered here can be
intuitively understood as a continuous version of multi-
hypothesis testing of quantum states, where we seek to
identify the value of an unknown parameter t in the
family of states ρ(t). In contrast to the discrete multi-
hypothesis task, it is impossible to determine the value
of t exactly given the parameter’s continuous nature. In-
stead, the parameter t should be determined up to some
fixed precision, quantified by δ. We make this intu-
itive connection rigorous by proving upper bounds on
the success probability of the metrological task in terms
of the success probability of a related multi-hypothesis
testing task. More specifically, we show that determin-
ing the parameter t to precision δ is at least as hard
as distinguishing quantum states corresponding to pa-
rameters that are at least 2δ apart. Along the same
vein, we express quantities of interest, such as the suc-
cess probability of our estimation procedure, in terms of
known single-shot entropy measures such as the condi-
tional min-entropy [17, 18]. We also connect our frame-
work to known estimation lower bounds in terms of the
the hypothesis testing relative entropy [19].

We then connect the finite-sample regime to the many-
sample regime as follows. We study the behavior of the
success probability of the estimation where a finite num-
ber n of copies of the state are available, and consider
the limit n → ∞. In this regime, we prove an upper
bound on the rate with which the success probability ap-
proaches one in terms of the Chernoff divergence of quan-
tum states. This result extends known distinguishability
rates in multi-hypothesis testing [15].

Exploiting the connection to multi-hypothesis test-
ing allows us to formulate an analogue of the quantum
Cramér-Rao bound that is valid in the single-shot regime.
The estimation error tolerance δ replaces the standard
deviation σ on the left-hand side of the inequality of
Eq. (1), and we obtain correction terms on the right-
hand side that depend on the desired success probability
and properties of the set of states ρ(t).

We then turn to an alternative setting, in which
the parameter to be estimated is accessed through
the use of a parameter-dependent quantum channel.
This setting offers richer estimation strategies than the
parameter-dependent state setting. For instance, an es-
timation strategy may interleave the application of the
parametrized channel on a probe system with interac-
tions with a memory system. We extend a selection of our
earlier results to such general strategies, like the formula-
tion of the optimal success probability as a convex prob-
lem as well as the rigorous connection to multi-hypothesis
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testing of quantum channels. Such generalizations be-
come possible by viewing such strategies in their entirety
as quantum combs [20, 21] or general strategies of indef-
inite causal order [22].

We further consider the task of estimating the param-
eter t in a family of pure states |ψ(t)⟩ for which the pa-
rameter t corresponds to time, and whose evolution is
governed by a fixed Hamiltonian. Furthermore, t is to be
estimated globally over the entire period of the Hamilto-
nian [23]. We establish a closed-form expression of the
worst-case estimation success probability, exploiting the
group-covariant structure of this set of states with respect
to time evolution. We finally consider examples of this
setting on an ensemble of spin- 12 particles. We numeri-
cally compute the optimal success probability, as well as
the optimal estimation error tolerance, for a collection
of states. The GHZ state fails in the global estimation
setting considered here, despite the state being optimal
for local estimation. We compare the sensitivity of a se-
lection of states, including a standard ensemble of spins
prepared in a superposition of a ground and an excited
state (i.e., a spin-coherent state) as well as a uniform su-
perposition over all distinct energy levels (the Holland-
Burnett state [24]). We also determine the state that
achieves optimal success probability, for any n and for
any fixed estimation error tolerance.

To further motivate our approach, consider the follow-
ing example [11, 25, 26] (see Section II of the supple-
mentary material for details). Alice prepares a particle

in the state ρ0 = |+⟩⟨+|, where |±⟩ = (|0⟩ ± |1⟩)/
√
2.

The particle evolves according to the Hamiltonian H =
(ω/2)Z for some fixed ω, causing it to rotate in the
X-Y -plane of the Bloch sphere. At time t, Alice sends
the particle instantaneously over to Bob through a com-
pletely dephasing channel acting in the Pauli-X ba-
sis, defined as ρ0 7→ ⟨+|ρ0|+⟩ |+⟩⟨+|+ ⟨−|ρ0|−⟩ |−⟩⟨−|.
As a consequence, Bob thus receives the state
ρ(t) = cos2(ωt/2)|+⟩⟨+|+ sin2(ωt/2)|−⟩⟨−|. The quan-
tum Fisher information that Bob has with respect to t
is [25, 26]

F =

{
ω2 if t /∈ (π/ω)Z,
0 if t ∈ (π/ω)Z.

(2)

That is, F is constant equal to ω2 except in a discrete
set of points where F = 0. While the discontinuity
at t ∈ (π/ω)Z is concerning given the operational
nature of the quantum Fisher information, it can be
attributed to the vanishing first-order expansion of
ρ(t) at those points and therefore to a failure of the
first-order approximation of the curve ρ(t) [25, 26].
Consider now a point t ≈ 0 with t > 0 arbitrarily
small. The quantum Cramér-Rao bound guarantees the
existence of a measurement T̂ with expectation value
⟨T̂ ⟩ = t and with variance ⟨∆T̂ ⟩2 = 1/ω2. This operator
is T̂ = tI+ ω−1

(
− tan(ωt/2)|+⟩⟨+|+ cot(ωt/2)|−⟩⟨−|

)
(compare Section II of the supplementary material). The
eigenvalue of T̂ associated with |−⟩ diverges as ∼ 1/t.

In fact, both eigenvalues contribute significantly to the
expectation value and variance of T̂ ; the effect of the
divergent eigenvalue associated with |−⟩ is kept finite
only thanks to the corresponding outcome happening
with vanishingly small probability ∼ t2. That is, a mea-
surement of T̂ almost certainly yields the outcome |+⟩;
the outcome |−⟩, necessary for an accurate estimation
of the expectation value, only occurs after an expected
∼ 1/t2 number of samples. Therefore, a naive estimation
of the expectation value of this observable yields little
useful information on t if fewer than ∼ 1/t2 samples
are collected. One of the main goals of this work is to
develop a rigorous and precise analysis of the accuracy
limits of sensing a parameter in the regime where the
number of samples is insufficient to accurately estimate
the expectation value of the sensing observable given
through the Cramér-Rao bound.

Our inherently operational, information-theoretic ap-
proach to the estimation task guarantees an operational
meaning to the estimation error achieved by a given mea-
surement, in contrast to the variance of an observable
whose operational meaning is ensured only in the asymp-
totic limit of many samples. Our approach is strongly
inspired by recent advancements in single-shot quantum
information theory [17, 18, 27, 28], whose aim is to quan-
tify the resource requirements of information-theoretic
tasks beyond the traditional regime where many indepen-
dent and identically distributed (i.i.d.) copies of a quan-
tum state are available. The approach of quantifying the
performance of a quantum metrology protocol through
the probability of obtaining a sufficiently accurate es-
timate is also similar in spirit to the de-facto standard
approach to computational learning theory, namely prob-
ably approximately correct (PAC) learning [29]. As such,
we will also refer to our framework as probably approxi-
mately correct (PAC) metrology. Our approach can also
be understood as constructing sets known as confidence
intervals in the field of statistics, and characterizing the
effect of different choices of quantum measurements on
their size. Our approach is thus closely related to confi-
dence region estimation of quantum states [19, 30–33].

Our framework enables the study of estimation proce-
dures that can interpolate between local estimation, as
in the context of the quantum Cramér-Rao bound, and
global estimation, where the possible values of the un-
derlying parameters are not constrained to a very small
neighborhood of a known value. Intuitively, the local
setting corresponds to the case where the possible range
of values for the parameter in question is small com-
pared to the right hand side of the quantum Cramér-Rao
bound Eq. (1). The global setting requires states to re-
main distinguishable over the full range of values that
the unknown parameter might take. Probe states that
are accurate in the local estimation setting are not nec-
essarily accurate for global estimation. For instance, the
n-qubit GHZ state |GHZ⟩ = (|00 . . . 0⟩+ |11 . . . 1⟩)/

√
2 is

optimal for local estimation of a parameter t of a non-
interacting ensemble of spin- 12 particles. However, its
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very short period 2π/n prohibits us from distinguishing
values of t spaced by more than 2π/n. In contrast, the

state |+⟩⊗n = [(|0⟩+ |1⟩)/
√
2]⊗n has a period of 2π and

is capable of identifying greater time intervals at the cost
of a worse accuracy in the setting of local estimation.

While the general approach of using the quantum
Fisher information can be extended to the global esti-
mation regime by considering Bayesian prior information
about the underlying parameter [2, 34–38], this does sim-
ilarly suffer from possible issues in the few-shot regime
we outlined above. Our alternative approach, on the
other hand side, can interpolate between the local and
the global setting, both in the presence and absence of
prior information about the underlying parameter, and
is applicable in the few-shot setting.

Our approach furthermore does not suffer from ap-
parent inconsistencies that can arise when the family of
quantum states ρ(t) is not sufficiently well-behaved (e.g.,
if the derivative vanishes), in contrast to the singularities
and divergences that the quantum Fisher information is
prone to in such cases [25, 26].

Our framework is summarized in Fig. 2. We identify
three key quantities of interest: the success probability at
fixed estimation error tolerance, the best achievable tol-
erance at fixed success probability, and the sample com-
plexity, which quantifies the minimum number of exper-
imental repetitions needed to achieve a desired success
probability and tolerance. We discuss two scenarios of
these measures, one assuming information in the form of
a prior – referred to as Bayesian – and one that captures
guarantees that can be made agnostic to the underlying
parameter – referred to as minimax . The minimax set-
ting enables a rigorous treatment of the lack of any prior
knowledge on the unknown parameter. In particular, at-
tempts to capture this lack of knowledge in the Bayesian
setting, e.g. by picking a uniform prior, fail to achieve the
worst-case statements that are enabled by the minimax
setting. The minimax setting indeed leads to guarantees
that hold even when an adversary can choose a param-
eter value that a particular metrology strategy is least
likely to work for.

Prior works focusing on metrology with finite repeti-
tions [39–45] in both the classical and quantum case usu-
ally take a “large deviation” perspective, such that the
number of samples is understood to be finite but still
large. A notion of success probability already appeared
in Ref. [46]. The authors of Refs. [43, 47] have quantified
asymptotic properties related to the achievable precision
under statistical assumptions on the estimators, some-
thing that can be tightened with our results as we explain
in the supplementary material. References [44, 45, 48]
have extended this approach to quantum state tomog-
raphy. The problem of optimizing the metrological tol-
erance with a given guarantee on the success probabil-
ity has been treated in Refs. [19, 46, 49, 50], where some
bounds have been given. In a spirit similar to our work,
connections between quantum metrology and hypothe-
sis testing have been used to obtain precision bounds in

Success probability

Estimation tolerance

Sample complexity

What is the probability of
outputting an estimate that is 
within a given tolerance 
around the true value?

PAC 
Metrology

Bayesian Minimax

Prior distribution Adversary

FIG. 2. The fundamental quantities forming the probably ap-
proximately correct (PAC) metrology framework quantifying
non-asymptotic quantum metrology. The success probability,
defined intuitively through the statement given in the above
figure, forms the cornerstone of the framework. The toler-
ance is obtained from it by answering the question: “What
is the smallest tolerance that still guarantees a given success
probability?” Similarly, the sample complexity is the answer
to the question: “How many repetitions of an experiment do
I need to perform to achieve a certain tolerance at a fixed
success probability?” We rigorously define them in Defini-
tion 1 (success probability), Definition 2 (tolerance) and Def-
inition 3 (sample complexity). The relation to the theory of
PAC learning [29] lies in the spirit of how the quality of a pro-
tocol is quantified through the success probability – beyond
that, there is no overlap between the frameworks.

the standard approach to quantum metrology [51]. The
reverse direction of using metrology bounds to quantify
channel discrimination has also been explored [52]. Our
analysis of the phase estimation problem has overlaps
with work by Imai and Hayashi [53], where the asymp-
totic distribution of phase estimates is analyzed. Alter-
native methods for multi-parameter estimation are re-
viewed in [54]. The authors of Ref. [55] have studied the
case of a fixed measurement with a focus on the admissi-
bility of said measurement. The connection to previous
work is explored in greater detail in Section I of the sup-
plementary material.
After summarizing the main contributions of our work

in Section I, we outline the non-asymptotic framework for
quantum metrology in Section II and discuss optimizing
over metrology protocols in Section III. We describe the
optimal post-processing in the practically relevant case
of a fixed quantum measurement in Section III B. We
go on to describe the intimate connection to hypothesis
testing in Section IV and show in Section V how it can
be used to understand the achievable asymptotic per-
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FIG. 3. Metrological tasks consist of estimating some physical properties of a quantum system. A basic protocol involves
preparing a probe state ρ0, letting it interact with the quantum system of interest, and then measuring the output state. We
describe the most general protocols in Section IX. (a) In quantum parameter estimation, the parameter t ∈ R indicates the
physical property of interest, which may be governed by an underlying random process with probability density function µ. In
our PAC metrology framework, we identify the success of the estimation procedure by correctly identifying the parameter t up
to a given tolerance δ. (b) In quantum hypothesis testing, a set of quantum states with labels x ∈ X is given and the task is
to design a measurement that maximizes the probability of correctly identifying the label x. (c) The core contribution of our
work is a rigorous connection between quantum hypothesis testing and quantum parameter estimation. Specifically, we show
that the parameter estimation problem of (a) is at least as hard as distinguishing states that are mutually at least 2δ apart in
the hypothesis testing setting of (b) – see Theorem 10.

formance in general quantum metrology problems. Sec-
tion VII is dedicated to the optimal metrological toler-
ance for a fixed success probability and relates it to the
hypothesis testing relative entropy. We showcase the var-
ious applications of our quantifiers in Section XI where
we perform a minimax analysis of the phase estimation
problem. We discuss the generalization of our definitions
and results to multivariate quantum metrology and their
relation to learning from quantum systems in Section XII.
Our work concludes with a detailed outline of future di-
rections in Section XIII and a discussion of our results in
Section XIV.

I. OVERVIEW OF OUR MAIN RESULTS

We establish the following main results.

▷ A framework for quantum metrology in the finite-
sample regime.

The framework of PAC metrology established in Sec-
tion II and summarized in Fig. 2 constitutes an approach
to quantum metrology that is both operational and valid
in the single- and few-shot settings. We give rigorous
definitions in Definition 1 (success probability), Defini-
tion 2 (tolerance) and Definition 3 (sample complexity).
We show that the optimization of the success probabil-
ity over metrological protocols can be carried out as a
convex optimization problem, concretely a semi-infinite
program [56, 57], an infinite reading of a semi-definite
program [58, 59]. We further establish properties of the
proposed quantifiers, relate them to entropic quantities
and detail their practical computation.

▷ A rigorous connection to hypothesis testing.

In Theorem 10, we establish rigorously that the task
of estimating a parameter encoded in a state ρ(t) is at
least as hard as performing a quantum multi-hypothesis
test between parametrized states {ρ(ti)}Mi=1 associated to
parameter values that are separated by at least twice the
tolerance δ, i.e. |ti − tj | > 2δ for i ̸= j (see Fig. 3). We
also extend this upper bound to the case of parametrized
quantum channels in Corollary 23. We make use of this
theorem to derive a simple relation of success probability
to the fidelity of states in Corollary 12 that forms the
base of our further results.

▷ Asymptotic rates of quantum metrology.

We exploit the hypothesis testing bound of Theorem 10
to study the rate with which the success probability ap-
proaches one when using more and more copies of the
same quantum state ρ⊗n(t) while maintaining a fixed tol-
erance. In particular, we provide upper and lower bounds
on error rates in Theorems 13 and 14 and show the exact
asymptotic rate for commuting problems in Corollary 15.

▷ A single-shot Cramér-Rao-like bound.

The metrological tolerance, which quantifies the small-
est deviation of metrological estimates that still guaran-
tees a given success probability, fulfills a role similar in
spirit to the standard deviation in the asymptotic frame-
work of quantum metrology. We exemplify this similar-
ity by giving a bound in Theorem 18 that resembles the
Cramér-Rao bound but is valid in the single-shot set-
ting. It establishes, among other insights, that the best
achievable tolerance under many copies of the same state
is δ = O(1/

√
nmint F(t)), similar in scaling to the quan-

tum Cramér-Rao bound on the standard deviation.

▷ A finite-sample analysis of phase estimation.
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We devote Section XI to a minimax analysis of the
phase estimation problem on an ensemble of spin- 12 parti-
cles, i.e. the estimation of a phase imprinted by a Hamil-
tonian evolution. For the general case of a covariant
Hamiltonian evolution, we give the measurement achiev-
ing the optimal success probability and provide a formula
in closed form in Theorem 24. This allows us to find the
optimal probe state in the phase estimation scenario and
to establish the optimal asymptotic rate of the error prob-
ability in Theorem 25. We perform exhaustive numerics
that showcase the differences of the single-shot analysis
from the asymptotic framework, highlighting that the op-
timal probe states in this instance of global estimation are
notably different from the optimal states for local estima-
tion. We furthermore give evidence that in the setting of
i.i.d. copies of the same state, the quantum Cramér-Rao
bound gives a faithful estimate of the achievable minimax
tolerance.

II. A FRAMEWORK FOR QUANTUM
METROLOGY IN THE FINITE-SAMPLE

REGIME

We consider the task of estimating an unknown param-
eter that is encoded in a quantum state. Let t 7→ ρ(t) be
a one-parameter family of quantum states, where the pa-
rameter t belongs to some fixed real interval t ∈ I ⊆ R.
For technical convenience, we assume that the interval
I is given as the domain of the function t 7→ ρ(t) and
henceforth omit explicit mention of I, all while assuming
that t belongs to the domain of t 7→ ρ(t).

We first review the general abstract basics of Bayesian
parameter estimation and the alternative minimax pa-
rameter estimation setting. These definitions work in-
dependently of the actual metrological problem and, as
we show later, can be easily generalized to multivariate
quantum metrology and metrology of quantum channels
We then consider the setting depicted in Fig. 1, where a
parameter is to be extracted from a parametrized quan-
tum state through a quantum measurement. This allows
us to rigorously establish our framework as outlined in
Fig. 2.

Through this development, we establish measures of
performance that have a direct operational meaning in
the non-asymptotic setting where only few experimen-
tal repetitions can be performed. Our approach revolves
around the question: “What is the probability η of out-
putting an estimate that is within a given tolerance δ
around the true value?”

We first see how we can answer this question in the
general setting of Bayesian parameter estimation. Sup-
pose the value of the underlying parameter is distributed
according to a prior distribution µ(t), t ∼ µ(t). Given a
value of t, we assume that the probability of our estima-
tion procedure producing the estimate τ is distributed
according to ν(τ | t). Then we can compute the Bayesian

success probability as

η =

∫
dµ(t) dν(τ | t)wδ(t− τ), (3)

where wδ(t − τ) := χ[|t − τ | ≤ δ] represents a window
of size δ around the true value, with χ(·) the indicator
function that is equal to one when its argument is true
and zero otherwise.
An alternative setting applies to the case where we

have no prior information about the parameter t ∈ I.
Suppose that for a fixed value of t, the probability of our
estimation procedure producing the estimate τ is again
distributed according to ν(τ | t). In this case, the proba-
bility of success, in the worst case over t, is determined
as

η = inf
t∈I

∫
dν(τ | t)wδ(t− τ). (4)

While this setting is radically different from Bayesian es-
timation on the conceptual level, we exploit a close rela-
tion between these settings at the technical level in order
to simplify our derivations. Specifically, the quantity in
Eq. (4) can be expressed as the Bayesian success proba-
bility of Eq. (3) minimized over all possible priors with
support in I:

η = inf
µ : µ(I)=1

∫
dµ(t) dν(τ | t)wδ(t− τ). (5)

Indeed, the minimum in Eq. (5) is achieved by a prior
µ(t) that is concentrated at the time t where the mini-
mum in Eq. (4) is achieved. In other words, we might
consider an adversary who gets to choose the prior µ(t)
according to which the parameter value is distributed.
The worst thing that can happen is that an adversary
chooses a very unfortunate prior. In this case, we can
still guarantee the success probability lower bounded by
η. We refer to this setting as the minimax setting, follow-
ing standard terminology in statistics. The name stems
from the two optimizations that are involved when we op-
timize Eq. (5) over possible estimation procedures: one
optimization ranges over the estimation procedure and
the other one over µ(t).
The window function wδ(t−τ) in the definitions above

identifies the successful events as those where t and τ
differ by at most δ. More general window functions can
be employed to quantify alternative definitions of suc-
cess. For instance, if the parameter represents an angle
t ∈ [0, 2π], a meaningful window function would identify
t and t̂ as δ-close under the topology of the unit circle.
We now turn to our specific setup in quantum metrol-

ogy as depicted in Fig. 1. We consider the setting where
the parameter in question is encoded in a set of states
t 7→ ρ(t). In this case any prediction must be ob-
tained from performing some sort of quantum measure-
ment on the given state and subsequently classically post-
processing the outcome of the measurement into a pre-
diction. We can combine both of these elements into a
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POVM τ 7→ Q(τ) such that

ν(τ | t) = Tr[ρ(t)Q(τ)]. (6)

This leads us to the following formal definition.

Definition 1 (Success probability). For a given toler-
ance δ, a set of states ρ(t), possibly with prior µ(t), and
a measurement Q(τ), the Bayesian success probability is
given by

η(δ, µ, ρ,Q) :=

∫
dµ(t) dτ wδ(t− τ) Tr[ρ(t)Q(τ)]. (7)

The minimax success probability is given by

η(δ, ρ,Q) := inf
t

∫
dτ wδ(t− τ) Tr[ρ(t)Q(τ)]. (8)

We observe that the success probability can be more
compactly written using the convolution notation

(w ∗ ρ)(t) :=
∫

dτ w(t− τ)ρ(τ) (9)

as

η(δ, µ, ρ,Q) =

∫
dµ(t) Tr[ρ(t)(wδ ∗Q)(t)] (10)

=

∫
dt Tr[(wδ ∗ [µ · ρ])(t)Q(t)],

and we will use this notation in the rest of this work.
The success probability of Definition 1 quantifies the

probability that our metrology protocol outputs a cor-
rect estimate. This is very reminiscent of the strategy
used to quantify the performance of learning algorithms
pioneered by Valiant [29], which was coined as proba-
bly approximately correct (PAC) learning. As this nam-
ing also conveys the essence of our approach to quantum
metrology, we refer to it as probably approximately correct
(PAC) metrology.

As we show in Section V of the supplementary mate-
rial, both the Bayesian and minimax success probabilities
have basic continuity properties in all their arguments
and allow for intuitive majorization relations.

In addition to the success probability as a measure of
metrological performance, it is equally fair and opera-
tionally relevant to reverse the question and ask: “What
is the smallest tolerance δ that still guarantees a success
probability of η?” We condense this reasoning into the
following rigorous definition:

Definition 2 (Estimation tolerance). For a given suc-
cess probability η, a set of states ρ(t), possibly with prior
µ(t), and a measurement Q(τ), the Bayesian estimation
error tolerance is given by

δ(η, µ, ρ,Q) := inf {δ′ ≥ 0 | η(δ′, µ, ρ,Q) ≥ η}. (11)

The minimax estimation error tolerance is given by

δ(η, ρ,Q) := inf {δ′ ≥ 0 | η(δ′, ρ,Q) ≥ η}. (12)

Looking at the estimation error tolerance instead of the
success probability allows for a simpler comparison with
the standard bounds encountered in quantum metrology,
as the tolerance has comparable meaning to the stan-
dard deviation of an estimator, which is the target of the
quantum Cramér-Rao bound.
Both the success probability and the tolerance intro-

duced in Definitions 1 and 2 are truly single-shot quanti-
ties, in that they consider a single outcome of the quan-
tum measurement. Usually, however, the desired per-
formance can only be achieved by performing multiple
repetitions of the same experiment. We model multiple
repetitions of an experiment by having access to n copies
of the parametrized state, i.e., t 7→ ρ⊗n(t). The measure-
ment Q(τ) is then collectively measure the n copies of the
state.
The multi-copy scenario leads us to a third opera-

tionally relevant question: “How many repetitions n of
my experiment do I need to perform to obtain a desired
tolerance δ with a fixed success probability η?” We can
cast this sample complexity into the following definition:

Definition 3 (Sample complexity). For a given success
probability η and tolerance δ, a set of states ρ(t), pos-
sibly with prior µ(t), and a sequence of measurements
{Q(n)(τ)} the Bayesian sample complexity is given by

n(η, δ, µ, ρ, {Q(n)})
:= min {n′ ∈ N | η(δ, µ, ρ⊗n′

, Q(n′)) ≥ η}.
(13)

The minimax sample complexity is given by

n(η, δ, ρ, {Q(n)}) := min {n′ | η(δ, ρ⊗n′
, Q(n′)) ≥ η}.

(14)

Results in the context of more general metrology tasks,
like state tomography or Hamiltonian learning are there-
fore usually phrased in terms of the sample complexity.
We explore this connection and the multivariate general-
ization of this framework in Section XII, where we show
how our definitions and results generalize to these set-
tings and how the languages can be compared.
Practical settings in quantum metrology often involve

estimating an unknown parameter present in the dynam-
ics of a system, rather than directly encoded into the
state itself. Such dynamics might involve interactions
with an environment system, or another quantum sys-
tem whose properties we seek to estimate. Formally, the
task becomes that of estimating an unknown parameter
present in a quantum channel by applying the unknown
channel on suitable inputs and performing suitable sub-
sequent measurements. In simple cases, the channel pa-
rameter estimation problem can reduce to a state estima-
tion problem: One prepares a fixed initial state ρ0 and
sends it through the channel, resulting in a state ρ(t); the
task is now to estimate the parameter t encoded in the
quantum state. The channel estimation problem, how-
ever, provides a richer landscape of estimation strategies
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when more than one copy of the channel is available. We
discuss this setting in Section IX.

With the preceding definitions that form our few-shot
framework of PAC metrology, we have established a set of
quantities that capture the performance of finite-sample
quantum metrology protocols. Here, we discuss the op-
timal values these quantities can take, when we optimize
over all possible metrological prescriptions. This brings
us to the following definitions of optimal counterparts of
the Definitions 1, 2 and 3.

Definition 4 (Optimal Bayesian quantities). The op-
timal Bayesian success probability is obtained by opti-
mizing the Bayesian success probability over all possible
POVMs:

η∗(δ, µ, ρ) := sup
Q(τ)

η(δ, µ, ρ,Q). (15)

We use it to define the optimal Bayesian tolerance

δ∗(η, µ, ρ) := inf {δ′ ≥ 0 | η∗(δ′, µ, ρ) ≥ η} (16)

and optimal Bayesian sample complexity

n∗(η, δ, µ, ρ) := min {n′ ∈ N | η∗(δ, µ, ρ⊗n′
) ≥ η}. (17)

The optimal minimax quantities are defined analo-
gously.

Definition 5 (Optimal minimax quantities). The op-
timal minimax success probability is obtained by opti-
mizing the minimax success probability over all possible
POVMs:

η∗(δ, ρ) := sup
Q(τ)

η(δ, ρ,Q). (18)

We use it to define the optimal minimax estimation tol-
erance

δ
∗
(η, ρ) := inf {δ′ ≥ 0 | η∗(δ′, ρ) ≥ η} (19)

and optimal minimax sample complexity

n∗(η, δ, ρ) := min {n′ ∈ N | η∗(δ, ρ⊗n′
) ≥ η}. (20)

The optimal Bayesian and minimax success probabil-
ities have desirable properties such as convexity in their
arguments and data-processing under noise channels, a
point we elaborate on in Section V of the supplementary
material.

We do not have an a-priori restriction on the domain
of the parameter t when calculating the success proba-
bility. However, it is often easier to compute it, both
analytically and numerically, if we restrict it to a finite
interval. While this is trivially giving a bound in the min-
imax case, the following lemma ensures that we can also
use the restriction to a subinterval to compute bounds
for the optimized Bayesian success probability:

Lemma 6 (Subdivision trick). For a given tolerance δ
and a set of states ρ(t) with prior distribution µ(t), define
the restriction of a prior to an interval I ⊆ R as

µ|I(t) := χ[t ∈ I]µ(t)/µ(I). (21)

Let us further denote with It the interval of size T cen-
tered at t. Then, we have that

η∗(δ, ρ, µ) ≤ 1

T

∫
dt µ(It) η

∗(δ, ρ, µ|It) (22)

≤ max
t
η∗(δ, ρ, µ|It).

The proof is provided in Section VC of the supple-
mentary material. The above immediately implies corre-
sponding subdivision lower bounds on the optimal toler-
ance and optimal sample complexity.

III. COMPUTING OPTIMAL MEASUREMENTS

A. Generally optimal measurements through
convex optimization

Of the three quantities, the success probability is the
most amenable to optimization. It is linear in the chosen
measurement, and we can show that the optimization
over the measurement Q(τ) can be cast into the form of a
convex problem [59]. Specifically, it assumes the form of a
semi-infinite problem [56, 57], so a semi-definite problem
with infinitely many objective variables and finitely many
constraints, or the other way around. For the theory
of semi-definite programming to largely take over, the
involved functions must be analytically defined, smooth,
and convex [57], which can be safely assumed here. In
what follows, we refer to such infinite readings of semi-
definite problems as convex problems. This does not only
provide a path to more easily compute them, but is also
a reliable tool to prove upper and lower bounds.

Proposition 7 (POVM optimization). For a given tol-
erance δ and a set of states ρ(t) with prior distribu-
tion µ(t), the optimal success probability η∗(δ, µ, ρ) can
be computed using the convex program

max
Q(t)≥0

{∫
dt Tr[(wδ ∗ [µ · ρ])(t)Q(t)]

∣∣∣∣ ∫ dtQ(t) = I
}
.

(23)

The optimal success probability is equally characterized
by the convex program

min
X≥0

{
Tr[X]

∣∣X ≥ (wδ ∗ [µ · ρ])(t) for all t
}
. (24)

The minimax success probability can be computed in a
similar way by additionally optimizing over all priors.

The second convex program in Eq. (24) is derived
through the notion of duality in semi-infinite program-
ming. The proof of the above proposition, along with a
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more detailed statement is provided in Proposition 2 of
the supplementary material, where we also explicitly give
the convex formulation of the minimax success probabil-
ity.

From a practical standpoint, it is also important that
the above semi-infinite program can actually be imple-
mented numerically while having guarantees on the qual-
ity of the approximation.

Proposition 8 (Discretization). There exists a dis-
cretization of the convex-program of Proposition 7 that
yields a semi-definite program that can be solved with
standard tools. If ρ(t) is Lipschitz with respect to the
trace distance, the error of the discretization can be made
arbitrarily small by choosing a suitable scale of the dis-
cretization.

We give the detailed statements of the above in Sec-
tion III F of the supplementary material. The optimal
tolerance and sample complexity can in principle be com-
puted by combining the above semi-definite program with
binary search [60].

B. Maximum-likelihood-inspired post-processing of
the outcome of a fixed measurement

The general structure of the solutions to the convex
problem of Proposition 7 is unclear a priori. Conse-
quently, the optimal measurement for a given metrologi-
cal problem might be either impractical or impossible to
implement in an experiment. Here, we study the perfor-
mance of strategies that naturally model strategies that
deal with experimental restrictions on the possible mea-
surements that can be performed.

As shown in Fig. 4, we consider an estimation strat-
egy that begins by applying a fixed quantum measure-
ment described by a POVM {M(λ)}λ. For instance, the
POVM might represent a projective measurement in a
fixed basis. Subsequently, the procedure infers from the
outcome λ an estimate τ∗(λ) for the value t that is en-
coded in the measured state. We focus on a particular
post-processing strategy τ∗(λ) inspired by the maximum-
likelihood estimation technique.

If we only fix the quantum-to-classical measurement,
the question of the optimal post-processing of the mea-
surement outcomes for such a fixed measurement of the
quantum system arises. The authors of Ref. [55] stud-
ied such a setting, but focusing on more fundamental
point of view on when a quantum-to-classical measure-
ment can be considered admissible in a statistical sense.A
fixed measurement can be discrete, like a measurement
in a specific basis, or continuous, like a pretty good mea-
surement. We can model both cases in a unified way by
assuming a POVM with continuous outcomes {M(λ)}λ.
For a given set of states ρ(t), we can define the likelihood
function

Λ(λ | t) := Tr[ρ(t)M(λ)] (25)

Fixed 
Measurement

Optimal
Post-processing

Parametrized
State

FIG. 4. Metrology setting with fixed measurement as dis-
cussed in Section III B. A parametrized state ρ(t) is measured
with a POVM {M(λ)}λ fixed by, e.g., experimental feasibil-
ity restrictions. We show that the the optimal way of post-
processing the measurement outcome λ into predictions of
the underlying parameter t is given by a smoothed analogue
of maximum a posterior estimation in the Bayesian case. A
similar strategy also manages to provide a guarantee on the
achievable success probability in the minimax case.

which captures the distribution over measurement out-
comes for a fixed value of the underlying parameter t.
The joint distribution of measurement outcomes and un-
derlying parameters is then given by

(λ, t) ∼ µ(t)Λ(λ | t). (26)

If we denote the marginal distribution of the measure-
ment outcomes λ as

ν(λ) :=

∫
dµ(t) Λ(λ | t), (27)

then the joint distribution is related to the posterior dis-
tribution of the underlying parameter given an observed
measurement outcome λ as

P (t |λ) := µ(t)Λ(λ | t)∫
dµ(t) Λ(λ | t) . (28)

With this notation, we equivalently have that the joint
distribution can be written as

(λ, t) ∼ ν(λ)P (t |λ). (29)

As the measurement {M(λ)} is fixed, the only thing
left to optimize is the prediction we make when observing
a certain measurement outcome λ. We denote this pre-
diction as τ∗(λ) and refer to this function as a prediction
strategy. The POVM Q(τ) associated to the combina-
tion of fixed POVM {M(λ)}λ together with a prediction
strategy τ∗(λ) is given by collecting all POVM effects
M(λ) associated to a particular prediction τ :

QM,τ∗(τ) =

∫
dλχ[τ∗(λ) = τ ]M(λ). (30)

With this POVM, it is straightforward to see that the
Bayesian success probability takes the form

η(δ, µ, ρ,QM,τ∗) =

∫
dµ(t) dλwδ(t− τ∗(λ))Λ(λ | t)

=

∫
dν(λ) (wδ ∗ P (· |λ))(τ∗(λ)). (31)
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In the second line, we see that the posterior distribution
of t given the observed measurement outcomes is critical
to the success probability.

A look at Eq. (31) reveals that the optimal prediction
strategy is to always predict the τ∗ that maximizes the
smoothed posterior probability wδ∗P (· |λ). In accordance
with the naming conventions of classical statistics, we
refer to this prediction rule

τ∗SMAP(λ) := argmax
τ

(wδ ∗ P (· |λ))(τ) (32)

as the smoothed maximum a posteriori (SMAP) estimate.
This represents a smoothed version of maximum a poste-
riori estimation, the Bayesian generalization of maximum
likelihood estimation. The so achieved Bayesian success
probability is consequently

η(δ, µ, ρ,QM,τ∗
SMAP

) =

∫
dν(λ) max

τ
(wδ ∗ P (· |λ))(τ)

=

∫
dν(λ) ∥wδ ∗ P (· |λ)∥∞. (33)

The relation to the function infinity norm allows us to
derive some simple upper bounds on the success proba-
bility from Young’s convolution inequality, as stated in
Lemma 14 of the supplementary material. We will later
make use of smoothed maximum a posteriori estimation
to obtain lower bounds on the asymptotic error rate of
quantum metrology protocols. To summarize:

Theorem 9 (Optimal post-processing of a fixed mea-
surement in the Bayesian setting). For a given toler-
ance δ, state set ρ(t) with prior µ(t) and a fixed POVM
{M(λ)}λ, the optimal Bayesian success probability of
an estimation strategy that measures {M(λ)} and post-
processes the result is achieved by the smoothed maximum
a posteriori estimator:

sup
τ∗

η(δ, µ, ρ,QM,τ∗) = η(δ, µ, ρ,QM,τ∗
SMAP

). (34)

Having established the optimal strategy in the
Bayesian setting, we now turn to the minimax case. With
the definitions introduced earlier, the minimax success
probability associated to a prediction strategy τ∗ is given
by

η(δ, ρ,QM,τ∗) = min
t

∫
dλwδ(t− τ∗(λ))Λ(λ | t). (35)

The minimum over t is outside the integration over the
different measurement outcomes λ, which means that,
contrary to the Bayesian case, we cannot optimize the
prediction for each λ independently. We can, however,
still establish a lower bound on the minimax success prob-
ability for the optimal prediction strategy. To do so, we

need to go via the minimax error probability:

1− η(δ, ρ,QM,τ∗) (36)

= 1−min
t

∫
dλwδ(t− τ∗(λ))Λ(λ | t)

= max
t

∫
dλΛ(λ | t)−min

t

∫
dλwδ(t− τ∗(λ))Λ(λ | t)

= max
t

∫
dλ [1− wδ(t− τ∗(λ))]Λ(λ | t).

Here, we have exploited that
∫
dλΛ(λ | t) = 1 for all t.

We have thus reformulated the minimax error probability
as a function of the complement of the window function.
We can then exchange integration and maximization to
obtain the upper bound on the error

1− η(δ, ρ,QM,τ∗) ≤
∫

dλ max
t

[1− wδ(t− τ∗(λ))]Λ(λ | t)
(37)

The above bound can now be optimized independently
for all λ which gives us a strategy analogous to the maxi-
mum a posterior estimation we have used in the Bayesian
case. We will refer to as smoothed minimax complemen-
tary likelihood (SMCL) estimate,

τ∗SMCL(λ) := argmin
τ

max
t

[1− wδ(t− τ)]Λ(λ | t). (38)

This strategy amounts to choosing τ such that the largest
values of Λ(λ | t) are contained in the window centered
around τ . Using this strategy then establishes the bound

1− sup
τ∗

η(δ, ρ,QM,τ∗) (39)

≤
∫

dλ min
τ

max
t

[1− w(t− τ)]Λ(λ | t)

on the minimax error probability that can be achieved
using the optimal post-processing.

IV. FINITE-SAMPLE QUANTUM
METROLOGY AS CONTINUOUS HYPOTHESIS

TESTING

One might imagine that, intuitively, determining a pa-
rameter encoded in a quantum system is intimately re-
lated to the task of distinguishing states for different val-
ues of the parameter. This reasoning has already been
used in the standard approach to quantum metrology
to obtain asymptotic bounds, for example through the
quantum Ziv-Zakai bound [51]. These approaches, how-
ever, are still hampered by the limitations of the stan-
dard approach to quantum metrology. As we outline be-
low, by choosing the success probability as a measure of
metrological performance, the connection to the task of
distinguishing quantum states is much more natural and
fundamental.
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The optimal probability of success for distinguishing a
set of N quantum states {ρi}Ni=1 with prior probabilities
{pi}Ni=1 – a test betweenN quantum hypotheses – is given
by1

P ∗
s ({piρi}Ni=1) := sup

POVMs
{Qi}N

i=1

N∑
i=1

pi Tr[ρiQi]. (40)

Similarly, the optimal minimax success probability is de-
fined as

P
∗
s({ρi}Ni=1) := sup

POVMs
{Qi}N

i=1

min
1≤i≤N

Tr[ρiQi]. (41)

Already, Yuen et al. [61] have studied an extension of
this definition with an additional cost matrix Cij and
the associated optimal expected cost

inf
POVMs
{Qi}N

i=1

N∑
i=1

N∑
j=1

piCij Tr[ρiQj ] (42)

and have shown that this constitutes a semi-infinite prob-
lem. A look at Proposition 7 shows that our notion of
Bayesian success probability can be understood as a con-
tinuous version of this definition in which the complement
of the window function, 1−wδ, takes the role of the cost
function.

Because of this close resemblance of metrological prob-
lems to generalized multi-hypothesis testing problems,
it is unsurprising that every quantum multi-hypothesis
testing problem can be written as a particular metrol-
ogy problem with suitably chosen prior distribution and
tolerance (see Section VIIA of the supplementary mate-
rial). We, however, also establish a result in the other di-
rection that bounds the optimal Bayesian and minimax
success probability for a metrological problem through
multi-hypothesis testing. It is intuitively clear that being
able to determine a parameter t to a precision δ means
that we must be able to sufficiently well distinguish be-
tween states that are at least 2δ apart. We make this
reasoning rigorous in the below theorem.

Theorem 10 (Hypothesis testing bound). For a given
tolerance δ, fix any set S = {(λ, s)} of prior probabilities
λ ∈ [0, 1] and shifts s ∈ R such that for all distinct s, s′ ∈
S we have that |s− s′| > 2δ and

∑
λ∈S λ = 1. Then, for

a state set ρ(t) with prior µ(t) we have the upper bound

η∗(δ, µ, ρ) ≤
∫

dt P ∗
s ({λµ(t+ s)ρ(t+ s)}(λ,s)∈S). (43)

1 This is the definition of symmetric hypothesis testing, where all
states are treated equally and the average success probability is
used as quantifier. In asymmetric hypothesis testing, the states
are treated independently.

FIG. 5. A visualization of Theorem 10. Telling the time with
a certain tolerance δ is at least as hard as deducing if an
adversary manipulated the clock, under the guarantee that
the manipulation is not smaller than twice the tolerance δ.

Optimizing over the prior probabilities λ then yields the
analogous upper bound in the minimax setting

η∗(δ, ρ) ≤ inf
t
P

∗
s({ρ(t+ s)}s∈S). (44)

We established that a metrological problem is at least
as hard as determining whether an adversary has manip-
ulated the clock used for the experiment by shifting its
time by one of the values s in the set S with probability
λ. The tolerance δ gives us a lower bound on the dis-
tance between the different shifts and therefore works in
our favor. The proof of the theorem is presented in Sec-
tion VIIB of the supplementary material. It also gener-
alizes to parametrized quantum channels as discussed in
Section IX.
We note that application of Theorem 10 is especially

useful analytically when restricting to two shifts, because
then the analytic expression for the success probability
of binary hypothesis testing due to Helstrom [62] can be
used. Looking at the minimax case with two shifts, we
further obtain what can be considered as an analogue of
Le Cam’s two point method [63]:

Corollary 11 (Two-point method). For a given toler-
ance δ and state set ρ(t), we have the upper bound on the
minimax success probability

η∗(δ, ρ) ≤ inf
|t−t′|>2δ

P
∗
s(ρ(t), ρ(t

′)). (45)

The above result, together with the Fuchs-van-de-
Graaf inequalities allows us to further deduce a relation
to the quantum fidelity

F (ρ, σ) := Tr[(σ1/2ρσ1/2)1/2] (46)

which we will use later to give a concise sample complex-
ity bound, as shown in Section VIIC of the supplemen-
tary material.

