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Résumé : L'analyse de stabilité linéaire (LSA) des ferrofluides dans le système Taylor-Couette a été effectuée. Le cylindre intérieur à température fixe T 1 a un rayon R 1 et tourne avec une vitesse angulaire Ω 1 et le cylindre extérieur de rayon R 2 est maintenu à température fixe T 2 . Le champ magnétique est fourni par l'empilement d'aimants placés à l'intérieur du cylindre intérieur [START_REF] Tagg | Linear stability of radially-heated circular Couette flow with simulated radial gravity[END_REF].

Le ferrofluide dans l'entrefer des cylindres concentriques est soumis à la pousée magnétique centripète grâce au champ magnétique appliqué et, à la pousée centrifuge grâce à la rotation des cylindres.

Les paramètres de contrôle sont le rapport de rayon η = R 1 /R Les états marginaux de stabilité sont déterminés avec la condition (σ = 0).

À partir des courbes de stabilité marginale, les états critiques, c'est-à-dire les états avec les valeurs les plus basses de Ra m et Ra mc augmente avec η avec Ra mc = 1708 pour η → 1. En négligeant l'effet de la gravité terrestre, les modes critiques sont hélicoïdaux (k c = 0, n c = 0) et stationnaires (ω = 0 ) pour T a = 0 et ils sont oscillatoires (ω = 0 ) pour T a = 0 [START_REF] Meyer | Thermomagnetic instability of a ferrofluid in a differentially heated Taylor-Couette system[END_REF].

Abstract : A linear stability analysis (LSA) of ferrofluid in the Taylor-Couette system has been conducted to understand the critical instability modes in the system. The inner cylinder has a radius R 1 at a fixed temperature T 1 and rotates with an angular velocity Ω 1 and the outer cylinder of radius R 2 is maintained at a fixed temperature T 2 . The magnetic field is furnished by the stack of magnets placed inside of the inner cylinder [START_REF] Tagg | Linear stability of radially-heated circular Couette flow with simulated radial gravity[END_REF].

The ferrofluid in the gap between the cylinders is subject to the centripetal magnetic buoyancy towards the inner hot cylinder due to the applied magnetic field and the centrifugal buoyancy due to the rotation of the cylinders.

The flow control parameters are the radius ratio η = R 1 /R 2 , the Taylor number T a which accounts for the rotation of the inner cylinder and the Rayleigh magnetic number Ra m which accounts for the magnetic buoyancy. The flow configuration is assumed of infinite axial length. Small perturbations are superimposed to the base flow, the resulting equations are linearized and the perturbations are expanded in form of normal modes exp[st+i(kz+nϕ)], where s = σ+iω is the growth rate of the perturbations, k is the axial wavenumber and n is the azimuthal wavenumber. The marginal stability states are determined with the condition (σ = 0).

From marginal stability curves, the critical states i.e. those states with the lowest values of Ra m is defined as Ra mc and found that Ra mc increases with η with Ra mc = 1708 for η → 1. Neglecting the effect of terrestrial gravity, the critical modes are helical (k c = 0, n c = 0) and stationary (ω = 0 ) for T a = 0 and they are oscillatory(ω = 0 ) for T a = 0 [START_REF] Meyer | Thermomagnetic instability of a ferrofluid in a differentially heated Taylor-Couette system[END_REF].
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Introduction

The ferrofluids are a colloidal solutions consisting of the ferric particles of nearly 10mm coated with surfactants of 2mm. These particles are either fabricated using a water based (P r = 15), if not oil based solutions (P r = 350). The stability is governed by the Brownian motion.

F -Description of a ferromagnetic particle. [START_REF] Odenbach | Ferrofluids-Magnetically controlled suspensions[END_REF] In the presence of an external magnetic field they act like a paramagnetic material and tend to align in the direction of the applied field. The magnetization of these fluids is a function of applied field and the temperature. The Kelvin force acting on these particles arises due to the magnetization and the external field.

Flow modeling

In this section the flow configuration and the governing equations of our system will be described.

