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Résumé :
Ce travail propose de recourir à la théorie de l’optimisation robuste dans le contexte de l’analyse limite
et de l’optimisation de structures plastiques en présence d’incertitudes. L’analyse limite est une méthode
directe efficace permettant de calculer la charge limite d’une structure compte-tenu de ses équations
d’équilibre et de son critère de résistance. Dans le cas déterministe, la charge limite est obtenue en
résolvant un problème d’optimisation convexe. Lorsque le chargement ou les propriétés de résistance
sont aléatoires, les données de ce problème d’optimisation deviennent incertaines. L’optimisation ro-
buste permet alors de calculer la charge limite la plus défavorable pour ces problèmes incertains. Nous
introduisons la notion de critère de résistance robuste, par exemple, un critère de Mohr-Coulomb à co-
hésion et angle de frottement incertains. Enfin, nous appliquons également ces concepts à l’optimisation
plastique de treillis.

Abstract :

This contribution explores the use of robust optimization theory in the context of the limit analysis and
plastic optimization of structures in presence of uncertainty. Limit analysis is an efficient tool for com-
puting in a direct manner the ultimate load of a structure given its equilibrium and strength conditions.
In the deterministic case, the ultimate load is obtained through the resolution of a convex optimization
program. When loading or strength properties are random, the data of such an optimization problem
become uncertain. Robust optimization theory allows to compute a worst-case ultimate load estimate of
such uncertain problems. We introduce the notion of robust strength criteria e.g. the robust counterpart
of a Mohr-Coulomb criterion with uncertain cohesion and friction angle. We also apply such concepts
to the optimal plastic design of trusses.

robust optimization, limit analysis, optimal plastic design, truss layout opti-
mization

1 Introduction
Limit analysis (Hill, 1950; Salençon, 2013) is a powerful direct method enabling to estimate the collapse
load of a structure consisting of a perfectly plastic material. The lower and upper bound approaches of
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limit analysis are naturally formulated as convex optimization problems for which given data consist
of a known material yield criterion, a known reference loading and a known geometry (Bleyer, 2019).
However, in real applications, uncertainty may affect all these data, e.g. the amplitude or direction of
some loading may not be known exactly, material strength properties can vary locally, etc. Furthermore,
engineers are interested in designing a structure which would be robust to such uncertainties, meaning
that the collapse load factor should always be safe for all possible realizations of the uncertain parameters.
This requires to design the structure against a worst-case situation.

Classical limit analysis formulations can only take into account such uncertainties by either assuming a
worst-case scenario for the parameters or by performing a stochastic analysis with random realizations
of the unknown parameters. The first approach can be overly conservative and it is sometimes difficult
to determine what would be a worst-case scenario in case of a complex loading mode for instance. The
latter approach requires to postulate some probability distribution for the parameters and solving an
extremely large amount of problems to determine the worst-case configuration, without ever reaching it.

As an alternative path, we propose, in the following, to rely on the developments of robust optimization
theory (Ben-Tal et al., 2009; Bertsimas et al., 2011) to obtain a robust estimate of plastic limit loads in
presence of uncertainty (Bleyer and Leclère, 2022).

2 Robust limit analysis with strength uncertainties

2.1 Nominal and uncertain limit analysis problem
The nominal limit analysis problem amounts to computing the maximum load factor λN by solving the
following convex maximization problem :

λN = max
λ,σ

λ

s.t. divσ + λF = 0 in Ω

σ · n = λt on ∂ΩT

σ ∈ G in Ω

(N)

where λ is the load factor,σ the Cauchy stress field in Ω,F the body force, t the contact force prescribed
on some part ∂ΩT of the boundary and G is the material yield/strength criterion which we assume to
be a convex set (possibly unbounded) containing 0. In the above, the first two constraints correspond
to the local balance equation and traction boundary conditions, whereas the last one corresponds to the
strength condition which must be satisfied at all point x ∈ Ω.

We now consider the case where the loading is certain but the material may possess uncertain properties
such that the strength criterion is now written as G(ζ) where ζ ∈ U ⊆ Rm is a vector of uncertain
parameters and U the corresponding uncertainty set in which the uncertainty must vary. Although it
can be more general, we assume, to fix ideas, that U is a convex ball of unit radius for some norm i.e.
U = {ζ s.t. ‖ζ‖ ≤ 1}. The maximum load factor now becomes uncertain i.e. it depends on the value of
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the uncertainty realization :
λ+(ζ) = max

λ,σ
λ

s.t. divσ + λF = 0

σ · n = λt

σ ∈ G(ζ)

(1)

The main purpose of robust optimization is to provide worst-case solutions to a given optimization pro-
blem. Our proposed theory of robust limit analysis therefore aims at evaluating the worst-case limit load
among all possible realizations. In the remaining of this section, we discuss various robust formulations.