Corollary 12. For a given tolerance δ and state set ρ(t),
we have the minimax error probability lower bound

1− η∗(δ, ρ) ≥ 1

4
sup

|t−t′|>2δ

F (ρ(t), ρ(t′))2. (47)
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We can use similar reasoning as in the derivation of
Theorem 10 to obtain a lower bound that makes use of
asymmetric hypothesis testing. The resulting bounds are
presented in Section VIID of the supplementary mate-
rial.

We explore other directions that yield metrology
bounds of different forms in Section VII F of the sup-
plementary material. Along the way, we present some
bounds for quantum multi-hypothesis testing in Sec-
tion VII E of the supplementary material.

V. ASYMPTOTIC BEHAVIOR OF THE
SUCCESS PROBABILITY IN THE I.I.D. REGIME

In this section, we consider our framework in the
limit where many independent and identically distributed
(i.i.d.) copies of the state are available. We aim to un-
derstand this asymptotic limit of our framework in or-
der to connect our finite-sample approach to standard
approaches in metrology and information theory where
many copies of the state are assumed to be available.
We exploit Theorem 10 to compute an upper bound on
the asymptotic rate with which both the Bayesian and
minimax success probability approach one. Formally, we
define the asymptotic error rate as

R∗(δ, µ, ρ) := lim
n→∞

− 1

n
log
(
1− η∗(δ, µ, ρ⊗n)

)
, (48)

when the limit exists. The minimax rate R
∗
(δ, ρ) is de-

fined analogously.
We relate the asymptotic rate of a metrological prob-

lem to the asymptotic rate of hypothesis testing [15, 64],
which is given in terms of the Chernoff divergence

C(ρ, σ) := − inf
0≤s≤1

log Tr[ρsσ1−s]. (49)

By analogy to multi-hypothesis testing, where the
asymptotic rate is given by the smallest Chernoff diver-
gence between two states that are to be discriminated,
we obtain the following upper bound:

Theorem 13 (Upper bound on asymptotic rate). For a
given tolerance δ and a set of states ρ(t), possibly with
prior µ(t), the Bayesian and the minimax rate obey the
upper bounds

R
∗
(δ, ρ) ≤ R∗(δ, µ, ρ) ≤ inf

|t−t′|>2δ
C(ρ(t), ρ(t′)), (50)

where the optimization is over time values that have non-
vanishing support in the possible priors.

We emphasize that for the above statement and the
ones are to follow in this section, we implicitly assumed
that the support of µ encompasses the whole admissible
set of values for the parameter t that is used to compute
the minimax success probability. Restrictions to smaller
admissible sets of parameters are possible and the results

carry over straightforwardly. The above theorem estab-
lishes that a metrological problem is asymptotically at
most as hard as the hardest binary hypothesis testing
problem of two states whose associated time values are
at least 2δ apart. The proof of the theorem uses Theo-
rem 10 together with Laplace’s principle and is presented
in Section VIIG of the supplementary material.
In quantummulti-hypothesis testing, the smallest pair-

wise rate is actually achievable [15] and, because of the
results below on the commuting case, we believe this to
also be true in the case of quantum metrology, at least un-
der suitable regularity assumptions. While we were not
yet able to prove this general statement, we succeeded in
establishing a lower bound that guarantees an asymptotic
rate equal to the best pairwise hypothesis testing rate for
a fixed measurement sequence. Formally, we consider a
fixed sequence of measurements {M (n)} for n ∈ N with
outcomes λ (compare to Section III B), and denote the
channel that maps states to their output distributions
over λ as

M(n)[ρ] =

∫
dλ |λ⟩⟨λ| Tr[ρM (n)(λ)]. (51)

This sequence achieves the following rate for binary state
discrimination:

R(ρ, σ, {M (n)}n∈N) :=

lim
n→∞

− 1

n
log
(
1− P ∗

s (M(n)[ρ⊗n],M(n)[σ⊗n])
)
.
(52)

With this notation in place, we have the following theo-
rem, which adds the additional assumption that the set
of states is continuous:

Theorem 14 (Asymptotic rate with fixed measurement
scheme). For a given tolerance δ > 0, a continuous set
of states ρ(t), possibly with prior µ(t) of full support, and
any fixed measurement sequence {M (n)} for n ∈ N, we
have

R∗(δ, µ, ρ) ≥ R
∗
(δ, ρ) ≥ inf

|t−t′|>2δ
R(ρ(t), ρ(t′), {M (n)}).

(53)

In the above theorem, the possible values of t are con-
strained to the domain of ρ(t) and priors that have full
support on said domain. Priors with restricted support
fulfill the theorem with t and t′ contained in the restricted
domain. The proof uses a discretization argument to-
gether with the smoothed maximum a posteriori estima-
tion technique introduced in Section III B and is given in
Section VII of the supplementary material. In the case
where an optimal measurement sequence is known, how-
ever, this lower bound already achieves the rate. This is
particularly true in the commuting (i.e., classical) case:

Corollary 15 (Asymptotic rate for commuting states).
For a given tolerance δ > 0, a continuous set of states
ρ(t) such that [ρ(t), ρ(t′)] = 0 for all t, t′, possibly with
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prior µ(t), we have that

R∗(δ, µ, ρ) = R
∗
(δ, ρ) = inf

|t−t′|>2δ
C(ρ(t), ρ(t′)), (54)

where the optimization is over time values that have non-
vanishing support in the possible priors.

We believe that the strong connection we established
here to hypothesis testing between multiple quantum
states serves as a motivation to further explore the con-
nection between quantum metrology and quantum infor-
mation tasks. This should be a fruitful endeavor that
allows researchers both with a background in quantum
metrology as well as in quantum information processing
to make an impact on quantum metrology.

VI. RELATION TO ENTROPIC QUANTITIES

In the single-shot approach to quantum information
theory [17, 28], many quantum information processing
tasks can be quantified through generalized notions of
entropy. In this section, we explore how our definitions
relate to some of these concepts.

We start by giving an alternative definition of the op-
timal Bayesian success probability. To do so, we define
the conditional min-entropy of a bipartite and positive
semi-definite classical-quantum operator [65]

Hmin(T |S)X := − inf
σS

Dmax(XTS | IT ⊗ σS), (55)

where the max-relative entropy [66] of two positive semi-
definite operators X and Y is given by

Dmax(X ∥Y ) := log ∥Y −1/2XY −1/2∥∞. (56)

We then have the following corollary of the dual formula-
tion of the optimal success probability in Proposition 7.

Corollary 16 (Relation to conditional min-entropy).
For a given tolerance δ and a set of states ρ(t) with prior
distribution µ(t), define the classical-quantum operator

XTS :=

∫
dt |t⟩⟨t|T ⊗ (wδ ∗ [µ · ρ])(t)S , (57)

where T is the time register and S the system register.
Then

− log η∗(δ, µ, ρ) = Hmin(T |S)X . (58)

Another angle on the same fact is given by defining
the max-relative entropy radius [16] of a set of positive
semi-definite operators X as

rmax(X ) := inf
σ

max
x∈X

Dmax(x ∥σ). (59)

In this case, the optimal success probability can be un-
derstood as the max relative entropy radius of the set of
states “smoothed” using the window function

log η∗(δ, µ, ρ) = rmax({(wδ ∗ [µ · ρ])(t)}). (60)

Both relations can be thought of continuous analogues
of the known connection between the success probabil-
ity of multi-hypothesis testing and the conditional min-
entropy of classical-quantum states [16, 65]. In addition
to the various known operational meanings of the condi-
tional min-entropy [18, 65, 67–69], the relation of Corol-
lary 16 endows it with yet another operational meaning,
this time in the context of quantum metrology. Notably,
the operator XTS of Corollary 16 is not normalized, un-
like in the case of multi-hypothesis testing, due to the
window function wδ. Another instance in which the con-
ditional min-entropy of a non-normalized operator has
an operational meaning is in the context of channel sim-
ulation [68, 69]. We provide the proofs of both relations
in Section IV of the supplementary material.

Finally, we exploit the connection between quantum
metrology and hypothesis testing derived in Ref. [19] to
give an alternative lower bound on the optimal mini-
max success probability η∗. The lower bound is ex-
pressed in terms of the hypothesis testing relative en-
tropy [17, 70–74]

Dη
h(ρ ∥σ) := − log βηh(ρ ∥σ), (61)

where the asymmetric hypothesis testing error βηh is de-
fined as

βηh(ρ ∥σ) := inf
0≤M≤I

{Tr[Mσ] | Tr[Mρ] ≥ η}. (62)

We have the following proposition, reminiscent of a com-
parable result in Ref. [19].

Proposition 17 (Lower bound on estimation tolerance
in terms of the hypothesis testing relative entropy). For
a set of states ρ(t) and any 0 ≤ η ≤ η∗(δ, ρ), the minimax
tolerance satisfies

δ(η, ρ) ≥ 1

2

∫
dt exp (−Dη

h(ρ(t) ∥σ)) (63)

for any state σ.

The proof exploits the SDP dual formulation of the hy-
pothesis testing relative entropy and is given next to the
more general statement of Theorem 32 of the supplemen-
tary material. We provide a proof that is independent of
Ref. [19] for completeness.

VII. A CRAMÉR-RAO-LIKE BOUND IN THE
FINITE-SAMPLE REGIME

In this section, we want to further our understanding of
the metrological tolerance defined in Definition 2 and its
ultimate limits when optimizing over metrological pro-
tocols. Basic exploration of the definition of (optimal)
tolerance was performed in Ref. [50], where the authors
proposed a dimension-dependent lower bound that al-
lowed them to conclude that the tolerance can only de-
crease asymptotically as O(1/n), which corresponds to
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Heisenberg scaling. Ref. [49] derived an upper bound in
the case of i.i.d. repetitions with a fixed measurement.

In the asymptotic approach to quantum metrology, the
most important tool is the quantum Cramér-Rao bound,
which gives a lower bound on the standard deviation of
any locally unbiased estimate, relating it to the inverse
square root of the quantum Fisher information. This
inherently geometric quantity measures how quickly the
quantum states ρ(t) change when the parameter t is al-
tered. As the first contribution of this section, we derive
a lower bound that fulfills a similar role for the minimax
tolerance.

We derive the bound from Corollary 12, which we
rephrase in terms of the sandwiched Rényi relative en-
tropies, which are defined in terms of a constant α ∈
(0, 1) ∪ (1,∞) as [17]

D̃α(ρ ∥σ) :=
1

α− 1
log Tr

[(
σ

1−α
2α ρσ

1−α
2α

)α]
. (64)

In our case, the value α = 1
2 is crucial, as it connects to

the fidelity of quantum states defined in Eq. (46):

D̃ 1
2
(ρ ∥σ) = −1

2
log Tr[(σ1/2ρσ1/2)1/2] (65)

= −1

2
logF (ρ, σ).

With this notation at hand, Corollary 12 can be
rephrased as

log

(
1

4(1− η∗(δ, ρ))

)
≤ 4 inf

|t−t′|>2δ
D̃ 1

2
(ρ(t), ρ(t′)). (66)

Before we come to the formal statement, let us outline
how this bound comes about in the case of i.i.d. copies.
We can make the choice t′ = t+ 2δ in the above bound.
For sufficiently small δ we can perform a Taylor expan-
sion. We denote the Taylor expansion as

D̃ 1
2
(ρ(t) ∥ ρ(t+ τ))

=
1

2
f2(t)τ

2 +
1

3!
f3(t)τ

3 +
1

4!
f4(t)τ

4 + . . . ,
(67)

where we envision τ = 2δ. The values fk(t) are the Taylor

coefficients of the function τ 7→ D̃ 1
2
(ρ(t) ∥ ρ(t + τ)) at

τ = 0, an explicit formula is given in Eq. (71). Because
of the relationship between the sandwiched Rényi relative
entropy and the fidelity, we have that the coefficient f2(t)
is a constant multiple of the quantum Fisher information
f2(t) = 1

8F(t), see Section VIII B of the supplementary
material.

Let us now drop the explicit time dependence. If we
could ignore the higher order terms in the Taylor expan-
sion, we could simply choose 2δ = τ ∝ 1/

√
f2 to render

the error probability lower bound constant, which would
give us the desired scaling of the bound. We will, how-
ever, need to work a bit harder to get something analyt-
ically meaningful. Let us choose τ = γ/

√
f2 in the above

expansion. Then, as long as 2δ = τ is within the radius
of convergence of the Taylor series, we have

D̃ 1
2
(ρ(t) ∥ ρ(t+ τ))

=
1

2
γ2 +

1

3!

f3

f
3/2
2

γ3 +
1

4!

f4
f22
γ4 + . . . .

(68)

We immediately observe that the validity of the second

order approximation depends on the ratios fp/f
p/2
2 . To

get some intuition for these ratios, it is rather instructive
to look at the case of i.i.d. copies, i.e., ρ(t) → ρ⊗n(t). In
this case, the additivity of the sandwiched Rényi relative
entropy implies that

D̃ 1
2
(ρ⊗n(t) ∥ ρ⊗n(t+ τ)) = nD̃ 1

2
(ρ(t), ρ(t+ τ)). (69)

This in turn means that all coefficients fp grow linearly
in n, i.e. fp → nfp which implies that

fp

f
p/2
2

→ 1

n
p−2
2

fp

f
p/2
2

, (70)

meaning that higher order ratios decay more quickly, jus-
tifying the second order approximation in the limit of
large n. Note that this is the same regime in which the
asymptotic Cramér-Rao bound is attainable as well.
With the intuition we gained, we can now make sense

of the following theorem.

Theorem 18 (Non-asymptotic Cramér-Rao-like bound).
For a given smooth set of states ρ(t), we define

fk(t) := −1

2

∂k

∂τk
logF (ρ(t), ρ(t+ τ))

∣∣∣∣
τ=0

(71)

and the coefficient

q := sup
t

sup
3≤p∈N

∣∣∣∣∣ fp(t)f
p/2
2 (t)

∣∣∣∣∣
1

p−2

. (72)

We then have for any desired minimax success probability
η > 3/4 that

δ
∗
(η, ρ) ≥ Γ√

inft F(t)
, (73)

where

q

6
√
2
log

1

4(1− η)
>

√
log

1

4(1− η)
− Γ > 0. (74)

The bound holds as long as Γ/
√

inft F(t) does not exceed
the smallest convergence radius of the Taylor expansion
of the sandwiched Rényi relative entropy.

We note that the coefficient q is a measure of close-
ness to a Gaussian shape of the fidelity curve τ 7→
F (ρ(t), ρ(t+τ)) and again emphasize that f2(t) relates to
the quantum Fisher information as f2(t) =

1
8F(t). The
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proof is presented in Section VIII B of the supplemen-
tary material. As we discussed above, in the case of i.i.d.
copies ρ(t) → ρ⊗n(t), we have q = O(1/

√
n) giving a

bound that is asymptotically constant.
The above gives a lower bound for the optimal minimax

tolerance that, asymptotically, has the expected scaling
both in the quantum Fisher information and the desired
logarithmic dependence on the success probability. It
furthermore is valid in the single-shot setting, where the
finite-size corrections depend on the higher-order deriva-
tives of the sandwiched Rényi relative entropy. We find
it conceivable that the ratio of third to second derivative
could give the factual second-order asymptotics, but to
conclude that it would be necessary to find a matching
upper bound (i.e. a protocol) with similar performance
guarantees.

It is also interesting to gather some intuition about the
workings of the above bound. First of all, the right-hand-
side involves the quantum Fisher information, which is a
local quantity that captures how much states change in-
finitesimally. This quantity yet puts a bound on δ, which
quantifies the estimation accuracy globally over the range
of possible parameter values. This is because we effec-
tively reduce to a setting where the quantum Fisher infor-
mation captures the dominant contributions to the sand-
wiched Rényi relative entropy even at non-infinitesimal
distances – the case when it is dominated by the second
order expansion. The coefficient q measures how close we
are to this setting.

The proof of the above theorem hinges on the conver-
gence of the Taylor expansion of the sandwiched Rényi
relative entropy. As the convergence radius is the dis-
tance to the closest pole of the function, we can conclude
that the smallest radius of convergence is

r := min{|τ | |F (ρ(t), ρ(t+ τ)) = 0 for some t}. (75)

This shows that in the case of i.i.d. copies, for example,
the radius of convergence is independent of the number of
copies. We thus do not expect the radius of convergence
to be an issue in practically relevant scenarios.

We further observe that the expansion we use is very
reminiscent of the Edgeworth/Gram-Charlier series ex-
pansion method in statistics [75], where the ratio fp/f

p/2
2

can be understood as the normalized p-th cumulant. It
is an important direction of research to further our un-
derstanding of the higher derivatives of the sandwiched
Rényi relative entropy.

VIII. BOUNDS ON THE OPTIMAL SAMPLE
COMPLEXITY

The sample complexity defined in Definition 3 cap-
tures the number of copies of a quantum system needed
to achieve a target tolerance with a guaranteed success
probability. It is a quantity for which bounds follow in
a relatively straightforward manner from our previous

results. This is because any bound that relates the tol-
erance and the success probability to each other can be
used to establish a sample complexity bound. In this
way, the sample complexity is – in a way – mathemati-
cally secondary to success probability and tolerance.
We can use Corollary 12 in the form of Eq. (66) to

obtain the following concise minimax sample complexity
lower bound that involves the sandwiched Rényi relative
entropy of order 1/2 introduced in Eq. (65).

Corollary 19 (Two-point sample complexity bound).
For a given tolerance δ and state set ρ(t), we have the
following lower bound on the minimax sample complexity

n∗(η, δ, ρ) ≥ 1

4 inf
|t−t′|>2δ

D̃ 1
2
(ρ(t) ∥ ρ(t′))

log
1

4(1− η)
.

(76)

The above result concerns the sample complexity in
the setting of parametrized states. When talking about
sample complexities, we usually present them in Big-O
notation, where the relevant limits are δ → 0 and η → 1.
In the limit δ → 0, the above bound is dominated by
close values t′ = t + 2δ, motivating a Taylor expansion.
As we have discussed in detail in Section VII, we have

D̃ 1
2
(ρ(t) ∥ ρ(t+ 2δ)) =

1

4
F(t)δ2 +O(δ3), (77)

where F(t) is the quantum Fisher information at time
t. This means Corollary 19 immediately implies an i.i.d.
sample complexity lower bound of

n∗(η, δ, ρ) ≥ O

(
1

mint F(t)

1

δ2
log

1

1− η

)
. (78)

The above result applies to i.i.d. states. It is, however,
equally important to have a sample complexity bound
that does not rely on the i.i.d. structure of the under-
lying state. This can, for example, happen when quan-
tum metrology with quantum channels is performed. In
that case, we deal with a parametrized family of states
ρ(n)(t) for n ∈ N. To get results about this case from
Corollary 12, we have to work harder. Luckily, we al-
ready performed the heavy lifting in Section VII and can
build on our non-asymptotic Cramér-Rao like bound of
Theorem 18. Said result hinges on two quantities, first
the smallest quantum Fisher information inft F(t) and
second the coefficient q that quantifies the validity of a
quadratic approximation to the sandwiched Rényi rela-
tive entropy.
Many results in the existing literature on quantum

metrology concern themselves with the asymptotic scal-
ing of the quantum Fisher information, which is usually
F = O(n) in the standard quantum limit and F = O(n2)
in the Heisenberg limit [76]. We can use results of this
type in the form of the following Corollary:

Corollary 20 (Sample complexity scaling bound). In
the setting of Theorem 18, where ρ(t) is replaced with a
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parametrized family of states {ρ(n)(t)}n∈N, assume that
we have the asymptotic scalings in n:

inf
t
F (n)(t) = O(nα) (79)

q(n) = o(1), (80)

for α > 0. Then we have that

n(η, δ) ≥ O

[ log 1
1−η

δ2

] 1
α

 . (81)

The proof of the above Corollary is exhibited in Sec-
tion IX of the supplementary material. As was shown in
Section VII, in the case of i.i.d. copies, we have α = 1 and
q = O(n−1/2) = o(1), reproducing the scaling of Corol-
lary 19 up to a worse dependence on the inverse error
probability.

IX. METROLOGY OF QUANTUM CHANNELS
IN THE FINITE-SAMPLE REGIME

So far in this work, we have considered the task of esti-
mating a parameter t encoded in a set of states ρ(t) and
we have presented results on the optimal success proba-
bility, tolerance and sample complexity for this task. In
practice, as alluded to in Fig. 3, parametrized quantum
states arise from the interaction of some probe system
with some physical system whose properties in the form
of the parameter t we wish to determine. In this case,
the primary object of interest is not a set of parametrized
states t 7→ ρ(t), but a set of parametrized quantum chan-
nels t 7→ N (t), which represent the evolution of the probe
system and its properties. The goal is then to estimate
the parameter t, given access to the quantum channel
N (t), with the same goals as before: optimize the esti-
mation success probability, the tolerance, and the sam-
ple complexity, i.e. the number of times the channel is
accessed.

Access models. As quantum channels represent evolu-
tions of quantum systems, the possible ways of interact-
ing with multiple copies of them to extract the under-
lying parameter are much richer than in the case of a
parametrized quantum state where the only way of in-
teracting is to choose a suitable POVM. As we show in
Fig. 6, a variety of access models for multiple copies of
quantum channels can be distinguished. In the simplest
case, the same single-shot protocol is repeated multiple
times and the individual outcomes are processed classi-
cally, effectively reducing to the case of the parametrized
quantum state – we therefore refer to it as the i.i.d. case.
In the parallel case, we use n copies of the channel in
parallel, but possibly with entangled inputs and mea-
surements. If adaptive processing is allowed, then every
use of the channel can be followed by a round of adap-
tive quantum processing before the next channel use.
Such causally-ordered strategies are modeled by quan-
tum combs [20, 21]. Finally, the most general conceivable

access to n copies of a quantum channel allows for indef-
inite causal order of the channel uses, e.g. through the
use of a quantum switch [77]. Such strategies can lead
to an asymptotic quadratic advantage over the Heisen-
berg limit for infinite-dimensional systems [76, 78], and
there exists a strict performance hierarchy in the finite-
dimensional case [79].
If we fix a particular way of interacting with n copies

of a parametrized quantum channel in a particular ac-
cess model and subsequently measuring a POVM that
predicts the underlying parameter, we will refer to this
as a strategy. Luckily, we can give a formal description of
access models and strategies via the Choi representation
formalism. In this framework, every strategy within an
access model for n copies of the channel, Sn, is a func-
tion τ 7→ Pn(τ), Pn ∈ Sn, that maps possible predictions
to positive semi-definite operators. With this, we can
extend Definition 1 of the success probability as follows.

Definition 21 (Success probability (channels)). For a
given tolerance δ, a set of channels N (t) of which we can
access n copies, possibly with prior µ(t), and a strategy
Pn(τ), the Bayesian success probability is given by

η(δ, µ,N , Pn)

:=

∫
dµ(t) dτ wδ(t− τ) Tr[C[N (t)]⊗nPn(τ)],

(82)

where C[N (t)] is the Choi representation of the quantum
channel N (t). The minimax success probability is given
by

η(δ,N , Pn)

:= inf
t

∫
dτ wδ(t− τ) Tr[C[N (t)]⊗nPn(τ)].

(83)

The Bayesian and minimax tolerance sand sample
complexities in the channel case are then defined similar
to Definitions 2 and 3 from the above defined Bayesian
and minimax success probabilities.
The natural next step is now to define the optimal

(Bayesian) success probability relative to an access model
as

η∗(δ, µ,N ,Sn) := sup
Pn∈Sn

η(δ, µ,N , Pn). (84)

The optimal Bayesian tolerance and sample complexity,
as well as the corresponding minimax quantities are de-
fined analogously.
In Section III, we have shown that the optimal

Bayesian and minimax success probabilities can be com-
puted by solving a convex optimization problem without
duality gap. As evidenced in Fig. 6, protocols that in-
volve a parametrized quantum channel have more mov-
ing parts that can and need to be optimized. Let us, for
example, take the simplest case of only one use of the
parametrized quantum channel. In this case we have to
optimize over both the probe state ρ0 that is fed into the
quantum channel and the measurement Q(τ). Naively,
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FIG. 6. The different types of protocols that can be realized when accessing multiple (in this case, two) copies of the same
parametrized channel N (t). We distinguish: (a) the i.i.d. case when the same single-shot protocol is repeated multiple times.
(b) the parallel case where the probe state can be entangled by a suitable unitary transformation. (c) the adaptive case where
an auxiliary system can be used as a memory to coherently adjust processing based on the outcomes of the first use of the
channel. The gray shaded area represents an instance of a quantum comb. (d) the case of indefinite causal order, where a
superposition of orders of invocations of the quantum channel can be used to boost the sensitivity. The blue and orange arrows
represent the two orders of invocation. The solid black line in the middle indicates an auxiliary system. The gray shaded area
represents a general strategy with indefinite causal order.

the objective is then a nonlinear function of the argu-
ments of the optimization ρ0 and Q(τ) and we would not
expect that this can be cast as a semi-infinite program.
However, if we change our perspective and combine the
preparation of the probe state and the measurement into
a single object represented by a parametrized quantum
comb, we can exploit the convexity of the set of quan-
tum combs to again cast the computation of the opti-
mal success probability as a semi-definite program. This
reasoning then immediately means that also the case of
adaptively interacting with n copies of the channel can
be efficiently optimized for. The same is true for strate-
gies involving indefinite causal order as we summarize in
the following proposition.

Proposition 22 (Joint optimization). For a given toler-
ance δ, a set of channels N (t) of which we can access n
copies, possibly with prior µ(t), the optimal success prob-
ability η∗(δ, µ,N ,Sn) and optimal minimax success prob-
ability η∗(δ,N ,Sn) can be computed using a semi-definite
program without duality gap for both adaptive Sn = Sadan

and indefinitely causally ordered Sn = Sicon access.

The detailed statements of the convex programs and
their duals are given in Section III of the supplementary
material.

Connection to hypothesis testing. The core contri-
bution of this work is the rigorous connection of PAC
metrology with quantum hypothesis testing given in Sec-
tion IV. There, we gave an upper bound on the suc-
cess probability through the success probability of cor-
responding multi-hypothesis testing problems between
quantum states. As we show below, these results also
carry over to the case of parametrized quantum chan-
nels. In this case, the reduction is to multi-hypothesis
testing between channels under different access models.
Formally, we define the optimal Bayesian success proba-

bility of testing n copies of the quantum channels {Ni}Ni=1

with prior probabilities {pi}Ni=1 under the access model
Sn as

P ∗
s ({piNi}Ni=1,Sn) := sup

{Pi}N
i=1⊂Sn

N∑
i=1

piTr[C[Ni]
⊗nPi]

(85)

under the condition that the set {Pi}Ni=1 corresponds to
a valid combination of processing and POVM. The mini-
max statement is given analogously by choosing the prior
probabilities adversarially for the chosen strategy. The
fact that our results from the state case carry over to this
more general case comes with little surprise when we re-
alize that upon fixing the strategy P (τ) to the optimal
strategy and executing it right until before the final mea-
surement is performed, we obtain a parametrized set of
states to which we can then apply Theorem 10, leading
to the following result.

Corollary 23 (Hypothesis testing bound (channels)).
For a given tolerance δ, fix any set S = {(λ, s)} of prior
probabilities λ ∈ [0, 1] and shifts s ∈ R such that for all
distinct s, s′ ∈ S we have that |s−s′| > 2δ and

∑
λ∈S λ =

1. Then, for a set of channels N (t) of which we can
access n copies with prior µ(t) and a fixed access model
Sn we have the upper bound

η∗(δ, µ,N ,Sn)

≤
∫

dt P ∗
s ({λµ(t+ s)N (t+ s)}(λ,s)∈S ,Sn).

(86)

Optimizing over the prior probabilities λ then yields the
analogous upper bound in the minimax setting

η∗(δ,N ,Sn) ≤ inf
t
P

∗
s({N (t+ s)}s∈S ,Sn). (87)
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Because of the richer structure embodied by dif-
ferent access models for multiple copies of the same
parametrized channel N (t), we can define multiple types
of asymptotic rates to generalize the analysis carried out
in Section V. Of particular interest to us are the rates cor-
responding to i.i.d. strategies R∗

iid (item (a) in Fig. 6), be-
cause there we can make use of our results on the asymp-
totics of the state case, and the rates corresponding to
parallel strategies R∗

par (item (b) in Fig. 6).

X. PHASE ESTIMATION OF A PURE STATE
HAMILTONIAN EVOLUTION

In this section, we analyze one of the most prototypical
scenarios of quantum metrology, namely phase estima-
tion with pure states. We analyze the minimax success
probability, as it represents the most stringent achiev-
able guarantees. It is further important to emphasize
that our analysis takes the perspective of global estima-
tion, contrary to the local estimation routinely seen in
the literature.

As a first step, we establish a general result on the
minimax success probability in the U(1)-group-covariant
setting, which applies beyond phase estimation. We con-
sider a set of states |ψ(t)⟩ generated by unitary evolution
of a pure initial probe state |ψ⟩ under a Hamiltonian H,
reflecting the evolution of a closed quantum system

|ψ(t)⟩ = e−itH |ψ⟩ = U(t)|ψ⟩. (88)

To ensure that t can be understood as a “phase”, H is
assumed to be such that all differences between eigenval-
ues are integer-valued, in which case the recurrence time
of the Hamiltonian is guaranteed to be 2π. Let now H
decompose as H =

∑
λ λΠλ, where λ are the different

eigenvalues and Πλ are the projectors onto the possibly
degenerate eigenspaces. Then, we can expand

|ψ⟩ =
∑
λ

ψλ|ψλ⟩, (89)

where we defined the normalized projections of |ψ⟩ onto
the eigenspaces of H such that Πλ|ψ⟩ = ψλ|ψλ⟩.

For such a covariant set of states ψ(t) = |ψ(t)⟩⟨ψ(t)|,
the following theorem establishes that the pretty good
measurement [80–85] is minimax optimal, and we obtain
a closed form solution for the optimal minimax success
probability. This result is well in line with known re-
sults on the optimality of the pretty good measurement
in other covariant state discrimination and parameter es-
timation tasks [23, 86–91].

Theorem 24 (Minimax optimal measurement). For a
state set ψ(t) given by a pure initial probe state ρ0 =
|ψ⟩⟨ψ| evolving under a Hamiltonian with integer eigen-
value differences for time t ∈ [0, 2π], the pretty good mea-

surement

QPGM(t) = R−1/2ψ(t)R−1/2, where R =

∫
dt ψ(t),

(90)

achieves the optimal minimax success probability, equal
to

η∗(δ, ψ) =
∑
λ,λ′

|ψλ||ψλ′ |ŵδ(λ− λ′), (91)

where ŵδ(ω) = sin(δω)/(πω) is the Fourier transform of
the rectangular window wδ at frequency ω.

The above theorem establishes a direct relation be-
tween the amplitudes of the probe state |ψ⟩ and the min-
imax success probability. It especially shows that only
the spectrum of the Hamiltonian and the absolute val-
ues of the amplitudes matter. The result holds for any
window function. The proof exploits strong duality and
complementary slackness to establish a formula for the
optimal dual variable and is presented in Section XI of
the supplementary material.
One important consequence of Theorem 24 is that it

greatly simplifies the search for a minimax optimal probe
state. If we arrange the absolute values of the amplitudes
in a vector ψ := (|ψλ|)λ and construct the matrix associ-
ated to the Fourier transform, Wλ,λ′ := ŵδ(λ− λ′), then
the optimal minimax success probability is given by the
quadratic form

η∗(δ, ψ) = ⟨ψ,Wψ⟩. (92)

The optimal probe state is hence obtained by solving the
following optimization problem:

ψ∗ := argmax
ψ

{⟨ψ,Wψ⟩ |ψλ ≥ 0 for all λ, ∥ψ∥2 = 1}.

(93)

Because of the positivity constraint on the entries of the
vector, this is in general an NP-hard optimization prob-
lem [92].

XI. PHASE ESTIMATION WITH AN
ENSEMBLE OF SPIN- 1

2
PARTICLES

We now turn our attention to the special phase estima-
tion on a spin chain [93]. This is a covariant problem in
the above sense with the single-spin Hamiltonian given
by H = diag(0, 1). If we have n spins separately evolv-
ing under this Hamiltonian, the effective Hamiltonian is
given by summing up the local terms on the individual
copies

Hn =

n∑
i=1

Hi, Hi = I⊗i−1 ⊗H ⊗ I⊗n−i. (94)

As we have seen in Theorem 24, only the spectrum of the
Hamiltonian matters. For the HamiltonianHn, it is given
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FIG. 7. Optimal error probability of quantum metrology
that can be guaranteed for any prior distribution for differ-
ent probes in the phase estimation scenario for δ = 0.04.
We compare a generalized GHZ state (Eq. (95), red), a ten-
sor power of plus states (green), the Holland-Burnett state
(Eq. (96), orange), the Gaussian state (Eq. (99), yellow) and
the optimal state (Eq. (93), blue). The generalized GHZ state
never performs well because it cannot resolve the time glob-
ally. For n ≪ 1/δ, the Holland-Burnett state performs almost
optimally but has comparable asymptotic performance to the
tensor power probe. The Gaussian probe performs almost op-
timally in a larger regime than the Holland-Burnett and has
an intermediary asymptotic. The overset plots show the en-
ergy profiles of the optimal probe for n = 41 (A), the optimal
probe for n = 561 (B) and the tensor power probe for n = 561
(C). The asymptotic rate in the i.i.d. case is consistent with
R ≈ δ2, whereas the optimal entangled rate is consistent with
R ≈ δ. We present additional numerical results for different
values of δ in Section XII B of the supplementary material.

by spec(Hn) = {0, 1, . . . , n}, which grows linearly in n.
We can therefore treat the equivalent problem of a Hamil-
tonian with spectral decomposition H =

∑n
k=0 k|k⟩⟨k|,

where the eigenstates |k⟩ are understood to be any eigen-
state of the Hamiltonian Hn with energy k, e.g., |3⟩ could
be |001101⟩ for n = 6.
Applying Theorem 24 allows us to compute the opti-

mal minimax success probability (Fig. 7) and the optimal
minimax tolerance (Fig. 8) for different kinds of probe
states. We note that our analysis of the asymptotics of
the minimax success probability has significant overlap
with prior work by Imai and Hayashi in Ref. [53]. They
discuss the asymptotic distribution of phase estimates
and discuss the asymptotic rate.

Our first and most obvious candidate for a probe state
is a generalized Greenberger-Horne-Zeilinger (GHZ)
state

|GHZn⟩ :=
1√
2
(|0⟩+ |n⟩), (95)

which is optimal in the standard approach to quantum
metrology [94–96]. However, in the minimax setting, it
fails spectacularly – with a minimax success probabil-
ity amounting to random guessing and a similarly high
tolerance (see Figs. 7 and 8). This is an immediate con-
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FIG. 8. Optimal tolerance of quantum metrology that can
be guaranteed for any prior distribution for different probes
in the phase estimation scenario for fixed success probability
η = 0.99. We compare a generalized GHZ state (Eq. (95),
red), an tensor power of plus states (green), the Holland-
Burnett state (Eq. (96), orange), the Gaussian state (Eq. (99),
yellow) and the optimal state (Eq. (93), blue). The gen-
eralized GHZ state never performs well because it cannot
resolve the time globally. The tensor power of plus states
performs adequately for small n, but only achieves standard
quantum limited scaling O(1/

√
n) asymptotically. For small

n, the Holland-Burnett state does not perform satisfactorily,
but achieves the optimal Heisenberg scaling O(1/n) in the
asymptotic limit. The Gaussian probe performs almost op-
timally except for very small n. We present additional nu-
merical results for different values of η in Section XII B of the
supplementary material.

sequence of the fact that the standard approach to quan-
tum metrology is concerned with local estimation. In
our case, however, the probe needs to be able to perform
well in a task of global estimation, i.e., the probe state
should allow us to discern values in the whole interval
[0, 2π]. The recurrence time of ∼ 2π/n of the generalized
GHZ state, means it can very well resolve small differ-
ences in values, but not larger ones. A clock can serve
as a good metaphor for this phenomenon: If we want to
tell the time, we need to make use of the hour, minute
and second hand. In this picture, the generalized GHZ
state corresponds to a clock with only a second hand –
which is very suitable if you want to time a short sprint
but useless when telling the time of the day.
The analogy of a clock inspires the use of another state,

namely the Holland-Burnett (HB) state

|HBn⟩ :=
1√
n+ 1

n∑
k=0

|k⟩, (96)

which consists of an equal superposition of all energy
eigenstates. Metaphorically, this state uses all the avail-
able hands of the clock equally. The Holland-Burnett
state indeed has a much more desirable performance. As
shown in Fig. 7, this probe state achieves almost opti-
mal success probability in the regime where n ≪ 1/δ.
This behavior can be explained by expanding the Fourier
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transform of the window function, ŵδ(ω) = δ
π sinc(δω),

around ω = 0, because the largest frequency scales as
O(n):

ŵδ(ω) =
δ

π

[
1−O(δ2ω2)

]
. (97)

The zeroth order contribution to this term is given by

η∗(δ, ψ) =
δ

π

∑
λ,λ′

|ψλ||ψλ′ |+O(δ2ω2) (98)

=
δ

π
∥ψ∥21 +O(δ2ω2).

In this limit, a probe that maximizes the one-norm of the
amplitude vector is clearly optimal, which corresponds to
the Holland-Burnett state. This state was also identified
in recent work as a suitable probe state for (multi-)phase
estimation [97]. In the case of the optimal tolerance,
see Fig. 8, we observe the inverse of this behavior: For
small n, the performance is not satisfactory. Asymptot-
ically, however, the Holland-Burnett state achieves the

same Heisenberg scaling δ
∗

= O(1/n) as the optimal
probe. As we show in additional numerics presented in
Section XIIB of the supplementary material, the criti-
cal value of n at which the Holland-Burnett state starts
to enter the Heisenberg-scaling regime increases with in-
creasing success probability.

Next, we have analyzed the performance of a separable
probe state. We chose i.i.d. copies of the optimal single-
spin probe state, the |+⟩ = (|0⟩ + |1⟩)/

√
2 state. We

observe in Fig. 7 that the success probability achieved
with this state reaches towards unity much more slowly
than the optimal probe state, with an asymptotic rate
quadratically smaller. When looking at the optimal tol-
erance in Fig. 8, we observe the expected asymptotic scal-

ing of the standard quantum limit δ
∗
= O(1/

√
n).

We additionally compare the aforementioned probe
states with a Gaussian probe whose amplitudes have a
Gaussian shape:

ψλ ∝ exp

(
−1

2

2δ

n+ 1

(
λ− n

2

)2)
. (99)

The optimality of the choice of the standard deviation,√
(n+ 1)/2δ, is discussed in Section XII of the supple-

mentary material. Regarding the success probability, we
observe in Fig. 7 that the Gaussian probe performs close
to optimally in a larger regime than the Holland-Burnett
state and achieves better asymptotics, but also does not
match the optimal probe. In the case of the tolerance, we
do, however, observe in Fig. 8 that it nearly reproduces
the optimal probe state. As we show in additional numer-
ics presented in Section XIIB of the supplementary ma-
terial, a gap in tolerance opens between the optimal and
the Gaussian probe when the target success probability is
increased, but the Gaussian probe preserves Heisenberg
scaling and a good performance.

Last but not least, we study the optimal probe state.
Normally, we would need to solve the optimization prob-
lem of Eq. (93). However, in the special case we en-
counter here, in which W is defined through the Fourier
transform of a rectangular window function and the
eigenvalue spectrum has no gaps, we can build on prior
work studying a similar problem in the context of clas-
sical signal processing [98], where W is referred to as
the prolate matrix. In Ref. [98], Slepian establishes that
the largest eigenvector of the matrix W is given by the
so-called discrete prolate spheroidal sequence (DPSS) of
zeroth order. While he studies the problem without the
positivity constraint on the eigenvector, we can build on
a different result of Slepian to show that the largest eigen-
vector is always non-negative. In the case of phase esti-
mation, we can therefore compute the optimal probe by
finding the eigenvector associated to the largest eigen-
value of W .

In our numerical investigations, we observe in Fig. 7
that the success probability tends towards unity with an
asymptotic rate quadratically greater than what is pos-
sible with the separable probe and also outperforms the
Gaussian probe significantly. It further achieves a clear

Heisenberg scaling δ
∗
= O(1/n) for the tolerance as ev-

ident in Fig. 8. To get a feeling for the amplitude dis-
tributions of the different probes, we plot in Fig. 7 the
amplitude distribution over the eigenvalues of the opti-
mal probe states for n = 41 and n = 561. These plots
clearly show that the optimal probe state for small n
has a flat spectrum, whereas asymptotically a moder-
ately concentrated shape is optimal. We compare this
with the corresponding shape of the tensor power probe
at n = 561, which is much more concentrated, explaining
its inferior performance.

Our numerical results make it quite clear that the set-
ting of optimizing the success probability for a fixed tol-
erance and of optimizing the tolerance for a fixed success
probability are qualitatively different. We especially see
that probes that perform well in one setting do not nec-
essarily perform well in the other.

