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Résumé :
The present study deals with the issue of convergence in Lattice-Boltzmann computations of turbulent
flows using the Reynolds-Averaged Navier-Stokes (RANS) approach. A method to improve the conver-
gence is proposed. It is inspired from the work of [1], regarding selective frequency damping (SFD).
Preliminary results of the method are shown. The studied case is the flow around a cylinder at Reynolds
number Re = 140000.
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1 Introduction
The lattice-Boltzmann method (LBM) is a kinetic approach for computational fluid dynamics. In LBM,
flow variables, e.g. density, velocity, are directly obtained from microscopic particle properties. The
advantages of the LBM are its parallelism, simple structure, simplicity in coding, and the straightforward
incorporation of microscopic interactions. However, when applied to steady flows, the standard LBM
usually converges rather slowly, and the time-consuming convergence progress prevents it from being
as competitive as conventional CFD methods in practical applications.

Rather sophisticated approaches to circumvent this problem, have been proposed, e.g. [2] using a precon-
ditioning of the solver. In the present study, we take an alternative path, by investigating the capability of
the selective frequency damping (SFD) method, initially introduced by [1] to improve the convergence
of an LBM solution towards its steady state. The challenge lies in the fact that the SFD method was
initially developed in the framework of Navier-Stokes solvers.

2 Numerical model
The fluid dynamics equations are solved using the Lattice Boltzmann Method ([3]) which describes
the evolution of the density distribution of particles (fα(x, t)) with velocity cα on a DnQm lattice (n
dimensions and m velocities). The hybrid recursive regularized lattice Boltzmann model presented in
[4] is used in the present work leading to the following lattice Boltzmann equation:

fα(x+ cαδt, t+ δt) = feq
α (x, t) +

(
1− 1

τ

)
fneq
α (x, t) +

1

2
Fα(x, t) (1)
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where feq
α is the equilibrium distribution function, fneq

α the off equilibrium distribution function and Fα

an external force discretized on the DnQm lattice following [5] method. The relaxation time τ is given
from the molecular (ν) and turbulent (νt) viscosity following:

τ =
1

2
+

ν + νt
c2s

(2)

where c2s represents the speed of sound. The turbulent viscosity is obtained here using the fv3 formula-
tion of the Spalart-Allmaras model (SA− fv3, [6]) as described in [7].

3 Forcing method
The forcing method consists of an additional bulk forceF. It is based on the selective frequency damping
(SFD) introduced by [1] with the purpose of selectively damping frequencies in the momentum signal.
Its expression, in the i−th spatial direction is:

Fi = −χ (ui − ui) , (3)

where u is the averaged velocity and χ is a factor with the dimension of a frequency. Following Cahuzac
et al.[8], the average velocity is dynamically estimated using exponentially weighted moving average:

ui(t+ δt) = (1− cexp)ui(t) + cexpui(t+ δt) , (4)

with:
cexp = 3.628fcδt , (5)

where fc is the cutoff frequency of the selected filter, and δt the time step.

One can see that the challenge of the SFD method is twofold: (i) using a proper dynamical estimate
of the averaged velocity during the computation and (ii) calibrating the frequency χ to reach the best
compromise between convergence speed of the solution and its accuracy. More recently, the SFD method
has been improved (see e.g. [9]) based on mathematical considerations.

4 Results
The SFD method, used in the Lattice-Boltzmann framework, is tested for the flow around a cylinder
with a Reynolds number of 140000. The computation domain is extended 10 and 30 diameters in the
upstream and downstream directions and 15 diameters in the crosswind directions leading to a blockage
ratio of 3.22%. The grid is composed of several embedded subdomains with uniform grid with a ratio
of 2 in the grid spacing between two successive subdomains. In the present case the minimal grid size
is D/80 (with D the cylinder diameter) around the cylinder and D/10 far from the cylinder. In all
the presented simulations, the SFD method is arbitrarily activated after 50D/U0 and the simulation are
performed for 200D/U0.

In order to assess the efficiency of the method, the streamwise velocity at 3 different locations in the
wake (see Fig 1) and the cylinder drag force are extracted along time.

The values of the parameters χ and fc are expressed in terms of the vortex-shedding frequency fs, which
is fs ≈ 4200Hz in the present test case considering a Strouhal number St ≈ 0.2 at Re = 140000 [10].
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Figure 1: Location of the wake velocity sensors.

χ 0 fs 5 fs 20 fs 50 fs 100 fs 200 fs 500 fs
Lr/D 0.8 1.12 0.9 0.85 0.83 0.82 0.81

Umin/U0 -0.268 -0.349 -0.309 -0.288 -0.279 -0.274 -0.270

Table 1: Evolution of the recirculation length (Lr) and minimal velocity in the wake centerline (Umin)
with χ values for the imposed averaged velocity configuration.