Flow configuration and body force

The fluid is between the gap of the cylinders. The inner cylinder of radius R 1 maintained at temperature T 1 and the outer cylinder of radius R 2 and temperature T 2 . This is a configuration of outwards heating i.e. T 1 > T 2 , and for inwards heating

T 1 < T 2 .
Due to the rotation of the inner cylinder at a rate of Ω 1 there arises a centrifugal buoyancy ραθg c which is associated with the centrifugal force g c . The centripetal magnetic gravity g m is the consequence of F -Configuration of the ferrofluid flow in the considered system magnetic buoyancy ραθg m due the interaction between the magnetization of the ferrofluid and the applied magnetic field. This field arises from the magnets which are stacked at an axial spacing of λ b in the inside of inner cylinder.

The magnetic gravity g m arises from the Kelvin force given by

F B = M 0 ∇| B| + | B| ∇M 0 (1) 
In the Boussinesq approximation the second term in RHS of Eqn. 1 is neglected.The magnetization is a function of temperature

M 0 = M Ref [1 -α m θ],
where α m = K/M Ref and K = -∂M/∂T is the pyromagnetic coefficient. After simplification the Eqn.1 develops as,

F B = -α m M Ref B 0 κK 1 (κr)θ e r + ∇ (M Ref B 0 K 0 (κr)) (2) 
The gradient term is integrated into the pressure term and the first term on the RHS of Eqn.2 is defined as the magnetic buoyancy ραθg m where the magnetic gravity g m is given by,

g m = α m M Ref B 0 κ b K 1 (κ b r) αρ Ref e r (3) 

Governing equations

The governing equations for the configuration under study are defined as

∇. v = 0 (4) 
∂ v ∂t + v. ∇ v = -∇π + ∆ v -γ a v 2 r θ e r + Ra m P r K 1 (κ b r) C M ag θ e r (5) 
∂θ ∂t + ( v. ∇)θ = 1 P r ∆θ (6) 
The constant in the Eqn.5

C M ag = R 2 R 1 K 1 (κ b r).
The non-slip boundary conditions at the surfaces of the cylinders are, v = Re e ϕ ; θ = 1; at r = η/ (1 -η) , (7)

v = 0; θ = 0; at r = 1/ (1 -η) , (8) 
The control parameters arising in the system are defined as, Prandtl number P r = ν/κ, magnetic Rayleigh number Ra m = α∆T g m d 3 /νκ and the dimensionless thermal expansion parameter γ a = α∆T .

The base state is steady, axisymmetric and axially invariant and depends on the radial position. The base state for temperature Θ and the azimuthal velocity V are defined as,

Θ = ln [(1 -η) r] lnη (9) V = rΩ = T a η 3/2 (1 -η) 5/2 (1 + η) 1 r -(1 -η) 2 r ( 10 
)
where Ω is the angular velocity and T a is the Taylor number.

Results

The magnitude of the magnetic gravity is calculated in the flow system using the Eqn.( 3). The value λ b = 3.54d for the axial spacing of the magnets is considered as suggested by Tagg and Weidman [START_REF] Tagg | Linear stability of radially-heated circular Couette flow with simulated radial gravity[END_REF],

where the dimensional value of the gap between the cylinders is assumed to be d = 7mm. Data of the water-based ferrofluid F e 3 O 4 from [START_REF] Rahman | Thermomagnetic convection in a layer of ferrofluid placed in a uniform oblique external magnetic field[END_REF][START_REF] Auernhammer | Thermal convection in a rotating layer of a magnetic fluid[END_REF] are used to calculate the values of the magnetic averaged gravity

g m = 1 R 2 -R 1 R 2 R 1 g m dr.
The ratio of the average g m with respect to the terrestrial gravity g is given in T -Ratio of the average magnetic gravity g m to the terrestrial gravity g, for each value of η and an applied field of B = 0.005T .