Finally, we also want to shine a light on the relation
of the minimax tolerance with the quantum Cramér-Rao
bound. To this end, in Fig. 9, we plot the achievable
tolerance for a subset of the states presented above to-
gether with the quantum Cramér-Rao bound for a fixed
success probability of η = erf(1/

√
2) ≈ 0.6827, repre-

senting the probability that the value of a normally dis-
tributed random variable is within one standard devia-
tion of its mean. We observe that the quantum Cramér-
Rao bound only faithfully predicts the achievable preci-
sion in the case of i.i.d. copies, but is overly optimistic
otherwise. This underscores the interpretation that the
quantum Cramér-Rao bound necessitates a degree of reg-
ularity of the underlying problem to be tight, and its con-
nection to maximum-likelihood estimation which is opti-
mal for Gaussian distributions. The sometimes overly
optimistic estimate obtained from the quantum Cramér-
Rao bound is especially evident for the GHZ state, which
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FIG. 9. Optimal tolerance of quantum metrology that can
be guaranteed for any prior distribution for different probes
in the phase estimation scenario compared to the quantum
Cramér-Rao bound embodied by the inverse square root of
the quantum Fisher information. The success probability is
fixed to η = erf(1/

√
2) ≈ 0.6827, representing the probabil-

ity that the value of a normally distributed random variable
is within one standard deviation of the mean. We compare
a generalized GHZ state (Eq. (95), red), an tensor power of
plus states (green), and the optimal state (Eq. (93), blue).
The quantum Cramér-Rao bound is shown in dashed lines.
We observe that the quantum Cramér-Rao bound faithfully
predicts the achievable precision in the case of i.i.d. copies for
the chosen success probability, underpinning the interpreta-
tion that the quantum Cramér-Rao quantifies the i.i.d. case
with a Gaussian shape for the fidelity curve. Both for the
GHZ state and the optimal state, the quantum Cramér-Rao
bound is way too optimistic, showcasing a decoupling of the
quantum Cramér-Rao bound from the achievable performance
in the few-shot and entangled regime.

achieves the maximum quantum Fisher information, but
the actual achievable tolerance is very bad. Nevertheless,
these numerical experiments also suggest a positive re-
sult about the quantum Cramér-Rao bound. We observe
that there exist settings where it gives a good measure
of metrological precision, even in the global and non-
asymptotic regime – this is indicated by the fact that the
agreement with the achievable precision is already very
good at n ≈ 10 repetitions. These results highlight that
there are regimes where the quantum Cramér-Rao bound
faithfully predicts the achievable precision, but that it
is too optimistic in the case of few shots and entangled
strategies.

Analytical results. The numerical observations pre-
sented in Fig. 7 motivate an analytical study of the
asymptotics of the minimax error probability, extending
the results of Section IV. There, we established results
on the asymptotic rate for i.i.d. copies of the same state,
which corresponds to the case of the tensor power probe
discussed above. We observe that when entangled probe
states are allowed – corresponding to the parallel setting
– the asymptotic rate is much improved, as the rates we

observe numerically are consistent with

R
∗
iid(δ) ≈ δ

2
, (100)

R
∗
par(δ) ≈ δ. (101)

In the following, we make this observation rigorous.
As we already argued above, the optimal probe for

phase estimation on a spin chain is given by the discrete
prolate spheroidal sequence (DPSS) of zeroth order [98].
We can combine two results by Slepian to obtain the
following result on the optimal rate in the parallel case:

Theorem 25 (Optimal minimax rate). For a given min-
imax tolerance 0 < δ < π/2, the parallel minimax error
rate is given by

R
∗
par(δ) = log

(
1 + sin δ

2

1− sin δ
2

)
= δ +O(δ

3
).

The proof combines two results from Ref. [98] and ex-
ploits the Perron-Frobenius theorem to establish positiv-
ity of the DPSS of zeroth order and is given in Section XII
of the supplementary material. While the DPSS has no
closed-form, there exist efficient approximations involv-
ing the modified Bessel function of the first kind of zeroth
order I0 [99]. In our case, the optimal probe can thus be
approximated by choosing

ψλ ∝ I0

δn
2

√
1−

(
2λ+ 1

n+ 1
− 1

)2
 (102)

and subsequently normalizing.
We can use the result on the rate for i.i.d. probes of

Theorem 13 to calculate

R
∗
iid(δ) ≤ − log cos2(δ) ≈ δ

2
(103)

for small δ, see Theorem 41 of the supplementary mate-
rial. Combined with the above Theorem 25 this implies
that entangled strategies have a quadratic advantage in
the asymptotic minimax rate, which can be understood
as the rate analogue of the dichotomy between the stan-
dard quantum and Heisenberg limits.
We further perform a theoretical analysis of the opti-

mal standard deviation for the Gaussian probe. We can
use tail bound estimates for the Gaussian distribution to
prove that the optimal choice of standard deviation (see
Eq. (99)) achieves half the optimal rate.

Theorem 26 (Minimax rate for Gaussian probes). For
a given minimax tolerance δ > 0, the Gaussian probe
achieves the minimax error rate of

RGauss(δ) =
δ

2
. (104)
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The proof is presented in Section XII of the supple-
mentary material.

Building on the previous result, we can also give a
guarantee on the asymptotic tolerance achieved by the
Gaussian probe.

Observation 27 (Asymptotic tolerance of Gaussian
probe). For a given minimax success probability η, the
Gaussian probe achieves a minimax tolerance of

δGauss =
α

n+ 1
, (105)

where

α ≈ 2 log

(
2

π(1− η)

)
, (106)

up to logarithmic factors.

The argument is likewise presented in Section XII of
the supplementary material.

XII. EXTENSIONS AND CONNECTIONS TO
OTHER FIELDS

This section is dedicated to exploring the various con-
nections and possible generalizations of our definitions
and results to other areas of quantum metrology and
quantum information theory.

A. Multi-parameter quantum metrology

Measuring multiple parameters at the same time
[13, 100] creates additional challenges, such as having to
reconcile measurements [101, 102] and probe states [52]
that are optimal for each parameter but might be in-
compatible. It furthermore offers a framework to study
networks of quantum sensors [103] and the optimal esti-
mation of functions of multiple parameters [104].

We can capture arbitrary instances of multivariate
quantum metrology by replacing the parameter space R
with an arbitrary set X . We equip the set X with a pos-
itive real-valued function d(x, y) that quantifies the esti-
mation error associated with an estimate y when the true
value of the parameter is x. A natural choice for d(x, y)
might be a suitable distance measure. In this case, the
success probability for a given set of states x 7→ ρ(x),
prior distribution µ(x) and POVM y 7→ Q(y), is

η(δ, µ, ρ,Q) =

∫
X
dµ(x)

∫
X
dy wδ(d(x, y)) Tr[ρ(x)Q(y)].

(107)

The definitions for the tolerance and sample complexity,
the corresponding minimax quantities and the optimal
quantities follow analogously as in the previous sections.
Some of our proofs extend naturally to general parameter

sets X . In Section X of the supplementary material, we
give a generalization of Theorem 10 to the multivariate
case and use it to derive a multi-parameter analog of
Corollary 11.

B. Confidence region tomography and shadow
tomography

A particularly well-studied variant of multivariate
quantum metrology concerns the task of state tomog-
raphy, in which the parameter space X is taken to be
the quantum state space itself. A suitable distance mea-
sure, such as the infidelity or the trace distance, typically
quantifies the estimation error.
This extension of our framework connects with a se-

ries of works in quantum tomography on establishing
confidence regions in state space given measurement
data [30–33]. Confidence region estimators process the
measurement data to output a subset of the state space
(the confidence region) in which the true state lies with
high probability. The region can furthermore be specified
as the set of all states that are at least δ-close to some
reference state in a suitable distance measure.
Another setting that connects to the multi-parameter

estimation version of our framework is shadow tomog-
raphy [105, 106]. Shadow tomography aims at predict-
ing the expectation values of a set of M observables
O = {Oi}Mi=1 when evaluated on a given quantum state
ρ. If we define a distance measure

dO(ρ, σ) = dO(ρ− σ) := sup
O∈O

|Tr[O(ρ− σ)]|, (108)

then shadow tomography with precision δ is equivalent to
finding an approximation of the quantum state ρ̂ that ful-
fills dO(ρ, ρ̂) ≤ δ. Defining a measurement scheme then
corresponds to a POVM with effects labeled by quan-
tum states, Q(ρ̂), and the minimax success probability is
hence

η(δ,Q, ρ) = min
ρ

∫
dρ̂ Tr[ρQ(ρ̂)]wδ(dO(ρ− σ)), (109)

where both the minimization and integration are over all
quantum states. A probabilistic procedure introduced in
Ref. [106] achieves the sample complexity

n∗(η, δ, ρ) ≤ O

(
1

δ2
log

(
M

1− η

)
max

1≤i≤M
∥Oi∥2shadow

)
,

(110)

where the shadow norm ∥·∥shadow captures properties of
the particular randomized protocol used. We thus see
that contemporary techniques like shadow tomography
are captured by our PAC metrology framework.
In the same spirit, other tomography tasks, e.g. the to-

mography of quantum channels and non-Markovian pro-
cesses in the form of quantum combs, can be considered
in the PAC metrology framework. Exploring the ultimate
limitations of these tasks would constitute an intriguing
direction of future work.
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C. Cryptography and adversarial parameter
estimation

There is an emerging subfield of quantum metrol-
ogy concerned with its intersection with cryptogra-
phy [11, 107, 108]. As an example, we might seek a
metrological protocol where the precision with which an
eavesdropper might estimate a parameter should be as
low as possible. This regime corresponds to a regime of
small success probability, η → 0.

We make use of the fact that the success probability
and tolerance have a functional relationship that corre-
sponds to an inversion of the success probability seen as
a function of the tolerance. This allows us to analyze the
limit of small success probability for smooth, i.e., arbi-
trarily often differentiable, measurements Q(τ).

Proposition 28. For a given set of states ρ(t), possibly
with prior µ(t), a smooth measurement Q(τ) and a small
success probability η, the Bayesian tolerance is given by

δ(η, µ, ρ,Q) =
η

2

(∫
dµ(t) Tr[ρ(t)Q(t)]

)−1

+O(η2),

(111)

whereas the minimax tolerance is given by

δ(η, ρ,Q) =
η

2

(
inf
t

Tr[ρ(t)Q(t)]
)−1

+O(η2). (112)

Both statements hold conditioned on the inverted quantity
to be nonzero.

The proof is shown in Section VIII of the supplemen-
tary material.

Let us now assume that Alice performs a quantum
metrology protocol and obtains a quantum state ρA(t)
which it communicates to Bob via a quantum channel N ,
such that he receives the state ρB(t) = N [ρA(t)]. At the
same time, an eavesdropper Eve tries to obtain as much
information as possible about the transmitted state. The
state Eve can obtain in the worst case is modeled by the
complementary channel Nc [109], which describes the in-
formation the environment can obtain when viewing N
as part of a larger, unitary evolution. As such, we assume
that Eve holds the state ρE(t) = Nc[ρA(t)]. The above
proposition tells us that, if we want to limit the precision
with which Eve can estimate the parameter t from the
state ρE(t), we need to choose the initial state of Alice
such that the quantity

sup
Q(t)

∫
dµ(t) Tr[ρE(t)Q(t)]

= sup
Q(t)

∫
dµ(t) Tr[ρA(t)N †

c [Q(t)]]

(113)

is as small as possible.

D. Optimization over constrained sets of
measurements

In the formulation of the success probability as a con-
vex problem of Proposition 7, we optimize over all pos-
sible quantum measurements of the system. We already
obtained the optimal post-processing for the practically
important case of a fixed measurement. In this section,
we discuss another possible way of including practical
constraints that might limit the possible measurements
by only optimizing over POVMs from a set Q that repre-
sents the set of measurements that can be implemented
on the system.
In this case, we obtain a restricted optimal success

probability η∗Q(δ, µ, ρ) quantified as

η∗Q(δ, µ, ρ) := max (114){∫
dt Tr[(wδ ∗ [µ · ρ])(t)Q(t)]

∣∣∣∣ ∫ dtQ(t) = I, Q ∈ Q
}
.

A particular case of interest appears when Q is a con-
vex set, in particular, if it is specified by semidefinite
constraints. In this case, the optimization above is a
convex optimization problem. Such a situation occurs,
for instance, if we assume that Alice prepares a state
ρ(t) and sends it to a noisy channel E to Bob, who at-
tempts to estimate t using any possible POVM on his
system. Bob’s optimal POVM Q(t) can be mapped to
the POVM E†(Q(t)) on Alice’s system through the ad-
joint map E† of E . Consequently, Bob’s optimization over
any POVM can be equivalently expressed as Alice opti-
mizing over all POVMs in the image of E†. The thus
defined set Q = {E†[Q] |

∫
dtQ(t) = I, Q(t) ≥ 0} is a

convex set and Bob’s optimal success probability can as
such be computed efficiently.

The minimax variant, as well as the corresponding tol-
erance and sample complexity are then defined analo-
gously to their non-restricted counterparts.

E. Estimation of properties beyond parameters

We now consider the setting where we seek to estimate
some property x, e.g., the expectation value of an observ-
able, of a general unknown state ρ. Crucially, multiple
states might share the same property value x, hindering
the use of our analysis which assumed that the unknown
state belongs to a set of states that is fully specified by
one parameter.

This task can be treated by the introduction of so-
called “nuisance” parameters. Nuisance parameters are
additional parameters that ensure that each quantum
state is associated with a distinct set of parameter val-
ues. The consequence of introducing nuisance param-
eters is to reduce the property estimation problem to a
multi-parameter estimation problem. In our case, we can
perform a similar strategy that proceeds like the exam-
ple of shadow tomography discussed above. By taking
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the space of quantum states as the parameter space, we
introduce the maximal possible number of nuisance pa-
rameters, and by introducing a distance function

dx(ρ, σ) := |x(ρ)− x(σ)|, (115)

we obtain a way to only pick out the relevant parameter
x. These settings are of extremely high importance for
practical applications, e.g. for near-term applications on
NISQ devices [110]. There exists a large variety of exist-
ing techniques to treat this particular application [111],
but these tools pertain to the local estimation setting. It
is therefore an intriguing direction of future research to
see how these analytical approaches can be generalized
to the framework of PAC metrology.

XIII. FUTURE DIRECTIONS

In the standard approach to quantum metrology built
on top of the quantum Cramér-Rao bound, most fun-
damental questions have already been answered. In our
single-shot PAC metrology framework, on the contrary,
a broad collection of open question – both fundamental
and practical – is still looking for answers. In this section,
we highlight some questions of particular interest.

Optimal measurements in the finite-sample regime. A
significant open question that remains open is the devel-
opment of measurement schemes or protocols with guar-
antees on either the success probability or the estimation
tolerance. While the formulation of the success prob-
ability as a convex problem provides an efficient way to
compute the optimal POVM associated with a discretized
version of the estimation problem, a closed form of the
optimal measurement remains elusive beyond the covari-
ant case treated in Section X. Furthermore, solutions to
the convex optimization problem are not likely to provide
additional insight on measurement schemes that are per-
haps sub-optimal but far more convenient to implement
than the optimal measurement.

Natural candidates for measurement schemes are adap-
tive protocols [112] as well as the pretty good measure-
ment that constitutes the optimal measurement in the
pure and covariant setting of Theorem 24. Promising
candidates might furthermore be constructed using the
class of measurements studied in Section III B.

Open Problem 1 (Measurement schemes with perfor-
mance guarantees). Develop measurement schemes with
provable performance guarantees that are either practical
to implement or that achieve close-to-optimal estimation
error tolerance or success probability in the finite-sample
regime.

Such measurement schemes would significantly aid in
deriving upper bounds on the optimal estimation toler-
ance and lower bounds on the success probability in vari-
ous settings. So far, such lower bounds have been elusive
because of a lack of such schemes. For instance, an open

question would be whether a measurement scheme is ca-
pable of achieving the rate given in Theorem 13.
A finite-sample analogue of the quantum Cramér-Rao

bound. The quantum Cramér-Rao bound of Eq. (1) is
the fundamental cornerstone of the standard approach
to quantum metrology. It relates an operational quan-
tity (the standard deviation of the optimal unbiased es-
timate of a parameter) to a geometric property of the
underlying set of quantum states (the quantum Fisher
information). We call the quantum Fisher information
a geometric property because it quantifies the distance
between quantum states whose parameters are close to
each other when “distance” is measured through the fi-
delity of quantum states. States that are close in terms
of the fidelity are difficult to distinguish, and we have
already learned in Theorem 10 that this is a prerequisite
for successful parameter estimation.
In our finite-sample approach, the estimation tolerance

fulfills a role comparable to that of the standard devia-
tion. We expect that the smallest achievable estimation
tolerance should – similar to the standard deviation – be
constrained by a quantity that captures geometric prop-
erties of the underlying set of quantum states. As our
framework pertains to cases where the estimation is not
necessarily local, we expect that the we need quantities
that go beyond the quantum Fisher information in the
sense that they capture the geometry of the given state
set at non-infinitesimal length scales. Moreover, there is
the additional factor of the desired success probability
η that factors into any relation between the optimal es-
timation tolerance and the structure of the given state
set.
We managed to derive Theorem 18 by quantifying how

well the fidelity is approximated by a Gaussian as

F (ρ(t), ρ(t+ τ)) ≈ exp

(
−1

8
F(t)τ2

)
. (116)

In that sense, we quantified how close we are to a case
where the quantum Fisher information dictates not only
the behavior in an infinitesimally small neighborhood but
also for larger values of the perturbation τ . It is of im-
mense interest if we can obtain more general statements
of the same kind that resemble the Cramér-Rao bound
in the following sense.

Open Problem 2 (Finite-sample analogue of the
Cramér-Rao bound). Find improved lower bounds on the
optimal Bayesian and minimax estimation tolerance that
put fundamental limits on the achievable estimation tol-
erance based on geometric properties of the underlying
state set, i.e., bounds of the form

δ
∗
(η, ρ) ≥ f(η)√

I
, (117)

where f(η) quantifies the dependence on the success prob-
ability and I is a measure that captures the geometric
structure of the given state set in the finite-sample set-
ting. Note that I can in general also depend on the de-
sired success probability.
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An important improvement of our quantum Cramér-
Rao-like bound of Theorem 18 would be a bound that
accurately predicts the achievable estimation tolerance
in the i.i.d. limit – i.e. given a state ρ⊗n(t) where n→ ∞
– in the sense that there exists a matching upper bound.
It would not be surprising if a different geometric quan-
tity than the quantum Fisher information would appear
in such a bound. This is because the converse on hy-
pothesis testing involving the fidelity of quantum states
we use to derive Theorem 18 is known to not be tight in
certain settings and that a proper converse should rely
on the Chernoff divergence which is in turn associated
to a different geometrical quantity, namely the Wigner-
Yanase-Dyson information.

As we have argued above, Theorem 18 builds on the
insight that there are settings (e.g., the i.i.d. setting)
where the quantum Fisher information carries informa-
tion about the set of states beyond infinitesimal pertur-
bations. As such, we expect that the development of
quantities that better capture the distinguishability of
states in non-infinitesimal neighborhoods could lead to a
more general Cramér-Rao-like bound valid in the single-
shot setting.

Advantage of entangled measurement strategies. A
further open question is to delineate the boundary of
performance between different classes of protocols us-
ing entangled and non-entangled probe states, adaptive
and non-adaptive processing and coherent and incoherent
measurements. In particular, it is unclear whether op-
timal measurements in the finite-sample regime require
the use of large amounts of coherence. When estimat-
ing a single parameter in the many-sample regime, the
Heisenberg scaling can be achieved only with the use of
entangled probe states and without the use of coherent
measurements [113] – does a similar statement also hold
in the non-asymptotic case?

Open Problem 3 (Understanding relevant resources).
What advantages can be gained from resources like entan-
glement of the probe state, coherence of the measurement
and adaptivity? Can we quantify the gaps in tolerance
and success probability between these different allowed re-
sources?

Naturally, finding general purpose strategies, e.g. spe-
cific adaptive protocols, that give a competitive baseline
success probability would significantly simplify address-
ing the above problem.

In our investigations of the phase estimation exam-
ple, we observe an exact quadratic relation between the
asymptotic rates for i.i.d. states and entangled states for
small δ. This echoes the quadratic relation between the
standard quantum and the Heisenberg limits in the stan-
dard approach to quantum metrology. Understanding
the generality of this phenomenon – especially for chan-
nels where Heisenberg-limited scaling is impossible [114]
– would further deepen our understanding of the asymp-
totic rate for entangled inputs.

Open Problem 4 (Standard quantum and Heisenberg

limit for rates). For a given set of channels N (t) with
prior µ(t), do we in general have that

lim
δ→0

[R∗
par(δ, µ,N )]2

R∗
iid(δ, µ,N )

= 1, (118)

where the symbols R∗
par and R

∗
iid have been defined in Sec-

tion IX.

The effect of noise on estimation performance. While
noise can be implicitly treated in our formalism by in-
cluding it in the construction of the parametrized set of
states ρ(t) or channels N (t), a much deeper understand-
ing of the influence of noise is desirable, especially with
an eye towards practical applications. It would be in-
structive to see how much the influence of noise destroys
advantages of entanglement in this setting [114–116]. As
we have outlined in Section XII, the minimax success
probability also pertains to communication tasks, where
the study of noisy channels is of utmost importance. Can
we therefore relate the decrease in success probability (or
the increase in tolerance) to properties of the noise chan-
nel? A deeper understanding of noise could then be used
to study the application of quantum error correction to
quantum metrology [11, 12] in this context.
Incompatibility in finite-sample multi-parameter quan-

tum metrology. As discussed in Section XIIA, our defi-
nitions extend in a natural way to multi-parameter quan-
tum metrology. In this setting, challenges arise that
are not present in the single-parameter setting, such as
the incompatibility of measurements and probes that are
optimal for different parameters [52, 101]. These phe-
nomena particular to multi-parameter quantum metrol-
ogy have been extensively studied in the asymptotic con-
text. We expect that a quantification of incompatibil-
ity and other multi-parameter phenomena through our
finite-sample framework could deepen our understanding
of these effects.
Quantifying generalized communication tasks. The

minimax setting of quantum metrology has a further in-
teresting interpretation, as it directly quantifies how well
a sender Alice can communicate a scalar parameter t ∈ R
to a receiver Bob when she encodes the parameter in a
set of states ρ(t). It is important to note here, that the
worst-case nature of the minimax setting is critical in
quantifying the performance, as Alice wants to be able to
communicate any value t with similar guarantees. In this
sense, the minimax setting of quantum metrology quan-
tifies a generalization of the commonly encountered task
of communicating one of multiple discrete symbols [17].
In practical scenarios, Alice will usually send the state
through a quantum channel N that degrades the mes-
sage, giving an additional impetus to study quantum
metrology with the noise model ρ(t) 7→ N [ρ(t)] [11].
Further open questions of information-theoretic na-

ture. In Section V, we have given an upper bound on
the asymptotic rate of quantum metrology, which is tight
for commuting states. It is an open question to determine
under which general conditions on the set of states this
bound is tight.
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Open Problem 5 (Asymptotic rate (states)). For a
given tolerance δ > 0, a set of states ρ(t), possibly with
prior µ(t), when do we have that

R∗(δ, µ, ρ) = R
∗
(δ, ρ) = inf

|t−t′|>2δ
C(ρ(t), ρ(t′))? (119)

Naturally, it is also interesting to quantify the second-
order asymptotics of the success probability, which
will, however, first require progress on the second-order
asymptotics of the symmetric hypothesis testing error
probability for quantum state discrimination. Another
quite natural extension is the case of mixed asymptotics:
We fix a desired scaling of the tolerance, decreasing
slower than the optimal scaling; how fast can the suc-
cess probability still attain unity?

As already outlined in Section IX, the setting of
parametrized quantum channels offers much richer struc-
ture in its asymptotics, owing to the possibility of differ-
ent strategies (separable use, parallel use, adaptive use
and indefinite causal order). Given that Corollary 23 ex-
plicitly relates the success probability of quantum metrol-
ogy under different access modes with the success proba-
bility of a corresponding hypothesis testing problem with
similar access modes, we expect that the asymptotics
of quantum metrology with different kinds of strategies
should relate to the asymptotics of the corresponding
multi-hypothesis testing tasks.

XIV. DISCUSSION

Our work extends the foundations of quantum metrol-
ogy to the regime where few measurement samples can
be obtained. To study this regime, we present a truly
single-shot framework for quantum metrology that re-
moves two important assumptions that are used to derive
the quantum Cramér-Rao bound. First, our approach
quantifies estimation accuracy directly as the probability
that the true estimate lies close to the parameter value
instead of quantifying the variance of an unbiased estima-
tor. This definition guarantees operational significance
even in regimes where the variance is only a poor indi-
cator of single-shot performance. Second, we remove the
assumption of a local estimation setting. We have devel-
oped two ways of doing so: the Bayesian approach which
allows us to reconnect to the local setting by choosing
suitably narrow prior distributions and the minimax set-
ting that truly quantifies the absence of knowledge about
the underlying parameter.

In the setting of our framework (Fig. 1), a parameter
t is encoded in a set of quantum states t 7→ ρ(t). We
quantify the probability that a measurement embodied
by a POVM τ 7→ Q(τ) produces an estimate t̂ of t that
is within a tolerance δ of the true value. “Probability” is
evaluated with respect to the random nature of the mea-
surement outcomes, either in the worst case over possible
parameter values (minimax setting) or in the case where
the parameter value is sampled from a prior probability

distribution (Bayesian setting). Our framework therefore
captures any standard setting in quantum metrology in
which an unknown parameter in the quantum state, pos-
sibly imprinted via a parameter-dependent dynamics, is
to be estimated by the application of a quantum mea-
surement.

The optimal success probability optimized over all pos-
sible POVMs τ 7→ Q(τ) can be obtained from a semi-
infinite program, an extension of semidefinite program-
ming that enables the inclusion of a continuous POVM
as a variable. The rich structure offered by such a con-
vex optimization enables numerical computations as well
as some of our proofs including the derivation of both
upper and lower bounds on the success probability. The
solution to the convex optimization problem might be
difficult to obtain, which is why there is a need for good
“general purpose” measurement strategies, i.e. POVMs
Q(τ) that give guarantees on an achievable success prob-
ability without the need to perform the convex optimiza-
tion. A possible candidate for such a general purpose
strategy could be the pretty good measurement.

Another practically relevant case arises when the quan-
tum measurement is fixed, for instance by experimental
constraints, and only the post-processing of measurement
outcomes into predictions of the parameters may be op-
timized. In this setting, we showed that a strategy gen-
eralizing maximum a-posteriori estimation is optimal for
the Bayesian setting and gives bounds in the minimax
setting.

Our quantum metrology setting naturally extends
quantum multi-hypothesis testing. Instead of selecting
one of finitely many alternatives, we need to discriminate
states from the set {ρ(t)}t. This continuous generaliza-
tion of hypothesis testing requires a tolerance δ in the
precision to which the parameter is to be estimated. This
difference seems to significantly complicate extensions of
existing error bounds for multi-hypothesis testing to our
continuous hypothesis testing setting: Such analyses typ-
ically analyze a protocol by assuming a unique correct
output rather than a range of acceptable outputs. We
make this connection rigorous by giving a general upper
bound on the success probability of the estimation proce-
dure in our metrology setup by showing that estimating
a parameter to precision δ implies the ability to success-
fully distinguish between states with parameter values
separated by at least 2δ in a hypothesis testing setting.
We exploit this result to give bounds on the success prob-
ability in terms of the fidelity of quantum states, a more
tractable and familiar quantity.

This connection provides an important application of
quantum hypothesis testing. The main use of quantum
hypothesis testing so far is the study the asymptotic be-
havior of entropy measures, which is then applied for
instance to the study of quantum communication sce-
narios beyond the i.i.d. regime. The application of quan-
tum hypothesis testing to quantum metrology, an inher-
ently physical setting, highlights a need to extend exist-
ing bounds and protocols in quantum hypothesis testing
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to more general settings relevant to metrology, which in-
clude an error tolerance on the unknown parameter. This
connection is an exciting opportunity for quantum infor-
mation theory to inform the development of estimation
procedures and the derivation of fundamental bounds in
quantum metrology.

The fact that quantum metrology can be seen as a gen-
eralization of multi-hypothesis testing also opens upon
a wealth of open questions of a distinctly information-
theoretic flavor. We analyzed the asymptotic behavior of
the success probability of quantum metrology and have
shown a bound on the asymptotic error rate in terms of
the Chernoff divergence, a bound which can be achieved
in the case of commuting states. As such, we estab-
lished that the quantifier of the asymptotic properties
of hypothesis testing also applies to quantum metrol-
ogy. Our metrology setting also opens new kinds of
questions regarding the asymptotic behavior of quantum
information-theoretic quantities that appear in hypothe-
sis testing tasks. Theorem 13 bounds the rate at which
the success probability η approaches one as the number
of i.i.d. copies n goes to infinity, supposing that the es-
timation tolerance δ is kept constant. The asymptotic
behavior of δ, keeping η fixed, is in turn bounded by
Theorem 18. A particularly relevant regime to study is
a “mixed asymptotics” regime where δ → 0 and η → 1
simultaneously as n → ∞. For instance, what is the
behavior of η if the tolerance decays as δ ∼ 1/

√
n?

We take much inspiration from recent developments in
single-shot quantum information theory, where many re-
sults are expressed through entropic quantities that have
explicit single-shot interpretations. Popular examples are
min-, max- and Rényi-relative entropies. Similarly, our
single-shot framework for quantum metrology can be con-
nected to entropic quantities. In particular, we give an
alternative definition of the optimal success probability
of quantum metrology as a generalized conditional min-
entropy and bound the optimal tolerance through the hy-
pothesis testing relative entropy. One one hand, these re-
lations further strengthen the connection between quan-
tum metrology and quantum information theory, demon-
strating that concepts deeply rooted in quantum informa-
tion theory can offer alternative alternative approaches
to proving accuracy bounds in quantum metrology (e.g.
[19]). On the other hand, these relations further demon-
strate the broad usefulness and applicability of the tool-
box of single-shot entropy measures [17, 18, 117]. We
further anticipate opportunities to exploit new relations
between quantum metrology and entropy measures to de-
rive a deeper understanding of the fundamental accuracy
bounds through the lens of single-shot quantum informa-
tion theory.

Next to the success probability, the estimation toler-
ance is the second important pillar of our single-shot
framework for quantum metrology. It corresponds to the
natural question of quantifying the estimation accuracy
that can be obtained with a fixed success probability. It
is important because it fulfills a similar role as the stan-

dard deviation that is used as a measure of estimation
precision in the standard approach to quantum metrol-
ogy. The importance of providing useful lower bounds on
the optimal estimation tolerance is further underscored
by its use to manifestly express advantages that can be
obtained with entangled quantum states as opposed to
classical estimation strategies, such as Heisenberg scal-
ing [1]. We derived a general lower bound on the esti-
mation tolerance that resembles the quantum Cramér-
Rao bound. This bound involves the standard quantum
Fisher information and contains corrections pertaining to
the explicit single-shot nature of the estimation tolerance.
Obtaining improved bounds on the optimal tolerance –
especially bounds that are achievable in reasonable limits
– is a pressing question in the area of single-shot quantum
metrology.

Metrological problems are in many cases given by
parametrized channels t 7→ N (t) instead of parametrized
quantum states. This setting offers a much richer struc-
ture of both the available ways of interacting with
the quantum channel itself (e.g., adaptive versus non-
adaptive protocols) as well as the underlying complica-
tions of the metrological protocols. We have adapted
some of our central results, such as the formulation of the
success probability as a convex program, as well as our
central theorem about the connection to hypothesis test-
ing, to this setting. There is a plethora of open questions
of operational relevance, especially concerning the power
of particular types of protocols with more restricted ac-
cess to the parametrized quantum channel, which are de-
tailed in the preceding section.

An important class of parametrized channels are uni-
tary evolutions under a given Hamiltonian. We study
this setting by establishing a closed-form expression for
the optimal minimax success probability associated to a
covariant state set, i.e. when a pure state evolves under
a given Hamiltonian and the parameter range is identical
to the recurrence time of said Hamiltonian. It is an inter-
esting question of further research if metrology protocols
that use adaptive processing with a memory system can
achieve a higher minimax success probability.

We apply this result to the traditional problem of phase
estimation using an ensemble of spin- 12 particles. This is
one of the most basic, but still technologically impor-
tant, applications of quantum metrology. The closed-
form expression we derive for the optimal minimax suc-
cess probability allows us to characterize the optimal
probe state through a foundational result of Slepian [98]
and to compute the optimal asymptotic rate achievable
via entangled probe states. It also facilitates numerical
experiments for up to n = 1000 particles that we use to
compare different kinds of probe states in terms of the
achievable minimax success probability and minimax es-
timation tolerance. We observe that reasonable guesses
for good probe states, like the Holland-Burnett state or a
Gaussian profile do only coincide with the optimal state
in certain limits. The GHZ state is a poor probe state
this global estimation task because its period is much
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shorter than the whole parameter range. Another out-
come of our numerical experiments was that there seem
to be settings where the quantum Cramér-Rao bound
faithfully predicts the optimal minimax estimation toler-
ance – in our case in the limit of many i.i.d. copies of the
optimal probe state when the success probability is fixed
at the probability that a normally distributed random
variable is within one standard deviation of the mean.

The observation that the quantum Cramér-Rao bound
can faithfully predict finite-sample performance is per-
haps surprising, given that we could expect the finite-
sample estimation tolerance to deviate significantly from
the optimal estimator variance, whose operational signif-
icance only appears in the many-sample regime. Indeed,
there is much fine print to this observation – the phase
estimation setting is highly regular and we analyzed it in
the pure state setting where many information measures
collapse into the quantum Fisher information. It nev-
ertheless proves that the quantum Fisher information,
which serves as a proxy for the single-shot distinguisha-
bility of neighboring quantum states ρ(t) and ρ(t + dt),
is likely to still be relevant in some finite-sample estima-
tion scenarios. Theorem 18 provides a specific connection
between the optimal estimation error tolerance and the
quantum Fisher information which involves the presence
of additional error terms. Quantifying the magnitude of
these error terms in various settings is likely to provide
clarity onto the regimes where the optimal estimation
tolerance is well approximated by the inverse square root
of the quantum Fisher information.

Our work reinforces the value of an operational ap-
proach to fundamental questions in quantum metrology,
especially in the finite-sample regime which is increas-
ingly relevant for current and near-term quantum tech-
nologies. The foundations of our approach are formal-
ized in our framework of probably approximately cor-
rect (PAC) metrology. Furthermore, the newly reinvigo-

rated connection between quantum metrology and quan-
tum information theory offers exciting opportunities for
progress in metrology using advanced techniques devel-
oped in quantum information theory, for instance, the use
of matrix analysis and convex optimization to character-
ize quantum information entropy measures. Contrary to
quantum metrology in the standard many-sample regime,
where many fundamental questions are already answered,
our operational approach to quantum metrology finite-
sample regime offers a plethora of intriguing questions
and research directions with the potential of uncovering
new practical estimation procedures with increased accu-
racy in quantum sensors and quantum clocks.
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I. RELATION TO PRIOR ART

Because of its technological importance, quantum metrology is a very important subfield of quantum information
theory. Most works in the literature focus on the asymptotic theory of local estimation centered around the quantum
Fisher information – a good overview can be found in Ref. [118]. In this work, we establish an inherently single-shot
characterization of quantum metrology via an operational characterization of the success probability of parameter
estimation. From this characterization, we establish a coherent framework to quantify the quality of quantum metrol-
ogy protocols by analyzing the success probability, the tolerance and the sample complexity. We develop a deep
understanding of these quantities through analytical bounds and numerical experiments.

Due to the prominent role of quantum metrology in the field of quantum information science, it comes as no surprise
that parts of our definitions and some analytical results concerning those have already appeared in the literature. In
the following, we exemplify how our work goes well beyond the prior art by giving a detailed account of the similarities
and differences between our results and the results already found in the literature.

In Ref. [43], the author also defines a notion of success probability with a given tolerance similar to Definition 1.
They study the properties of consistent protocols that ensure that the success probability, asymptotically, approaches
unity for all nonzero tolerances. For those protocols, a large-deviation analysis where the number of samples is finite
but still assumed large is performed. This allows the author to bound the local curvature of the asymptotic rate
defined in Eq. (48) of the main text. In our work, we go beyond this result by establishing bounds that hold in the
single-shot setting and that we then use to establish bounds on the asymptotic rate that hold for fixed tolerance δ
and that at the same time give tighter constraint on its local curvature (see Section VIIH).

Refs. [44, 45, 48] contain what is essentially the multi-parameter generalization of Ref. [43] to the multi-parameter
setting, with quantum state tomography as the most prominent application. It is a common feature of all these works
that they assume the sequence of quantum measurements associated with the different numbers of possible copies of
the state to be fixed. This allows the authors to make good use of tools from classical estimation theory. Especially
in Ref. [49], the author analyzes the scaling of the tolerance for a fixed success probability when a measurement is
fixed and a maximum-likelihood estimate is performed. This can be seen as studying a particular prediction rule as
introduced in Section III B. We wish to emphasize that all our results except for the lower bound on the asymptotic
rate and the developments of Section III B pertain to the case where measurements are not fixed a priori but the
optimal measurement can be chosen.

The setting of fixed measurements (compare Section III B) was also studied in Ref. [55]. There, the authors fixed
on the question if there exists a measurement that is admissible in a estimation-theoretical sense, i.e., if there is a
measurement basis that works equally well for all possible values of the underlying parameter.

The optimal achievable tolerance was also studied in Ref. [19, 46]. The authors there studied parametrized quantum
states as classical-quantum states, similar to what we use in Corollary 16 to relate the success probability of quantum
metrology to the conditional min-entropy.

The authors of Ref. [50] also put forth a definition similar to the minimax tolerance of Definition 2, referring
to it as “inaccuracy”. They furthermore obtain a lower bound on the minimax tolerance by making a particular
multi-hypothesis testing reduction. Their lower bound, however, is limited by its dependence on the dimension of the
underlying quantum systems.

Parameter estimation of quantum channels using the Fisher information has been considered in Refs. [79, 119–126].
We note that while in some of these works the number of channel uses is finite, the estimation strategies are still
evaluated using the quantum Fisher information. In this work, on the other hand, we evaluate strategies for quantum
channel parameter estimation using our inherently single-shot success probability.

Phase estimation, as studied in Section XI of the main text, is the generally most-studied application of quantum
metrology. It is an instance of a covariant estimation problem whose study dates back to the foundational works
of Holevo and Helstrom, with important contributions from Belavkin and Maslov [23, 62, 83, 127]. Already in these
works, it has been shown that covariant measurements are optimal for covariant estimation problems, but not neces-
sarily which covariant measurement. The authors of Ref. [87] have shown that the pretty good measurement is optimal
both for symmetric multi-hypothesis testing as well as covariant estimation with a maximum likelihood approach. In
Section XI, we extend this result by showing that the pretty good measurement also achieves the optimal minimax
tolerance in the case of covariant estimation with pure states.

We note that our study of phase estimation goes well beyond these results, as it also covers the single-shot regime
and as we also give results on the optimal minimax tolerance of phase estimation. Our study of phase estimation
has novel results valid in the single-shot regime and gives explicit bounds on the optimal asymptotic tolerance. Our
results on the asymptotic rate (Theorem 25) do however overlap significantly with prior work of Ref. [53]. The authors
establish the distributions of measurement outcomes that can be realized asymptotically in phase estimation and build
on the continuous version of the work of Slepian and Pollak [128] to claim the asymptotic rate of Theorem 25. The
authors of Ref. [53] did not prove the required positivity of the DPSS of zeroth order necessary for such a claim, as
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such we filled a small gap in their proof. Furthermore, Refs. [34, 93, 97, 129] have also went beyond the asymptotic
regime and considered the phase estimation problem from both the local and global perspectives.

Another approach to non-asymptotic metrology was studied in Refs. [129, 130]. The authors explicitly evaluate the
mean-squared error for phase estimation problems with a small but increasing finite number of independent repetitions
of a single-repetition estimation scheme, and they examine its convergence to the Cramér-Rao bound as the number
of repetitions increases. Similarly, in Ref. [35], the authors consider a finite number of independent repetitions of
a single-repetition estimation scheme, but they also develop a Cramér-Rao-like bound on the mean-squared error
that applies to biased estimators. Notably, in these works, the estimation performance is evaluated using the mean-
squared error [129, 130] and the quantum Fisher information [35], both of which are asymptotic quantities, while
in this work our estimation procedure is evaluated using the inherently single-shot δ-accurate estimation success
probability presented in Definition 1.

It is worth mentioning that Ref. [51] also uses a reduction of the parameter estimation problem to hypothesis
testing, but it does so in a different way than in our work. In particular, in Ref. [51], the author defines a quantum
version of the Ziv-Zakai bound from classical estimation theory, which provides a bound on the mean-squared error,
in terms of binary hypothesis tests. The quantum Ziv-Zakai bound is then formulated in terms of the optimal binary
symmetric hypothesis testing error probability. While the quantum Ziv-Zakai bound can improve upon the quantum
Cramér-Rao bound in the regime of finite samples [129], it is still hampered by the fact that hypothesis testing is
used to bound an inherently asymptotic quantity. Starting from the inherently operational single-shot definition of
the success probability allows us to develop a way stronger connection to hypothesis testing, as evident in Section IV.

Further work on continuous hypothesis testing includes Refs. [131, 132]. The “continuous” in these works actually
refers to measuring the (unknown) system at different points in time and then deciding which among two possible
states the system was in initially, or about deciding among two possibilities for the dynamics of the system. However,
notably, in Ref. [131] (Section IV), the authors already allude to a continuous version of quantum hypothesis testing
as we view it.

II. THE CRAMÉR-RAO BOUND IN THE PRESENCE OF FINITE SAMPLES

Here, we review how the operational relevance of the Cramér-Rao bound might be compromised in the regime where
limited data is available. Consider a one-parameter family of states ρ(t). Suppose we know that the true value t of
the parameter is close to some value t0. We seek an observable T that reveals the true value t in the neighborhood
of t0 in its expectation value, i.e. ⟨T ⟩ρ(t0+dt) = t0 + dt + O(dt2). The observable T serves as estimator for the true
parameter. A formulation of the Cramér-Rao bound states that the minimal variance achieved by such an estimator
is the inverse of the quantum Fisher information,

min
T

⟨(T − t0)
2⟩ρ(t0) =

1

F(ρ(t0))
, (120)

where the quantum Fisher information F(ρ(t)) is defined as F(ρ(t)) := Tr[ρ(t)L2], where the SLD operator L is a
solution to the equation (ρ(t)L+ Lρ(t))/2 = ∂tρ(t).
The estimation strategy considered by the Cramér-Rao bound requires the estimation of the expectation value of the

corresponding observable T . In practice, this requires repeated measurements of T and averaging the corresponding
individual outcomes. However, in the presence of limited data, an accurate estimation of the expectation value might
require a large amount of data. In the following, we review such a situation. In such a setting, the fundamental
accuracy limits might be fundamentally different than the one predicted by the Cramér-Rao bound.