4.1 Target averaged velocity taken from a previous computation
First, in order to determine relevant values of χ, we compute the SFD method with a fixed target average,
taken from post-processing a previous computation, performed without SFD.

Figure 2 shows an instantaneous map of the streamwise velocity field, around and downstream the cylin-
der, for various values of the frequency χ : 0 (without forcing), 5, 50 and 500 fs. The first observation
is that for all non-zero values of χ, the velocity map is pretty symmetric with respect to the plane y = 0,
which features a steady-state solution, while the non-forced case is clearly unsteady. Besides, the case
with χ = 5fs exhibits a longer recirculation bubble than the other cases.

This is confirmed by Table 1, which indicates the length of the recirculation bubble and the minimal
velocity in the wake centerline, for several values of χ, compared with the non-forced case (χ = 0fs).
Interestingly, the prediction of this quantities improves when χ increases.

Figure 3 shows the time evolution of the streamwise velocity, taken at points A, B and C. The target
velocity is displayed for comparison. Interestingly, the higher values of χ imply not only a faster con-
vergence of the velocity, but also the converged state is reasonably close to the reference time-average,
at all three considered points. At the opposite, low values of χ lead to a significant velocity discrepancy,
as well as a slightly slower convergence.

Figure 4 compares the time evolution of the drag coefficient Cx obtained with the various values of χ
used above. It is worth noticing that at t = 50D/U0, when the forcing starts, the drag coefficient adapts
abruptly, and converges rapidly toward a steady state. One can observe that, unlike the velocities:

• Cx converges faster toward its steady state at intermediate values of χ.

• The discrepancy in Cx (when compared with its reference value) is non monotonous in χ: the
lowest χ does not yield the worst value Cx.
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Figure 2: Visualisation of the normalized streamwise velocity field around the cylinder for different χ
values and imposed averaged velocity after 200D/U0.

Figure 3: Time evolution of the streamwise velocity at point A, B and C (from left to right) for different
χ values and imposed average velocity field. The target velocity is marked with the black line.
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Figure 4: Time evolution of the drag coefficient for different χ values and imposed average velocity
field. The target drag coefficient is marked with the black line.

However, the highest value of χ exhibits the best converged value of the drag coefficient (with a discrep-
ancy around 7.3%).

4.2 Dynamic average
The main goal of the presented method, is to achieve steady RANS solutions in Lattice-Boltzmann com-
putations, particularly in order to save computational resources. Indeed, without a specific treatment, it
is necessary to run a sufficiently long computation to ensure the convergence of the time-averaged quan-
tities of the flow. To this aim, the present section focuses on how to compute a dynamic time-average
during the computation, and whether this time-average is accurate and efficient.

Figure 5 shows the time evolution of the streamwise velocity, taken at points A, B and C, for various
values of fc, χ being fixed at 500 fs, which is the most efficient value in the static-average case, discussed
in Section 4.1. The target velocity is displayed for comparison. Interestingly, the velocity signals do not
perfectly converge asymptotically: they exhibit a drift which is smaller when fc is small, and vice-versa.
This is due to the fact that a small fc slowly affects the dynamic average (see Eqs. 4 and 5).

The point A is within the recirculation bubble: the streamwise velocity is negative. All values of fc fulfill
this criterion, except for fc = fs/32. This might be due to a bad convergence of the averaged velocity,
especially since the velocity signal exhibits an oscillatory phase before its convergence (observed at
points B and C as well). A similar oscillatory phase is observed for fc = fs/16, but not at higher values
of fc.

The choice fc = fs/8 constitues some compromise between fastness of convergence (no oscillatory
phase when the forcing is switched on) and robustness of the obtained averaged velocity, i.e. a smaller
drift. However, it leads to discrepant values of the velocity.

Figure 6 shows the time evolution of the streamwise velocity at points A, B and C for different values of
χ, when keeping fc = fs/8. As observed when using a static average velocity, taken from a previous
computation (see Sec. 4.1), the value χ = 500fs leads to the best results: not only it exhibits the fastest
convergence (however with a small drift), but also the velocity discrepancy with respect to its target
value, is the smallest.
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Figure 5: Time evolution of the streamwise velocity at point A, B and C (from left to right) for different
fc values with χ = 500fs. The target velocity is marked with the black line.

Figure 6: Time evolution of the streamwise velocity at point A, B and C (from left to right) for different
χ values with fc = fs/8. The target velocity is marked with the black line.
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Figure 7: Time evolution of the drag coefficient for different fc with χ = 500fs (left) and different χ
values with fc = fs/8 (right). The target drag coefficient is marked with the black line.

Figure 7 compares the time evolution of the drag coefficient Cx obtained with

• the various values of fc used above, with fixed χ = 500fs.