2.2 Adjustable robust optimization
For a given loading and two different given realizations of the uncertainty, one expects that the stress
field will be different depending on the uncertainty realizations. The most natural approach therefore
consists in considering the stress field and the corresponding load factor to be recourse variables. Thus,
we are faced with an adjustable robust counterpart (ARC) to problem (1) defined as follows :

λARC = min
ζ∈U

λ+(ζ) = min
ζ∈U

max
σ(ζ),λ(ζ)

λ(ζ)

s.t. divσ(ζ) + λ(ζ)F = 0

σ(ζ) · n = λ(ζ)t

σ(ζ) ∈ G(ζ)

(ARC)

i.e. we find the largest load factor such that, for each uncertainty realization there exists an optimal stress
field in equilibrium, with the corresponding collapse load factor, satisfying the strength criterion.

In the following, we also make use of the following equivalent formulation of the ARC problem (Takeda
et al., 2008; Marandi and Den Hertog, 2018) :

λARC = max
λ̄

λ̄

s.t. ∀ζ ∈ U ,∃σ, λ s.t. divσ + λF = 0

σ · n = λt

σ ∈ G(ζ)

λ̄ ≤ λ

(2)

where uncertainty of the objective function has been transferred to the constraints with the introduction
of a static (non-adjustable) variable λ̄.

2.3 Static robust optimization
Unfortunately, adaptive recourse problem are numerically challenging. We follow here a conservative
static robust counterpart (RC) in which we look for a stress field σ and a load factor λ, independent of
the exact realization of the uncertainty, which satisfy the strength condition G(ζ) for all ζ ∈ U . The
corresponding problem can be formulated as follows :

λRC = max
λ,σ

λ

s.t. divσ + λF = 0

σ · n = λt

σ ∈ G(ζ) ∀ζ ∈ U

(3)
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Figure 1 – Robust strength domain GRC (in blue) obtained as the intersection of various uncertain
realizations G(ζ) (in black) of a nominal domain (in red).

What makes problem (3) a robust optimization problem is the condition ∀ζ ∈ U in the last constraint.
This implies that the constraintσ ∈ G(ζ)must be fulfilled for any possible value of ζ ∈ U . It is therefore
an infinite-dimensional constraint. One of the main goals of robust optimization theory is to make such
a problem tractable using standard convex optimization algorithms.

For instance, the robust constraint can be reformulated as :

σ ∈ G(ζ) ∀ζ ∈ U ⇔ σ ∈ GRC (4)

when introducing :
GRC =

⋂
ζ∈U

G(ζ) (5)

the robust counterpart to the uncertain strength criterion. In order for a stress field to be admissible
with respect to any possible realization of the uncertain strength criterion G(ζ), it has to belong to the
intersection of all such domains (see Figure 1).

Now, problem (3) writes as :

λRC = max
λ,σ

λ

s.t. divσ + λF = 0

σ · n = λt

σ ∈ GRC

(RC)

which is now independent of the uncertainty realization. As a result, problem (RC) is a classical limit
analysis problem with a different strength criterion given by (5). This makes problem (RC) very appea-
ling provided that a simple expression for GRC can be found. It is however very hard to determine a
simple expression for the infinite-dimensional set intersection appearing in (5). Exact or approximate
reformulation of strength criteria robust counterparts are discussed in section 3.

2.4 Affinely adjustable robust optimization
Unfortunately, if (RC) problem are numerically tractable, the obtained approximation might be unrea-
sonably conservative (Bertsimas and Sim, 2004). A middle ground is the affinely adjustable robust
counterpart (AARC), which consists in looking for adjustable variables σ(ζ) and λ(ζ) that are affine
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functions of the uncertain variable, the so-called affine decision rule (Ben-Tal et al., 2004) :

σ(ζ) = σ0 +

m∑
j=1

σjζj (6a)

λ(ζ) = λ0 +

m∑
j=1

λjζj (6b)

where the σi (resp. λi) represent 1 + m different stress fields (load factor variables) which are now
static optimization variables. Inserting the affine decision rules (6a)-(6b) into (ARC), the corresponding
AARC reads :

λAARC = max
σi,λi

min
ζ∈U

λ0 +
m∑
j=1

λjζj

s.t. div

σ0 +

m∑
j=1

σjζj

+

λ0 +

m∑
j=1

λjζj

F = 0σ0 +

m∑
j=1

σjζj

 · n =

λ0 +

m∑
j=1

λjζj

 tσ0 +

m∑
j=1

σjζj

 ∈ G(ζ)

(7)

which can also be reformulated as follows :

λAARC = max
λ̄,σi,λi

λ̄

s.t. div(σj) + λjF = 0 ∀j = 0, . . . ,m

σj · n = λjt ∀j = 0, . . . ,mσ0 +
m∑
j=1

σjζj

 ∈ G(ζ) ∀ζ ∈ U

λ̄ ≤ λ0 +
m∑
j=1

λjζj ∀ζ ∈ U

(AARC)

in which we removed the uncertainty from the objective function and replaced the minimization over ζ
with robust constraints. Note that equality constraints depending on ζ have been re-expressed by iden-
tifying the corresponding terms of the expansion in terms of ζi since U is full dimensional.