For linear stability analysis small perturbations are superimposed to the base state flow and resulting equations are linearized, the perturbations are expanded into normal modes exp [st + i (kz + nϕ)], where s = σ + iω is the growth rate of perturbations, k as the axial wave number and n the number of modes in the azimuth.

The marginal states are investigated for the case σ = 0. For a given set of control parameters the critical magnetic Rayleigh number Ra mc is considered for the lowest value on the stability curve. For the case of inner rotating cylinder figure.3 shows the stability curves for different n. the critical parameters are Ra mc = 1595.6, k c = 1.149, n c = 13 and ω c = 0.

The variation of the critical parameters are investigated depending on the rotation rates and the situation of outwards heating (γ a > 0) and inwards heating (γ a < 0), the figure.4 by Meyer et al. [START_REF] Meyer | Thermomagnetic instability of a ferrofluid in a differentially heated Taylor-Couette system[END_REF] explains the two cases for two different ferrofluids of P r = 15 and P r = 350. The discontinuity in the curves is due to the abrupt change in the value of γ a [START_REF] Meyer | Thermomagnetic instability of a ferrofluid in a differentially heated Taylor-Couette system[END_REF]. In the situation of outwards heating there is a decrease in the F -The marginal stability curves for η = 0.8, P r = 15, γ a = 0.01 and T a = 0 [START_REF] Meyer | Thermomagnetic instability of a ferrofluid in a differentially heated Taylor-Couette system[END_REF] value of Ra mc as the value of T a is increasing indicating the stabilizing effect of the rotation of cylinder.

The inwards heating has the inverse dynamics where the rotation of cylinders causes the destabilization in the system. F -The variation of the critical Ra mc according to the rotation rates and the system of heating [START_REF] Meyer | Thermomagnetic instability of a ferrofluid in a differentially heated Taylor-Couette system[END_REF] In the microgravity situation a similar investigation is made for solid body rotation, where both the cylinders rotate with the same angular velocity Ω 1 = Ω 2 . The variation of the threshold in case of γ a = 0.001 is evolving with respect to the radius ratio η and the rotation of the cylinders T a. 

Discussion and conclusion

In the current system for a small value of applied magnetic field there is generation of g m which is nearly 15 times larger than g in the fluid where the magnetization is considered to be close to the saturation value.

In microgravity conditions the ferrofluid in the gap is subject to two radial forces. The centrifugal gravity g c and the centripetal force the magnetic gravity g m . For the situation of outwards heating γ a > 0 the instability modes are created due to the magnetic gravity g m . figure.4 prove that the rotation of cylinder for a fixed η and γ a > 0 increases the threshold, hence indicating that the centrifugal gravity is the stabilizing force in the system. The case of inner rotating cylinder and γ a < 0 shows that the centrifugal gravity is the destabilizing force.

Earlier studies of dielectrophoretic fluids under similar configuration have shown that for higher value of electric field the modes are electric and have similar dynamics. [START_REF] Kang | Numerical study of thermal convection induced by centrifugal buoyancy in a rotating cylindrical annulus[END_REF] In the current configuration the modes are magnetic. In case of the inner rotating cylinder the modes are either stationary axisymmetric or oscillatory axisymmetric depending on the rotation rate and the applied field. The eigenfunctions as shown in figure.5 and figure.6 for the solid body rotation manifest the nature of the instability modes. For T a = 0 stationary cylinders they are stationary helical and for applied rotation T a = 0 they are oscillatory columnar.

  The eigenfunctions are used to understand the types of modes in the regime of solid body rotation, figure.5 shows the modes for η = 0.8 and T a = 0. The modes in this condition of zero rotation are stationary figure.5c (ω = 0) and are helical figure.5b (k c = 0, n c = 0). Figure. 6 shows the modes when the rotation is applied. The modes are changed to columnar structures (k c = 0) and are oscillatory i.e. (ω = 0). F -Eigenfunctions for η = 0.8 and T a = 0. F -Eigenfunctions for η = 0.8 and T a = 40.

  

  table.1.

	η	g m /g
	0.65	15.5371
	0.7	15.4513
	0.95	15.1262
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