• various values of χ used previously, with fixed fc = fs/8.

It is worth noticing that, just like the static case (see Fig. 4 ), when the forcing starts, the drag coefficient
adapts abruptly, and converges rapidly toward a steady state. One can also note that this abrupt jump at
t = 50D/U0 is far weaker for fc = fs/4 and fc = fs/8 and seem to converge toward an acceptable
value for Cx. Moreover, the converged values of Cx for fc = fs/4 and fc = fs/8 are the closest to the
reference.

Now, when keeping fc = fs/8 constant and varying χ, all asymptotic values of Cx seem to be between
10% and 20% underestimated, when comparing with the reference drag coefficient. However, the higher
χ is, the better the solution seems to convergence toward a constant Cx, in terms of both fastness and
accuracy. Nevertheless, small drifts are observed at all values of χ. These observations are slightly
different from those made in the static case (see Section 4.1).

4.3 Reynolds number effect
The study has been extended to other Reynolds numbers, namely Re = 3900 and 400000. Time evo-
lution of the streamwise velocity at points A, B and C are shown on Fig. 8, while the time evolution
of the drag coefficient is shown on Fig. 9. The proportional gain of the forcing, χ is set too 500fs and
the cutoff frequency fc is set to fs/8. In both cases the vortex shedding frequency fs was estimated
considering the Strouhal number St ≈ 0.21 for Re = 3900 [11] and St ≈ 0.46 for Re = 400000 [12].

Qualitatively, the same observations as for Re = 140000, can be made at Re = 3900 and 400000.
Regarding the streamwise velocity, the prediction is reasonably accurate, at all three points. However, the
velocity signal undergoes a small drift, especially at point A, which is within the close wake centerline.

Regarding the drag coefficient, it is slightly underestimated, in comparison with the reference Cx, sim-
ilarly as for Re = 140000. Interestingly, the abrupt jump observed immediately after the forcing is
switched on, already observed at Re = 140000 (see Figs. 4 and 7), appears at Re = 3900, but not at
Re = 400000.
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Figure 8: Time evolution of the streamwise velocity at point A, B and C (from left to right) for different
Reynolds number with χ = 500fs and fc = fs/8. The target velocity is marked with the black line.

Figure 9: Time evolution of the drag coefficient for different Reynolds number with χ = 500fs and
fc = fs/8. The target drag coefficient is marked with the black line.
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5 Conclusion
A method to improve convergence in Lattice-Boltzmann RANS computations, has been presented. This
method is based on selective frequency damping, and consists in adding, in the LBM equations, a vol-
ume force driving velocity toward its average. This force acts like an active control device, and its key
parameter is a proportional gain, here called χ. Preliminary tests of this method, have been performed
in the case of the flow around a cylinder, at various Reynolds numbers.

At Re = 140000, it has been shown that, when using a static target average, taken from post-processing
a previous calculation, high values of the proportional gain χ allow an overall better convergence of the
solution, except for the drag coefficient on the cylinder.

Using a dynamic average for the forcing, raises the issue of computing the temporal average of the
velocity. In the present study, an exponentially weighted moving average, is used. This moving average
is based on a cutoff frequency fc, whose choice is non-trivial: if fc is too low, the computed time average
may not respond fast enough to significant changes in the flow. On the contrary, if fc is too high, the
time average may respond too fast. The results of this preliminary study, confirm this non-triviality:
the velocity hardly converges toward a constant value, and undergoes a small drift, for any value of fc.
Another key issue is when to start forcing the flow. Since using a static average leads to consistent results,
one can safely assume that the dynamic time average of the flow just needs to be properly calculated, so
that the forcing does not drive the flow toward an undesired state. On the other hand, a motivation of
the present method is also to reduce computational cost. Therefore, an initial average-computing phase,
without forcing, must be short enough to meet the aforementioned criterion.

Similar observations were made at Re = 3900 and Re = 400000. Re = 20000 has been tested as well,
but not shown here. It appears that the velocity average was poorly converged, thus forcing the flow
toward an undesired steady state, significantly discrepant from the reference state.

Besides, oddly enough, regardless of the averaging strategy (static or dynamic), and regardless of the
forcing parameters χ and fc, and for any of the studied Reynolds numbers, the resulting drag coefficient
of the cylinder is always lower than its reference value.

The most crucial future improvement of the method, lies in the computation of a proper dynamic time-
average of the velocity. Kalman filtering will be considered in future work. Moreover, one can put
interest in the energy balance, which is modified by the proposed forcing. Indeed, from a URANS point
of view, the SFD forcing removes turbulent kinetic energy from the resolved large scales. This should
be compensated in the turbulence model, which accounts for the unresolved scales. The theoretical
derivation of this term, in the framework of the Spalart-Allmaras model, though far from easy, will be
the next step of this study.
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