2.5 Comparison between the different approaches
Summarizing, (RC) is the most conservative formulation yielding the smallest limit load. (AARC) is more
flexible since it considers additional static variables σj , λj for j = 1, . . . ,m and reduces to (RC) if we
fix all σj = 0. As mentioned, (ARC) is less conservative than (AARC) since we allow for more general
decision rules but is generally untractable. Finally, all of these formulations guard against all possible
realizations of the uncertainty such that we have the following ordering :

λRC ≤ λAARC ≤ λARC ≤ λ+(ζ) ∀ζ ∈ U (8)
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3 Robust strength conditions

3.1 Uncertain strength conditions and a tractable approximation
Tractability of robust formulations such as (AARC) is essentially driven by how the uncertain strength
criterion G depends on ζ. Unfortunately, we are not aware of any general results. However, in most
applications, such uncertain constraints can be written in the following form :

g(σ + Σζ) ≤ 1− bTζ, ∀ζ ∈ U (9)

with σ ∈ Rd,Σ ∈ Rd×m, d being the dimension of the stress space, b ∈ Rm and g is a convex homo-
geneous function.

Exact reformulations of such a constraint are possible only if G or U is polyhedral. In the general case,
one can benefit from the following safe approximation due to Bertsimas and Sim (2006) : the robust
constraint (9) can be safely approximated as follows

g(σ) + ‖s‖∗ ≤ 1 (10)

where ‖ · ‖∗ is the dual norm of ‖ · ‖ and where for j = 1, . . . ,m :

sj = max{g(Σj) + bj , g(−Σj)− bj} (11)

with Σj denoting the j-th column of Σ.

3.2 Example on a robust Mohr-Coulomb criterion
Let us consider the case of a Mohr-Coulomb strength criterion where the cohesion c and the friction
angle φ are uncertain. A negative correlation is often encountered between both parameters, i.e. soils
with low cohesion tend to exhibit higher friction angles than with higher cohesion. We denote by ρ
the correlation coefficient between c and φ, with typical values ranging from −0.5 to −0.9 (Wang and
Akeju, 2016). Let us therefore consider that k = (c, φ) is given by :

k(ζ) = k0 +Kζ, for ζ ∈ U (12)

where k0 corresponds to the nominal values and where the "correlation" matrixK is such that :

KTK =

[
∆c2 ρ∆c∆φ

ρ∆c∆φ ∆φ2

]
i.e.K =

[
∆c ρ∆φ

0 ∆φ
√

1− ρ2

]
(13)

where ∆c,∆φ are the parameters typical variations and are assumed to be positive. Note that if such
variations were taken as the standard deviations of the corresponding parameters,KTK would be the
corresponding covariance matrix.

The robust counterpart of the Coulomb criterion therefore reads :

σ1 − σ3 + (σ1 + σ3) sinφ(ζ)− 2c(ζ) cosφ(ζ) ≤ 0 ∀ζ ∈ U (14)
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where σ1 (resp. σ3) is the maximum (resp. minimum) principal stress.

Assuming that the variations ∆c,∆φ are small, linearization around k0 results in :

σ1 − σ3 + (σ1 + σ3)(sinφ0 + cos(φ0)K22ζ2)

− 2(c0 +K11ζ1 +K12ζ2) cosφ0

+ 2c0 sinφ0K22ζ2 ≤ 0 ∀ζ ∈ U (15)

withKij being the components ofK defined in (13).

One can see that (15) is of the form (9). Using the approximation (11), one obtains the following robust
counterpart :

σ1 − σ3 + (σ1 + σ3) sinφ0 − 2c0 cosφ0 + ‖s‖∗ ≤ 0 (16)

where :

s =

(
2∆c cosφ0

((σ1 + σ3) cos(φ0) + 2c0 sinφ0)
√

1− ρ2∆φ− 2c0 cosφ0ρ∆φ

)
(17)

Let us now investigate the simple case of no cross-correlation ρ = 0 with U = {(ζ1, ζ2) s.t. ‖ζ‖∞ ≤ 1}.
The previous expression reduces to :

s =

(
2∆c cosφ0

((σ1 + σ3) cos(φ0) + 2c0 sinφ0) ∆φ

)
(18)

‖s‖∗ = ‖s‖1 = 2∆c cosφ0 + |(σ1 + σ3) cos(φ0) + 2c0 sinφ0|∆φ (19)

so that the robust Mohr-Coulomb criterion (16) reduces to :