Consider the following situation detailed in Refs. [25, 26]. Let ω > 0, then the one-parameter family of qubit states
ρ(t) and the derivative ∂tρ(t) are given as

ρ(t) =

(
cos2(ωt/2) 0

0 sin2(ωt/2)

)
, ∂tρ(t) = −ω

2
sin(ωt)

(
1 0
0 −1

)
. (121)

This evolution actually induces a discontinuity in the quantum Fisher information: As shown in Ref. [25], the quantum
Fisher information F(ρ(t)) is

F(ρ(t)) =

{
0 if ωt = mπ, m ∈ Z,
ω2 otherwise.

(122)

Now consider the regime where t0 ≈ 0, t0 ̸= 0. According to the Cramér-Rao bound, it is possible to estimate the value
of t close to t0 with optimal sensitivity 1/ω2 with a suitable observable. As computed e.g. in Ref. [11] [Appendix H.2],
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the optimal observable in question is

T = t0I+
1

ω

(− tan(ωt0/2) 0
0 1

tan(ωt0/2)

)
. (123)

We can check indeed that

Tr[Tρ(t0 + dt)] = t0 + dt+O(dt2) . (124)

It is, however, instructive to write out the expectation value as a sum of two terms, one associated with each outcome
of a measurement of T . With t = t0 + dt, the contributions to Tr[Tρ(t)] are, with Tj = ⟨j|T |j⟩ − t0,

T0⟨0|ρ(t)|0⟩ = cos2(ωt/2)
1

ω

(
− tan(ωt0/2)

)
(125)

= − 1

ω

(
cos2(ωt0/2)−

ω

2
dt sin(ωt0) +O(dt2)

)
tan(ωt0/2)

= − 1

2ω
sin(ωt0) + dt sin2(ωt0/2) +O(dt2) ,

T1⟨1|ρ(t)|1⟩ = sin2(ωt/2)
1

ω

1

tan(ωt0/2)
(126)

=
1

ω

(
sin2(ωt0/2) +

ω

2
dt sin(ωt0) +O(dt2)

)
1

tan(ωt0/2)

=
1

2ω
sin(ωt0) + dt cos2(ωt0/2) +O(dt2) .

Indeed, Tr[Tρ(t)] = t0 + T0⟨0|ρ(t)|0⟩ + T1⟨1|ρ(t)|1⟩ = t0 + dt + O(dt2). However, as t0 → 0, t0 ̸= 0, we see that
the value T1 diverges while the corresponding probability ⟨1|ρ(t0)|1⟩ vanishes. It turns out that that large term
times a tiny term conspire to provide just exactly the required difference in the expectation value so that we have
Tr[Tρ(t0 +dt)] ≈ t0 +dt. In the regime where limited data is available, the outcome |1⟩ is never observed, because it
occurs too rarely. As a consequence, only the first outcome is observed and the reported estimate for the parameter,
computed from the averages of the samples of the outcomes of T , is t0 − [tan(ωt0/2)]/ω. This value does not depend
on dt; therefore, the estimation procedure fails to accurately reveal the value of dt to the desired accuracy 1/ω2. The
approach presented in this work aims to tackle settings such as the one above, where the estimation procedure must
rely on a limited number of samples.

III. OPTIMIZATION THROUGH CONVEX PROGRAMMING

In this section, we consider the optimized success probabilities and show that we can cast them into the form of
convex semi-infinite problems (SIPs) [56, 133, 134]. These represent continuous analogues of semi-definite programs,
which have to be discretized to be solved on a computer. We elaborate on this point in Section III E.

Throughout this section, we make use of the following standard forms of primal and dual semi-definite programs [17]:

maximize Tr[AX]

subject to X ≥ 0,

Φ[X] ≤ B.

minimize Tr[BY ]

subject to Y ≥ 0,

Φ†[Y ] ≥ A,

(127)

where A and B are Hermitian operators and Φ is a Hermiticity-preserving linear map. The convex semi-infinite
programs that we consider in this work have the form of these semi-definite programs, with either given tuple
(A,B,Φ) ≡ (A(t), B(t),Φ(t)), the optimization variables X ≡ X(t) and Y ≡ Y (t), or both, being parameterized
by t ∈ R. As in the theory of semi-definite programs [58], the notions of (weak and strong) duality and Slater’s
conditions carry over to such convex SIPs [134, 135], and we make use these concept throughout in what follows.

A. Measurement optimization

It is quite straightforward that the optimal measurement in the Bayesian case can be determined using a convex
program.
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Proposition 1 (Bayesian measurement optimization). For a given set of states ρ(t) with prior distribution µ(t) and
a fixed window function w(τ), the optimal success probability η∗(w, µ, ρ) defined in Eq. (15) can be computed using
the convex problem

maximize
∫
dt Tr[(w ∗ [µ · ρ])(t)Q(t)]

subject to Q(t) ≥ 0,∫
dtQ(t) = I.

(128)

There is no duality gap and the associated dual program is

minimize Tr[X]

subject to X ≥ 0,

X ≥ (w ∗ [µ · ρ])(t) ∀ t.
(129)

Notably, the definition of the success probability arising from the dual coincides with a continuous version of the
“least upper bound” for state discrimination [16] which was also shown to be optimal in this case [61].

Before proving Proposition 1, let us make the following definitions. For a function A : R → P(H), t 7→ A(t), where
P(H) is the set of positive semi-definite operators acting on a Hilbert space H, and for a POVM {Q(t) : t ∈ R}, we
let

G(A,Q) :=

∫
dtTr[Q(t)A(t)], (130)

Gmax(A) := sup
Q(t)≥0∫
dt Q(t)=I

G(A,Q). (131)

From this, we see that the Bayesian success probability is given by

η∗(w, µ, ρ) = Gmax(w ∗ (µ · ρ)). (132)

The statement of Proposition 1 then follows from the following lemma about Gmax.

Lemma 29. For a function A : R → P(H), t 7→ A(t), the function Gmax(A) can be computed via a convex problem
such that its dual formulation results in

Gmax(A) = inf{Tr[Y ] : Y ≥ 0, Y ≥ A(t) ∀ t ∈ R} = inf
σ≥0

Tr[σ]=1

sup
t∈R

λmax(σ
− 1

2A(t)σ− 1
2 ), (133)

where λmax denotes the largest eigenvalue.

Remark 30. Note that, because λmax(X) = ∥X∥∞ for all X ∈ P(H), we equivalently have

Gmax(A) = inf
σ≥0

Tr[σ]=1

sup
t∈R

∥σ− 1
2A(t)σ− 1

2 ∥∞. (134)

Proof. By comparing the definition of Gmax(A) in (133) with the primal convex problem in (127), we immediately see
that Gmax(A) is characterized by a convex problem based on the following identifications:

X :=

∫
dt |t⟩⟨t| ⊗Q(t), (135)

A :=

∫
dt |t⟩⟨t| ⊗A(t), (136)

Φ[X] :=

(∫
dt Q(t)

−
∫
dt Q(t)

)
, (137)

B :=

(
I
−I

)
. (138)

Here, {|t⟩}t∈R refers to the (continuous) orthonormal basis of position-operator eigenstates, satisfying ⟨t|t′⟩ = δ(t− t′)
for all t, t′ ∈ R, where δ(t− t′) is the Dirac delta function evaluated on t− t′.
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In order to obtain the dual convex problem, we simply determine the adjoint of the map Φ, as defined by the
relation

Tr[Y Φ[X]] = Tr[Φ†[Y ]X]. (139)

Now, because B is block-diagonal, it suffices to let the dual variable be of the form

Y =

(
Y1

Y2

)
, (140)

such that Y1 ≥ 0 and Y2 ≥ 0. We then find that

Tr[Y Φ[X]] = Tr

[(
Y1

Y2

)(∫
dt Q(t)

−
∫
dt Q(t)

)]
(141)

= Tr

[
(Y1 − Y2)

(∫
dt Q(t)

)]
= Tr

[(∫
dt |t⟩⟨t| ⊗ (Y1 − Y2)

)(∫
dt |t⟩⟨t| ⊗Q(t)

)]
,

which means that we can identify Φ†[Y ] as

Φ†[Y ] =

∫
dt |t⟩⟨t| ⊗ (Y1 − Y2). (142)

The dual convex problem is thus

minimize Tr[Y1 − Y2]

subject to Y1 ≥ 0, Y2 ≥ 0,∫
dt |t⟩⟨t| ⊗ (Y1 − Y2) ≥

∫
dt |t⟩⟨t| ⊗A(t).

(143)

Now, the final constraint implies that Y1 − Y2 ≥ A(t) for all t. Furthermore, because only Y1 − Y2 appears in the
objective function and in the constraints, and because A(t) ≥ 0 for all t, by a change of variable the dual optimization
above simplifies to the optimization problem

minimize Tr[Y ]

subject to Y ≥ 0,

Y ≥ A(t) ∀ t.
(144)

Finally, because strong duality holds, we have that the primal and dual convex problems have the same optimal value,
which concludes the proof of the first equality in (133).

To prove the second equality in (133), we make another change of variable. For the convex problem in (144), we
let Y ≡ xσ, such that x ≥ 0, σ ≥ 0 and Tr[σ] = 1. Then, Tr[Y ] = x, and the convex problem in (144) becomes

minimize x

subject to x ≥ 0,

xσ ≥ A(t) ∀ t,
σ ≥ 0, Tr[σ] = 1.

(145)

Next, observe that we can restrict the optimization to density operators σ that have full rank, such that the inequality
xσ ≥ A(t) is equivalent to xI ≥ σ− 1

2A(t)σ− 1
2 . Furthermore, because σ− 1

2A(t)σ− 1
2 is positive semi-definite for all t,

optimizing with respect to x ≥ 0 is equivalent to optimizing with respect to all x ∈ R. Therefore, because

inf{x : x ∈ R, xI ≥ H} = λmax(H), (146)

where H is an arbitrary Hermitian operator and λmax(H) is the largest eigenvalue of H, we find that the convex
problem in (145) is equivalent to

minimize supt∈R λmax(σ
− 1

2A(t)σ− 1
2 )

subject to σ ≥ 0, Tr[σ] = 1.
(147)

This concludes the proof of the second equality in (133).
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We can also determine the optimal measurement in the minimax setting using a convex program.

Proposition 2 (Minimax measurement optimization). For a given set of states ρ(t) and a fixed window function
w(τ), the optimal minimax success probability η∗(w, ρ) defined in Definition 1 can be computed using the following
convex program:

maximize η

subject to Q(t) ≥ 0, η ∈ [0, 1],∫
dtQ(t) = I,

Tr[ρ(t)(w ∗Q)(t)] ≥ η ∀ t.

(148)

There is no duality gap and the associated dual program is

minimize Tr[X]

subject to X ≥ 0, µ(t) ≥ 0,∫
dt µ(t) = 1,

X ≥ µ(t)(w ∗ ρ)(t) ∀ t.

(149)

Proof. Comparing the primal problem in (148) with the primal problem in the left-hand side of (127), we can make
the following identifications:

X ≡
(
η ∫

dt |t⟩⟨t| ⊗Q(t)

)
, (150)

A ≡
(
1

0

)
, (151)

Φ[X] ≡

∫ dt |t⟩⟨t| (η − Tr[ρ(t)(w ∗Q)(t)]) ∫
dt Q(t)

−
∫
dt Q(t)

 , (152)

B ≡

0
I
−I

 . (153)

This establishes that the optimal minimax success probability is characterized by a convex problem.
Now, for the dual, because the operator B defined above is block-diagonal, it suffices to let the dual variable be of

the form

Y =

∫ dt µ(t)|t⟩⟨t|
Y1

Y2

 , (154)

where µ(t) ≥ 0 for all t, and Y1, Y2 ≥ 0. Then, the adjoint of the map Φ defined above is given by the relation

Tr[Y Φ[X]] = Tr[Φ†[Y ]X]. (155)

In particular,

Tr[Y Φ[X]] =

∫
dt µ(t) (η − Tr[ρ(t)(w ∗Q)(t)]) +

∫
dt Tr[(Y1 − Y2)Q(t)] (156)

= η

∫
dt µ(t)−

∫
dt µ(t) Tr[ρ(t)(w ∗Q)(t)] +

∫
dt Tr[(Y1 − Y2)Q(t)].

Now, ∫
dt µ(t) Tr[ρ(t)(w ∗Q)(t)] (157)

=

∫
dt dt′ Tr[µ(t)ρ(t)w(t− t′)Q(t)]

=

∫
dt′ Tr

[(∫
dt µ(t)ρ(t)w(t− t′)

)
Q(t′)

]
=

∫
dt′ Tr[(w ∗ (µ · ρ))(t′)Q(t′)],
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where to obtain the last line we have used the symmetry of the window function, i.e., w(t− t′) = w(t′− t). Therefore,

Tr[Y Φ[X]] = η

∫
dt µ(t) +

∫
dt Tr[(Y1 − Y2 − (w ∗ (µ · ρ))(t))Q(t)], (158)

which implies that the adjoint of Φ is given by

Φ†[Y ] =

(∫
dt µ(t) ∫

dt |t⟩⟨t| ⊗ (Y1 − Y2 − (w ∗ (µ · ρ))(t)

)
. (159)

The dual convex problem is therefore

minimize Tr[Y1 − Y2]

subject to Y1 ≥ 0, Y2 ≥ 0, µ(t) ≥ 0 ∀ t,∫
dt µ(t) ≥ 1,∫
dt |t⟩⟨t| ⊗ (Y1 − Y2 − (w ∗ (µ · ρ))(t)) ≥ 0.

(160)

The final constraint is equivalent to Y1 − Y2 ≥ (w ∗ (µ · ρ))(t) for all t. Furthermore, because only Y1 − Y2 appears
in the objective function and in the constraints, and because (w ∗ (µ · ρ))(t) ≥ 0 for all t, the convex problem above
simplifies to the following:

minimize Tr[Y ]

subject to Y ≥ 0, µ(t) ≥ 0 ∀ t,∫
dt µ(t) ≥ 1,

Y ≥ (w ∗ (µ · ρ))(t) ∀ t.

(161)

Finally, let us apply the complementary slackness condition [17] Φ†[Y ]X = AX. Based on the definitions above,
this implies that η

∫
dt µ(t) = η, i.e.,

∫
dt µ(t) = 1. Therefore, we obtain

minimize Tr[Y ]

subject to Y ≥ 0, µ(t) ≥ 0 ∀ t,∫
dt µ(t) = 1,

Y ≥ (w ∗ (µ · ρ))(t) ∀ t,

(162)

as claimed. It is straightforward to verify strong duality, so that the primal and dual programs have the same optimal
value.

B. Probe optimization

In certain applications, especially considering real experiments where capabilities can be limited or pre-existing
experiments should be used, the optimization of a probe state for fixed measurement Q(t) and encoding channel N (t)
needs to be considered. Note that fixing a measurement corresponds to fixing both the quantum part and the classical
post-processing. In this case, the optimization takes a particularly simple form. Here, ∥.∥∞ denotes the infinity or
spectral norm.

Proposition 3 (Probe state optimization). For a given set of encoding channels N (t) with prior probabilities µ(t),
a fixed measurement Q(t) and a fixed window function w(τ), the optimal success probability optimized over all probe
states is given by

η∗(w, µ,N , Q) =

∥∥∥∥∫ dµ(t)N †(t)[(w ∗Q)(t)]

∥∥∥∥
∞

(163)

and is achieved for the pure eigenstate of the operator
∫
dµ(t)N †(t)[(w∗Q)(t)] corresponding to the largest eigenvalue.

Similarly,

η∗(w,N , Q) = min
t

∥∥N †(t)[(w ∗Q)(t)]
∥∥
∞ , (164)

which is achieved for the pure eigenstate of the operator mintN †(t)[(w∗Q)(t)] corresponding to the largest eigenvalue.
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N (t) N (t) N (t) N (t)
ρ0 D1 D2 D3 Q(t)

A1 A2 A3 A4B1 B2 B3 B4

R1 R2 R3 R4

t̂

FIG. 10. Depiction of an adaptive procedure for estimating the parameter t encoded in a quantum channel N (t). The number
of uses of the channel here is n = 4.

Proof. Writing out the objective of the optimization yields

η(w, µ,N (·)[ρ0], Q) =

∫
dµ(t) Tr[N (t)[ρ0](w ∗Q)(t)] (165)

= Tr

[
ρ0

∫
dµ(t)N †(t)[(w ∗Q)(t)]

]
which is clearly maximized over quantum states ρ0 for the largest eigenstate of

∫
dµ(t)N †(t)[(w ∗Q)(t)], as the latter

is a positive semi-definite operator by construction. This proves the statement for the Bayesian case. The minimax
case follows straightforwardly by noting that taking the infimum over priors will yield the minimum.

From the above proposition, we learn that the optimal probe states can always be assumed to be pure states, mixed
states can only be admissible if the operators in Eqs. (163) and (164) have a degenerate subspace corresponding to
the largest eigenvalue.

C. Optimization with respect to strategies with definite causal order

Typically, metrological problems are defined by a parametrized physical process modeled as a quantum channel
N (t) and an optimal combination of probe state and measurement needs to be found to best extract the parameter t.
This necessitates a joint optimization over both variables. Applying such an optimization naively, i.e., by optimizing
over both variables in the expression

η∗(w, µ,N ) =

∫
dµ(t) Tr[N (t)[ρ0](w ∗Q)(t)], (166)

does not yield a semi-definite program, as it is quadratic in the variables ρ0 and Q(t). Another possible alternative
would be to exploit the result of Proposition 3 which gives the optimal probe for any measurement, and optimize over
the measurement, i.e.,

η∗(w, µ,N ) = sup

{∥∥∥∥∫ dµ(t)N †(t)[(w ∗Q)(t)]

∥∥∥∥
∞

∣∣∣∣ Q(t) ≥ 0,

∫
dtQ(t) = I

}
. (167)

This, however, corresponds to maximizing a convex function, and hence is not a convex optimization problem.
The above arguments might suggest that performing a joint optimization is impossible; however, we can circumvent

these obstacles by a change of perspective. This is because the repeated use of a quantum channel, possibly in an
adaptive way as shown in Fig. 10, can be described by a quantum comb [20], also known as a quantum strategy [21].
In the following, we exploit the fact that the set of quantum combs is convex and formulate a convex problem for the
joint optimization of probe state and measurement.

To see how this works, before describing the general case, let us consider the example described above, with an
input state ρ0 and a measurement t 7→ Q(t), both of which we wish to optimize jointly. This scenario corresponds to
the adaptive strategy depicted in Fig. 10 with n = 1. The probability of the outcome t′ of the measurement, when
the channel is N (t), is given by

Tr[QRB(t
′)NA→B(t)[ρ

0
RA]], (168)

where A and B are the input and output systems, respectively, of the channel, and R is a memory system of arbitrary

dimension. Let us write the output state NA→B(t)[ρ
0
RA] in terms of the Choi representation C

N (t)
AB of N (t) as

follows [17]:

NA→B(t)[ρ
0
RA] = TrA[(ρ

TA

RA ⊗ IB)(IR ⊗ C
N (t)
AB )]. (169)
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E1 E2 E3 E4
A1

B1 A2 B2 A3 B3 A4

R1 R2 R3

B4

FIG. 11. A general quantum comb with n = 4 elements. The input and output systems are Aj and Bj , respectively, and the
memory systems are Rj .

Therefore, the probability in (168) can be written as Tr[PTAB(t
′)C

N (t)
AB ] ≡ PAB(t

′) ⋆ C
N (t)
AB , where the “⋆” refers to the

link product [20] and

PAB(t
′) := TrR[(ρ

0
RA ⊗ IB)(IB ⊗QTA

RA(t
′)]. (170)

Now, because t 7→ Q(t) is a POVM, we find that∫
dt PAB(t) = TrR[ρ

0
RA]⊗ IB . (171)

In other words, for every state-measurement pair (ρ0RA, t 7→ Q(t)), we can construct a positive semi-definite operator
t 7→ PAB(t) such that

∫
dt PAB(t) = σA⊗ IB for some quantum state σA. The converse is also true [21] (Theorem 6),

which implies that the optimal success probability, optimized with respect to both input probe state and measurement,
can be obtained as the solution to the following convex problem (in the Bayesian setting):

maximize
∫
dt µ(t) Tr[(w ∗ PAB)(t)CN (t)

AB ]

subject to PAB(t) ≥ 0 ∀ t,∫
dt PAB(t) = σA ⊗ IB ,

σA ≥ 0, Tr[σA] = 1,

(172)

where t 7→ µ(t) is the prior probability density function. In the minimax setting, the optimal success probability can
be obtained as the solution to the following convex problem:

maximize η

subject to Tr[(w ∗ PAB)(t)CN (t)
AB ] ≥ η ∀ t,

η ∈ [0, 1],

PAB(t) ≥ 0 ∀ t,∫
dt PAB(t) = σA ⊗ IB ,

σA ≥ 0, Tr[σA] = 1.

(173)

We provide a formal proof of these results, in the general context of multiple adaptive uses of the channel t 7→ N (t),
in Propositions 4 and 5 below.

A general quantum comb of length n = 4 is shown in Fig. 11. The comb is simply a concatenation of quantum
channels Ej , with input systems Aj , output systems Bj , and memory systems Rj . We refer to the comb using the

notation E [n]. It can be shown that the Choi representation CE[n]

An
1B

n
1
of the comb satisfies the following constraints:

TrBn

[
CE[n]

An
1B

n
1

]
= CE[n−1]

An−1
1 Bn−1

1
⊗ IAn , (174)

TrBk

[
CE[k]

Ak
1B

k
1

]
= CE[k−1]

Ak−1
1 Bk−1

1

⊗ IAk
∀ k ∈ {2, 3, . . . , r − 1}, (175)

TrB1

[
CE[1]

A1B1

]
= IA1 . (176)

These constraints tell us that by iteratively tracing out the output systems we obtain Choi representations of the

same comb but with one fewer round each time. Conversely, every set {C(k)

Ak
1B

k
1
}nk=1 of positive semi-definite operators

satisfying the constraints in (174)–(176) gives us Choi representations corresponding to a quantum comb with length
n; see Ref. [21] (Theorem 6). Note that these operators do not give us the Choi representations of the channels Ej
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themselves, only the Choi representations of the combs obtained by concatenating the channels in the manner shown
in Fig. 11.

Following Ref. [21], for every n ∈ {1, 2, . . . }, we define the set Sn(A
n
1 , B

n
1 ) as

Sn(A
n
1 , B

n
1 ) :=

{
C

(n)
An

1B
n
1
: C

(n)
An

1B
n
1
≥ 0,TrBk

[C
(k)

Ak
1B

k
1
] = C

(k−1)

Ak−1
1 Bk−1

1

⊗ IAk
, C

(k−1)

Ak−1
1 Bk−1

1

≥ 0 ∀ k ∈ {2, 3, . . . , n},

TrB1
[C

(1)
A1B1

] = IA1
, C

(1)
A1B1

≥ 0
}
. (177)

In other words, Sn(A
n
1 , B

n
1 ) is the set of all Choi representations of length-n quantum combs with input systems

A1, A2, . . . , An and output systems B1, B2, . . . , Bn. Similarly, for the set of combs consisting of quantum state prepa-
ration at the beginning, known as co-strategies (see the red comb in Fig. 10), we let

Sn(A
n−1
1 , Bn1 ) :=

{
C

(n)

An−1
1 Bn

1

: C
(n)

An−1
1 Bn

1

≥ 0, TrBk
[C

(k)

Ak−1
1 Bk

1

] = C
(k−1)

Ak−2
1 Bk−1

1

⊗ IAk−1
,

C
(k−1)

Ak−2
1 Bk−1

1

≥ 0 ∀ k ∈ {3, 4, . . . , n}, TrB2
[C

(2)

A1B2
1
] = C

(1)
B1

⊗ IA1
, C

(1)
B1

≥ 0, TrB1
[C

(1)
B1

] = 1
}
. (178)

Now, returning to the parameter estimation problem, note that in Fig. 10, we have a concatenation of two combs:
One corresponding to the strategy itself (in red), and the other corresponding to the channels N (t) containing the
parameter to be estimated. The Choi representation of the latter is simply a tensor product

C
N (t)[n]

An
1B

n
1

=

n⊗
j=1

C
N (t)
AjBj

, (179)

because the channel uses are independent of each other. Using this, we can obtain the optimal success probability
as the following primal-dual pair of convex problems, concretely semi-infinite problems, in both the Bayesian and
minimax settings. (We refer to Ref. [136] for a similar result.)

Proposition 4 (Bayesian optimization of adaptive causal strategies). Let C
N (t)[n]

An
1B

n
1

be the Choi representation of the

comb N (t)[n] corresponding to n uses of the paramterized quantum channel t 7→ N (t), as shown in Fig. 10. Also, let
t 7→ µ(t) be a prior probability density function. Then, the optimal Bayesian strategy for estimating the parameter t
can be determined using the convex problem

maximize

∫
dt µ(t) Tr[PAn

1B
n
1
(t)(w ∗ CN [n]

An
1B

n
1
)(t)]

subject to PAn
1B

n
1
(t) ≥ 0 ∀ t,∫

dt PAn
1B

n
1
(t) = C

(n)

An
1B

n−1
1

⊗ IBn
,

C
(n)

An
1B

n−1
1

∈ Sn(B
n−1
1 , An1 ),

(180)

where the variable C
(n)

An
1B

n−1
1

represents a length-n co-strategy quantum comb, excluding the measurement, (see the red

comb in Fig. 10). The variables PAn
1B

n
1
(t) correspond to the measurement.

The convex program dual to the one above is

minimize λ

subject to λ ≥ 0,

λY
(n)
An

1B
n
1
≥ µ(t)

(
w ∗ CN (t)[n]

An
1B

n
1

)
(t) ∀ t,

Y
(n)
An

1B
n
1
∈ Sn(A

n
1 , B

n
1 ),

(181)

where the optimization is with respect to λ ≥ 0 and length-n quantum combs represented by the operator Y
(n)
An

1B
n
1
.

Furthermore, strong duality holds, so that the primal and dual problems have the same optimal value.
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Proof. Starting with the primal problem in (180), we can cast it into the standard form in (127) as

X =

(∫
dt |t⟩⟨t| ⊗ PAn

1B
n
1
(t)

)
⊕
(

n∑
k=1

|k⟩⟨k| ⊗ C
(k)

Ak
1B

k−1
1

)
, (182)

A =

(∫
dt |t⟩⟨t| ⊗ µ(t)(w ∗ CN [n]

An
1B

n
1
)(t)

)
⊕
(

n∑
k=1

|k⟩⟨k| ⊗ 0

)
, (183)

Φ[X] = |0, 0⟩⟨0, 0| ⊗
(∫

dt PAn
1B

n
1
(t)− C

(n)

An
1B

n−1
1

⊗ IBn

)
+ |0, 1⟩⟨0, 1| ⊗

(
−
∫

dt PAn
1B

n
1
(t) + C

(n)

An
1B

n−1
1

⊗ IBn

)
+ |1, 0⟩⟨1, 0| ⊗ TrA1

[C
(1)
A1

] + |1, 1⟩⟨1, 1| ⊗ (−TrA1
[C

(1)
A1

])

+

n∑
k=2

|k, 0⟩⟨k, 0| ⊗
(
TrAk

[C
(k)

Ak
1B

k−1
1

]− C
(k−1)

Ak−1
1 Bk−2

1

⊗ IBk−1

)
+

n∑
k=2

|k, 1⟩⟨k, 1| ⊗
(
−TrAk

[C
(k)

Ak
1B

k−1
1

] + C
(k−1)

Ak−1
1 Bk−2

1

⊗ IBk−1

)
,

B = |0, 0⟩⟨0, 0| ⊗ 0 + |0, 1⟩⟨0, 1| ⊗ 0 + |1, 0⟩⟨1, 0| ⊗ 1 + |1, 1⟩⟨1, 1| ⊗ (−1) (184)

+

n∑
k=2

|k, 0⟩⟨k, 0| ⊗ 0 +

n∑
k=2

|k, 1⟩⟨k, 1| ⊗ 0.

Now, without loss of generality, we can let the dual variable Y have the block-diagonal form

Y = |0, 0⟩⟨0, 0| ⊗ Y
(1)
An

1B
n
1
+ |0, 1⟩⟨0, 1| ⊗ Y

(2)
An

1B
n
1
+ |1, 0⟩⟨1, 0| ⊗ α+ |1, 1⟩⟨1, 1| ⊗ β

+

n∑
k=2

|k, 0⟩⟨k, 0| ⊗ C̃
(k,0)

Ak−1
1 Bk−1

1

+

n∑
k=2

|k, 1⟩⟨k, 1| ⊗ C̃
(k,1)

Ak−1
1 Bk−1

1

(185)

From this, we obtain

Tr[Y Φ[X]] = Tr

[(∫
dt PAn

1B
n
1
(t)

)(
Y

(1)
An

1B
n
1
− Y

(2)
An

1B
n
1

)]
(186)

+ Tr
[(
C

(n)

An
1B

n−1
1

⊗ IBn

)(
−Y (1)

An
1B

n
1
+ Y

(2)
An

1B
n
1

)]
+TrA1 [C

(1)
A1

](α− β)

+

n∑
k=2

Tr
[
TrAk

[
C

(k)

Ak
1B

k−1
1

] (
C̃

(k,0)

Ak−1
1 Bk−1

1

− C̃
(k,1)

Ak−1
1 Bk−1

1

)]
+

n∑
k=2

Tr
[(
C

(k−1)

Ak−1
1 Bk−2

1

⊗ IBk−1

)(
−C̃(k,0)

Ak−1
1 Bk−1

1

+ C̃
(k,1)

Ak−1
1 Bk−1

1

)]
= Tr

[(∫
dt |t⟩⟨t| ⊗ PAn

1B
n
1
(t)

)(∫
dt |t⟩⟨t| ⊗

(
Y

(1)
An

1B
n
1
− Y

(2)
An

1B
n
1

))]
+Tr

[
C

(1)
A1

(
(α− β)IA1

+TrB1

[
−C̃(2,0)

A1B1
+ C̃

(2,1)
A1B1

])]
+

n−1∑
k=2

Tr
[
C

(k)

Ak
1B

k−1
1

((
C̃

(k,0)

Ak−1
1 Bk−1

1

− C̃
(k,1)

Ak−1
1 Bk−1

1

)
⊗ IAk

+TrBk

[
−C̃(k+1,0)

Ak
1B

k
1

+ C̃
(k+1,1)

Ak
1B

k
1

])]
+Tr

[
C

(n,0)

An−1
1 Bn−1

1

((
C̃

(n,0)

An−1
1 Bn−1

1

− C̃
(n,1)

An−1
1 Bn−1

1

)
⊗ IAn

+TrBn

[
−Y (1)

An
1B

n
1
+ Y

(2)
An

1B
n
1

])]
.
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This implies that

Φ†[Y ] =

∫
dt |t⟩⟨t| ⊗

(
Y

(1)
An

1B
n
1
− Y

(2)
An

1B
n
1

)
(187)

⊕
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1
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⊕
(
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[
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])
.

The dual problem is therefore

minimize α− β

subject to α ≥ 0, β ≥ 0, Y
(1)
An

1B
n
1
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1
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≤
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,
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1
− Y

(2)
An
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≥ µ(t)

(
w ∗ CN [n]

An
1B

n
1

)
(t) ∀ t.

(188)

It is straightforward to verify that strong duality holds, which means that the primal and dual problems have the
same optimal value.

Let us now make several simplifications to the dual optimization problem. We start with the following change of
variables:

λ ≡ α− β, (189)

Y
(k)

Ak
1B

k
1
≡ C̃

(k+1,0)

Ak
1B

k
1

− C̃
(k+1,1)

Ak
1B

k
1
, k ∈ {1, 2, . . . , n− 1}, (190)

Y
(n)
An

1B
n
1
≡ Y

(1)
An

1B
n
1
− Y

(2)
An

1B
n
1
. (191)

Then, because the operator µ(t)(w ∗ CN [n]

An
1B

n
1
)(t) is positive semi-definite for all t, we have that Y

(n)
An

1B
n
1

is positive

semi-definite. Due to the second-last constraint in the above convex problem, this implies that Y
(n−1)

An−1
1 Bn−1

1

≥ 0, which

in turn, from the third constraint in the convex problem above, implies that Y
(k)

Ak
1B

k
1
≥ 0 for all k ∈ {1, 2, . . . , n − 2},

such that finally λ ≥ 0 is also implied. Therefore, the convex problem above simplifies to

minimize λ

subject to λ ≥ 0, Y
(k)

Ak
1B

k
1
≥ 0 ∀ k ∈ {1, 2, . . . , n},

TrB1 [Y
(1)
A1B1

] ≤ λIA1
,

TrBk
[Y
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k
1
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1

⊗ IAk
∀ k ∈ {2, 3, . . . , n},

Y
(n)
An
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n
1
≥ µ(t)(w ∗ CN [n]

An
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n
1
)(t) ∀ t.

(192)

Let us now argue that the inequality constraints TrB1
[Y

(1)
A1B1

] ≤ λIA1
and TrBk

[Y
(k)

Ak
1B

k
1
] ≤ Y

(k−1)

Ak−1
1 Bk−1

1

⊗ IAk
, k ∈

{2, 3, . . . , n}, for every feasible set of variables, can be made into equality constraints, without changing the value λ

of the objective function. First, by adding an appropriate positive multiple of the identity to Y
(1)
A1B1

, we can obtain

an operator Ỹ
(1)
A1B1

≥ 0 such that Ỹ
(1)
A1B1

≥ Y
(1)
A1B1

and TrB1
[Ỹ

(1)
A1B1

] = λIA1
. Now, because P̃ ≥ P ⇒ P̃ ⊗ I ≥ P ⊗ I for

all P ≥ 0, we have that

Ỹ
(1)
A1B1
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2
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]. (193)

This implies that there exists a Q
(2)

A2
1B1

≥ 0 such that Ỹ
(1)
A1B1

⊗ IA2
= TrB2

[Y
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1B

2
1
] +Q
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1B1

. Letting

R
(2)
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2
1

:= Q
(2)

A2
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dB2

(194)
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and Ỹ
(2)

A2
1B

2
1

:= Y
(2)

A2
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2
1
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(2)
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2
1
, we have that Ỹ
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1
] = Ỹ
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. We can proceed

analogously for all k ∈ {3, 4, . . . , n}, defining new variables Ỹ
(k)
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k
1
such that Ỹ

(k)
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1B

k
1
and TrBk

[Ỹ
(k)
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] =
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⊗ IAk
. In particular, for k = n, we obtain the constraint

Ỹ
(n)
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1
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n
1
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n
1
)(t) (195)

for all t. With this change of variables, the value λ of the objective function does not change. Therefore, we have
shown that the convex problem above is equivalent to

maximize λ

subject to λ ≥ 0, Y
(k)

Ak
1B

k
1
≥ 0 ∀ k ∈ {1, 2, . . . , n},

TrB1
[Y

(1)
A1B1

] = λIA1
,

TrBk
[Y

(k)

Ak
1B

k
1
] = Y

(k−1)

Ak−1
1 Bk−1

1

⊗ IAk
∀ k ∈ {2, 3, . . . , n},

Y
(n)
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1B
n
1
≥ µ(t)(w ∗ CN [n]

An
1B

n
1
)(t) ∀ t.

(196)

Finally, let us make one more change of variables. Let Ỹ
(k)

Ak
1B

k
1
= 1

λY
(k)

Ak
1B

k
1
for all k ∈ {1, 2, . . . , n}. Then, we find that

TrB1 [Ỹ
(1)
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] = IA1 , TrBk
[Ỹ

(k)
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1B

k
1
] = Ỹ

(k−1)
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k
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⊗ IAk

for all k ∈ {2, 3, . . . , n}, and λY (n)
An

1B
n
1
≥ µ(t)(w ∗ CN [n]

An
1B

n
1
)(t) for all

t. To conclude, we have that Y
(n)
An

1B
n
1
∈ Sn(A

n
1 , B

n
1 ), based on the definition in (177), which gives us the desired dual

problem.

Proposition 5 (Minimax optimization of adaptive causal strategies). Let C
N (t)[n]

An
1B

n
1

be the Choi representation of the

comb N (t)[n] corresponding to n uses of the paramterized quantum channel t 7→ N (t), as shown in Fig. 10. Then, the
optimal minimax strategy for estimating the parameter t can be determined using the convex problem

maximize η

subject to Tr[C
N (t)[n]

An
1B

n
1

(w ∗ PAn
1B

n
1
)(t)] ≥ η ∀ t,

η ≥ 0,

PAn
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n
1
(t) ≥ 0 ∀ t,∫

dt PAn
1B

n
1
(t) = C

(n)

An
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n−1
1

⊗ IBn ,

C
(n)

An
1B

n−1
1

∈ Sn(B
n−1
1 , An1 ),

(197)

where the variable C
(n)

An
1B

n−1
1

represents a length-n quantum comb, excluding the measurement, with a quantum state

preparation at the beginning (see the red comb in Fig. 10). The variables PAn
1B

n
1
(t) correspond to the measurement.

The convex program dual to the one above is

minimize λ

subject to λ ≥ 0,

λY
(n)
An

1B
n
1
≥ µ(t)(w ∗ CN (t)[n]

An
1B

n
1

)(t) ∀ t,

Y
(n)
An

1B
n
1
∈ Sn(A

n
1 , B

n
1 ),

µ(t) ≥ 0 ∀ t,
∫
dt µ(t) = 1,

(198)

where the optimization is with respect to λ ≥ 0, probability density functions µ(t), and length-n quantum combs

represented by the operator Y
(n)
An

1B
n
1
. Furthermore, strong duality holds, so that the primal and dual programs have the

same optimal value.

The convex problems in the above proposition are the continuous analogues of the semi-definite problems for multiple
channel discrimination [20, 137, 138]. Notably, as with Proposition 2, the optimal minimax success probability can
be obtained via optimization of the Bayesian success probability with respect to all possible priors.
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Proof. The proof is analogous to the proof of Proposition 4, so we omit some of the details. First, upon inspection of
the primal problem in (197), we find that it is of the standard form of the primal problem in (127), with

X =

(∫
dt |t⟩⟨t| ⊗ PAn
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n
1
(t)

)
⊕
(
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1

)
⊕ η, (199)

A =

(∫
dt |t⟩⟨t| ⊗ 0

)
⊕
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)
⊕ 0,
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(200)

+

n∑
k=2

|k, 1⟩⟨k, 1| ⊗
(
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1B

k−1
1

] + CAk−1
1 Bk−2

1
⊗ IBk−1

)
,

B = 0⊕ |0, 0⟩⟨0, 0| ⊗ 0 + |0, 1⟩⟨0, 1| ⊗ 0 + |1, 0⟩⟨1, 0| ⊗ 1 + |1, 1⟩⟨1, 1| ⊗ (−1) (201)

+
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Now, without loss of generality, we can let the dual variable Y have the following block-diagonal form:
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This implies that

Tr[Y Φ[X]] =
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which in turn implies that
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The inequality Φ†[Y ] ≥ A, therefore, implies that the dual problem is given by
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(206)

Strong duality is straightforward to show, which implies that the optimal solution to this dual problem is equal to
the optimal solution of the primal problem.

Next, by the complementary slackness condition Φ†[Y ]X = AX, we find that
∫
dt µ(t) = 1. We can further simplify

the dual problem above via change of variables, in exactly the same way as we did in the proof of Proposition 4.
Doing so gives us the desired dual problem in the statement of the proposition.

D. Optimization with respect to strategies with indefinite causal order

In the previous section, we considered sequential/adaptive quantum metrology protocols in which every use of the
parameterized channel t 7→ N (t) is causally ordered. Let us now consider a more general class of protocols, based on
non-causal ordering of the channel uses. Following Refs. [139, 140], we define a general, non-causal strategy for n uses
of the channel NA→B(t) by operators t 7→ PAn

1B
n
1
(t) such that PAn

1B
n
1
(t) ≥ 0 for all t, and WAn
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:=
∫
dt PAn

1B
n
1
(t)

satisfies Tr[WAn
1B

n
1
(C

(1)
A1B1

⊗C
(2)
A2B2

⊗ · · · ⊗C
(n)
AnBn

)] = 1 for all Choi representations C
(k)
AkBk

of quantum channels (i.e.,

Hermitian operators C
(k)
AkBk

satisfying C
(k)
AkBk

≥ 0 and TrBk
[C

(k)
AkBk

] = IAk
). We let

Cprod
n (An1 , B

n
1 ) :=

{
n⊗
k=1

C
(k)
AkBk

: C
(k)
AkBk

≥ 0, TrBk
[C

(k)
AkBk

] = IAk
, k ∈ {1, 2, . . . , n}

}
(207)

be the set of all tensor n-fold tensor products of Choi representations of quantum channel. Then, we define

Sicon (An1 , B
n
1 ) :=

{
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1 )
}

(208)

to be the set of all operators representing n-partite non-causal strategies. An explicit form for this set for arbitrary
n ∈ {2, 3, . . . } can be found in Ref. [141]. As an example, for n = 2,
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2
1
)
}
, (209)

where RA(XRA) := TrA[XRA]⊗ IA
dA

is the completely depolarizing channel acting on a system A, which discards the
state of the system A and replaces it with the maximally-mixed state.
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Lemma 31. For every n ∈ {2, 3, . . . }, it holds that
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}
. (210)

Proof. We follow the arguments presented in Ref. [141]. The inclusion “⊇” is clear. For the inclusion “⊆”, assume that
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(k)
AkBk

as

C
(k)
AkBk

= (αk + 1)C
(k,0)
AkBk

− αkC
(k,1)
AkBk

, (211)

C
(k,0)
AkBk

=
1

αk + 1

(
C

(k)
AkBk

+ αk
1

dBk

IAkBk

)
, (212)

C
(k,1)
AkBk

=
1

dBk

IAkBk
. (213)

Observe that C
(k,0)
AkBk

≥ 0, C
(k,1)
AkBk

≥ 0, and TrBk
[C

(k,0)
AkBk

] = TrBk
[C

(k,1)
AkBk

] = IAk
. Then, we have

Tr[WAn
1B

n
1
(C

(1)
A1B1

⊗ · · · ⊗ C
(n)
AnBn

)] =
∑

x∈{0,1}n

(
n∏
k=1

(αk + 1)xk(−αk)1−xk

)
Tr

[
WAn

1B
n
1

n⊗
k=1

C
(k,x)
AkBk

]
︸ ︷︷ ︸

=1 ∀ x∈{0,1}n

(214)

=
∑

x∈{0,1}n

(
n∏
k=1

(αk + 1)xk(−αk)1−xk

)

=

n∏
k=1

(−αk + αk + 1)

= 1,

which implies the desired result, because the operator WAn
1B

n
1
∈ Sicon (An1 , B

n
1 ) was arbitrary.

Let

C̃prod
n (An1 , B

n
1 ) :=

{
n⊗
k=1

C
(k)
AkBk

: C
(k)
AkBk

Hermitian, TrBk
[C

(k)
AkBk

] = IAk
, k ∈ {1, 2, . . . , n}

}
. (215)

Lemma 31 tells us that

Sicon (An1 , B
n
1 ) =

{
WAn

1B
n
1
:WAn

1B
n
1
≥ 0, Tr[WAn

1B
n
1
YAn

1B
n
1
] = 1 ∀ YAn

1B
n
1
∈ C̃prod

n (An1 , B
n
1 )
}

=
{
WAn

1B
n
1
:WAn

1B
n
1
≥ 0, Tr[WAn

1B
n
1
YAn

1B
n
1
] = 1 ∀ YAn

1B
n
1
∈ aff(C̃prod

n (An1 , B
n
1 ))
}
, (216)

where aff(S) := {∑i xisi : si ∈ S, xi ∈ R,
∑
i xi = 1} denotes the affine hull of a set S.

Proposition 32 (Bayesian optimization of non-causal strategies). Let C
N (t)[n]

An
1B

n
1

be the Choi representation of the

comb N (t)[n] corresponding to n uses of the parameterized quantum channel t 7→ N (t). Also, let t 7→ µ(t) be a prior
probability density function. Then, the optimal non-causal Bayesian strategy for estimating the parameter t can be
determined using the convex problem

maximize
∫
dt µ(t) Tr[PAn

1B
n
1
(t)(w ∗ CN [n]

An
1B

n
1
)(t)]

subject to PAn
1B

n
1
(t) ≥ 0 ∀ t,∫

dt PAn
1B

n
1
(t) ∈ Sicon (An1 , B

n
1 ).

(217)
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The dual problem, which has the same optimal value as the primal problem above, is

minimize λ

subject to λYAn
1B

n
1
≥ µ(t)(w ∗ CN [n]

An
1B

n
1
)(t) ∀ t,

YAn
1B

n
1
∈ S̃NSn (An1 , B

n
1 ),

(218)

where S̃NSn (An1 , B
n
1 ) is the set of all Choi representations of n-partite Hermiticity-preserving non-signaling superoper-

ators with input systems A1, . . . , An and output systems B1, . . . , Bn, defined as [142, 143]

S̃NSn (An1 , B
n
1 ) :=

{
YAn

1B
n
1
: YAn

1B
n
1
Hermitian, TrBK

[YAn
1B

n
1
] = IAK

⊗ Y ′
AKBK

, Y ′
AKBK

≥ 0, K ⊆ {1, 2, . . . , n}
}
. (219)

Here, BK denotes the B systems labeled by the subset K, and K denotes the complement of K.

Proof. Using (216), we can write the primal problem as

maximize
∫
dt µ(t) Tr[PAn

1B
n
1
(t)(w ∗ CN [n]

An
1B

n
1
)(t)]

subject to PAn
1B

n
1
(t) ≥ 0 ∀ t,

WAn
1B

n
1
=
∫
dt PAn

1B
n
1
(t),

Tr[WAn
1B

n
1
YAn

1B
n
1
] = 1 ∀ YAn

1B
n
1
∈ aff(C̃prod

n (An1 , B
n
1 )).

(220)

Now, let us pick a basis {Y jAn
1B

n
1
}j for the affine space aff(C̃prod

n (An1 , B
n
1 )). With this, the infinite number of constraints

in the final line of the above convex problem can be made into a finite number of constraints, such that the primal
problem can be formulated as

maximize
∫
dt µ(t) Tr[PAn

1B
n
1
(t)(w ∗ CN [n]

An
1B

n
1
)(t)]

subject to PAn
1B

n
1
(t) ≥ 0 ∀ t,

WAn
1B

n
1
=
∫
dt PAn

1B
n
1
(t),

Tr[WAn
1B

n
1
Y jAn

1B
n
1
] = 1 ∀ j.

(221)

We can now cast this into the standard form (127) of a primal problem. Specifically, we have

X =

∫
dt |t⟩⟨t| ⊗ PAn

1B
n
1
(t), (222)

A =

∫
dt |t⟩⟨t| ⊗ µ(t)(w ∗ CN [n]

An
1B

n
1
)(t), (223)

Φ[X] =
∑
j

Tr[WAn
1B

n
1
Y jAn

1B
n
1
]|j⟩⟨j| ⊕

∑
j

(−Tr[WAn
1B

n
1
Y jAn

1B
n
1
])|j⟩⟨j|, (224)

B =
∑
j

|j⟩⟨j| ⊕
∑
j

(−1)|j⟩⟨j|. (225)

Now, for the dual variable, we can take it to be of the form Y =
∑
j αj |j⟩⟨j| ⊕

∑
j βj |j⟩⟨j|, where αj ≥ 0 and βj ≥ 0

for all j. From this, it is straightforward to show that

Tr[Y Φ[X]] = Tr

(∫ dt |t⟩⟨t| ⊗ PAn
1B

n
1
(t)

)∫ dt |t⟩⟨t| ⊗
∑
j

(αj − βj)Y
j
An

1B
n
1

 , (226)

so that

Φ†[Y ] =

∫
dt |t⟩⟨t| ⊗

∑
j

(αj − βj)Y
j
An

1B
n
1
. (227)

The dual problem is therefore

minimize
∑
j(αj − βj)

subject to αj ≥ 0, βj ≥ 0 ∀j,∑
j(αj − βj)Y

j
An

1B
n
1
≥ µ(t)(w ∗ CN [n]

An
1B

n
1
)(t) ∀ t.

(228)
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Strong duality is straightforward to verify, which means that this dual problem has the same optimal value as the
primal problem. Now, let λ ≡∑j(αj − βj). Then, λ ∈ R and

∑
j

(αj − βj)Y
j
An

1B
n
1
= λ

∑
j

αj − βj
λ

Y jAn
1B

n
1
≡ λYAn

1B
n
1
, (229)

where YAn
1B

n
1
∈ aff(C̃prod

n (An1 , B
n
1 )). We thus conclude that the dual problem is given by

minimize λ

subject to λYAn
1B

n
1
≥ µ(t)(w ∗ CN [n]

An
1B

n
1
)(t) ∀ t,

YAn
1B

n
1
∈ aff(C̃prod

n (An1 , B
n
1 )).

(230)

Finally, we use Ref. [142] (Theorem 14), which implies that aff(C̃prod
n (An1 , B

n
1 )) = S̃NSn (An1 , B

n
1 ), completing the proof.

Proposition 33 (Minimax optimization of non-causal strategies). Let C
N (t)[n]

An
1B

n
1

be the Choi representation of the

comb N (t)[n] corresponding to n uses of the parameterized quantum channel t 7→ N (t). Then, the optimal non-causal
minimax strategy for estimating the parameter t can be determined using the convex problem

maximize η

subject to Tr[PAn
1B

n
1
(t)(w ∗ CN [n]

An
1B

n
1
)(t)] ≥ η ∀ t,

η ≥ 0,

PAn
1B

n
1
(t) ≥ 0 ∀ t,∫

dt PAn
1B

n
1
(t) ∈ Sicon (An1 , B

n
1 ).

(231)

The dual problem, which has the same optimal value as the primal problem above, is

minimize λ

subject to λYAn
1B

n
1
≥ µ(t)(w ∗ CN [n]

An
1B

n
1
)(t) ∀ t,

YAn
1B

n
1
∈ aff(C̃prod

n (An1 , B
n
1 )),

µ(t) ≥ 0,
∫
dt µ(t) = 1.

(232)

Proof. We proceed similarly to the proof of Proposition 32. By picking a basis {Y jAn
1B

n
1
}j for aff(C̃prod

n (An1 , B
n
1 )), we

can write the primal problem as

maximize η

subject to Tr[PAn
1B

n
1
(t)(w ∗ CN [n]

An
1B

n
1
)(t)] ≥ η ∀ t,

η ≥ 0,

PAn
1B

n
1
(t) ≥ 0 ∀ t,

WAn
1B

n
1
=
∫
dt PAn

1B
n
1
(t),

Tr[WAn
1B

n
1
Y jAn

1B
n
1
] = 1 ∀ j.

(233)
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We can then cast this into the standard form (127) as

X = η ⊕
(∫

dt |t⟩⟨t| ⊗ PAn
1B

n
1
(t)

)
, (234)

A = 1⊕
(∫

dt |t⟩⟨t| ⊗ 0

)
, (235)

Φ[X] =

(∫
dt |t⟩⟨t| ⊗ (η − Tr[PAn

1B
n
1
(t)(w ∗ CN [n]

An
1B

n
1
)(t)]

)

⊕

∑
j

Tr[WAn
1B

n
1
Y jAn

1B
n
1
]|j⟩⟨j|


⊕

∑
j

(−Tr[WAn
1B

n
1
Y jAn

1B
n
1
])|j⟩⟨j|

 , (236)

B =

(∫
dt |t⟩⟨t| ⊗ 0

)
⊕

∑
j

|j⟩⟨j|

⊕ ((−1)|j⟩⟨j|) . (237)

Then, letting the dual variable Y be

Y =

(∫
dt |t⟩⟨t|µ(t)

)
⊕

∑
j

|j⟩⟨j|αj

⊕

∑
j

|j⟩⟨j|βj

 , (238)

with µ(t) ≥ 0 for all t and αj ≥ 0, βj ≥ 0 for all j, we obtain

Tr[Y Φ[X]] =

∫
dtµ(t)

(
η − Tr[PAn

1B
n
1
(t)(w ∗ CN [n]

An
1B

n
1
)(t)]

)
+
∑
j

αj Tr[WAn
1B

n
1
Y jAn

1B
n
1
]−
∑
j

βj Tr[WAn
1B

n
1
Y jAn

1B
n
1
] (239)

= η

∫
dt µ(t)

+ Tr

(∫ dt |t⟩⟨t| ⊗ PAn
1B

n
1
(t)

)∫ dt |t⟩⟨t| ⊗

∑
j

(αj − βj)Y
j
An

1B
n
1
− µ(t)(w ∗ CN [n]

An
1B

n
1
)(t)

 . (240)

This implies that

Φ†[Y ] =

(∫
dt µ(t)

)
⊕

∫ dt |t⟩⟨t| ⊗

∑
j

(αj − βj)Y
j
An

1B
n
1
− µ(t)(w ∗ CN [n]

An
1B

n
1
)(t)

 . (241)

The dual problem is therefore

minimize
∑
j αj − βj

subject to αj ≥ 0, βj ≥ 0 ∀ j, µ(t) ≥ 0 ∀ t,∫
dt µ(t) ≥ 1,

∑
j(αj − βj)Y

j
An

1B
n
1
≥ µ(t)(w ∗ CN [n]

An
1B

n
1
)(t) ∀ t.

(242)

Strong duality is straightforward to show, which means that this dual problem has the same optimal value as the
primal problem.

Now, the complementary slackness condition Φ†[Y ]X = AX implies that
∫
dt µ(t) = 1. Furthermore, letting

λ ≡∑j αj − βj , we find that∑
j

(αj − βj)Y
j
An

1B
n
1
= λ

∑
j

αj − βj
λ

Y jAn
1B

n
1
≡ λYAn

1B
n
1
, YAn

1B
n
1
∈ aff(C̃prod

n (An1 , B
n
1 )). (243)

With these simplifications, along with Ref. [142] (Theorem 14), which states that aff(C̃prod
n (An1 , B

n
1 )) = S̃NS

n (An1 , B
n
1 ),

we obtain the desired dual problem.
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The convex programs presented in Propositions 32 and 33 are continuous analogues of the SDPs in Refs. [140, 144]
for channel discrimination using strategies without causal ordering of the channel uses.

E. Numerical implementation

The optimization programs presented in the preceding sections typically involve continuous objects, both in the
inputs to the problem as well as in the optimization variables. As optimization over these quantities is not readily
available in numerical solvers, we have to discretize the problems for actual implementation. This means, we need to
choose a number of points in the discretization which we denote with k. We then replace any function f(t) with a
vector of discrete values (fℓ)

k
ℓ=1 corresponding to points in time (tℓ)

k
ℓ=1.

Typically, t varies only in a finite interval [0, T ]. In this case, the most straightforward way to discretize is to fix
a number of discretization steps k and choose time points that are evenly spaced in time, i.e., tℓ = ℓT/k. We then
replace the time-varying quantity f(t) with the average over the preceding interval in the discretization as

fℓ =
k

T

∫ tℓ

tℓ−1

dt f(t), (244)

where we use the convention that t0 = 0. This corresponds to replacing f(t) with a piece-wise constant function

f(t) →
k∑
ℓ=1

fℓ χ[tℓ−1 < t ≤ tℓ], (245)

where χ denotes an indicator function which takes the value one if the argument is true and zero otherwise. As an
example, we give the discretized version of the convex program of Proposition 1. The objective of said program is
given by ∫

dtdτ w(t− τ) Tr[µ(t)ρ(t)Q(τ)]. (246)

We now replace all functions by their piece-wise approximations, to obtain

k∑
ℓ=1

k∑
m=1

k∑
p=1

wpTr[µℓρℓQm]

∫
dtdτ χ[tℓ−1 < t ≤ tℓ]χ[tp−1 < t− τ ≤ tp]χ[tm−1 < τ ≤ tm] (247)

=

k∑
ℓ=1

k∑
m=1

k∑
p=1

wℓ−mχ[1 ≤ ℓ−m ≤ k] Tr[µℓρℓQm]

(
T

k

)2

=

k∑
ℓ=1

min(k,ℓ−1)∑
m=max(1,ℓ−k)

wℓ−m Tr[µℓρℓQm]

(
T

k

)2

.

The discretized version of the convex problem would thus be

η∗(w, µ, ρ) ≈ η∗((wℓ), (µℓ), (ρℓ)) (248)

= maximize
(
T
k

)2∑k
ℓ=1

∑min(k,ℓ−1)
m=max(1,ℓ−k) wℓ−m Tr[µℓρℓQm]

such that Qℓ ≥ 0 for all ℓ

such that
∑
ℓQℓ = I.

In this case, the sum over m denotes a discrete convolution. Under the assumption of periodic boundary conditions,
this convolution would be changed to wrap around the interval which would yield a simpler expression.

The other possibility, namely the case in which t can take arbitrary values on the real line, makes sense only if
we have access to a prior µ(t). This case can be treated in a similar manner, but the discretization is not uniform
anymore. Instead, one can choose regions Rℓ ⊂ R of equal measure µ(Rℓ) = 1/k for all ℓ. In this way, we are replacing
the measure over values of t with a uniform measure over the choice of region Rℓ. For each such region we replace
the function value with its average over the region, i.e., a piece-wise approximation

f(t) ≈
k∑
ℓ=1

fℓχ[t ∈ Rℓ], fℓ =
1

|Rℓ|

∫
Rℓ

dt f(t) (249)
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such that ∫
dµ(t) f(t) ≈ 1

k

k∑
ℓ=1

fℓ. (250)

Ideally, one would like to do away with the discretization completely. To do so, one could consider an expansion of
the optimization variable, for example the measurement,

Q(t) =
∑
ω

Q̂ωϕω(t), (251)

for some set of functions ϕω. Typical choices, like the Fourier basis, however do not work, as the positive semi-
definiteness constraint Q(t) ≥ 0 is very difficult to enforce. It is an intriguing direction for future research if we can
use bases of non-negative functions [145] to get around this limitation.

F. Discretizing the success probability

In this section we will discuss how to discretize and formalize the POVM optimization problem in Proposition 7 in
order to obtain mathematically formal statements. Recall that it was given by

max
Q(t)≥0

{∫
dt Tr[(wδ ∗ [µ · ρ])(t)Q(t)]

∣∣∣∣ ∫ dtQ(t) = I
}
. (252)

Here we will focus on the Bayesian case for simplicity, as the minimax case is completely analogous. First, we note
that to be formally correct in its formulations it is necessary to restrict the continuous-parameter POVMs we optimize
over to make sense of the optimization and maximum above. Here, we will consider two natural possible restrictions:
first, to POVMs that are Lipschitz with respect to the operator norm with a Lipschitz constant Cδ, i.e. for all t, t

′:

∥Q(t)−Q(t′)∥∞ ≤ Cδ|t− t′|. (253)

We choose to make the Lipschitz constant depend explicitly on δ to emphasize that, as δ → 0, it is also necessary
to make Cδ → +∞ to make sure we are optimizing over POVMs that are sufficiently sensitive to distinguish the
underlying states. Indeed, if we want the POVMs to distinguish states that are δ apart it is necessary that ∥Q(t) −
Q(t′)∥∞ = Ω(1) for |t− t′| of order δ. Note that the set of Lipschitz POVMs is a compact, convex subset with respect
to the operator norm, and that the success probability is a linear functional of the parametrized POVM. Thus, the
max in Eq. (252) is justified, as it is attained. Another natural variation is to consider the set of continuous POVMs.
As we let Cδ → +∞ we can approximate any continuous function by a Lipschitz function, so this can be seen as a
limiting case of the previous problem.

We now discuss how to discretize the problem in Eq. (252) and show convergence. For the setting of Lipschitz
POVMs we will also obtain quantitative statements. To obtain such statements, we will assume that the curve of
states ρ(t) is Lipschitz with respect to the trace distance, i.e. for all t, t′:

∥ρ(t)− ρ(t′)∥1 ≤ Cρ|t− t′|. (254)

We further need to discretize the set of possible measures µ. We will assume here that µ has compact support and
periodic boundary conditions, but the general case can be considered by considering a sequence of measures with
compact support µn that approximate µ.

We will pick a discretization parameter ∆ satisfying 1 > δ > ∆ > 0 such that δ/∆ ∈ N and consider a discretization
of the image of ρ(t), i.e. on the level of states. Let T = |supp(µ)| be the size of the support of µ. We will discretize it
into N = ⌈T∆−1⌉ points {t1, t2, . . . , tN} that are ∆ apart. Furthermore, we will call Ti = [ti −∆/2, ti +∆/2]. Given
the ti and δ, we will call

Nδ(i) :=
{
j
∣∣ |ti − tj | ≤ δ

}
. (255)

We then consider the following semidefinite program for a given parameter δ, which gives the maximal success
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probability for this window function:

maximize

N∑
i=1

µ(Ti)
∑

j∈Nδ(i)

Tr [Qjρ(ti)] (256)

subject to Qi ≥ 0,

N∑
i=1

Qi = I,

∥Qi −Qi+1∥∞ ≤ Cδ∆ for all i

The semidefinite program in Eq. (256) can be solved in time that is polynomial in N and the dimension of the states
ρ(t), and, as the number of constraints is linear in ∆−1, the complexity will also depend polynomially on ∆−1. Note
further that the operator norm constraint can be recast as the linear matrix inequality −Cδ∆ ≤ Qi − Qi+1 ≤ Cδ∆,
so it is a valid SDP constraint.

Of course, the central question is how fast the value of the above SDP converges to that of Eq. (252). Before we
prove the convergence, let us give some Lemmas:

Lemma 34. Let ∆ be a discretization parameter satisfying 1 > δ > ∆ > 0, T = |supp(µ)| be the size of the support
of µ. Consider a discretization of the image of ρ(t) into N = ⌈T∆−1⌉ points {t1, t2, . . . , tN} points that are ∆ apart
given by ρ(ti). Furthermore, we will call Ti = [ti−∆/2, ti+∆/2]. Further, assume that the curve of states is Lipschitz
continuous:

∥ρ(t1)− ρ(t2)∥1 ≤ Cρ|t1 − t2|. (257)

Then we have: ∥∥∥∥(∫
Ti

dµ(t) ρ(t)

)
− µ(Ti)ρ(ti)

∥∥∥∥
1

≤ Cρ∆µ(Ti). (258)

Proof. Note that: (∫
Ti

dt µ(t)ρ(t)

)
− µ(Ti)ρ(ti) =

∫
Ti

dt µ(t)(ρ(t)− ρ(ti)). (259)

Thus, by the triangle inequality,∥∥∥∥(∫
Ti

dµ(t) ρ(t)

)
− µ(Ti)ρ(ti)

∥∥∥∥
1

≤
∫
Ti

dµ(t) ∥ρ(t)− ρ(ti)∥1. (260)

By the Lipschitz condition in Eq. (258) and our choice of ti we have that

∥ρ(t)− ρ(ti)∥1 ≤ Cρ|t− ti|. (261)

Inserting this bound in Eq. (260) we get that:∫
Ti

dµ(t) ∥ρ(t)− ρ(ti)∥1 ≤ Cρ

∫
Ti

dµ(t) |t− ti| ≤ Cρ∆µ(Ti), (262)

which proves the claim.

Lemma 35. Let ∆ be a discretization parameter satisfying 1 > δ > ∆ > 0, T = |supp(µ)| be the size of the support
of µ. Let {Q(t)} be a continuous POVM that is Lipschitz with respect to the operator norm, i.e.

∥Q(t1)−Q(t2)∥∞ ≤ Cδ|t1 − t2|. (263)

Consider the following discretization discretization of the POVM:

Qi =

∫
Ti

dtQ(t). (264)
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Then for all 1 ≤ i < T :

∥Qi+1 −Qi∥∞ ≤ Cδ∆
2 (265)

and for all t ∈ Ti we have ∥∥∥∥∥∥
∫ t+

δ
2

t− δ
2

dsQ(s)−
∑

j∈Nδ(i)

Qj

∥∥∥∥∥∥
∞

≤ Cδ∆δ. (266)

Proof. Let us start by proving Eq. (265). Note that:

Qi+1 −Qi =

∫
Ti

dsQ(s+∆)−Q(s). (267)

By a triangle inequality followed by our Lipschitz condition we have:

∥Qi+1 −Qi∥∞ ≤
∫
Ti

ds ∥Q(s+∆)−Q(s)∥∞ ≤ Cδ∆

∫
Ti

ds = Cδ∆
2. (268)

Let us now prove Eq. (266) in a similar manner. We have that:

∫ t+
δ
2

t− δ
2

dsQ(s)−
∑

j∈Nδ(i)

Qj =

∫ t+
δ
2

t− δ
2

ds [Q(s)−Q(s+ ti − t)], (269)

where we used the fact that δ/∆ ∈ N. Thus,∥∥∥∥∥∥
∫ t+

δ
2

t− δ
2

ds [Q(s)−Q(s+ ti − t)]

∥∥∥∥∥∥
∞

≤
∫ t+

δ
2

t− δ
2

ds ∥Q(s)−Q(s+ ti − t)∥∞ (270)

≤ Cδ|ti − t|
∫ t+

δ
2

t− δ
2

ds (271)

≤ Cδδ∆. (272)

Our strategy will now consist in showing that the above discretization {Qi} of a continuous POVM gives a feasible
point of the SDP in Eq. (256) whose value does not change significantly from that of its continuous-time counterpart.

Proposition 36. Under the same conditions as in Lemmas 34 and 35 we we have that:∣∣∣∣∣∣
∫

dt Tr[(wδ ∗ [µ · ρ])(t)Q(t)]−
∑
i

µ(Ti)
∑

j∈Nδ(i)

Tr[Qjρ(ti)]

∣∣∣∣∣∣ ≤ Cδδ∆+ Cρ∆. (273)

Proof. We will proceed by showing the statement on each interval Ti. We have:∫
Ti

dt Tr[(wδ ∗ [µ · ρ])(t)Q(t)]− µ(Ti)
∑

j∈Nδ(i)

Tr[Qjρ(ti)]

=

∫
Ti

dµ(t)

Tr[ρ(t)(wδ ∗Q)(t)]−
∑

j∈Nδ(i)

Tr[Qjρ(ti)]

 .

(274)

First, note that as Q(t) is a POVM, ∥(wδ ∗Q)(t)∥∞ ≤ 1. Thus, by Hölder’s inequality:∫
Ti

dµ(t) Tr[[ρ(t)− ρ(ti)](wδ ∗Q)(t)] ≤
∫
Ti

dµ(t) ∥ρ(t)− ρ(ti)∥1∥(wδ ∗Q)(t)∥∞ (275)

≤ µ(Ti)Cρ∆, (276)
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where we used Lemma 34 to bound the 1−norm. From this we conclude that:∣∣∣∣∣∣
∫
Ti

dt µ(t)

Tr[ρ(t)(wδ ∗Q)(t)]−
∑

j∈Nδ(i)

Tr[Qjρ(ti)]


∣∣∣∣∣∣ (277)

=

∣∣∣∣∣∣
∫
Ti

dµ(t)

Tr[[ρ(t)− ρ(ti)](wδ ∗Q)(t)] + Tr

ρ(ti)
(wδ ∗Q)(t)−

∑
j∈Nδ(i)

Qj


∣∣∣∣∣∣ (278)

≤ µ(Ti)Cρ∆+

∣∣∣∣∣∣
∫
Ti

dµ(t) Tr

ρ(ti)
(wδ ∗Q)(t)−

∑
j∈Nδ(i)

Qj

∣∣∣∣∣∣ . (279)

Let us now estimate the second term in the RHS of the last equation. Again applying a combination of Hölder and
triangle inequalities,∣∣∣∣∣∣

∫
Ti

dµ(t)

Tr

ρ(ti)
(wδ ∗Q)(t)−

∑
j∈Nδ(i)

Qj


∣∣∣∣∣∣ ≤

∫
Ti

dµ(t) ∥ρ(ti)∥1∥(wδ ∗Q)(t)−
∑

j∈Nδ(i)

Qj)∥∞. (280)

By Lemma 35 we have that: ∫
Ti

dµ(t) ∥(wδ ∗Q)(t)−
∑

j∈Nδ(i)

Qj)∥∞ ≤ µ(Ti)δ∆Cδ. (281)

We conclude that ∣∣∣∣∣∣
∫
Ti

dµ(t)

Tr[ρ(t)(wδ ∗Q)(t)]−
∑

j∈Nδ(i)

Tr[Qjρ(ti)]


∣∣∣∣∣∣ ≤ µ(Ti)(δ∆Cδ + Cρ∆). (282)

An application of the triangle inequality and summing over all i yields the claim.

The proof above shows how, given one feasible POVM for the continuous-time version of the metrology problem, it
is possible to construct a feasible POVM for the discretization without significantly changing the success probability
as long as ∆ is small enough.

We now present the other direction: given one feasible point of the discretized problem, we construct a continuous-
time version thereof that is Lipschitz-continuous and whose success probability does not differ significantly from the
original value.

Given a feasible POVM of the SDP in Eq. (256), {Qi}, we define the continuous POVM Q(t) by linear interpolation,
i.e., for some t = pti + (1− p)ti+1 as

Q(t) := pQi + (1− p)Qi+1. (283)

We will now show that this is indeed a POVM and that it is Lipschitz:

Lemma 37. Let {Qi} be a family of POVMs such that:

∥Qi −Qi+1∥∞ ≤ Cδ∆ (284)

and define Q(t) as in Eq. (283). Then Q(t) is a POVM and

∥Q(s1)−Q(s2)∥∞ ≤ Cδ∆|s1 − s2|. (285)

Furthermore, for t ∈ Ti,

∥(wδ ∗Q)(t)−
∑

j∈Nδ(i)

Qj∥ ≤ Cδδ∆. (286)
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Proof. Note that we have that:∫
Ti

dtQ(t) =

∫ 1

0

dp (pQi + (1− p)Qi+1) =
1

2
(Qi +Qi+1). (287)

summing over all i (recall the periodic boundary conditions) we see that∫
dtQ(t) = I. (288)

The fact that Q(t) is positive semi-definite is obvious, as it is point-wise the convex combination of positive semi-
definite operators, which shows that it is indeed a POVM. Let us now show Eq. (285). For s1, s2 ∈ Ti we have
that:

Q(s1)−Q(s2) = (s1 − s2)(Qi −Qi+1). (289)

The claim follows by using the Lipschitz continuity of the Qi. For s1, s2 in different intervals, say s1 ∈ Ti1 , s2 ∈ Ti2
we apply the same argument to the sequence of points s1, i1 + 1, i1 + 1, i1 + 2,.., i2, s2. To show Eq. (286) we can
follow the same route as for Eq. (266), as we have already established that the POVM is Lipschitz.

Now we have constructed a candidate for a feasible point of the continuous-time problem given a feasible point of
the discrete problem. We will show below that the value they achieve is also close, which will lead us to conclude that
the discretized and the continuous problems have comparable values for small enough values of ∆.

Proposition 38. For given δ, Cδ > 0 and ∆ < δ,< 1, let ηδ be the value of Eq. (252) when restricted to POVMs that
are Lipschitz with Lipschitz constant at most Cδ. Furthermore, assume that ρ(t) is Lipschitz with constant Cρ. Then
the value of the SDP in Eq. (256), ηδ,∆, satisfies:

|ηδ − ηδ,∆| ≤ (Cρ + Cδ)∆. (290)

Proof. It follows from Proposition 36 that, starting from the continuous version of the problem, we can construct a
feasible point of the SDP whose success probability differs by at most (Cρ+Cδ)∆. This gives ηδ < ηδ,∆− (Cρ+Cδ)∆.
On the other hand, Lemma 37 shows how to construct a continuous-time Lipschitz POVM from a feasible point
of the SDP whose success probability will differ by at most (Cρ + Cδ)∆. This follows from Eq. (286) and similar
reasoning as in Proposition 36. In a nutshell, we first approximate (wδ ∗ Q)(t) by

∑
j∈Ni(δ)

Qj on each interval Ti.

Then we approximate the averaged states on each interval by ρ(ti). This gives η∆ < ηδ − (Cρ + Cδ)∆, which yields
the claim.

We can then obtain the convergence to continuous POVMs from the last statement:

Corollary 39. For given δ, Cδ > 0 and ∆ < δ, let ηδ,∆ be the value of Eq. (252) when restricted to POVMs that are
Lipschitz with Lipschitz constant at most Cδ and η when only requiring continuity. Furthermore, assume that ρ(t) is
Lipschitz with constant Cρ. Then we have:

η = lim
Cδ→∞

lim
∆→0

ηδ,∆. (291)

Proof. The statement follows from the fact that, by the Stone-Weierstrass theorem, any continuous function can be
approximated arbitrarily well by Lipschitz functions. Thus, we can find a sequence of Lipschitz POVMs (with possibly
diverging Lipschitz constant) that approximates the target POVM. In turn, these will be approximate arbitrarly well
by the discretized SDP as we let τ → 0 by Proposition 38. This gives the statement.

It would be interesting to obtain statements about the Lipschitz constant of good POVMs for the metrology task
to get more quantitative statements even in the continuous case. Indeed, one intuitively expects that it should not
be too advantageous to have POVMs that vary significantly faster than the states ρ(t) themselves. Thus, we leave to
future work to investigate if we can always take Cδ = O(Cρ) to obtain a good approximation.
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IV. RELATION TO ENTROPY MEASURES

A. Max-entropy radius

We can generalize an argument of Ref. [16] that gives an alternative characterization of the success probability in
terms of the max-relative entropy [66] as

Dmax(X ∥Y ) = log inf{γ |X ≤ γY } = log λmax(Y
− 1

2XY − 1
2 ) = log∥Y − 1

2XY − 1
2 ∥∞, (292)

for X and Y positive semi-definite and supp(X) ⊆ supp(Y ), where ∥·∥∞ is the operator norm and the last equality

holds because Y − 1
2XY − 1

2 is positive semi-definite. Indeed, we have the following corollary of Proposition 1.

Corollary 6 (Max-entropy radius). For a given set of states ρ(t) with prior distribution µ(t), we define its max-
relative entropy radius with respect to the window function w(t) as

rmax(w, µ, ρ) = inf
σ

sup
t
Dmax((w ∗ [µ · ρ])(t)∥σ), (293)

where we optimize over arbitrary quantum states σ. We have that

rmax(w, µ, ρ) = log η∗(w, µ, ρ). (294)

Proof. This follows immediately from Proposition 1, (132), and Lemma 29.

The above corollary implies the following upper bound on the success probability

Corollary 7. For any state σ, we have that

η∗(w, µ, ρ) ≤ exp sup
t
Dmax((w ∗ [µρ])(t)∥σ). (295)

B. Conditional min-entropy

We can also relate the Bayesian success probability η∗(w, µ, ρ) to the conditional min-entropy [65], which is defined
as

Hmin(A |B)ρ := − inf
σB≥0

Tr[σB ]=1

Dmax(ρAB ∥ IA ⊗ σB), (296)

for arbitrary positive semi-definite operators ρAB , where Dmax is defined in (292).

Corollary 40. For a given set of states ρ(t) with prior distribution µ(t), and a window function w, the optimal
success probability η∗(w, µ, ρ) is given by

− log η∗(w, µ, ρ) = Hmin(T |S)X , (297)

where PTS is the classical–quantum operator [46]

PTS :=

∫
dt |t⟩⟨t|T ⊗ (w ∗ [µ · ρ])(t)S . (298)

Proof. This is a straightforward consequence of definitions. Using the definition of Dmax in (292), we have that, for
all states σS ,

Dmax(PTS ∥ IT ⊗ σS) = log
∥∥∥σ− 1

2

S PTSσ
− 1

2

S

∥∥∥
∞

(299)

=

∥∥∥∥∫ dt |t⟩⟨t| ⊗ σ
− 1

2

S (w ∗ [µ · ρS ])(t)σ− 1
2

S

∥∥∥∥
∞

= sup
t

∥∥∥σ− 1
2

S (w ∗ [µ · ρ])(t)σ− 1
2

S

∥∥∥
∞

= sup
t
Dmax((w ∗ [µ · ρ])(t)∥σ).

Therefore,

inf
σS≥0

Tr[σS ]=1

Dmax(PTS ∥ IT ⊗ σS) = inf
σ≥0

Tr[σ]=1

sup
t
Dmax((w ∗ [µ · ρ])(t) ∥σ) = log η∗(w, µ, ρ), (300)

which implies the desired result, where for the last equality we have used Corollary 6.
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V. PROPERTIES OF THE PROPOSED QUANTIFIERS

In this section, we outline some properties of the proposed quantities.

A. Properties of the unoptimized quantifiers

In this section, we outline some properties of the Bayesian success probability η and the minimax success probability
η. We first establish that the Bayesian success probability is continuous in all arguments:

Proposition 8 (Continuity properties of the Bayesian success probability). The Bayesian success probability η has
continuity

(i) in the window function as

|η(w, µ, ρ,Q)− η(w′, µ, ρ,Q)| ≤ ∥w − w′∥∞, (301)

(ii) in the measure as

|η(w, µ, ρ,Q)− η(w, µ′, ρ,Q)| ≤ 1

2
∥µ− µ′∥1, (302)

(iii) in the state set as

|η(w, µ, ρ,Q)− η(w, µ, ρ′, Q)| ≤
∫

dµ(t) ∥ρ(t)− ρ′(t)∥1 ≤ max
t

∥ρ(t)− ρ′(t)∥1, (303)

(iv) jointly in measure and state set as

|η(w, µ, ρ,Q)− η(w, µ′, ρ′, Q)| ≤
∫

dt ∥µ(t)ρ(t)− µ′(t)ρ′(t)∥1, (304)

(v) in the measurement as

|η(w, µ, ρ,Q)− η(w, µ, ρ,Q′)| ≤
∫

dµ(t)

∥∥∥∥∫ dτ w(t− τ)[Q(τ)−Q′(τ)]

∥∥∥∥
∞

(305)

≤
(∫

dτ w(τ)

)
max
t

∥Q(t)−Q′(t)∥∞ .

Proof. The properties are shown as follows.

(i) follows because

|η(w, µ, ρ,Q)− η(w′, µ, ρ,Q)| =
∣∣∣∣∫ dµ(t) dτ [w(τ)− w′(τ)] Tr[Q(t− τ)ρ(t)]

∣∣∣∣ (306)

=

∫
dτ [w(τ)− w′(τ)]

∫
dµ(t) Tr[Q(t− τ)ρ(t)]

≤
∫

dτ |w(τ)− w′(τ)|
∫

dµ(t) Tr[Q(t− τ)ρ(t)]

≤
(
max
t

|w(t)− w′(t)|
)∫

dτ dµ(t) Tr[Q(t− τ)ρ(t)]

= ∥w − w′∥∞.

(ii) follows from the change of measure inequality [146],

E
µ(t)

[ϕ(t)] ≤ E
µ′(t)

[ϕ(t)] +
1

2
∥µ− µ′∥1, (307)

which is valid if 0 ≤ ϕ(t) ≤ 1 when we note that

η(w, µ, ρ,Q) = E
µ
{Tr[ρ(t)(w ∗Q)(t)]} (308)

is exactly of that form. The statement follows by symmetrizing through exchange of µ and µ′.
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(iii) directly follows from item (iv).

(iv) follows from the short rearrangement

|η(w, µ, ρ,Q)− η(w, µ′, ρ′, Q)| =
∣∣∣∣∫ dtdτ w(t− τ) Tr[Q(τ)[µ(t)ρ(t)− µ′(t)ρ′(t)]]

∣∣∣∣ (309)

=

∣∣∣∣∫ dt Tr

[(∫
dτ w(t− τ)Q(τ)

)
[µ(t)ρ(t)− µ′(t)ρ′(t)]

]∣∣∣∣
≤
∣∣∣∣∫ dt Tr [µ(t)ρ(t)− µ′(t)ρ′(t)]

∣∣∣∣
≤
∫

dt ∥µ(t)ρ(t)− µ′(t)ρ′(t)∥1,

where we have used the matrix Hölder inequality and exploited the fact that
∫
dτ w(t − τ)Q(τ) ≤ bI because

Q(τ) is a POVM.

(v) follows from

|η(w, µ, ρ,Q)− η(w, µ, ρ,Q′)| =
∣∣∣∣∫ dµ(t) dτ w(t− τ) Tr[[Q(τ)−Q′(τ)]ρ(t)]

∣∣∣∣ (310)

=

∣∣∣∣∫ dµ(t) Tr

[
ρ(t)

(∫
dτ w(t− τ)[Q(τ)−Q′(τ)]

)]∣∣∣∣
≤
∫

dµ(t)

∥∥∥∥∫ dτ w(t− τ)[Q(τ)−Q′(τ)]

∥∥∥∥
∞

≤ max
t

∥∥∥∥∫ dτ w(t− τ)[Q(τ)−Q′(τ)]

∥∥∥∥
∞

≤
(∫

dτ w(τ)

)
max
t

∥Q(t)−Q′(t)∥∞ ,

where we have used the matrix Hölder inequality.

We can exploit the linearity and positivity of the success probability in its arguments to establish majorization-type
statements as follows.

Proposition 9 (Majorization properties of the Bayesian success probability). The Bayesian success probability η has
the following majorization properties:

(i) Let w−(t) and w+(t) be two functions such that w−(t) ≤ w(t) ≤ w+(t) for all t. Then

η(w−, µ, ρ,Q) ≤ η(w, µ, ρ,Q) ≤ η(w+, µ, ρ,Q). (311)

(ii) Let g−(t)X−(t) and g+(t)X+(t) be sets of operators such that g−(t)X−(t) ≤ µ(t)ρ(t) ≤ g+(t)X+(t) for all t.
Then

η(w, g−, X−, Q) ≤ η(w, µ, ρ,Q) ≤ η(w, g+, X+, Q). (312)

This directly implies similar statements when only measure or states are changed.

(iii) Let X−(t) and X+(t) be sets of operators such that X−(t) ≤ Q(t) ≤ X+(t) for all t. Then

η(w, µ, ρ,X−) ≤ η(w, µ, ρ,Q) ≤ η(w, µ, ρ,X+). (313)

Proof. The properties directly follow from the linearity of η in its arguments and the fact that the arguments which
are not bounded above and below are non-negative.

The minimax success probability also has comparable properties, some of which are inherited from the Bayesian
success probability:
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Proposition 10 (Continuity properties of the minimax success probability). The minimax success probability η has
continuity

(i) in the window function

|η(w, ρ,Q)− η(w′, ρ,Q)| ≤ ∥w − w′∥∞, (314)

(ii) in the state set

|η(w, ρ,Q)− η(w, ρ′, Q)| ≤ max
t

∥ρ(t)− ρ′(t)∥1, (315)

(ii) in the measurement

|η(w, ρ,Q)− η(w, ρ,Q′)| ≤
(∫

dτ w(τ)

)
max
t

∥Q(t)−Q′(t)∥∞ . (316)

Proof. The properties are shown as follows.