σ1 − σ3 + (σ1 + σ3) sinφ0

+ |(σ1 + σ3) cos(φ0) + 2c0 sinφ0|∆φ ≤ 2(c0 −∆c) cosφ0 (20)

which can be further expressed as follows :σ1 − σ3 + (σ1 + σ3)(sinφ0 + cos(φ0)∆φ) ≤ 2cmin cosφ0 − 2c0 sinφ0∆φ

σ1 − σ3 + (σ1 + σ3)(sinφ0 − cos(φ0)∆φ) ≤ 2cmin cosφ0 + 2c0 sinφ0∆φ
(21)

where cmin = c0 −∆c is the worst-case cohesion. Introducing φmin = φ0 −∆φ the worst-case friction
angle and φmax = φ0 + ∆φ the best-case friction angle and using the fact that sin(φmax/min) ≈ sinφ0±
cos(φ0)∆φ and cos(φmax/min) ≈ cosφ0 ∓ sin(φ0)∆φ, the previous criterion is, in fact, a first-order
approximation (in terms of ∆c,∆φ) to the following multi-surface criterion :σ1 − σ3 + (σ1 + σ3) sinφmax ≤ 2cmin cos(φmax)

σ1 − σ3 + (σ1 + σ3) sinφmin ≤ 2cmin cos(φmin)
(22)

i.e. the obtained robust counterpart, for this specific case, (approximately) corresponds to the intersec-
tion of two Coulomb criteria with the worst-case cohesion and either the best or the worst-case friction
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robust criterion

Figure 2 – Robust and uncertain Mohr-Coulomb criterion : c0 = 1 MPa, φ0 = 30◦, ∆c = 150 kPa,
∆φ = 5◦. Black dashed lines denote the nominal surface, thin coloured lines denote random realizations
of the uncertain criterion.

angle. An illustration of such a result is given in Figure 2. The yield surface corresponding to random
realizations of c(ζ) and φ(ζ) are also represented. One can indeed see that the obtained robust strength
criterion forms a tight lower bound to the various realizations and is made of two sets of lines approxi-
mately characterized by the minimum and maximum friction angle φmin and φmax.

4 Application to truss plastic design
In this section we consider the optimization of plastic trusses using a ground-structure approach (Gilbert
and Tyas, 2003; He et al., 2019). A set of potential trusses connecting given nodes is considered and one
aims at finding the minimal volume truss able to carry given loads with some strength condition for each
truss. More precisely, one looks for the value of the cross-section a for each truss. This problem can be
formulated as follows :

min
a,N

`Ta

s.t. HN = F

|N | ≤ σ0a

(23)

where ` is the vector of truss lengths, V = `Ta being the total volume to be minimized,N is the vector
of normal forces in each truss, σ0 is the strength of the constitutive material,H is the equilibriummatrix
and F the vector of given loads.

We consider here the case of loading uncertainties where the load vector is given as follows :

F (ζ) = F 0 +
m∑
j=1

F jζj , ∀ζ ∈ U (24)

where F 0 is the nominal load and F j are additional loading modes of uncertain amplitude.
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Figure 3 – Optimal truss as a function of the considered loading. Red lines represent the optimized
cross-sections. In blue : main force ; in green : uncertain perturbations.

Applying the previous robust optimization concepts with an affine decision rule forN yields the follo-
wing AARC formulation :

min
a,Nj

`Ta

s.t. HN j = F j ∀j = 0, . . . ,m∣∣∣∣∣∣N0 +
m∑
j=1

N jζj

∣∣∣∣∣∣ ≤ σ0a ∀ζ ∈ U

(25)

where the last constraint can be equivalently formulated as follows :∣∣∣∣∣∣N0 +

m∑
j=1

N jζj

∣∣∣∣∣∣ ≤ σ0a ∀ζ ∈ U (26)

⇔ sup
ζ∈U

±N0 ±
m∑
j=1

N jζj

 ≤ σ0a (27)

⇔ ±N0 + ‖N‖∗ ≤ σ0a (28)

whereN = [N1, . . . ,Nm] and the norm is taken with respect to the column axis.

In Figure 3a, one can see that the optimized truss for a pure horizontal concentrated loading corresponds
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to a single bar in traction. Such a structure is obviously not robust at all to slight perturbations. In Figures
3b-3c, additional uncertain loadings have been considered (in green) which result in a much more robust
structure compared to the nominal case.

5 Conclusions
Concepts of robust optimization theory have been applied to the problem of limit analysis and optimal
design of plastic structures. Simple decision rules must generally be used for optimization variables
depending on the realization of the uncertainty. In some instances, robust strength constraints can be
safely approximated to obtain a tractable formulation. In future works, such robust formulations will be
used on 2D/3D structural problems and compared against Monte-Carlo simulations with respect to the
worst-case limit loads.
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