(i) Follows from the calculation

η(w, ρ,Q) = min
t

∫
dτ w(t− τ) Tr[Q(τ)ρ(t)] (317)

= min
t

∫
dτ [w(t− τ) + w′(t− τ)− w′(t− τ)] Tr[Q(τ)ρ(t)]

≤ min
t

∫
dτ w′(t− τ) Tr[Q(τ)ρ(t)] + max

t

∫
dτ [w(t− τ)− w′(t− τ)] Tr[Q(τ)ρ(t)]

≤ η(w′, ρ,Q) + max
t

{w(t− τ)− w′(t− τ)}
≤ η(w′, ρ,Q) + max

t
|w(t− τ)− w′(t− τ)|

= η(w′, ρ,Q) + ∥w − w′∥∞,

where we have exploited the inequality mint f(t) + g(t) ≤ mint f(t) + maxt g(t) as well as the fact that∫
dτ g(t− τ)Q(τ) ≤ max

t
g(t)I, (318)

because Q(τ) is a POVM and the matrix Hölder inequality. The statement is then obtained by symmetrizing,
via exchange of w and w′.

(ii) follows from the short rearrangement

η(w, ρ,Q) = min
t

∫
dτ w(t− τ) Tr[Q(τ)ρ(t)] (319)

= min
t

∫
dτ w(t− τ) Tr[Q(τ)[ρ(t)− ρ′(t) + ρ′(t)]]

≤ min
t

∫
dτ w(t− τ) Tr[Q(τ)ρ′(t)] + max

t

∫
dτ w(t− τ) Tr[Q(τ)[ρ(t)− ρ′(t)]]

= η(w, ρ′, Q) + max
t

Tr

[(∫
dτ w(t− τ)Q(τ)

)
[ρ(t)− ρ′(t)]

]
≤ η(w, ρ′, Q) + max

t
Tr [ρ(t)− ρ′(t)]

≤ η(w, ρ′, Q) + max
t

∥ρ(t)− ρ′(t)∥1,

where we have exploited the inequality mint f(t) + g(t) ≤ mint f(t) + maxt g(t) as well as∫
dτ w(t− τ)Q(τ) ≤ I, (320)

because Q(τ) is a POVM and the matrix Hölder inequality. The statement is then obtained by symmetrizing
via exchange of ρ and ρ′.
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(iii) follows similarly as

η(w, ρ,Q) = min
t

∫
dτ w(t− τ) Tr[Q(τ)ρ(t)] (321)

= min
t

∫
dτ w(t− τ) Tr[[Q(τ)−Q′(τ) +Q′(τ)]ρ(t)]

≤ min
t

∫
dτ w(t− τ) Tr[Q′(τ)ρ(t)] + max

t

∫
dτ w(t− τ) Tr[[Q(τ)−Q′(τ)]ρ(t)]

= η(w, ρ,Q′) + max
t

Tr

[[(∫
dτ w(t− τ)Q(τ)

)
−
(∫

dτ w(t− τ)Q′(τ)

)]
ρ(t)

]
≤ η(w, ρ,Q′) + max

t

∥∥∥∥∫ dτ w(t− τ) [Q(τ)−Q′(τ)]

∥∥∥∥
∞

≤ η(w, ρ,Q′) +

(∫
dτ w(τ)

)
max
t

∥Q(τ)−Q′(τ)∥∞

where we have exploited the inequality mint f(t)+g(t) ≤ mint f(t)+maxt g(t) as well as the fact that
∫
dτ w(t−

τ)Q(τ) ≤ I because Q(τ) is a POVM and the matrix Hölder inequality. The statement is then obtained by
symmetrizing via exchange of ρ and ρ′.

(ii) directly follows from the same argument as (i) when we note that

Tr[Q(τ)ρ−(t)] ≤ Tr[Q(τ)ρ(t)] ≤ Tr[Q(τ)ρ+(t)], (322)

and hence the same ordering holds for the minimum.

(iii) directly follows from the same argument as (i) when we note that

Tr[Q−(τ)ρ(t)] ≤ Tr[Q(τ)ρ(t)] ≤ Tr[Q+(τ)ρ(t)]. (323)

and hence the same ordering holds for the minimum.

Note that some of these continuity bounds are necessarily loose as the other parameters could be chosen in a
particularly pathological way.

The minimax success probability has majorization properties similar to the ones of the Bayesian success probability:

Proposition 11 (Majorization properties of the minimax success probability). The minimax success probability η
has the following majorization properties:

(i) Let w−(t) and w+(t) be two functions such that w−(t) ≤ w(t) ≤ w+(t) for all t. Then

η(w−, ρ,Q) ≤ η(w, ρ,Q) ≤ η(w+, ρ,Q). (324)

(ii) Let X−(t) and X+(t) be sets of operators such that X−(t) ≤ ρ(t) ≤ X+(t) for all t. Then

η(w,X−, Q) ≤ η(w, ρ,Q) ≤ η(w,X+, Q). (325)

(iii) Let X−(t) and X+(t) be sets of operators such that X−(t) ≤ Q(t) ≤ X+(t) for all t. Then

η(w, ρ,X−) ≤ η(w, ρ,Q) ≤ η(w, ρ,X+). (326)

Additionally, it has

(iv) monotonicity in the state set:

{ρ′(t)}t ⊆ {ρ(t)}t ⇒ η(w, ρ,Q) ≤ η(w, ρ′, Q). (327)

Proof. The properties directly follow from the fact that η is the result of a minimization of a linear function and the
fact that the arguments which are not bounded above and below are non-negative. Item (iv) follows from the simple
observation that the set of all measures over {ρ(t)}t includes all measures over {ρ′(t)}t and hence the optimization is
bound to yield a higher value.
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B. Properties of the optimized quantities

As outcomes of a convex optimization, the optimized quantities fulfill convexity in the remaining parameters:

Proposition 12 (Convexity). The optimized Bayesian success probabilities η∗(w, µ, ρ), η∗(w, µ,N , Q) and η∗(w, µ,N )
are convex in all arguments and especially fulfill a triangle inequality in the window function.

Proof. The convexity of the Bayesian quantities is a direct consequence of linearity and the fact that

sup
Q
f(Q) + g(Q) ≤ sup

Q
f(Q) + sup

Q
g(Q). (328)

The triangle inequality in the window function follows similarly.

The optimized probabilities also fulfill a type of data processing inequality:

Proposition 13 (Data processing). The optimized Bayesian success probabilities obey the following data-processing
inequalities

η∗(w, µ,N [ρ(·)]) ≤ η∗(w, µ, ρ(·)), (329)

η∗(w, µ,N (·) ◦ A, Q) ≤ η∗(w, µ,N (·), Q), (330)

η∗(w, µ,B ◦ N (·) ◦ A) ≤ η∗(w, µ,N (·)), (331)

which directly imply similar statements for the optimized minimax success probabilities

η∗(w,N [ρ(·)]) ≤ η∗(w, ρ(·)), (332)

η∗(w,N (·) ◦ A, Q) ≤ η∗(w,N (·), Q), (333)

η∗(w,B ◦ N (·) ◦ A) ≤ η∗(w,N (·)). (334)

Proof. Denote with Q the set of all POVMs and with N [Q] its image under a quantum channel N . We note that for
all quantum channels, we have that N †[Q] ⊆ Q due to the CPTP property of N , which implies that N † is completely
positive and unital. Then, we find

η∗(w, µ,N [ρ(·)]) = sup
Q(t)∈Q

∫
dµ(t) dτ w(t− τ) Tr[N [ρ(t)]Q(τ)] (335)

= sup
Q(t)∈Q

∫
dµ(t) dτ w(t− τ) Tr[ρ(t)N †[Q(τ)]]

= sup
Q′(t)∈N †[Q]

∫
dµ(t) dτ w(t− τ) Tr[ρ(t)Q′(τ)]

≤ sup
Q′(t)∈Q

∫
dµ(t) dτ w(t− τ) Tr[ρ(t)Q′(τ)]

= η∗(w, µ, ρ(·)),

where we have used the fact that a value optimized over a subset can never exceed the value of the fully optimized
case. The minimax result is implied as the Bayesian statement holds independently of the prior. Similar arguments
give rise to the statements for optimization over input states and joint optimization of probe and measurement.

C. Subdivision trick

We now prove the subdivision trick of the main text.

Proof of Lemma 6. The proof follows a similar idea as the proof outlined for the reduction of multi-hypothesis testing
to the binary case in Ref. [16]. We consider the case in which, additionally to the (unknown) state ρ(t) with t sampled
according to µ(t), an oracle supplies us the information that t lies in a certain interval It′ where the oracle samples t′

uniformly from It, i.e., it uniformly randomly samples one of the intervals of size T containing t. With this additional
information available, we can restrict our attention to the interval It′ and perform a Bayesian update of our prior



65

which means we now deal with µ|It′ . We can then perform the optimal strategy for this prior. As the additional
information can only improve our estimate, we obtain

η∗(δ, ρ, µ) ≤
∫

dµ(t)

∫
dt′ P[t′ | t]η∗(δ, ρ, µ|It′ ) (336)

=

∫
dµ(t)

∫
dt′

1

T
χ[t′ ∈ It]η

∗(δ, ρ, µ|It′ ) (337)

=

∫
dµ(t)

∫
dt′

1

T
χ[t ∈ It′ ]η

∗(δ, ρ, µ|It′ ) (338)

=
1

T

∫
dt′ µ(It′)η

∗(δ, ρ, µ|It′ ). (339)

Renaming t′ to t yields the first statement of the lemma. The second statement follows by bounding η∗(δ, ρ, µ|It′ ) by
its maximum over t′ and recognizing that

1

T

∫
dt′ µ(It′) =

1

T

∫
dt′
∫
It′

dt µ(t) (340)

=
1

T

∫
dt′
∫

dt µ(t)χ[|t− t′| ≤ T/2] (341)

=
1

T

∫
dt µ(t)T (342)

= 1. (343)

VI. OPTIMAL POST-PROCESSING WITH FIXED MEASUREMENT

In this section, we give additional content relative to Section III B of the main text. There, it was established in
Eq. (33) that the success probability for the smoothed maximum a posteriori estimate relates to the function infinite
norm of the smoothed posterior probability:

η(δ, µ, ρ,QM,τ∗
SMAP

) =

∫
dν(λ) max

τ
(wδ ∗ P (· |λ))(τ) (344)

=

∫
dν(λ) ∥wδ ∗ P (· |λ)∥∞.

The connection to the infinity norm allows us to derive some simple upper bounds by applying Young’s convolution
inequality [147]:

Lemma 14. The success probability of the smoothed maximum a posteriori estimate obeys the upper bound

η(w, µ, ρ,QM,τ∗
SMAP

) ≤ ∥w∥p
∫

dν(λ) ∥P (· |λ)∥q (345)

for all 1/p+ 1/q = 1.

The above inequality immediately trivializes when choosing p = ∞, q = 1 but yields a non-trivial upper bound
otherwise. This can be useful, when for example an upper bound on the likelihood is known.

A particularly interesting property of the smoothed maximum a posteriori estimate, of which we will use a discrete
analogue later to relate metrology to binary hypothesis testing, is the following bound on contributions to the error
for the δ window, which makes the dependence on the window size explicit:

Lemma 15. For any interval I of cardinality |I| ≤ 2δ, define its δ-complement as

Īδ := {t | there exists t′ ∈ I such that |t− t′| > 2δ}. (346)

Then, for any interval I outside the smoothed maximum a posteriori interval, i.e., any interval contributing to the
error, we have that ∫

I

dt P (t |λ) ≤
∫
Īδ

dt P (t |λ) (347)

for all λ.
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Proof. Let us denote the smoothed maximum a posteriori interval as I∗ = [τ∗SMAP(λ) − δ, τ∗SMAP(λ) + δ]. Then, by
definition of the smoothed maximum a posteriori estimate, we have that∫

J

dt P (t |λ) ≤
∫
I∗

dt P (t |λ) (348)

for all compact intervals J of cardinality |J | = 2δ. We can exploit this and optimize over all intervals J that contain
the target interval I to obtain ∫

I

dt P (t |λ) ≤ inf
J : |J|=2δ,I⊆J

∫
I∗\J

dt P (t |λ), (349)

where we implicitly made use of the assumption that I lies outside of I∗, i.e., that I ∩ I∗ = ∅. By construction, Īδ is
the complement of the union of all possible J of cardinality 2δ that contain I, which is exactly what we achieve as
well on the right hand side by choosing the smallest interval I∗\J , making the interval achieving the optimization a
subinterval of Īδ. Extending the integration to all of Īδ yields the statement of the lemma.

The further study of upper and lower bounds for the smoothed maximum a posteriori strategy would be a promising
direction for future research, especially to relate to concepts of classical statistics.

VII. RELATION TO HYPOTHESIS TESTING

A. Multi-hypothesis testing as a special case of metrology

The notions introduced above can be considered as a continuous generalization of the discrete multi-hypothesis
testing problem for quantum states and quantum channels, respectively. In the multi-hypothesis testing problem for
quantum states, one is given a set of states {ρi}mi=1 – in the Bayesian setting with associated prior probabilities {pi}mi=1

– and is tasked to find a measurement given by POVM effects {Qi}mi=1 that maximizes the success probability [16, 17]

Ps({piρi}mi=1) = sup
{Qi}

m∑
i=1

piTr[ρiQi]. (350)

In a similar way, one can define the associated minimax multi-hypothesis testing problem where we desired to find a
measurement

P s({ρi}mi=1) = sup
{Qi}

min
i

Tr[ρiQi] (351)

with optimal worst-case performance. The hypothesis testing has in the binary case already been solved by Helstrom
and Holevo [62, 148]. In particular, the optimal success probability has been determined by them in seminal work to
be

Ps(pρ1, (1− p)ρ2) =
1

2
+

1

2
∥pρ1 − (1− p)ρ2∥1, (352)

where ∥·∥1 denotes the trace or nuclear norm. In general, it is known that [65]

Ps({piρi}mi=1) = 2−Hmin(X|B)ρ , (353)

where Hmin(X|B) = − infσB≥0,Tr[σB ]=1Dmax(ρXB∥IX⊗σB) is the conditional min-entropy and ρXB =
∑m
i=1 pi|i⟩⟨i|⊗

ρi. It has been shown in Ref. [15] that the asymptotic rates for the Bayesian and minimax multi-hypothesis testing
problem coincide and are given by the minimal pairwise Chernoff divergence

R({ρi}mi=1) = lim
n→∞

− 1

n
log(1− P s({ρi}mi=1)) = − logmin

i ̸=j
min

0≤s≤1
Tr[ρsiρ

1−s
j ]. (354)

It now becomes clear that our notion of success for quantum metrology encompasses the quantum multi-hypothesis
testing problem when we consider the following metrological problem that embeds a multi-hypothesis testing problem.
Consider the following prior over states,

µ(t) =

m∑
i=1

piδ(t− i), (355)
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together with any parametrized state ρ(t) such that ρ(i) = ρi and a window function

w1/3(t) =

{
1 if |t| ≤ 1/3

0 else.
(356)

It is obvious that

η∗(w1/3, µ, ρ) = Ps({piρi}mi=1). (357)

Later in this manuscript, we make use of this property to derive upper bounds on the metrological success probability
from binary state discrimination.

In a similar way, we can consider the problem of multi-hypothesis testing for quantum channels. In this case, a
discrete set of quantum channels {Ni}mi=1, possibly again with prior probabilities {pi}mi=1, is given and the optimal
experimental prescription for distinguishing between these quantum channels is to be found. In the single-copy case,
we need to find an input state ρ0 and a measurement {Qi}mi=1 that maximizes the success probability

Ps({piNi}mi=1) = sup
ρ0,{Qi}

m∑
i=1

pi Tr[Ni[ρ0]Qi]. (358)

Using again the prior µ(t) of Eq. (355) together with any parametrized channel N (t) such that N (i) = Ni and the
window function w1/3 of Eq. (356), we see that the success probability is given by the corresponding metrological
success probability:

η∗(w1/3, µ,N ) = Ps({piNi}mi=1). (359)

As we outlined in the preceding section, in the setting where multiple copies are available, there are different possible
ways of using the quantum channel in question, corresponding to the i.i.d. case where the same input state is used
repetitively, the separable case where only separable states are used as inputs, the parallel case where an entangled
state is prepared and fed through the quantum channel and the adaptive case where a quantum comb is used. The
success probabilities we defined in these cases naturally generalize the same notions available in the multi-hypothesis
testing problem for channels.

B. Upper bound on success probability from multi-hypothesis testing

In this section, we prove Theorem 10 of the main text and discuss its extensions to arbitrary window functions and
quantum channels.

Theorem 16. For a given window function w, fix any set S = {(λ, s)} of prior probabilities λ ≥ 0 and shifts s ∈ R
such that

∑
λ∈S λ = 1. Then, for a state set ρ(t), possibly with prior µ(t), we have the upper bounds

η∗(w, µ, ρ) ≤ K

∫
dt P ∗

s ({λµ(t+ s)ρ(t+ s)}(λ,s)∈S), (360)

η∗(w, ρ) ≤ K inf
t
P

∗
s({ρ(t+ s)}s∈S), (361)

where we introduced the constant

K := sup
t

{∑
s∈S

w(t+ s)

}
, (362)

which measures the overlap of the windows for the different shifts.

Proof. First, we recall the definition of the optimal multi-hypothesis testing success probability for a set of operators
{Ai}:

P ∗
s ({Ai}) := sup

0≤Qi≤I∑
iQi=I

∑
i

Tr[AiQi]. (363)
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We exploit that we can shift the time axis of the integration that computes the success probability arbitrarily, to
observe that

η(w, µ, ρ,Q) =
∑

(λ,s)∈S

∫
dt λTr[µ(t+ s)ρ(t+ s)(w ∗Q)(t+ s)]. (364)

Using the definition of K given in the theorem statement, we see that defining the operators

Qs(t) :=
1

K
(w ∗Q)(t+ s) (365)

yields a valid sub-normalized POVM for all t as∑
s∈S

Qs(t) =
1

K

∑
s∈S

(w ∗Q)(t+ s) (366)

≤ 1

K

([∑
s∈S

w(·+ s)

]
∗Q
)
(t)

≤ 1

K
(K ∗Q)(t)

= (1 ∗Q)(t)

= I.

This means that the operators {Qs}s∈S can serve as a candidate POVM in the optimization that computes Ps({λµ(t+
s)ρ(t+ s)}(λ,s)∈S),and hence

η(w, µ, ρ,Q) ≤ K

∫
dt P ∗

s ({λµ(t+ s)ρ(t+ s)}(λ,s)∈S}) (367)

which implies the first statement of the theorem as the upper bound is independent of the chosen POVM Q(t).
The minimax statement is derived in a similar fashion, observing that we can also apply the time shifting trick to

obtain

η(w, ρ,Q) =
∑

(λ,s)∈S

λ inf
t
Tr[ρ(t+ s)(w ∗Q)(t+ s)] (368)

≤ inf
t

∑
(λ,s)∈S

λTr[ρ(t+ s)(w ∗Q)(t+ s)].

Here, we again make the argument that the {Qs}s∈S form a candidate POVM and then optimize over all possible λ
to obtain the theorem statement.

Note that if K in the above theorem is larger than the inverse success probability, then the bound becomes vacuous.
This means, as the success probability asymptotically approaches 1, any bound that should work asymptotically must
have K = 1. Let us now prove the Theorem from the main text:

Proof of Theorem 10. In the case of a rectangular window with tolerance δ, we have that as long as |s− s′| > 2δ for
any two shifts in S, that the rectangular windows do not overlap. Therefore, under the assumptions of Theorem 10,
we have that K = 1 and the statement therefore directly follows from Theorem 16.

Next, we present a corollary of Theorem 16 that extends the statement to metrology protocols defined with respect
to channels. In this setting, the success probability is defined as a joint optimization over the input state and the
POVM, possibly using an ancillary system:

P ∗
s ({pi,Ni}) := sup

{∑
i

piTr[(I⊗Ni)[ρ0]Qi]

∣∣∣∣∣ ρ0 ≥ 0,Tr[ρ0] = 1, 0 ≤ Qi ≤ I,
∑
i

Qi = I

}
. (369)

The minimax success probability is defined analogously by optimizing the minimum over i. With these notions in
place, we obtain the following statement:
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Corollary 17 (Upper bound on success probability). For a given window function w, fix any set S = {(λ, s)} of
prior probabilities λ ≥ 0 and shifts s ∈ R such that

∑
λ∈S λ = 1. Then, for a channel set N (t), possibly with prior

µ(t), we have the upper bounds

η∗(δ, µ,N ) ≤ K

∫
dt P ∗

s ({λµ(t+ s)ρ(t+ s)}(λ,s)∈S), (370)

η∗(δ,N ) ≤ K inf
t
P

∗
s({ρ(t+ s)}s∈S), (371)

where the constant K is defined in Eq. (362).

Proof. Theorem 16 is valid for any set of states, which means it also applies when ρ(t) = (I⊗N (t))[ρ0] for the optimal
probe state ρ0. The fact that the optimal success probability for discriminating quantum channels is obtained by
optimizing over ρ0 and Q(t) implies the corollary.

Similar statements are readily obtained for adaptive discrimination of multiple channel copies and other variants
of the channel metrology task.

C. Upper bound via binary hypothesis testing

In this section, we will derive some bounds using tools from symmetric hypothesis testing. Our first step is to derive
a quantum analog of a Bretagnolle-Huber inequality (see e.g., Ref. [149])

Theorem 18 (Binary hypothesis testing lower bound). Let ρ and σ be two quantum states and 0 ≤ λ ≤ 1 a prior
probability. Then, the optimal binary hypothesis testing error can be bounded from below via the fidelity as

P ∗
e (λρ, (1− λ)σ) ≥ λ(1− λ)F (ρ, σ)2 = λ(1− λ) exp

(
−D̃1/2(ρ ∥σ)

)
, (372)

where D̃α denotes the sandwiched Rényi-relative entropy.

Proof. We employ a strategy similar to the proof of Lemma 17 of Ref. [150] (compare also the proof of an analogue
classical result in Ref. [149]). To this end, we denote with A = λρ and B = (1−λ)σ and write the optimal hypothesis
testing success and error probabilities as

P ∗
s (A,B) = Tr[AΠA] + Tr[BΠB ], (373)

P ∗
e (A,B) = Tr[AΠB ] + Tr[BΠA], (374)

where ΠA and ΠB = I−ΠA are the optimal POVM effects. Then, we define a CPTP map

Λ(X ⊕ Y ) = Tr[XΠA ⊕ YΠB ]⊕ Tr[XΠB ⊕ YΠA] (375)

such that

Λ(A⊕B) = P ∗
s (A,B)⊕ P ∗

e (A,B), (376)

Λ(B ⊕A) = P ∗
e (A,B)⊕ P ∗

s (A,B). (377)

The data-processing property of the fidelity implies that

F (A⊕B,B ⊕A) = 2
√
λ(1− λ)F (ρ, σ) ≤ F (Λ[A⊕B],Λ[B ⊕A]) = 2

√
P ∗
s (A,B)P ∗

e (A,B). (378)

Using P ∗
s (A,B) ≤ 1 and the definition of the sandwiched Rényi relative entropy then yields the statement of the

Theorem.

We can use the above theorem to deduce the following lower bound for metrology:

Theorem 19 (Two-point error probability lower bound). For a given tolerance δ and a set of states ρ(t), we have
the lower bound

1− η(δ, ρ) ≥ 1

4
exp

(
− inf

|t−t′|>2δ
D1/2(ρ(t) ∥ ρ(t′))

)
(379)

on the minimax success probability.
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Proof. We start from the upper bound on the minimax success probability derived in Theorem 10. Applied to a single
time shift, it especially implies that

η(δ, ρ) ≤ inf
t
P

∗
s(ρ(t), ρ(t+ 2δ)). (380)

This is equivalent to a lower bound on the minimax error

1− η(δ, ρ) ≥ sup
t
P

∗
e(ρ(t), ρ(t+ 2δ)). (381)

For the sake of simplicity, we will lower bound the optimal minimax error with the one obtained from a uniform prior,
i.e.

1− η(δ, ρ) ≥ sup
|t−t′|>2δ

P ∗
e

(
1

2
ρ(t),

1

2
ρ(t′)

)
. (382)

Now, applying Theorem 18 yields

1− η(δ, ρ) ≥ 1

4
sup

|t−t′|>2δ

F (ρ(t), ρ(t′))2 (383)

=
1

4
exp

(
− inf

|t−t′|>2δ
D̃1/2(ρ(t) ∥ ρ(t′))

)
(384)

≥ 1

4
exp

(
− inf

t
D̃1/2(ρ(t) ∥ ρ(t+ 2δ))

)
. (385)

Corollary 12 of the main text follows immediately.

D. Upper bound on the success probability from asymmetric hypothesis testing

We can use similar reasoning as in the derivation of Theorem 10 to obtain a lower bound that makes use of
asymmetric hypothesis testing. In asymmetric (binary) hypothesis testing, the goal is to determine a measurement
{M, I − M} that distinguishes between two hypothesis ρ and σ, such that the so-called type-II error Tr[Mσ] is
minimized while maintaining an upper bound of ϵ ∈ [0, 1] on the type-I error probability Tr[(I−M)ρ]. In particular,
the optimal type-II error probability is given by [17]

βϵ(ρ∥σ) = inf{Tr[Mσ] : 0 ≤M ≤ I, Tr[Mρ] ≥ 1− ϵ}. (386)

The hypothesis testing relative entropy is then defined to be the optimal type-II error exponent, namely,

Dη
h(ρ∥σ) = − log β1−η(ρ∥σ), (387)

for η ∈ [0, 1].
We can establish the following theorem:

Theorem 41 (Asymmetric hypothesis testing bound). For a given tolerance δ, fix any set of shifts S = {s} such that
|s| > 2δ and for all distinct s, s′ ∈ S we have that |s− s′| > 2δ. Then, for a state set ρ(t) with prior µ(t) we have the
upper bound

η(δ, ρ, µ,Q) ≤ 1−
∫

dµ(t)
∑
s∈S

β
H(t+s)
h (ρ(t+ s) ∥ ρ(t)),

where we defined the shorthand

H(t) := Tr[(wδ ∗Q)(t)ρ(t)]. (388)

In the minimax case, we have that for all η ≤ η∗(δ, ρ) that

η∗(δ, ρ) ≤ 1−max
t

∑
s∈S

βηh(ρ(t+ s) ∥ ρ(t)).
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An advantage of this bound is that the asymptotic behavior of the asymmetric hypothesis testing error is better
understood than the asymptotics of the symmetric hypothesis testing error and that especially the second-order
asymptotics are known.

Proof. Our strategy consists of using (w ∗Q)(t) as a candidate POVM effect for the asymmetric hypothesis test. We
first treat the minimax case, where the error probability can be expressed as

1− η(δ, ρ,Q) = max
t

Tr[(w ∗Q)(t)ρ(t)], (389)

where w(t) = 1−w(t) can be seen as the complement of the window function. We now make use of the fact that the
set S is defined such that we have w(t) ≥∑s∈S w(t+ s) and hence

1− η(δ, ρ,Q) ≥ max
t

∑
s∈S

Tr[(w(·+ s) ∗Q)(t)ρ(t)] (390)

As the POVM effect (w ∗Q)(t+ s) achieves Tr[(w ∗Q)(t+ s)ρ(t+ s)] ≥ η(δ, ρ) by definition of the minimax success
probability it is a candidate for a binary hypothesis testing and hence

1− η(δ, ρ,Q) ≥ max
t

∑
s∈S

β
η(δ,ρ)
h (ρ(t+ s) ∥ ρ(t)). (391)

The claimed statement follows from the monotonicity of the asymmetric hypothesis testing error and by optimizing
the left hand side over the POVM Q. For the Bayesian case, we introduce the notation

η(t) := Tr[(w ∗Q)(t)ρ(t)] (392)

such that η = mint η(t) and η =
∫
dµ(t) η(t). Now, we can use the exact similar reasoning as above and write

1− η(t) = Tr[(w ∗Q)(t)ρ(t)] (393)

≥
∑
s∈S

β
η(t+s)
h (ρ(t+ s) ∥ ρ(t)), (394)

where the only difference is that the argument of the asymmetric hypothesis test is now a function of t. We therefore
obtain

η ≤ 1−
∫

dµ(t)
∑
s∈S

β
η(t+s)
h (ρ(t+ s) ∥ ρ(t)). (395)

E. Fano-type bounds for quantum multi-hypothesis testing

In this section we derive some bounds for quantum multi-hypothesis testing.

We first establish an analogue of Fano’s inequality for quantum multi-hypothesis testing. To this end, we need two
lemmas. The first establishes the behavior of the relative entropy under a direct sum:

Lemma 20 (Relative entropy and direct sum). We have the identity

D

(
M⊕
i=1

µiρi

∥∥∥∥∥
M⊕
i=1

νiσi

)
= D(µ ∥ ν) +

M∑
i=1

µiD(ρi ∥σi). (396)
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Proof. The proof is a straightforward algebraic manipulation based off the additivity of the matrix logarithm,

D

(
M⊕
i=1

µiρi

∥∥∥∥∥
M⊕
i=1

νiσi

)
=

M∑
i=1

D(µiρi ∥ νiσi) (397)

=

M∑
i=1

Tr[µiρi{log(µiρi)− log(νiσi)}] (398)

=

M∑
i=1

Tr[µiρi{log(ρi)− log(σi) + log(µi)− log(νi)] (399)

=

M∑
i=1

µi Tr[ρi{log(ρi)− log(σi)}] +
M∑
i=1

µi{log(µi)− log(σi)} (400)

= D(µ ∥ ν) +
M∑
i=1

µiD(ρi ∥σi). (401)

The second lemma we need concerns the optimization of the above expression over the prior probabilities µi.

Lemma 42 (Relative-entropy regularized expectation value). Choosing µi ∝ νie
−xi and subsequently normalizing

yields

inf
µ

{
D(µ ∥ ν) +

M∑
i=1

µixi

}
= − log

M∑
i=1

νie
−xi . (402)

Proof. We first expand the expression as

D(µ ∥ ν) +
M∑
i=1

µixi =

M∑
i=1

µi

(
xi + log

µi
νi

)
(403)

and perform Lagrange optimization under the restriction
∑M
i=1 µi = 1. The Lagrange function is given by

L(µ, λ) =

M∑
i=1

µi

(
xi + log

µi
νi

)
+ λ

(
1−

M∑
i=1

µi

)
. (404)

The Karush-Kuhn-Tucker conditions enforce that ∂iL(µ, λ) = 0 for all i, i.e.

∂iL(µ, λ) = xi + 1 + log
µi
νi

− λ = 0. (405)

We thus set

µi = νi exp(λ− 1− xi) ∝ νie
−xi . (406)

The constant λ is implicitly chosen such that the above is normalized, which yields

µi =

 M∑
j=1

νje
−xj

−1

νie
−xi . (407)

The value of the optimization problem is then

M∑
i=1

µi

(
xi + log

µi
νi

)
=

M∑
i=1

µi

xi + log

 M∑
j=1

νje
−xj

−1

e−xi

 (408)

=

M∑
i=1

µi

− log

M∑
j=1

νje
−xj


= − log

M∑
j=1

νje
−xj ,
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as claimed.

We are now ready to prove the Fano-type bound:

Theorem 21 (Fano-type bound for quantum multi-hypothesis testing). Let {µiρi}Mi=1 be a quantum multi-hypothesis
testing problem. For any reference state σ, the error probability obeys

− logP ∗
e ({µiρi}Mi=1) ≤

M

M − 1

(
h(1/M) +D(µ ∥u) +

M∑
i=1

µiD(ρi ∥σ)
)
, (409)

where u is the uniform distribution over M elements and h is the binary entropy function. Optimizing over µ yields
the following bound on the minimax error probability:

− logP
∗
e({ρi}Mi=1) ≤

M

M − 1

(
h(1/M)− log

1

M

M∑
i=1

e−D(ρi ∥σ)

)
. (410)

Proof. We will combine three ingredients to obtain the result. First, a result of Vazquez-Vilar that relates the multi-
hypothesis testing error to a asymmetric hypothesis test [151]

P ∗
e ({µiρi}Mi=1) = max

σ
β
1−1/M
h

(
M⊕
i=1

µiρi

∥∥∥∥∥ 1

M
σ⊕M

)
(411)

= exp

(
−min

σ
D

1−1/M
h

(
M⊕
i=1

µiρi

∥∥∥∥∥ 1

M
σ⊕M

))
,

where Dη
h is the hypothesis testing relative entropy with success probability η. Next, we use the standard bound

Dη
h(ρ ∥σ) ≤

1

η
(D(ρ ∥σ) + h(1− η)) (412)

that relates the hypothesis testing relative entropy to the regular relative entropy [17]. The final ingredient is
Lemma 20. Putting everything together yields that for all σ,

− logP ∗
e ({µiρi}Mi=1) ≤ D

1−1/M
h

(
M⊕
i=1

µiρi

∥∥∥∥∥ 1

M
σ⊕M

)
(413)

≤ M

M − 1

[
D

(
M⊕
i=1

µiρi

∥∥∥∥∥ 1

M
σ⊕M

)
+ h(1/M)

]

=
M

M − 1

[
D(µ ∥u) +

M∑
i=1

µiD (ρi ∥σ) + h(1/M)

]
as claimed. The result on the minimax success probability follows by minimizing the above bound over µ, with the
resulting bound obtained via Lemma 42 using xi = D(ρi ∥σ) and νi = 1/M .

Usually, in the literature for lower bounds in quantum information science (see, e.g., Ref. [152]), Fano’s inequality
is used in a different form, namely the one that bounds the mutual information of a quantum channel. The mutual
information in turn is bounded by the Holevo information of an ensemble of quantum states, usually taken to be a
uniform mixture of the multi-hypothesis testing states. We recover a similar argument from the above bound by using
a uniform distribution as the candidate for the minimax optimization and the expected state as the candidate state

σ =
∑M
i=1 µiρi, in which case the average relative entropy is exactly the Holevo information of the ensemble {µiρi}Mi=1

M∑
i=1

µiD

ρi
∥∥∥∥∥∥
M∑
j=1

µjρj

 =

M∑
i=1

µiTr

ρi
log ρi − log

M∑
j=1

µjρj

 (414)

= S

(
M∑
i=1

µiρi

)
−

M∑
i=1

µiS(ρi)

= χ({µiρi}Mi=1).
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We note that the major improvement over this strategy is the logarithmic dependence on the hypothesis testing error,
which, however, comes at the cost of a missing cross-dependence between the Holevo information and the number of
samples. We can phrase this as the following corollary:

Corollary 22 (Fano-type bound with Holevo information). Let {ρi}Mi=1 be a quantum multi-hypothesis testing problem.
We have the following bound on the minimax error probability:

− logP
∗
e({ρi}Mi=1) ≤

M

M − 1

(
h(1/M) + χ

({
1

M
ρi

}M
i=1

))
, (415)

where χ is the Holevo information of an ensemble of quantum states.

We can also use a similar strategy as in the proof of Theorem 18 to obtain a multi-hypothesis testing lower bound
involving the fidelity. Let us extend the fidelity to mixtures of states as follows:

F ({µiρi}Mi=1, {νiσi}Mi=1) := F

(
M⊕
i=1

µiρi,

M⊕
i=1

νiσi

)
=

M∑
i=1

√
µiνiF (ρi, σi). (416)

We can then establish the following lower bound:

Theorem 23 (Multi-hypothesis testing lower bound). Let {ρi}Mi=1 and σ be quantum states and {µi}Mi=1 be prior
probabilities. We define

Favg := F ({µiρi}Mi=1, {σ/M}Mi=1) (417)

and obtain the lower bound

P ∗
e ({µiρi}) ≥

M

M − 1

(
Favg −

√
1

M

)2

≥
(
Favg −

√
1

M

)2

. (418)

The bound is valid in the regime where Favg ≥
√

1/M .

Proof. We employ a strategy similar to the proof of Theorem 18. To this end, we denote with Ai = µiρi and X = 1
M σ.

We can write the optimal hypothesis testing success and error probabilities as

P ∗
s ({Ai}) =

M∑
i=1

Tr[AiΠi] (419)

P ∗
e ({Ai}) =

M∑
i=1

Tr[Ai(I−Πi)] (420)

where {Πi}Mi=1 are the optimal POVM effects. Then, we define a CPTP map

Λ

(
M⊕
i=1

Yi

)
= Tr

[(
M⊕
i=1

Yi

)(
M⊕
i=1

Πi

)]
⊕ Tr

[(
M⊕
i=1

Yi

)(
M⊕
i=1

I−Πi

)]
(421)

such that

Λ

(
M⊕
i=1

Ai

)
= P ∗

s ({Ai})⊕ P ∗
e ({Ai}) (422)

Λ
(
X⊕M) = Tr[X]⊕ (M − 1)Tr[X] =

1

M
⊕ M − 1

M
. (423)

We can now again use the data-processing property of the fidelity. To this end, we observe that

F

(
M⊕
i=1

Ai, X
⊕M

)
= Favg. (424)
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Now, applying the channel Λ yields

F

(
M⊕
i=1

Ai, X
⊕M

)
≤ F

(
Λ

[
M⊕
i=1

Ai

]
,Λ
[
X⊕M ]) (425)

=

√
1

M
P ∗
s ({µiρi}) +

√
M − 1

M
P ∗
e ({µiρi})

We now apply the bound P ∗
s ({µiρi}) ≤ 1, rearrange and square to obtain the first Theorem statement. The validity

range arises from the fact that the left hand side must remain non-negative for this to be sensible.

F. Further bounds

Similarly to our argument for Theorem 23 above, which applied to quantum multi-hypothesis testing, we can do
the same natively for quantum metrology. It involves the extension of the fidelity to parametrized quantum states
defined as

F (µ(t)ρ(t), ν(t)σ(t)) :=

∫
dt
√
µ(t)ν(t)F (ρ(t), σ(t)). (426)

We obtain the following result:

Theorem 24 (Metrology error lower bound). Let ρ(t) a set of states with prior µ(t) supported on a compact interval
of size T . Let σ be a reference state. We define the random guessing probability κ := 2δ/T and a measure of average
fidelity as

Favg := F (µ(t)ρ(t), σ/T ). (427)

With these definitions, the optimal Bayesian error probability can be lower bounded as

1− η∗(δ, ρ, µ) ≥ 1

1− κ

(
Favg −

√
κ
)2 ≥

(
Favg −

√
κ
)2
. (428)

The bound is valid in the regime where Favg ≥ √
κ.

Proof. We employ a strategy similar to the proof of Theorem 18. The Bayesian success probability is given by

η(δ, ρ, µ,Q) =

∫
dt Tr[µ(t)ρ(t)(wδ ∗Q)(t)]. (429)

We can now see a set of states with prior as an operator-valued measure µ(t)ρ(t) with the trace map given as
∫
dt Tr[·].

In this sense, we can define a CPTP map

Λ (O(t)) =

{∫
dt Tr [O(t)(wδ ∗Q)(t)]

}
⊕
{∫

dt Tr [O(t)([1− wδ] ∗Q)(t)]

}
(430)

such that

Λ (µ(t)ρ(t)) = η ⊕ 1− η (431)

Λ
( σ
T

)
=

2δ

T
⊕ T − 2δ

T
= κ⊕ 1− κ, (432)

where we introduced the random guessing probability κ := 2δ/T . Our results will be formulated in terms of sandwiched
Rényi relative entropy of order 1/2,

D̃1/2(ρ ∥σ) = −1

2
log Q̃1/2(ρ ∥σ) (433)

= −1

2
log Tr[(σ1/2ρσ1/2)1/2] (434)

= − logF (ρ, σ), (435)
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essentially the log-fidelity. Using the data-processing relation of the fidelity, we obtain a relation to the Bayesian
success probability

F
(
µ(t)ρ(t),

σ

T

)
≤ F (η ⊕ 1− η, κ⊕ 1− κ) (436)

=
√
ηκ+

√
(1− η)(1− κ)

≤ √
κ+

√
(1− η)(1− κ).

Combining the two preceding results allows us to deduce

1− η ≥ 1

1− κ

(
Favg −

√
κ
)2
. (437)

as long as

Favg ≥ √
κ. (438)

Another possibility to get a metrology bound is to use the Fano-type bounds we derived before. Going along this
path gives the following theorem:

Theorem 25. Fix a sub-interval of size T = 4kδ for k ∈ N. We set M = 2k + 1 and have that

− log 1− η∗(δ, ρ) ≤ (439)

max
t

M

M − 1

(
h

(
1

M

)
− log

1

M

k∑
l=−k

e−D(ρ(t+2δl) ∥ ρ(t))

)
.

Proof. We first use the subdivision trick of Lemma 6 to establish the following lower bound relating to a subinterval
I = [t− T/2, t+ T/2] of size T = 4kδ centered around t:

1− η∗(δ, ρ) ≥ max
t

{1− η∗(δ, ρ|I)} , (440)

where ρ|I is the restriction of ρ(t) to t ∈ I. Next, we apply Theorem 10 to the above, choosing a set of states
{ρl = ρ(t+ 2δl)}kl=−k that fulfill the condition that the associated times are at least 2δ apart. This gives

1− η∗(δ, ρ) ≥ max
t
P

∗
e({ρl = ρ(t+ 2δl)}kl=−k). (441)

We then apply the above Theorem 21 with the reference state σ = ρ(t) to obtain the statement of the Theorem.

G. Upper bound on asymptotic rate

Theorem 16 allows us to get bounds on the asymptotic rate for quantum metrology from the corresponding upper
bounds for binary hypothesis testing. These bounds rely on the fact that the asymptotic rate for multi-hypothesis
testing is given by the smallest quantum Chernoff divergence [14]

C(ρ, σ) := − inf
0≤s≤1

log Tr[ρsσ1−s] (442)

among two states that are to be tested [15]. To be able to establish such bounds, we first need the bound of Theorem 16
not to be vacuous which corresponds to enforcing K = 1, as the success probability asymptotically approaches 1, but
K is independent of the number of copies of the state that are used. As a further ingredient to establish the bounds
on the asymptotic rate, we need the following Lemma that generalizes Laplace’s method in a way relevant to our
work.

Lemma 26 (Laplace principle). Let µ(t) be a probability measure on R and f(t) a bounded measurable function. The
essential infimum with respect to µ(t) is defined as

ess inf
µ(t)

f(t) := sup {b ∈ R |µ({f(t) < b}) = 0}. (443)

We have that

− lim
n→∞

1

n
log

∫
dµ(t) e−nf(t) = ess inf

µ(t)
f(t). (444)
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Proof. We assume without loss of generality that

f∗ = ess inf
µ(t)

f(t) = sup {b ∈ R |µ({f(t) < b}) = 0} = 0, (445)

as we can otherwise consider the function f − f∗. First, note that

1

n
log

∫
dµ(t) e−nf(t) ≤ 0, (446)

as e−nf(t) ≤ 1 almost everywhere. Thus,

lim sup
n→∞

1

n
log

∫
dµ(t) e−nf(t) ≤ 0. (447)

By the definition of the essential minimum, for every ϵ > 0 we have that there exists a δ > 0 such that

µ({f(t) < ϵ}) ≥ δ. (448)

From this, we obtain that for all n ∫
dµ(t) e−nf(t) ≥ e−nϵδ. (449)

Taking the log and dividing by n we obtain:

1

n
log

(∫
dµ(t) e−nf(t)

)
≥ −ϵ+ log(δ)

n
. (450)

Taking the lim inf of both sides we obtain that

lim inf
n→∞

1

n
log

(∫
dµ(t) e−nf(t)

)
≥ −ϵ. (451)

As ϵ > 0 was arbitrary, we conclude that

lim inf
n→∞

1

n
log

(∫
dµ(t) e−nf(t)

)
≥ 0. (452)

The claim then follows by combining Eq. (452) with Eq. (447).

We are now equipped to show that Theorem 16 implies the following bound on the asymptotic rate.

Theorem 27 (Upper bound on asymptotic rate). For a given window function w, state set ρ(t) and possibly a prior
µ(t) that has non-vanishing support on the parameter domain, the Bayesian and the minimax rate obey the upper
bounds

R
∗
(w, ρ) ≤ R∗(w, µ, ρ) ≤ inf

{
C(ρ(t), ρ(t′))

∣∣∣∣ t, t′ : sup
x
{w(t+ x) + w(t′ + x)} = 1

}
. (453)

Proof. Let us first recall the definition of the asymptotic Bayesian rate

R∗(w, µ, ρ) = lim
n→∞

− 1

n
log
(
1− η∗(w, µ, ρ⊗n)

)
. (454)

We will apply Theorem 16 for a set S = {(1/2, 0), (1/2, s)} where s is chosen such that the constant K is equal to
1, i.e., such that the shifted windows do not overlap. In the case of binary discrimination, we can make sue of the
Helstrom formula

P ∗
s (A,B) =

1

2
Tr[A+B] +

1

2
∥A−B∥1. (455)
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The Theorem then implies the following lower bound on the error:

1− η∗(w, µ, ρ⊗n) ≥ 1−
∫

dt P ∗
s

(
1

2
µ(t)ρ⊗n(t),

1

2
µ(t+ s)ρ⊗n(t+ s)

)
(456)

= 1− 1

2

(∫
dt Tr

[
1

2
µ(t)ρ⊗n(t) +

1

2
µ(t+ s)ρ⊗n(t+ s)

]
+

∥∥∥∥12µ(t)ρ⊗n(t) + 1

2
µ(t+ s)ρ⊗n(t+ s)

∥∥∥∥
1

)
=

1

2

(∫
dt Tr

[
1

2
µ(t)ρ⊗n(t) +

1

2
µ(t+ s)ρ⊗n(t+ s)

]
−
∥∥∥∥12µ(t)ρ⊗n(t) + 1

2
µ(t+ s)ρ⊗n(t+ s)

∥∥∥∥
1

)
=

∫
dt P ∗

e

(
1

2
µ(t)ρ⊗n(t),

1

2
µ(t+ s)ρ⊗n(t+ s)

)
,

where we have used the fact that∫
dt Tr

[
1

2
µ(t)ρ⊗n(t) +

1

2
µ(t+ s)ρ⊗n(t+ s)

]
= 1. (457)

We can now make use of the fact that the asymptotic scaling of the error probability for binary hypothesis tests is
known [153]. We only have to take care of the additional measures µ(t) and µ(t + s) that appear in the expression
we look at. For the sense of brevity, we do not reproduce the whole proof of Theorem 2.2 of Ref. [153] but we just
note that using the relation min{ab, cd} ≥ min{a, c}min{b, d} for non-negative real numbers a, b, c, d after Eq. (12)
of Ref. [153] implies that

P ∗
e

(
1

2
µ(t)ρ⊗n(t),

1

2
µ(t+ s)ρ⊗n(t+ s)

)
≥ 1

2
min(µ(t), µ(t+ s)) exp (−n(C(ρ(t), ρ(t+ s)) + o(1))) . (458)

Therefore,

1− η∗(w, µ, ρ⊗n) ≥ 1

2

∫
dt min{µ(t), µ(t+ s)} exp (−n(C(ρ(t), ρ(t+ s)) + o(1))) . (459)

For the next step, we define ν(t) = min{µ(t), µ(t + s)} and have that
∫
dt ν(t) = c > 0 by the assumptions of the

theorem statement. With this at hand, we have that ν(t)/c is a proper measure so that

lim
n→∞

− 1

n
log(1− η∗(w, µ, ρ⊗n)) ≤ lim

n→∞
− 1

n
log

c

2

∫
dν(t)

c
exp (−nC(ρ(t), ρ(t+ s)) exp(−o(n)). (460)

We can asymptotically take care of the o(n) term by adding −nϵ with an arbitrary ϵ > 0 to the exponent and then
apply Lemma 26 to obtain

lim
n→∞

− 1

n
log(1− η∗(w, µ, ρ⊗n)) ≤ lim

ϵ→0
lim
n→∞

− 1

n
log

∫
dν(t)

c
exp (−n[C(ρ(t), ρ(t+ s) + ϵ]) (461)

= lim
ϵ→0

ess inf
ν(t)

C(ρ(t), ρ(t+ s) + ϵ

= ess inf
ν(t)

C(ρ(t), ρ(t+ s).

In the above statement, the prior enters only through defining the support of ν(t), which by virtue of the assumptions
of the theorem is the full support of the domain of the metrological problem which we left implicit. This means that
asymptotic rate bound applies both to the Bayesian and the minimax case. The theorem statement follows by writing
s = t− t′ and the condition supx{w(t+ s) + w(t′ + s)} = 1 enforces K = 1 as desired.

The statement of Theorem 13 in the main text follows straightforwardly by noting that the condition on t and t′

reduces to |t− t′| > 2δ for the rectangular window with tolerance δ.

H. Relation to Wigner-Yanase-Dyson information

Under continuity assumptions, the most similar states – and thus the states that are hardest to distinguish from
each other – are the ones that are close in time. In the case of a rectangular window with very small tolerance δ we



79

thus expect the rate to be limited by the states that are 2δ-close. In this case, we can expand the Chernoff divergence
as [154]

C(ρ(t), ρ(t+ 2δ)) =
1

2
δ2I(t) +O(δ3), (462)

where I(t) is the Wigner-Yanase-Dyson information. We can alternatively define it through the affinity of quantum
states

A(ρ, σ) = Tr[ρ1/2σ1/2], (463)

such that

A(ρ(t), ρ(t+ 2δ)) = 1− 1

4
δ2I(t) +O(δ3). (464)

Compare this to the Bures fidelity, which expands into the quantum Fisher information F(t) as

F (ρ(t), ρ(t+ 2δ)) = ∥ρ(t)1/2ρ(t+ 2δ)1/2∥1 = 1− 1

2
δ2F(t) +O(δ3). (465)

For small δ, we thus expect the asymptotic rate to be bounded by

R
∗
(wδ, ρ) ≤

1

2
δ2 min

t
I(t). (466)

As the Wigner-Yanase-Dyson information is always smaller than the Bogoliubov-Kubo-Mori information associated
to the quantum relative entropy, this is tighter than the characterization given by Hayashi in Eq. (71) of Ref. [43].

I. Lower bound on success probability

In this section, we will establish a lower bound on the success probability. Such lower bounds are obtained by
exhibiting a POVM Q(τ) for which we can guarantee a certain performance. In our case, we will assume a suitable
measurement {M(λ)} has already been chosen and we then compute guarantees for the smoothed maximum a poste-
riori strategy introduced in Section VI. Our bounds allow us to reduce the problem to the hardest binary hypothesis
testing problem for two states ρ(t) and ρ(t′) that can never be in the same window. We use our bounds to establish
a lower bound on the asymptotic rate for the δ window and show that it matches the upper bound of Theorem 27 for
commuting states. We conjecture that a suitable lower bound can be derived in the general case as well and sketch a
possible direction to do so.

To establish a lower bound on the success probability – or equivalently an upper bound on the error – we will
discretize the problem in question, establish the bound in the discrete case and then lift the result again to the
continuous case by taking the appropriate limits. To this end, we will first establish the discrete version of the success
probability:

η∗(W, {ρi}, {pi}) := sup
{Qj}

∑
i

∑
j

Wi,jpiTr[ρiQj ]. (467)

The first argument is a matrix W that takes the role of the window function, whereas the other arguments are a
collection of quantum states and a collection of prior probabilities. With this notation settled, we can establish the
following lemma that establishes a lower bound through a specific discretization:

Lemma 28 (Lower bound through discretization). For a given window function w, state set ρ(t) and prior µ(t), we
define a discretization with respect to a set of mutually disjoint intervals {Ti}Ni=1 as

pi := µ(Ti), ρi :=
1

pi

∫
Ti

dµ(t) ρ(t), Wi,j := inf
ti∈Ti,tj∈Tj

w(t− t′). (468)

Then, we have that

η∗(w, ρ, µ) ≥ η∗(W, {ρi}Ni=1, {pi}Ni=1). (469)
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Proof. As a first step, we can obtain a lower bound on the success probability by restricting the optimization over all

POVMs Q(τ) to discrete POVMs Q(t) =
∑N
j=1 δ(t− tj)Qj associated to predictions tj ∈ Tj . This yields

η∗(δ, ρ, µ) = sup
Q(τ)

∫
dµ(t) dτ w(t− τ) Tr[ρ(t)Q(τ)] (470)

≥ sup
{Qj}

∑
j

∫
dµ(t)w(t− tj) Tr[ρ(t)Qj ].

Next, we split the integration over t into integrals over the intervals Ti and exploit the definition of Wi,j as a lower
bound. The statement of the lemma follows from collecting the resulting terms

η∗(δ, ρ, µ) ≥ sup
{Qj}

N∑
i=1

∑
j

∫
Ti

dµ(t)w(t− tj) Tr[ρ(t)Qj ] (471)

≥ sup
{Qj}

N∑
i=1

N∑
j=1

∫
Ti

dµ(t)Wi,j Tr[ρ(t)Qj ]

= sup
{Qj}

N∑
i=1

N∑
j=1

piWi,j Tr[ρiQj ]

= η∗(w, {ρi}Ni=1, {pi}Ni=1).

Our next step is to provide a bound for the discrete problem that achieves a reduction to binary hypothesis testing.
We will now define the discrete analogues of the smoothed maximum a posteriori estimation strategy of Section VI.
For a given measurement {M(λ)}, we define the discrete likelihood function

Λ(λ | i) := Tr[ρiM(λ)]. (472)

Analogously to Section III B, we also define the marginal probability of observing λ as

ν(λ) =

N∑
i=1

piΛi(λ) (473)

such that the discrete posterior distribution is given by

P (i |λ) = piΛ(λ | i)
ν(λ)

. (474)

The discrete likelihood function corresponds to a state

Λ(λ | i) ⇔ Λ(i) :=

∫
dλ |λ⟩⟨λ|Λ(λ | i) = 1

pi

∫
dν(λ) |λ⟩⟨λ|P (i |λ) (475)

that captures the conditional distribution of measurement outcomes conditioned on the underlying state being ρi.
A given strategy τ∗(λ) induces a POVM

Qj =

∫
dλM(λ)χ[τ∗(λ) = j]. (476)

The discrete success probability for that strategy is then

η(w, {ρi}Ni=1, {pi}Ni=1, {Qj}Nj=1) =

∫
dλ

N∑
i=1

N∑
j=1

piWi,j Tr[ρiM(λ)]χ[τ∗(λ) = j] (477)

=

∫
dλ

N∑
i=1

N∑
j=1

Wi,jpiΛ(λ | i)χ[τ∗(λ) = j]

=

∫
dλ

N∑
i=1

N∑
j=1

Wi,jν(λ)P (i |λ)χ[τ∗(λ) = j].
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The smoothed maximum a posteriori estimation strategy corresponds to

τ∗SMAP(λ) = argmax
1≤i≤N

N∑
j=1

Wi,jP (j |λ). (478)

The smoothed maximum a posteriori estimation strategy allows us to derive the following proposition that relates
the error to binary hypothesis testing of the output distributions of a fixed measurement for any window which takes
only values in 0 and 1, like the δ window.

Proposition 29 (Error bound in the discrete case). For a given discrete set of states {ρi}Ni=1 with prior probabilities
{pi}Ni=1 and a window matrix W with entries that are either 0 or 1, we have that the posterior states {Υi}Ni=1 provide
the upper bound

N∑
i=1

pi − η∗(W, {ρi}Ni=1, {pi}Ni=1) ≤ N2 max
1≤i,j≤N

̸∃k : Wi,k=Wj,k=1

Pe(piΛ(i), pjΛ(j)). (479)

The condition on the indices i and j means we optimize over all states that cannot be in the same window at the same
time.

Proof. By the construction of our measurement, we know that for all i

N∑
j=1

Wi,jP (j |λ) ≤
N∑
j=1

Wτ∗(λ)jP (j |λ). (480)

We can reformulate this by introducing a neighborhood of an index i, K(i) := {j |Wi,j = 1}, as∑
j∈K(i)

P (j |λ) ≤
∑

j∈K(τ∗(λ))

P (j |λ), (481)

where we implicitly made use of the fact that Wi,j can be only either zero or one by assumption. We will denote the
complement of a neighborhood as K̄ = [N ] \K. Note that the total error of our construction will be

N∑
i=1

pi − η(W, {ρi}Ni=1, {pi}Ni=1, {Qj}) =
∫

dν(λ)
∑

i∈K̄(τ∗(λ)

P (i |λ). (482)

The first key observation we can draw from the above is that for any neighborhood K(k) that contains i, we have
that

P (i |λ) ≤
N∑

j∈K(τ∗(λ))

P (j |λ)−
N∑

l∈K(k)

P (l |λ). (483)

This upper bound will be non-trivial for any i ∈ K̄(τ∗(λ)). We can remove the overlapping terms in the upper bound
to obtain the following inequality which holds for all i ∈ K̄(τ∗(λ)) and all k such that for i ∈ K(k),

P (i |λ) ≤
∑

j∈K(τ∗(λ)\K(k)

P (j |λ). (484)

Hence, we can conclude that if we define the union of all neighborhoods that contain i as U(i) :=
⋃{K(k) | i ∈ K(k)},

we have that

P (i |λ) ≤
∑
j ̸∈U(i)

P (j |λ). (485)

The next crucial step in our derivation is to observe that the above immediately implies

P (i |λ) ≤
∑
j ̸∈U(i)

min{P (i |λ), P (j |λ)} (486)
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for all likelihood values that contribute to the error of the smoothed maximum a posteriori estimate. We can thus
bound the total error as

N∑
i=1

pi − η(W, {ρi}Ni=1, {pi}Ni=1, {Qj}) =
∫

dν(λ)
∑

i∈K̄(τ∗(λ))

P (i |λ) (487)

≤
∫

dν(λ)
∑

i∈K̄(τ∗(λ))

∑
j ̸∈U(i)

min{P (i |λ), P (j |λ)}

≤
∫

dν(λ)

N∑
i=1

∑
j ̸∈U(i)

min{P (i |λ), P (j |λ)}

=

N∑
i=1

∑
j ̸∈U(i)

∫
dν(λ) min{P (i |λ), P (j |λ)}

=

N∑
i=1

∑
j ̸∈U(i)

Pe(piΛ(i), pjΛ(j))

≤ N2 max
1≤i,j≤N
j ̸∈U(i)

Pe(piΛ(i), pjΛ(j)).

The first equality is the error under the smoothed maximum a posteriori strategy, the first inequality is Eq. (486),
the second inequality – a further crucial step – extends the summation over i to include all possible indices. The
second equality exchanges the order of integration and summation and the third equality compares to Eq. (475) and
recognizes the term

∫
dν(λ) min{P (i |λ), P (j |λ)} as the minimum attainable error when discriminating the classical

states Λ(i) and Λ(j) with prior probabilities pi and pj . The final inequality bounds the sum via the maximum. The
statement of the proposition follows by recognizing that j ̸∈ U(i) is equivalent to ̸ ∃k : Wi,k =Wjl = 1.

Let us now turn to the δ window and lift this proposition to a bound in the continuous case. To this end, recall the
following definitions: We have the likelihood function

Λ(λ | t) := Tr[ρ(t)M(λ)] (488)

capturing the conditional distribution of measurement outcomes λ for a given ground truth t, the associated likelihood
state

Λ(t) :=

∫
dλ |λ⟩⟨λ|Λ(λ | t), (489)

and the marginal distribution of measurement outcomes and the posterior distribution:

ν(λ) :=

∫
dµ(t) Tr[ρ(t)M(λ)] (490)

P (t |λ) := µ(t)

ν(λ)
Λ(λ | t). (491)

With these definitions at hand, we can establish the following proposition pertaining to a rectangular window function:

Proposition 30. Assume a rectangular window with fixed tolerance δ, state set ρ(t) with prior µ(t) and a fixed
measurement M(λ). We can then take any given compact interval T and discretize it into N ∈ N equally sized
sub-intervals of size ∆ = |T |/N . We define a smoothed state as

Υ∆(t) :=
1

∆

∫ ∆/2

−∆/2

dτ µ(t+ τ)Λ(t+ τ). (492)

Then, we have the bound

µ(T )− η∗(δ, ρ, µ) ≤ |T |N max
t,t′∈T

|t−t′|>2(δ−∆)

Pe(Υ
∆(t),Υ∆(t′)). (493)
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Proof. Let us use the discretization introduced in Lemma 28 for a set of mutually disjoint intervals Ti of cardinality

bounded as |Ti| ≤ ∆ such that T =
⋃N
i=1 Ti where N = ⌈T/∆⌉. We combine the discretization lower bound of

Lemma 28 with Proposition 29. Recall that the discretization involves the definitions

pi = µ(Ti) (494)

ρi =
1

pi

∫
Ti

dµ(t) ρ(t). (495)

Subsequent application of Proposition 29 then gives the bound

µ(T )− η∗(δ, ρ, µ) ≤ N2 max
1≤i,j≤N

̸∃k : Wi,k=Wj,k=1

Pe(piΛ(i), pjΛ(j)), (496)

where we have used
∑N
i=1 pi = µ(T ) and, for ti the midpoint of Ti, we have that

piΛ(i) = pi

∫
dλ |λ⟩⟨λ| Tr[ρiM(λ)] (497)

= pi

∫
dλ |λ⟩⟨λ| Tr

[
1

pi

∫
Ti

dµ(t) ρ(t)M(λ)

]
=

∫
dλ |λ⟩⟨λ|

∫
Ti

dµ(t) Λ(λ | t)

=

∫
Ti

dµ(t) Λ(t)

= ∆Υ∆(t).

Hence,

µ(T )− η∗(δ, ρ, µ) ≤ ∆N2 max
1≤i,j≤N

̸∃k : Wi,k=Wj,k=1

Pe(Υ
∆(ti),Υ

∆(tj)). (498)

To bring this inequality to its final form, we revisit the definition of Wi,k for the δ window

Wi,k = inf
t′i∈Ti

t′k∈Tk

w(t′i − t′k) (499)

= inf
t′i∈Ti

t′k∈Tk

χ[|t′i − t′k| ≤ δ]

= inf
−∆/2≤ϵ,ϵ′≤∆/2

χ[|ti − tk + ϵ− ϵ′| ≤ δ]

= χ[|ti − tk| ≤ δ −∆],

where we recall that ti and tk are the midpoints of Ti and Tk, respectively. The condition that there should not be a
k such that Wi,k and Wj,k are one at the same time thus translates to

̸ ∃k : Wi,k =Wj,k = 1 ⇔ |ti − tj | > 2(δ −∆). (500)

We, therefore, have

µ(T )− η∗(δ, ρ, µ) ≤ ∆N2 max
1≤i,j≤N

|ti−tj |>2(δ−∆)

Pe(Υ
∆(ti),Υ

∆(tj))

≤ ∆N2 sup
t,t′∈T

|t−t′|>2(δ−∆)

Pe(Υ
∆(t),Υ∆(t′)),

where the second inequality follows from the fact that we can always extend the optimization in the maximum to
also include points that are not the midpoints of the discretization intervals. The statement of the proposition follows
from ∆ = |T |/N .
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We will now use the above proposition to get a lower bound on the asymptotic rate for the δ window. We consider
the case of a defined sequence of measurements {M (n)} for n ∈ N. We denote the channel that maps states to their
output distributions over λ as

M(n)[ρ] =

∫
dλ |λ⟩⟨λ| Tr[ρM (n)(λ)]. (501)

This sequence achieves the rate

R∗(ρ, σ, {M (n)(λ)}) := − lim
n→∞

1

n
logP ∗

e (M(n)[ρ⊗n],M(n)[σ⊗n]) (502)

for binary state discrimination. With this notation in place, we can now proceed with the proof of Theorem 14 of the
main text:

Proof of Theorem 14. We will use Proposition 30 and choose an interval T = [−T0, T0], and a number of discretization
intervals N ∈ N such that ∆ = 2T0/N < δ. We actually have to choose ∆ much smaller than that as will become
apparent later. In our case, the likelihood state is given by

Λ(n)(t) = M(n)[ρ⊗n(t)] (503)

and its smoothed counterpart by

Υ∆,(n)(t) =
1

∆

∫ ∆/2

−∆/2

dτ µ(t+ τ)Λ(n)(t+ τ). (504)

The upper bound on the error obtained from Proposition 30 then takes the form

µ([−T0, T0])− η∗(δ, ρ⊗n, µ) ≤ 2T0N sup
−T0≤t,t′≤T0

|t−t′|>2(δ−∆)

Pe(Υ
∆,(n)(t),Υ∆,(n)(t′)). (505)

We will introduce the smoothed state set and measure as

µ∆(t) :=
1

∆

∫ ∆/2

−∆/2

dτ µ(t+ τ) =
1

∆
µ([t−∆/2, t+∆/2]), (506)

ρ∆,(n) =
1

µ([t−∆/2, t+∆/2])

∫ ∆/2

−∆/2

dτ µ(t)ρ⊗n(t). (507)

With these notions, we have that

Υ∆,(n)(t) = M(n)

[
1

∆

∫ ∆/2

−∆/2

dτ µ(t+ τ)ρ⊗n(t+ τ)

]
(508)

= M(n)[µ∆(t)ρ∆,(n)(t)].

For technical reasons, we will need a full rank state in the following derivations. We therefore introduce the perturbed
state set

ργ(t) := (1− γ)ρ(t) + γω, (509)

where 0 < γ < 1 and ω is the maximally mixed state. We will use ρ
∆,(n)
γ (t) to denote the associated smoothed state

sets analogously defined as in Eq. (507). We can use the upper bound

ρ(t) ≤ 1

1− γ
ργ(t) ⇒ ρ⊗n(t) ≤ en log(1/(1−γ))ρ⊗nγ (t). (510)

The state ρ∆,(n) appearing in the upper bound of Eq. (505) is a mixture of i.i.d. states, but for our purposes we need
an i.i.d. state. We therefore use the chain of inequalities

ρ∆,(n)(t) ≤ en log(1/(1−γ))ρ∆,(n)γ (t) ≤ en[log(1/(1−γ))+D
T0,∆,γ
max ][ρ∆γ (t)]

⊗n, (511)
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where we have introduced the quantity

DT0,∆,γ
max := sup

−T0≤t≤T0

sup
−∆/2≤τ≤∆/2

Dmax(ργ(t+ τ), ρ∆γ (t)). (512)

We have thus reduced from the state ρ∆,(n)(t) to the state [ρ∆γ (t)]
⊗n at the cost of a correction to the asymptotic rate

given by log(1/(1− γ)) +DT0,∆,γ
max , as becomes apparent from the following chain of inequalities:

µ([−T0, T0])− η∗(δ, ρ⊗n, µ) (513)

≤ 2T0N sup
−T0≤t,t′≤T0

|t−t′|>2(δ−∆)

Pe(M(n)[µ∆(t)ρ∆,(n)(t)],M(n)[µ∆(t′)ρ∆,(n)(t′)])

≤ 2T0N sup
−T0≤t,t′≤T0

|t−t′|>2(δ−∆)

en[log(1/(1−γ))+D
T0,∆,γ
max ]Pe(M(n)[µ∆(t)[ρ∆γ (t)]

⊗n],M(n)[µ∆(t′)[ρ∆γ (t
′)]⊗n])

≤ 2T0N sup
−T0≤t,t′≤T0

|t−t′|>2(δ−∆)

en[log(1/(1−γ))+D
T0,∆,γ
max ] max{µ∆(t), µ∆(t′)}Pe(M(n)[[ρ∆(t)]⊗n],M(n)[[ρ∆(t′)]⊗n])

≤ 2T0N sup
−T0≤t,t′≤T0

|t−t′|>2(δ−∆)

en[log(1/(1−γ))+D
T0,∆,γ
max ]Pe(M(n)[[ρ∆(t)]⊗n],M(n)[[ρ∆(t′)]⊗n]).

The first inequality is Eq. (505), the second inequality uses the facts that for the optimal binary hypothesis testing
error we have that A ≤ A′, B ≤ B′ implies that P ∗

e (A,B) ≤ P ∗
e (A

′, B′) as well as that P ∗
e (αA,αB) = αP ∗

e (A,B).
Both of these facts are readily observable from the Helstrom formula and the convex problem formulation of the
hypothesis testing error. The third inequality extracts the measure via maximization and the fourth inequality upper-
bounds the maximum of the smoothed measures by one. We can conclude that the asymptotic rate of approaching
µ([−T0, T0]) is thus at least

− lim
n→∞

log[µ([−T0, T0])− η∗(δ, ρ⊗n, µ)] ≥ inf
|t−t′|>2(δ−∆)

R(ρ∆γ (t), ρ
∆
γ (t

′), {M (n)})− log(1/(1− γ))−DT0,∆,γ
max . (514)

Having established this bound, we now desire to let the number of discretization steps N → ∞ and thus ∆ → 0. By
assumption, t 7→ ρ(t) is a continuous function and hence

lim
∆→0

∥∥ργ(t)− ρ∆γ (t)
∥∥ = (1− γ) lim

∆→0

∥∥ρ(t)− ρ∆(t)
∥∥ (515)

= (1− γ) lim
∆→0

∥∥∥∥∥ρ(t)− 1

∆

∫ ∆/2

−∆/2

dτ ρ(t+ τ)

∥∥∥∥∥
= (1− γ) lim

∆→0

1

∆

∥∥∥∥∥
∫ ∆/2

−∆/2

ρ(t)− ρ(t+ τ)

∥∥∥∥∥
≤ lim

∆→0
max

−∆/2≤τ≤∆/2
∥ρ(t)− ρ(t+ τ)∥

= 0.

This implies that

lim
∆→0

R(ρ∆γ (t), ρ
∆
γ (t

′), {M (n)}) = R(ργ(t), ργ(t
′), {M (n)}) (516)

as R is a continuous function in the first two arguments with respect to the trace norm by the uniform limit theorem
as it is a composition of continuous functions.

To wrap up our proof, we also show that the quantity DT0,∆,γ
max vanishes. To do so, we rely on the formulation of

the max-relative entropy that involves the pseudoinverse:

Dmax(ργ(t+ δ), ρ∆γ (t)) = log ∥ργ(t+ δ)ρ∆γ (t)
+∥∞. (517)

We can then make use of some results on the perturbation theory of the pseudoinverse. Namely, that if rank(A) =
rank(A+X) and ∥X∥∞ < 1/∥A+∥∞, we have that [155]

∥A+ − (A+X)+∥∞ ≤ 3∥A+∥∞∥(A+X)+∥∞∥X∥∞ (518)

≤ 3
∥A+∥2∞∥X∥∞

1− ∥A+∥∞∥X∥∞
.
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In our case, we would like to show that A+X = ρ∆γ (t)
+ is not too far from A = ργ(t+δ)

+. As we perturbed all states

with the maximally mixed state, we know that ρ∆γ (t) and ργ(t+ δ) both have full rank, fulfilling the first requirement
of the above result. Next, we use a similar argument as in Eq. (515) to establish that as long as |δ| ≤ ∆/2

lim
∆→0

∥∥ργ(t+ δ)− ρ∆γ (t)
∥∥ = (1− γ) lim

∆→0

∥∥ρ(t+ δ)− ρ∆(t)
∥∥ (519)

≤ lim
∆→0

∥∥∥∥∥ρ(t+ δ)− 1

∆

∫ ∆/2

−∆/2

dτ ρ(t+ τ)

∥∥∥∥∥
= lim

∆→0

1

∆

∥∥∥∥∥
∫ ∆/2

−∆/2

dτ ρ(t+ δ)− ρ(t+ τ)

∥∥∥∥∥
≤ lim

∆→0
max

−∆/2≤τ≤∆/2
∥ρ(t+ δ)− ρ(t+ τ)∥

= 0,

by continuity. This implies that we can make ∥ρ∆γ (t)−ργ(t+δ)∥∞ arbitrarily small when decreasing ∆. This especially
means that we can make fulfill the second requirement of the above result on the magnitude of the perturbation. This
is because for sufficiently small γ, we have that 1/∥ργ(t+ δ)+∥∞ = O(1/γ) which is independent of ∆. Hence, there
exists a sufficiently small ∆ such that we can apply the result. This allows us to conclude

lim
∆→0

Dmax(ργ(t+ δ), ρ∆γ (t)) = lim
∆→0

log∥ργ(t+ δ)ρ∆γ (t)
+∥∞ (520)

= lim
∆→0

log∥ργ(t+ δ)[ρ∆γ (t)
+ − ργ(t+ δ)+ + ργ(t+ δ)+]∥∞

≤ lim
∆→0

log
(
∥ργ(t+ δ)ργ(t+ δ)+∥∞ + ∥ργ(t+ δ)[ρ∆γ (t)

+ − ργ(t+ δ)+]∥∞
)

≤ lim
∆→0

log
(
1 + ∥ργ(t+ δ)∥∞∥[ρ∆γ (t)+ − ργ(t+ δ)+]∥∞

)
≤ lim

∆→0
log
(
1 + ∥ρ∆γ (t)+ − ργ(t+ δ)+∥∞

)
≤ lim

∆→0
∥[ρ∆γ (t)+ − ργ(t+ δ)+]∥∞

≤ lim
∆→0

3
∥ργ(t+ δ)+∥2∞∥ρ∆γ (t)− ργ(t+ δ)∥∞

1− ∥ργ(t+ δ)+∥∞∥ρ∆γ (t)− ργ(t+ δ)∥∞
= 0.

The last line follows by choosing ∆ sufficiently small. This immediately implies the desired relation

lim
∆→0

DT0,∆,γ
max = 0. (521)

and we obtain that

− lim
n→∞

log[µ([−T0, T0])− η∗(δ, ρ⊗n, µ)] ≥ inf
−T0≤t,t′≤T0

|t−t′|>2δ

R(ργ(t), ργ(t
′), {M (n)})− log(1/(1− γ)). (522)

Finally, we let γ → 0 and T0 → ∞, which recovers the theorem statement.

Looking at the structure of the above proofs, we see that Open Problem 5 could be solved if there exists a
measurement M(λ)) such that in the discrete setting the pairwise discrimination error of the outcome distributions
{Λi = M[ρi]}Ni=1 fulfills

max
1≤i,j≤N

̸∃k : Wi,k=Wj,k=1

Pe(piΛi, pjΛj) ≤ C max
1≤i,j≤N,

̸∃k : Wi,k=Wj,k=1

min
0≤s≤1

Tr[ρsiρ
1−s
j ], (523)

where the constant C can be polynomial in the number of discrete states and the dimension of the underlying system,
as i.i.d. states live in the symmetric subspace.
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VIII. OPTIMAL TOLERANCE

In this section, we will focus our attention on the rectangular window with tolerance δ. Until now, we have
analyzed the problem of finding and optimizing the success probability we can guarantee for a fixed window size δ. It
is however also operationally meaningful to ask the reverse question: How small can we make the window tolerance
δ while keeping the probability of success constant? This is especially interesting, as this quantity compares more
naturally to the usual quantifiers in quantum metrology, namely the standard deviation.

We defined the success probability of a metrology protocol over states ρ(t) with prior µ(t) as a quantity dependent
on δ as η(δ) = η(δ, µ, ρ,Q). In the same spirit, we now define the optimal tolerance (as in the main text) as

δ(η, µ, ρ,Q) := inf {δ′ ≥ 0 | η(δ′, µ, ρ,Q) ≥ η}. (524)

If the function η(δ, µ, ρ,Q) is injective in δ, this is functionally equivalent to the inverse of this function seen as a map
from δ to η. Contrary to η, the quantity δ cannot be written as a semi-definite program, because the dependence of
η onto δ is non-linear. The associated minimax quantities are defined likewise.
We can learn something about the relation between η and δ by performing a Taylor expansion:

Proposition 31 (Limit for smooth POVMs). For a rectangular window with small tolerance δ, a set of states ρ(t),
possibly with with prior µ(t) and a fixed smooth POVM Q(τ), we have that

η(δ, µ, ρ,Q) = 2δ

∫
dµ(t) Tr[ρ(t)Q(t)] +O(δ3), (525)

η(δ, ρ,Q) = 2δmin
t

Tr[ρ(t)Q(t)] +O(δ3). (526)

Proof. A simple Taylor expansion of Q around Q(t) gives

Q(t+ τ) = Q(t) + τQ̇(t) +
1

2
τ2Q̈(t) +O(τ3). (527)

Integrating this from −δ to δ yields∫ δ

−δ
dτ Q(t+ τ) = 2δQ(t) +

1

3
δ3Q̈(t) +O(δ4). (528)

As

η(δ, µ, ρ,Q) =

∫
dµ(t)

∫ δ

−δ
dτ Tr[ρ(t)Q(t+ τ)], (529)

the statement of the proposition in the Bayesian case follows. The minimax case is also evident when recognizing
that we just have to take a minimum of the same expression.

The above proposition highlights that in the limit of small δ, the optimal POVM is independent of δ, at least if we
optimize over smooth POVMs only. We can also use it to give a simple proof of Proposition 28 of the main text:

Proof of Proposition 28. The formula for the derivative ∂δη at δ = 0 can be readily read off the result of Proposition 31,
the statement then follows by applying the formula for the first derivative of the inverse function.

A. Lower bounds via asymmetric hypothesis testing

In this section, we provide lower bounds on the size of the window function in terms of asymmetric hypothesis
testing. We refer to Section VIID for a brief description of asymmetric hypothesis testing.

Theorem 32. For a given window function w and set of states ρ(t), we have for every quantum state σ and constant
0 < η0 ≤ η∗(w, ρ) that ∫

dt w(t) ≥
∫

dt β1−η0(ρ(t)∥σ). (530)
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Proof. By duality of semi-definite problems, it holds that the optimal type-II error probability defined in (386) can
be expressed as [17]

βϵ(ρ∥σ) = sup{µ(1− ϵ)− Tr[X] : µ ≥ 0, X ≥ 0, µρ ≤ σ +X}. (531)

Define µ̄(t), X̄(t) to be the optimal candidates in this convex problem, such that µ̄(t)ρ(t) ≤ σ + X̄(t) and
β1−η0(ρ(t)∥σ) = µ̄(t)η0 − Tr[X̄(t)]. The strategy of the proof is to find dual candidates in the convex program
for η∗(w, ρ) in (149).

Let ν =
[∫

dt µ̄(t)
]−1

and let µ(t) = νµ̄(t), and observe that
∫
dt µ(t) = 1. Let

δ =
1

2

∫
dt w(t). (532)

For any t′ ∈ R, we find ∫
dt µ(t)w(t− t′) ρ(t) = ν

∫
dt w(t− t′) µ̄(t)ρ(t) (533)

≤ ν

∫
dt w(t− t′)

[
σ + X̄(t)

]
≤ 2νδσ + ν

∫
dt X̄(t) ,

where for the second term in the last line we have used the fact that w(t− t′) ≤ 1. Defining

X = 2νδσ + ν

∫
dt X̄(t) (534)

thus ensures that ∫
dt µ(t)w(t− t′) ρ(t) ≤ X. (535)

Therefore, µ(t) and X are feasible candidates in the dual problem for η∗(w, ρ). The objective value attained by this
choice of variables directly gives us an upper bound on the optimal value η∗(w, ρ), i.e.,

η∗(w, ρ) ≤ Tr[X] = 2νδ + ν

∫
dt Tr[X̄(t)]. (536)

The second term of (536) is

ν

∫
dt Tr[X̄(t)] = ν

∫
dt
(
µ̄(t)η0 − β1−η0(ρ(t)∥σ)

)
= η0 − ν

∫
dt β1−η0(ρ(t)∥σ), (537)

where the first equality follows from the properties of the optimal candidates in the convex problem defining hypothesis
testing entropy, and the second by the definition of ν. Plugging this into Eq. (536), and recalling that η0 ≤ η∗(w, ρ),
we find

η0 ≤ η∗(w, ρ) ≤ η0 + ν

[
2δ −

∫
dt β1−η0(ρ(t)∥σ)

]
, (538)

which implies that

ν

[
2δ −

∫
dt β1−η0(ρ(t)∥σ)

]
≥ 0. (539)

Finally, because ν ≥ 0, we obtain

2δ ≥
∫

dt β1−η0(ρ(t)∥σ) . (540)

This proves the claim, recalling the definition of δ in Eq. (532).
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Alternatively, the theorem states that for any 0 < η0 ≤ 1, any attempt to use a window function that is not as wide
as prescribed by (530) will result in a success probability η∗(w, ρ) that is less than η0. The left hand side of (530) is
a measure of the width of the window function.

We can now give the proof of the asymptotic lower bound of Theorem 36 from the main text. For this, we need
the famous Laplace’s method which we use in the following simplified version (see, e.g., Ref. [156]):

Lemma 33 (Laplace’s method). Let ϕ(x) be a twice continuous differentiable function such that it has a unique
minimum ϕ(x0) = 0. Then, for any interval I that contains x0 in its interior, we have that

∫
I

dx exp(−nϕ(x)) =
√

2π

nϕ′′(x0)
+O(n−3/2). (541)

We can now prove the desired statement:
Using a δ window and a suitably chosen state σ we can obtain the following corollary.

Corollary 34. For a rectangular window function with tolerance δ and a state set ρ(t), we have for any η0 ≤ η∗(wδ, ρ)
that

δ ≥ 1

2

∫
dt exp(−Dη0

h (ρ(t)∥ρ(t′))) ≥ sup
δ′>0

δ′ sup
t

inf
|t−t′|≤2δ′

exp(−Dη0
h (ρ(t)∥ρ(t′))). (542)

Proof. As Theorem 32 holds for any state, we can also choose any ρ(t′). We therefore have

2δ ≥
∫

dt exp(−Dη0
h (ρ(t)∥ρ(t′))). (543)

We can now go further and restrict the integration to any interval T of size |T | = 2δ′ that contains t′ and maximize
over these intervals:

2δ ≥ sup
|T |=2δ′

t′∈T

∫
T

dt exp(−Dη0
h (ρ(t)∥ρ(t′))). (544)

We can now lower-bound the integral by the lower-bound of the integrand over the interval to obtain

2δ ≥ 2δ′ sup
|T |=2δ′

t′∈T

inf
t∈T

exp(−Dη0
h (ρ(t)∥ρ(t′))). (545)

As t′ has been arbitrary, we can instead just optimize over T as well to obtain

2δ ≥ 2δ′ sup
|T |=2δ′

sup
t′∈T

inf
t∈T

exp(−Dη0
h (ρ(t)∥ρ(t′))). (546)

As t and t′ have to lie in the same interval, we have that

2δ ≥ 2δ′ sup
t

inf
|t−t′|≤2δ′

exp(−Dη0
h (ρ(t)∥ρ(t′))). (547)

The statement of the Corollary follows by optimizing over δ′ and dividing by 2.

The above result allows us to exploit Laplace’s method and the relation of the hypothesis testing relative entropy
with the sandwiched Rényi relative entropies of Eq. (64) to get an asymptotic bound. We will use Laplace’s method
in the following simplified version (see, e.g., Ref. [156]):

Lemma 35 (Laplace’s method). Let ϕ(x) be a twice continuous differentiable function such that it has a unique
minimum ϕ(x0) = 0. Then, for any interval I that contains x0 in its interior, we have that

∫
I

dx exp(−nϕ(x)) =
√

2π

nϕ′′(x0)
+O(n−3/2). (548)
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The asymptotic behavior of the hypothesis testing bound is dominated by the hypothesis testing relative entropy
of states close in time. In this case, the information measure induced by the sandwiched Rényi relative entropy [6]

becomes relevant. We denote it by Ĩα(t) and it is implicitly defined via [157]

D̃α(ρ(t) ∥ ρ(t+ δ)) =
α

2
δ2Ĩα(t) +O(δ3). (549)

We obtain the following asymptotic result that reproduces the scaling of the standard quantum limit:

Proposition 36 (Asymptotic lower bound). For all α > 1, the optimal minimax tolerance for a given minimax
success probability η obeys the inequality

δ
∗
(η, ρ⊗n) ≥ 1

2
η

α
α−1

√
2π

αnĨα
+O

(
1

n3/2

)
(550)

where

Ĩα := min
t

Ĩα(ρ(t)). (551)

As Theorem 18, the above theorem visibly reminds us of the Quantum Cramér-Rao in the scaling of n, but the
dependence on η is inferior.

Proof. We start from Proposition 28. To obtain a lower bound, we employ the standard upper bound

Dη0
h (ρ ∥σ) ≤ D̃α(ρ ∥σ) +

α

α− 1
log

1

η0
(552)

on the hypothesis testing relative entropy via the sandwiched Rényi relative entropies [17], which holds for 1 < α <∞.
We now set σ = ρ⊗n(t′) for some t′ to be determined later. Exploiting the additivity of the sandwiched Rényi relative
entropy, we obtain

δ(η, ρ⊗n) ≥ 1

2

∫
dt exp

(
−nD̃α(ρ(t) ∥ ρ(t′))−

α

α− 1
log

1

η

)
(553)

=
1

2
η

α
α−1

∫
dt exp

(
−nD̃α(ρ(t) ∥ ρ(t′))

)
.

The integral on the right hand side can be evaluated by a simple application of Laplace’s method as given in Lemma 35,
recognizing that D̃α(ρ(t)∥ρ(t′)) achieves its minimum for t = t′, yielding

δ(η, ρ⊗n) ≥ 1

2
η

α
α−1

√
2π

nD̃′′
α(t

′)
+O(n−3/2), (554)

where we have denoted

D̃′′
α(t

′) =
∂2

∂∆2
D̃α(ρ(t

′ +∆)∥ρ(t′))
∣∣∣∣
∆=0

. (555)

The second order expansion of the sandwiched Rényi relative entropy was studied in Ref. [157]. We have that

D̃′′
α(t

′) = αĨα(t′), (556)

where Ĩα interpolates between the Bogoliubov-Kubo-Mori (BKM) information in the limit α→ 1 and other informa-
tion measures. The associated Petz function is given by

fα(t) = (α− 1)
t1/α

1− t(1−α)/α
. (557)

Optimizing over t′ yields Ĩα := mint′ Ĩα(t′). Putting this into the bound then gives

δ(η, ρ⊗n) ≥ 1

2
η

α
α−1

√
2π

nαĨα
+O(n−3/2). (558)
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B. Lower bound via symmetric hypothesis testing

In this section, we will give the proof of the non-asymptotic Cramér-Rao like bound presented in Theorem 18 of
the main text.

Proof of Theorem 18. Our derivation starts from Corollary 12, which states that

1− η∗(δ, ρ) ≥ 1

4
sup

|t−t′|>2δ

F (ρ(t), ρ(t′))2. (559)

Using the fact that the sandwiched Rényi relative entropy of order 1/2 is given by

D̃ 1
2
(ρ ∥σ) = −1

2
logF (ρ, σ) (560)

and choosing t′ = t+ 2δ, we obtain

log
1

4(1− η)
≤ 4 inf

t
D̃ 1

2
(ρ(t) ∥ ρ(t+ 2δ)), (561)

as we can readily compare to Eq. (66) of the main text. Our desire is now to determine the scale of δ that we are

allowed to choose. To this end, we perform a Taylor expansion of D̃ 1
2
:

D̃ 1
2
(ρ(t) ∥ ρ(t+ τ)) =

∞∑
k=2

fkτ
k

k!
(562)

=
1

2
f2(t)τ

2 +
1

6
f3(t)τ

3 +
1

24
f4(t)τ

4 + . . . (563)

We assume that the Taylor expansion is valid in a radius of convergence |τ | < R(t). The coefficients fk(t) are given
by

fk(t) :=
∂k

∂τk
D̃ 1

2
(ρ(t) ∥ ρ(t+ τ))

∣∣∣∣
τ=0

. (564)

As the quantum Fisher information can be defined via [6]

F(t) := −2
∂2

∂τ2
F (ρ(t), ρ(t+ τ))2

∣∣∣∣
τ=0

, (565)

we have that – as, for example discussed in Appendix C of Ref. [6] –

f2(t) = −1

2

∂2

∂τ2
logF (ρ(t), ρ(t+ τ))

∣∣∣∣
τ=0

(566)

= −1

4

∂2

∂τ2
logF (ρ(t), ρ(t+ τ))2

∣∣∣∣
τ=0

(567)

= −1

4

(
∂

∂F
log(F )

∣∣∣∣
F=1

)(
∂2

∂τ2
F (ρ(t), ρ(t+ τ))2

∣∣∣∣
τ=0

)
(568)

=
1

8
F(t). (569)

We note that the higher derivatives of the sandwiched Rényi relative entropy do not coincide anymore with the higher
derivatives of the fidelity up to a constant. Having established the relation between the leading terms of the expansions
of fidelity and the sandwiched Rényi relative entropy, we can now turn to the actual scale of δ. As was made intuitive
in the main text, for i.i.d. copies we are able to asymptotically choose δ = O(1/

√
f2) = O(1/

√
F), the same scaling

we expect from the quantum Cramér-Rao bound. We will thus make the ansatz

τ = 2δ =
γ(t)√
f2(t)

(570)
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in Eq. (562). In this case, we have

D̃ 1
2
(ρ(t) ∥ ρ(t+ τ)) =

1

2
γ2(t) +

1

3!

f3(t)

f
2/3
2 (t)

γ3(t) +
1

4!

f4(t)

f22 (t)
γ4(t) + . . . . (571)

To obtain a general upper bound for this expression, we define the constant

q(t) := sup
3≤p∈N

∣∣∣∣∣ fp(t)f
p/2
2 (t)

∣∣∣∣∣
1

p−2

, (572)

such that we can bound the fractions fp(t)/f
p/2
2 (t) in Eq. (571) as

D̃ 1
2
(ρ(t) ∥ ρ(t+ τ)) ≤ 1

2
γ2(t) +

1

3!
q(t)γ3(t) +

1

4!
q2(t)γ4(t) + . . . (573)

=
1

q2(t)

(
eq(t)γ(t) − 1− q(t)γ(t)

)
. (574)

We now insert this bound into Eq. (561) to obtain

1

4
log

1

4(1− η)
≤ 1

q2(t)

(
eq(t)γ(t) − 1− q(t)γ(t)

)
. (575)

We observe that the right hand side is always non-negative and that this only gives a nontrivial bound if η > 3/4,
similarly to Corollary 12. We will henceforth assume that this condition is met. Substituting the left hand side as
a = − log(4(1− η))/4, we can now solve the above for equality using Mathematica

Solve[

{(Exp[q\[Gamma]]-1-q\[Gamma ])/q^2 == a, q>0},

\[Gamma]

]

to obtain

γ=(t) = − 1

q(t)

[
1 + aq2(t) +Wk(−e−1−aq2(t))

]
, (576)

whereWk(x) is the product logarithm function, i.e., the solution of wew = x. The integer k identifies the corresponding

branch, in our case k = −1 is relevant because the argument −e−1−aq2(t) lies between −1/e and 0. γ=(t) identifies
the smallest admissible γ we can take to still satisfy Corollary 12 for fixed reference time t. We can now continue to
place bounds on γ=(t). To do so, we exploit the results of Ref. [158] that show that

−1−
√
2u− u < W−1(−e−u−1) < −1−

√
2u− 2

3
u. (577)

Identifying u = aq2(t) and inserting into Eq. (576) yields

√
2a− 1

3
aq(t) < γ=(t) <

√
2a. (578)

Substituting a = − log(4(1− η))/4 then gives√
1

2
log

1

4(1− η)
− q(t)

12
log

1

4(1− η)
< γ=(t) <

√
1

2
log

1

4(1− η)
. (579)

We now use the fact that we chose 2δ(t) = γ(t)/
√
f2(t) and f2(t) = F(t)/8 to deduce

δ(η, ρ) ≥ sup
t

1

2

γ=(t)√
f2(t)

(580)

= sup
t

√
2γ=(t)√
F(t)

. (581)
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To obtain the Theorem statement, we define

q := sup
t
q(t). (582)

The coefficient Γ(t) :=
√
2γ(t) now fulfills the inequality

q

6
√
2
log

1

4(1− η)
>

√
log

1

4(1− η)
− Γ(t) > 0. (583)

This holds especially for the t achieving inft F(t) in Eq. (580) and as such completes the Theorem statement.

IX. OPTIMAL SAMPLE COMPLEXITY

In this section, we provide supplementary material for Section VIII of the main text.

Proof of Corollary 20. Theorem 18 states that

δ(η, ρ) ≥ Γ√
inft F(t)

, (584)

where

q

6
√
2
log

1

4(1− η)
>

√
log

1

4(1− η)
− Γ > 0. (585)

We thus have the lower bound

δ(η, ρ) ≥

√
log 1

4(1−η)√
inft F(t)

−
q

6
√
2
log 1

4(1−η)√
inft F(t)

. (586)

Inserting the assumptions of the Corollary then establishes the scalings

δ(η, ρ) ≥ O(n−
α
2 )

√
log

1

4(1− η)
− o(1)O(n−

α
2 ) log

1

4(1− η)
. (587)

After rearranging, we have

O(n
α
2 ) ≥

√
log 1

4(1−η)

δ(η, ρ)
−
o(1) log 1

4(1−η)

δ(η, ρ)
, (588)

which means that

n ≥ O

[ log 1
1−η

δ
2

] 1
α

 , (589)

as desired.

X. BEYOND UNIVARIATE METROLOGY

In the case of arbitrary parameter spaces, let us consider a parameters x from a set X over which the prior
distribution µ is defined such that x 7→ ρ(x). We assume that X is equipped with a distance measure d(x, y) that is
not necessarily symmetric. In this case, the definition of the Bayesian success probability becomes

η(w, µ, ρ) =

∫
X
dµ(x)

∫
X
dy w(d(x, y)) Tr[ρ(x)Q(y)]. (590)
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Likewise, the minimax success probability is given by

η(w, µ, ρ) = inf
x∈X

∫
X
dy w(d(x, y)) Tr[ρ(x)Q(y)]. (591)

In this definition, we associate any parameter x the accepting POVM effect

Q̃w(x) :=

∫
X
dy w(d(x, y))Q(y), (592)

which takes the role of (w ∗Q)(t) in the univariate case. To see how our results extend in this realm, we introduce a
generalization of Theorem 16. For it, we only need the further notion of a space-preserving transformation:

Definition 43 (Space-preserving transformation). We call a transformation T : X → X space-preserving if it is
invertible and T [X ] = X .

We now give a generalization of Theorem 16 which in turn generalizes Theorem 10 of the main text:

Theorem 37. For a given parameter space X with distance function d and window function w, fix any set S = {(λ, T )}
of prior probabilities λ ≥ 0 and space-preserving transformations T such that

∑
λ∈S λ = 1. Then, for a state set ρ(x),

possibly with prior µ(x), we have the upper bounds

η∗(w, µ, ρ) ≤ K

∫
X
dxP ∗

s ({λµ(T [x])ρ(T [x])}(λ,T )∈S), (593)

η∗(w, ρ) ≤ K inf
x∈X

P
∗
s({ρ(T [x])}T ∈S), (594)

where we have introduced the constant

K := sup
x,y∈X

{∑
T ∈S

w(d(T [x], y))

}
, (595)

which measures the overlap of the windows for the different transformations.

Proof. First, we recall the definition of the optimal multi-hypothesis testing success probability for a set of operators
{Ai}:

P ∗
s ({Ai}) := sup

0≤Qi≤I∑
iQi=I

∑
i

Tr[AiQi]. (596)

We exploit that the transformations are space-preserving and we can thus transform the domain of integration that
computes the success probability arbitrarily, to observe that

η(δ, µ, ρ,Q) =
∑

(λ,T )∈S

∫
X
dxλTr[µ(T [x])ρ(T [x])Q̃w(T [x])]. (597)

Using the definition of K given in the theorem statement, we see that defining the operators

QT (x) :=
1

K
Q̃w(T [x]) (598)

yields a valid sub-normalized POVM for all x as∑
T ∈S

QT (x) =
1

K

∑
T ∈S

Q̃w(T [x]) (599)

=
1

K

∑
T ∈S

∫
X
dy w(d(T [x], y))Q(y)

=
1

K

∫
X
dy

(∑
T ∈S

w(d(T [x], y))

)
Q(y)

≤ 1

K

∫
X
dy KQ(y)

≤ I.
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This means that the operators {QT (x)}T ∈S can serve as a candidate POVM in the optimization that computes
Ps({λµ(T [x])ρ(T [x])}(λ,T )∈S),and hence

η(w, µ, ρ,Q) ≤ K

∫
dt P ∗

s ({λµ(T [x])ρ(T [x])}(λ,T )∈S}) (600)

which implies the first statement of the theorem as the upper bound is independent of the chosen POVM Q(y).
The minimax statement is derived in a similar fashion, observing that we can also apply the transformation trick

to obtain

η(w, ρ,Q) =
∑

(λ,T )∈S

λ inf
x∈X

Tr[ρ(T [x])Q̃w(T [x])] (601)

≤ inf
x∈X

∑
(λ,X )∈S

λTr[ρ(T [x])Q̃w(T [x])].

Here, we again make the argument that the {QT (x)}T ∈S form a candidate POVM and then optimize over all possible
λ to obtain the theorem statement.

Note that if K in the above theorem is larger than the inverse success probability, then the bound becomes vacuous.
This means, as the success probability asymptotically approaches 1, any bound that should work asymptotically must
have K = 1. Let us now turn to the practically important task of the rectangular window with tolerance δ: We can
define a distance ball around a points as

Bδ(x) := {y ∈ X | d(x, y) ≤ δ}. (602)

In this case, the definition of the accepting POVM effect becomes

Q̃δ(x) :=

∫
Bδ(x)

dy Q(y). (603)

The transformation that ensure that different balls do not overlap and hence K = 1 are the ones that make sure that
for all x, y ∈ X there is at most one among the {T [x]} such that d(T [x], y) ≤ δ. In other words, if we define the union
of all balls of size δ around x as

Uδ(x) :=
⋃

{Bδ(y) |x ∈ Bδ(y)}, (604)

then

K = 1 ⇔ for all x ∈ X , T ∈ S : x ̸∈ Uδ(T [x]). (605)

This is analogous to the notion that metrology is as hard as distinguishing two points that are at least 2δ apart in
the univariate case. For very small δ, one expects that Uδ(x) ≈ B2δ(x).

We can cast the above reasoning into a corollary that can be seen as an analogue of Le Cam’s two-point method:

Corollary 38 (Generalized two-point method). For a given parameter space X with distance function d and given
tolerance δ, we have that

η∗(δ, ρ) ≤ inf
x,y∈X
y ̸∈Uδ(x)

P
∗
s(ρ(x), ρ(y)). (606)

XI. THE COVARIANT CASE: PURE HAMILTONIAN EVOLUTION

In this section, we initiate the analytical study of the minimax success probability in a group-covariant setting.
We consider a set of states |ψ(t)⟩ generated by unitary evolution of a pure initial state |ψ⟩ under a Hamiltonian H
reflecting closed system quantum mechanical evolution, i.e.

|ψ(t)⟩ = e−itH |ψ⟩ = U(t)|ψ⟩. (607)

To ensure the group structure, H must have eigenvalues such that all differences between eigenvalues are integer, in
which case the recurrence time of the Hamiltonian is guaranteed to be 2π.
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Let now H decompose as H =
∑
λ λΠλ, where λ are the different eigenvalues and Πλ are the projectors onto the

possibly degenerate eigenspaces. Then, we can write

|ψ⟩ =
∑
λ

ψλ|ψλ⟩, (608)

where we have the normalized projections of |ψ⟩ onto the eigenspaces of H such that Πλ|ψ⟩ = ψλ|ψλ⟩. Then,

|ψ(t)⟩ =
∑
λ

ψλe
−itλ|ψλ⟩ (609)

and

ψ(t) = |ψ(t)⟩⟨ψ(t)| (610)

=
∑
λ,λ′

ψλψ
∗
λ′e−it(λ−λ

′)|ψλ⟩⟨ψλ′ |

=
∑
ω

e−iωt
∑
λ

ψλψ
∗
λ−ω|ψλ⟩⟨ψλ−ω|

=
∑
ω

e−iωtψ̂ω,

where we have made use of ψ(t) to denote the density matrix associated with the state |ψ(t)⟩ and ψ̂ω are the coefficients
of its Fourier transform given by

ψ̂ω =
1

2π

∫
dt e−iωtψ(t). (611)

In this setting, we can identify the optimal measurement strategy for any window function.

Theorem 39 (PGM is minimax optimal). For a state set ρ(t) given by a pure initial state ρ0 = |ψ⟩⟨ψ| evolving under
a Hamiltonian with integer eigenvalue differences for time t ∈ [0, 2π], the pretty good measurement (PGM)

QPGM(t) := R−1/2ψ(t)R−1/2 where R =

∫
dt ψ(t), (612)

achieves the optimal minimax success probability for any window function w(τ). The minimax success probability is
given by

η∗(w,ψ) =
∑
λ,λ′

|ψλ||ψλ′ |ŵλ−λ′ , (613)

where ŵω is the Fourier transform of w(τ) at frequency ω.

Proof. The pretty good measurement is by definition a valid POVM and thus a feasible point for the primal problem
given in Proposition 2. The associated success probability is now independent of t, and we can thus let go of the
minimum, to get

ηPGM = min
t

Tr[ψ(t)(w ∗QPGM)(t)] (614)

= min
t

∫
dτ Tr[ψ(t)w(τ)Q(t− τ)]

=

∫
dτ Tr[ψ(0)w(τ)QPGM(−τ)]

=

∫
dτ Tr[ψ(0)w(τ)QPGM(τ)]

=

∫
dτ w(τ)f(τ),
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where we have used the symmetry of τ and the fact that we integrate over a cyclic interval. Now, if we look closely
at the definition of the pretty good measurement and compare to Eq. (611), we see that

R = 2πψ̂0 = 2π
∑
λ

|ψλ|2|ψλ⟩⟨ψλ|, (615)

which in turn implies that

R−1/2 =
1√
2π

∑
λ

1

|ψλ|
|ψλ⟩⟨ψλ|. (616)

We can now use this to complete the POVM elements

Q(t) =
1

2π

(∑
λ

1

|ψλ|
|ψλ⟩⟨ψλ|

)(∑
ω

e−iωt
∑
λ

ψλψ
∗
λ−ω|ψλ⟩⟨ψλ−ω|

)(∑
λ

1

|ψλ|
|ψλ⟩⟨ψλ|

)
(617)

=
1

2π

∑
ω

e−iωt
∑
λ

ψλψ
∗
λ−ω

|ψλ||ψλ−ω|
|ψλ⟩⟨ψλ−ω|

and evaluate ηPGM via

f(τ) = Tr[ψ(0)QPGM(τ)] (618)

=
1

2π

∑
ω

e−iωτ Tr


∑
λ,λ′

ψλψ
∗
λ′ |ψλ⟩⟨ψλ′ |

(∑
λ

ψλψ
∗
λ−ω

|ψλ||ψλ−ω|
|ψλ⟩⟨ψλ−ω|

)
=
∑
ω

e−iωτ
∑
λ

|ψλ||ψλ−ω|
2π

=
∑
ω

e−iωτ f̂ω.

With this, we can Parseval’s theorem to determine

ηPGM =

∫
dτ w(τ)f(τ) (619)

= 2π
∑
ω

ŵω f̂ω

=
∑
ω

ŵω
∑
λ

|ψλ||ψλ−ω|

=
∑
λ,λ′

|ψλ||ψλ′ |ŵλ−λ′

as claimed in the theorem statement. Note that we can also see f(τ) = |p(τ)|2 where

p(τ) =
1√
2π

∑
λ

e−iλτ |ψλ|. (620)

To show the optimality of the PGM, we use complementary slackness and give a feasible point of the dual. First, we
use µ(t) = 1/2π as the dual prior. The only non-trivial complementary slackness condition then is

XQ(t) =
1

2π
(w ∗ ψ)(t)Q(t). (621)

We first expand the right hand side in the frequency picture, using the duality of multiplication and convolution under
the Fourier transform,

(w ∗ ψ)(t)Q(t) =
∑
ω

e−iωt
∑
δ

ŵδψ̂δQ̂ω−δ. (622)
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The complementary slackness condition can therefore be written as

∑
ω

e−iωt

(
XQ̂ω −

∑
δ

ŵδψ̂δQ̂ω−δ

)
= 0. (623)

As we want the above to hold for all t, we expect this to require to hold independently for all frequencies, especially
ω = 0. This gives

XQ̂0 =
∑
δ

ŵδψ̂δQ̂−δ. (624)

But, as we know that Q is a valid POVM, we have that Q̂0 = I/2π, and hence we get a formula for X given by

X = 2π
∑
δ

ŵδψ̂δQ̂−δ (625)

=
∑
δ

ŵδψ̂δψ̂
− 1

2
0 ψ̂−δψ̂

− 1
2

0

=
∑
δ

ŵδ

(∑
λ

ψλψ
∗
λ−δ|ψλ⟩⟨ψλ−δ|

)(∑
λ

1

|ψλ|
|ψλ⟩⟨ψλ|

)(∑
λ

ψλ−δψ
∗
λ|ψλ−δ⟩⟨ψλ|

)(∑
λ

1

|ψλ|
|ψλ⟩⟨ψλ|

)
=
∑
δ

ŵδ
∑
λ

|ψλ||ψλ−δ||ψλ⟩⟨ψλ|.

We can immediately see that the dual value is correct, as

Tr[X] =
∑
δ

ŵδ
∑
λ

|ψλ||ψλ−δ|. (626)

It is left to be shown that X and µ(t) = 1/2π constitute a feasible point of the dual, i.e., that

X ≥ 1

2π
(w ∗ ψ)(t). (627)

Note that by construction, X commutes with the Hamiltonian and is therefore invariant under time evolution, which
means it is sufficient to check the above condition at t = 0, where it evaluates to

X ≥ 1

2π

∫
dτ w(τ)ψ(τ) =

∑
ω

ŵωψ̂ω, (628)

where we again used Parseval’s theorem. We can then collect the hermitian conjugate terms to obtain∑
ω≥0

ŵω
∑
λ

(|ψλ||ψλ−ω|+ |ψλ||ψλ+ω|)|ψλ⟩⟨ψλ| ≥
∑
ω≥0

ŵω
∑
λ

ψλψ
∗
λ−ω|ψλ⟩⟨ψλ−ω|+ ψλψ

∗
λ+ω|ψλ⟩⟨ψλ+ω|, (629)

where we have used that ŵω = ŵ−ω because it is a symmetric function. As w is still arbitrary, this should hold for
all ω independently. We can exploit that the sum runs over all λ, which allows us to replace (λ, λ+ ω) → (λ− ω, λ)
and obtain ∑

λ

|ψλ||ψλ−ω||ψλ⟩⟨ψλ|+ |ψλ−ω||ψλ||ψλ−ω⟩⟨ψλ−ω| ≥ (630)∑
λ

ψλψ
∗
λ−ω|ψλ⟩⟨ψλ−ω|+ ψλ−ωψ

∗
λ|ψλ−ω⟩⟨ψλ|.

We can write this as a sum over matrix-inequalities on the subspaces spanned by |ψλ⟩ and |ψλ−ω⟩ to arrive at the
final ∑

λ

[
|ψλ||ψλ−ω| ψ∗

λψλ−ω
ψ∗
λ−ωψλ |ψλ||ψλ−ω|

]
λ,λ−ω

≥ 0. (631)
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Denoting now for brevity a = ψ∗
λψλ−ω we can chat the inequality by computing the characteristic polynomial

det

[
|a| − α a
a∗ |a| − α

]
= α2 − 2|a|λ = α(α− 2|a|) (632)

which has the two non-negative roots 0 and 2|a|, which, together with the fact that a sum of positive semi-definite
matrices is positive-semi-definite, concludes the proof that X is indeed a feasible point of the dual and hence the
pretty good measurement is optimal.

We can exploit the optimality of the pretty good measurement together with the formula for the minimax success
probability to optimize the probe state. If we define the vector ψ = (|ψλ1 |, |ψλ2 |, . . . , |ψλd

|) and the matrix Wλ,λ′ =
ŵλ−λ′ , we can write the minimax success probability of Eq. (613) as a quadratic form η = ⟨ψ,Wψ⟩. This implies
that the optimal probe state is the solution of a quadratic program over the positive orthant

η∗(w,U(ϕ)) = maximize ⟨ψ,Wψ⟩
over ψi ≥ 0

such that
∑d
i=1 ψ

2
i = 1.

(633)

Programs of this form are in general NP-hard to solve in worst case complexity, but as the optimization is over n× n
matrices where n is the number of channel repetitions, we can still use numerical methods to solve this problem for
large numbers of qubits, as direct simulation is not required. Note that the normalization condition for ψ implies
that

η∗(w,U(ϕ)) ≤ ∥W∥∞. (634)

By the Perron-Frobenius theorem, this bound is tight if the matrix W has only positive entries, which is only
guaranteed if the Fourier transform of the window function is a non-negative function, which will most of the time
not be the case.

Every candidate for the optimal probe state will allow us to determine a lower bound on η∗(w,U(ϕ)). One such

candidate is a uniform superposition of energy eigenstates ψ = (1/
√
d, 1/

√
d, . . . , 1/

√
d). This will give a near optimal

success probability in the limit where 1
n is large compared to the spectral width of the window. This can be seen by

noting that in this limit the first order expansion of the Fourier transform is approximately constant

ŵλ ≈ ŵ0 (635)

In this case, the success probability is dominated by the one-norm of the vector ∥ψ∥1:

η∗(w,ψ) ≈
∑
λ,λ′

|ψλ||ψλ′ |ŵ0 = ŵ0∥ψ∥21. (636)

This is only meant as a intuitive argument.
Let us make this more concise in the case of a δ window in the limit δ → 0. We can show the following proposition:

Proposition 40. In the phase sensing example, for a rectangular window wδ and a probe state ψ(0), we have that

η∗(w,U(ϕ)) ≤ δ

π

[
Tr[ψ̂

1
2
0 ]

2 − δ2

2

2

3
Varψ(0)(H) +O(δ4)

]
. (637)

Proof. We use the second order expansion

ŵω =
sinωδ

πω
=
δ

π

[
1− 1

2

δ2

3
ω2 +O(δ4)

]
. (638)

If we use this together with the formula for the success probability, where ω = λ− λ′, we obtain

η∗(w,ψ) =
∑
λ,λ′

|ψλ||ψλ′ |ŵλ−λ′ (639)

=
δ

π

∑
λ,λ′

|ψλ||ψλ′ |
[
1− 1

2

δ2

3
ω2 +O(δ4)

]

=
δ

π

∥ψ∥21 − 1

2

δ2

3

∑
λ,λ′

|ψλ||ψλ′ |(λ− λ′)2 +O(δ4)

 .
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The quadratic term can be recast into∑
λ,λ′

|ψλ||ψλ′ |(λ− λ′)2 =
∑
λ,λ′

|ψλ||ψλ′ |(λ2 + λ′2 − 2λλ′) (640)

= 2∥ψ∥1
∑
λ

|ψλ|λ2 − 2

(∑
λ

|ψλ|λ
)2

= 2
(
Tr[ψ̂

1
2
0 ] Tr[H

2ψ̂
1
2
0 ]− Tr[Hψ̂

1
2
0 ]

2
)
.

Now, we show that the map

V (X) = Tr[X] Tr[H2X]− Tr[HX]2 (641)

is an operator monotone. We can rewrite it as

V (X) =
1

2
Tr[(H2 ⊗ I+ I⊗H2 − 2H ⊗H)(X ⊗X)] (642)

and can explicitly check the positivity of the operator by checking its action on an products of eigenstates of H|λ⟩ =
λ|λ⟩ given by

(H2 ⊗ I+ I⊗H2 − 2H ⊗H)|λλ′⟩ = (λ2 + λ′2 − 2λλ′)|λλ′⟩ (643)

= (λ− λ′)2|λλ′⟩.

We can then also use the facts that

A ≥ B ≥ 0 ⇒ A⊗A ≥ B ⊗B, (644)

A ≥ B ⇒ Tr[MA] ≥ Tr[MB] for all M ≥ 0, (645)

to conclude that

A ≥ B ⇒ V (A) ≥ V (B). (646)

Considering

I ≥ ψ(0) ≥ 0 ⇒ ψ̂
1
2
0 ≥ ψ(0) (647)

together with the operator monotonicity of V (X) allows us to conclude that

V (ψ̂
1
2
0 ) ≥ V (ψ(0)) = Var(H). (648)

Putting this back into the success probability we obtain

η∗(w,ψ) =
δ

π

[
∥ψ∥21 −

δ2

2

2

3
V (ψ̂

1
2
0 ) +O(δ4)

]
(649)

≤ δ

π

[
Tr[ψ̂

1
2
0 ]

2 − δ2

2

2

3
Var(H) +O(δ4)

]
.

The above proposition implies that as long δn≪ 1, the uniform superposition probe state will work well.

XII. MINIMAX ANALYSIS OF PHASE ESTIMATION

We now treat the practically important case of phase estimation. We consider without loss of generality a phase
t ∈ [−π, π] to be encoded via U(t) = e−itH for the Hamiltonian H = diag(0, 1). If we perform n repetitions of the
experiment, we encode with

U⊗n(t) = e−it
∑n

i=1Hi Hi = I⊗i−1 ⊗H ⊗ I⊗n−i. (650)
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The effective accessible spectrum is then

Λn = {0, 1, . . . , n}. (651)

In the following discussions, we always use the rectangular window function

wδ(t) =

{
1 if |t| ≤ δ

0 else.
(652)

We first give a proof of Theorem 25 of the main text, which establishes the asymptotic rate of the optimal probe
for phase estimation on a spin chain.

Proof of Theorem 25. Slepian gives an asymptotic rate with which the largest eigenvalue of W approaches 1 as

R
∗
par = log

(
1 +

2
√
1− cos δ√

2−
√
1− cos δ

)
(653)

= log

(√
2 +

√
1− cos δ√

2−
√
1− cos δ

)

= log

(
1 + sin δ

2

1− sin δ
2

)
.

A quick Taylor expansion yields the theorem statement. We do, however, still need to establish positivity of the
associated eigenvector, the DPSS of zeroth order. To do so, we rely on another result of Slepian, namely that the
DPSS of zeroth order also corresponds to the largest eigenvector of the tridiagonal matrix W̃ with entries

W̃λ,λ′ =


λ(n+1−λ)

2 for λ′ = λ− 1(
n
2 − λ

)2
cos δ for λ′ = λ

(λ+1)(n−λ)
2 for λ′ = λ+ 1

0 else.

(654)

As 0 ≤ λ ≤ n, the entries of this matrix are positive as long as δ ≤ π/2 as required by the Theorem as well
as being the only non-trivial parameter range. Because of the positive entries, we can apply the Perron-Frobenius
theorem to conclude that the eigenvector associated to the largest eigenvalue – the DPSS of zeroth order – must be
non-negative.

Next, we give a proof of Theorem 26 of the main text that establishes the minimax rate for a Gaussian probe.
In the course of the proof, we will optimize the width of the Gaussian to have an optimal trade off between δ and
n. Note that in the below proof, σ refers to the standard deviation of the distribution of estimates, and is thus the
inverse of the standard deviation of the probe state itself.

Proof of Theorem 26. Before we start the proof, we recall the Fourier transform

f(t) =

∞∑
ω=−∞

e−iωtf̂(ω), (655)

f̂(ω) =
1

2π

∫ π

−π
dt f(t)eiωt. (656)

We prove the statement by constructing a probe state that achieves the given asymptotic rate. Our target will be the
construction of a probe state whose associated PGM fidelity function is a wrapped normal distribution

fσ(t) =
1√
2πσ

∞∑
k=−∞

exp

(
−1

2

(
t+ 2πk

σ

)2
)

(657)

with standard deviation σ. In the following, we use f̃σ(t) to denote an unwrapped normal distribution. Our aim is to
let σ vanish asymptotically in the number of repetitions n. Because the available frequencies of the Hamiltonian are
Λn = {0, 1, . . . , n}, the Fourier transform of the actual PGM fidelity function must be supported on the frequencies
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frequencies {−n, . . . , n}, which are all possible differences of frequencies in Λn. Our strategy will be to assume that
we choose Fourier coefficients of the PGM fidelity function such that they are equal to our target in Eq. (657) on the
frequencies {−n, . . . , n} and zero outside. With this approximation, we will make an error, which we will see below.
Then, we need to judiciously choose σ so that we keep both the approximation error in check as well as making σ as
small as possible to fit most of the Gaussian into the window.

Let us first analyze the error we make when we approximate fσ(t) on frequencies from −n to n. We denote this
approximation to fσ as f≤nσ so that fσ(t) = f≤nσ + f>nσ . Note that f≤nσ is still a properly normalized function as only

f̂(0) conributes to the integral. The expected error probability for this probe is then

1− ησ = 1−
∫ π

−π
dt w(t)f≤nσ (t) (658)

= 1−
∫ π

−π
dt w(t)fσ(t) +

∫ π

−π
dt w(t)f>nσ (t)

=

∫ π

−π
dt fσ(t)−

∫ δ

−δ
dt fσ(t) +

∫ π

−π
dt w(t)f>nσ (t)

= 2

∫ π

δ

dt fσ(t) +

∫ π

−π
dt w(t)f>nσ (t)

= 2

∫ π

δ

dt fσ(t) + 2π

∞∑
ω=−∞

ŵ(ω)f̂>nσ (ω)

= 2

∫ π

δ

dt fσ(t) + 4π

∞∑
ω=n+1

ŵ(ω)f̂σ(ω),

where we have used the definition of wδ and Parseval’s theorem, which for real-valued functions and our Fourier
transform conventions reads ∫ π

−π
dt f(t)g(t) = 2π

∞∑
ω=−∞

f̂(ω)ĝ(ω). (659)

We just expanded the error in terms of two tails of fσ, one in real space and one in frequency space. The next step
is to choose σ judiciously to balance the two tails to achieve a minimal error. The first tail is easy to treat,

2

∫ π

δ

dt fσ(t) = 2
1√
2πσ

∞∑
k=−∞

∫ π

δ

exp

(
−1

2

(
t+ 2πk

σ

)2
)

(660)

= 2
1√
2πσ

∞∑
k=−∞

∫ π−2πk

δ−2πk

exp

(
−1

2

(
t

σ

)2
)

≤ 2
1√
2πσ

∫ ∞

δ

exp

(
−1

2

(
t

σ

)2
)

≤ 2

∫ ∞

δ

dt f̃σ(t)

= Erfc

(
δ√
2σ

)
≤ exp

(
−1

2

(
δ

σ

)2
)√

2

π

σ

δ
,

where we have used the definition of the cumulative error function x 7→ Erfc(x) and the standard tail bound. Note
that the first inequality follows from the positivity of the normal distribution.

The second term will be treated in a comparable manner, however we have to be careful when relating the discrete
summation to an integral. We will need the Fourier transforms of the involved functions, given by

ŵδ(ω) =
sin δω

πω
≤ 1

πω
, (661)

f̂σ(ω) =
1

2π
exp

(
−1

2
(σω)2

)
. (662)
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We will apply the bound

4πŵδ(ω)f̂σ(ω) ≤
2

πω
exp

(
−1

2
(σω)2

)
≤ 2

π
exp

(
−1

2
(σω)2

)
, (663)

where the last inequality is valid for ω ≥ 1. In this approximation, we can use the integral approximation formula for
positive and monotonically decreasing functions

4π

∞∑
ω=n+1

ŵ(ω)f̂σ(ω) ≤
∞∑

ω=n+1

2

π
exp

(
−1

2
(σω)2

)
(664)

≤ 2

π
exp

(
−1

2
(σ(n+ 1))2

)
+

2

π

∫ ∞

n+1

dω exp

(
−1

2
(σω)2

)
≤ 2

π
exp

(
−1

2
(σ(n+ 1))2

)
+

1

π
Erfc

(
(n+ 1)σ√

2

)
≤ 2

π
exp

(
−1

2
(σ(n+ 1))2

)
+

1

π
exp

(
−1

2
(σ(n+ 1))2

)√
2

π

1

σ(n+ 1)

=
2

π
exp

(
−1

2
(σ(n+ 1))2

)[
1 +

1√
2πσ

]
.

Putting both upper bounds together, we see that

1− ησ ≤ exp

(
−1

2

(
δ

σ

)2
)√

2

π

σ

δ
+

2

π
exp

(
−1

2
(σ(n+ 1))2

)[
1 +

1√
2πσ

]
. (665)

In practice, the error will be dominated by the larger exponent, so we can optimize it by making both exponents
equal, i.e., choosing σ such that

δ

σ
= σ(n+ 1) ⇔ σ =

√
δ

n+ 1
, (666)

in which case we have that

1− ησ ≤ exp

(
−δ(n+ 1)

2

){√
2

π

√
1

δ(n+ 1)
+

2

π

[
1 +

1√
2π

√
n+ 1

δ

]}
. (667)

The asymptotic rate of the above quantity is δ/2 as claimed in the theorem statement.
To round off the proof of the theorem, we need to show that the desired fidelity function can actually be realized.

Note that the PGM fidelity function fulfills

f(t) = |p(t)|2 (668)

where the Fourier transform of t 7→ p(t) has coefficients

p̂(ω) =
1√
2π

|ψω|. (669)

The Fourier transform is such that

f̂(ω) = (p̂ ∗ p̂∗)(ω). (670)

Here p̂∗(ω) = p̂(−ω) is a time reversed version of p̂ which coincides with the complex conjugate when p(t) is real-valued
as we will choose below.

As the weights |ψω| need to correspond to a valid quantum state and ω ∈ {0, 1, . . . , n}, we require that

p̂(ω) ≥ 0 and

n∑
ω=0

p̂(ω)2 =
1

2π
. (671)
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We also note that shifting the support of the Fourier transform of p(τ) only introduces a phase. We will therefore
consider the Fourier transform to be supported on the interval {−n/2, . . . , n/2}.

As we let σ → 0, we can work with the unwrapped Gaussian instead of the wrapped Gaussian which will significantly
simplify our calculations. Formally, this is

fσ(t)

f̃σ(t)
≤ C (672)

for some C that can be chosen arbitrarily close to 1 for appropriately large n. As we want to construct fσ(t), we can
exploit the fact that

f̃σ(t) = (f̃σ
√
2(t))

2 (673)

and choose

p(t) = f̃
≤n/2
σ
√
2
(t). (674)

By approximating this expression, we make an error that we need to correct for through re-normalization, the factor
of which is given by

N
2π

=
1

4π2

n/2∑
ω=−n/2

exp(−1

2
(σω)2) (675)

=
1

2π
− 1

2π2

∞∑
ω=n/2

exp(−1

2
(σω)2).

We see that the right term is again the tail of the Gaussian in frequency space which becomes arbitrarily small for
n → ∞. We therefore know that there exists an n such that 1/2 ≤ N ≤ 1. This means the actual probe we will use
is given by

p̂(ω) = N−1f̂≤n
σ
√
2
(ω), (676)

ψω =
√
2πN−1f̂≤n

σ
√
2
(ω). (677)

The correction factor, as well as the error of approximating the wrapped Gaussian with the unwrapped Gaussian is
bounded and will thus not contribute to the asymptotic rate. This concludes the proof.

Next, we will discuss the constant factor of the Heisenberg scaling of the Gaussian probe and give a proof of
Theorem 27 of the main text.

Argument for Observation 27. We use the same setting as in the above proof of Theorem 26. We start from Eq. (667)
and set

δ =
α

n+ 1
(678)

to obtain

1− η ≤ 2

π
e−

α
2

(
1 +

√
1

α

[√
π

2
+

√
1

2π
(n+ 1)

])
(679)

=
2

π
exp

(
−α
2
+O(logα) +O(log n)

)
. (680)

Rearranging then yields

2 log
2

π(1− η)
≥ α+O(logα) +O(log n) (681)

which implies the Observation.
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A. Chernoff bound and entanglement advantage

In the previous section, we have shown that the optimal rate for the phase sensing problem is lower-bounded by
δ/2 in the case of an entangled probe. In this section, we also provide an upper bound on the best rate that can be
achieved with tensor power inputs. We can exploit the upper bound on the asymptotic rate for the tensor power case
derived in Theorem 27 to establish the following theorem.

Theorem 41. The optimal minimax rate for tensor power inputs for the phase sensing problem is upper-bounded by

R
∗
iid(wδ, U(t)) ≤ − log cos2(δ) = δ2 +O(δ4). (682)

We can, therefore, guarantee a quadratic advantage over the i.i.d. case through the use of entanglement.

Proof. We know from Theorem 27 that we need to bound the Chernoff coefficient, which for pure quantum states
relates to the fidelity according to

C(ψ(t), ψ(t+ 2δ)) = − log min
0≤s≤1

Tr[ψ(t)sψ(t+ 2δ)1−s] (683)

= − log Tr[ψ(t)ψ(t+ 2δ)]

= − log |⟨ψ(t)|ψ(t+ 2δ)⟩|2.

Note that due to the covariance property it is sufficient to study the fidelity for t = 0. As for our setting, we have
used a single qubit as our building block we can expand

|⟨ψ(0)|ψ(2δ)⟩|2 = ||ψ0|2 + e−i2δ|ψ1|2|2 (684)

= |ψ0|4 + |ψ1|4 + 2|ψ0|2|ψ1|2 cos δ
= (|ψ0|2 + |ψ1|2)2 − 2(1− cos 2δ)|ψ0|2|ψ1|2

= 1− 2(1− cos 2δ)|ψ0|2|ψ1|2.

For the best protocol, this quantity has to be as small as possible, hence the optimal probe has |ψ0|2 = |ψ1|2 = 1/2.
Therefore, for the optimal probe state

|⟨ψ(0)|ψ(2δ)⟩|2 = 1− 1

2
(1− cos 2δ) = cos2(δ). (685)

We conclude by the Taylor expansion of − log cos2(δ).

B. Additional numerics

In this section, we present additional numerical results for the minimax analysis of phase estimation performed in
Section XI of the main text.
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FIG. 12. Optimal error probability of quantum metrology that can be guaranteed for any prior distribution for different probes
in the phase estimation scenario for different values of the target tolerance δ. We compare a generalized GHZ state (Eq. (95),
red), an tensor power of plus states (green), the Holland-Burnett state (Eq. (96), orange), the Gaussian state (Eq. (99), yellow)
and the optimal state (Eq. (93), blue).
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FIG. 13. Optimal tolerance of quantum metrology that can be guaranteed for any prior distribution for different probes in the
phase estimation scenario for different values of the target success probability η. We compare a generalized GHZ state (Eq. (95),
red), an tensor power of plus states (green), the Holland-Burnett state (Eq. (96), orange), the Gaussian state (Eq. (99), yellow)
and the optimal state (Eq. (93), blue).
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