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Cinématique et dynamique

La modélisation de la poutre est basée sur la théorie de Cosserat [START_REF] Cosserat | Theorie des corps dédormables[END_REF]. La poutre est constituée d'une courbe, appelée fibre moyenne C, qui définie l'ensemble des centres de masse G de la section S. À chacun des points de la fibre est liée une base vectorielle orthonormale (d 1 , d 2 , d 3 ), nommée base de directeurs de la poutre. Par convention, (d 1 , d 2 ) sont liées à la section de la poutre et d 3 = d 1 × d 2 est normale à la section. La configuration de référence est un segment de longueur L, la poutre est droite et orientée vers le vecteur cartésien e 3 = e 1 × e 2 si bien que le placement de G est définie par dans la configuration de référence par φ 0 (S) = Se 3 .

Courbure et déformation

On considère une déformation dans le plan (e 1 , e 3 ). Après déformation, le placement est φ : [0, L] -→ E, où E est l'espace Euclidien

S -→ φ(S).

Après transformation, les directeurs sont reliés à la base cartésienne par une rotation R(S) :

R =     cos (θ) 0 sin (θ) 0 1 0 -sin (θ) 0 cos (θ)     , (1)
où θ(S) = e z , d 3 = e x , d 1 mesure la rotation de la section autour de d 2 (= e 2 ). La dérivé spatiale des directeurs donne [START_REF] Marrec | Vibration of a timoshenko beam supporting arbitrary large pre-deformation[END_REF] :

∂d i ∂S = κ × d i , (2) 
où κ = κ 2 d 2 est la courbure avec κ 2 (S) = dθ dS . La déformation de la fibre est mesuré par dφ dS .

Forces et moments

Les forces et moments internes sont données respectivement par :

N(S) = N 1 (S)d 1 (S) + N 3 (S)d 3 (S), M(S) = M 2 (S)d 2 (S). ( 3 
)
2 Équilibre

Les équations statiques d'équilibre sont données par

dN dS = 0, dM dS + dφ dS × N = 0. ( 4 
)
Il faut bien noter que 

=        ε 1 (S)d 1 (S) + ε 3 (S)d 3 (S) Timoshenko ε 3 (S)d 3 (S) Euler-Bernoulli d 3 (S) Kirchhoff (5)
Par projection le long des directeurs d i , on écrit l'équilibre pour les trois modèles :

Timoshenko Euler-Bernoulli Kirchhoff dN 1 dS + N 3 κ 2 = 0, dN 3 dS -N 1 κ 2 = 0, dM 2 dS + N 1 ε 3 -N 3 ε 1 = 0. dN 1 dS + N 3 κ 2 = 0, dN 3 dS -N 1 κ 2 = 0, dM 2 dS + N 1 ε 3 = 0. dN 1 dS + N 3 κ 2 = 0, dN 3 dS -N 1 κ 2 = 0, dM 2 dS + N 1 = 0.
Les lois de comportement sont données d'une manière linéaire par :

Timoshenko Euler-Bernoulli Kirchhoff N 1 (S) = GAε 1 (S), N 3 (S) = EA(ε 3 (S) -1), M 2 (S) = EIκ 2 (S). N 3 (S) = EA(ε 3 (S) -1), M 2 (S) = EIκ 2 (S). M 2 (S) = EIκ 2 (S).
où E est le module de Young, G est le module de cisaillement et I est le moment quadratique de la section.

Adimensionnement

Nous adaptons une formulation non-dimensionnelle unifiée grâce au rayon de gyration ϱ = I/A, donc l'abscisse curviligne est donnée d'une manière non-dimensionelle par s = S/ϱ. Pour toute variable physique v(S) mentionnée précédemment, nous pouvons associer une variable non-dimensionnelle v(s) de la manière suivante :

ε i (s) = ε i (S), θ(s) = θ i (S), φ i (s) = 1 ϱ φ i (S), κ 2 (s) = ϱκ 2 (S). ( 6 
)
Force N i (S) et moment M 2 (S) ont également une forme non-dimensionnelle définie par :

N i (s) = 1 EA N i (S), M 2 (s) = 1 ϱEA M 2 (S). (7) 
Compte tenu du fait que d dS = 1 ϱ d ds , nous réécrivons l'équilibre sous une forme non-dimensionnelle pour les trois modèles :

Timoshenko Euler-Bernoulli Kirchhoff 1 g ε ′ 1 + ε 3 -1 κ 2 = 0, ε ′ 3 - 1 g ε 1 κ 2 = 0, κ ′ 2 + ε 1 + 1 g -1 ε 1 ε 3 = 0. N ′ 1 + ε 3 -1 κ 2 = 0, ε ′ 3 -N 1 κ 2 = 0, κ ′ 2 + N 1 ε 3 = 0. N ′ 1 + N 3 κ 2 = 0, N ′ 3 -N 1 κ 2 = 0, κ ′ 2 + N 1 = 0. où g = E/G.

Reformulation du problème

L'équilibre non-dimensionnel est donnée par : Munies de ces conventions, les relations entre les forces, le moment et ϕ sont données, quelque soit le modèle considéré, par

N ′ = 0 M ′ + φ ′ × N = 0 ( 
N 1 (s) = N ℓ sin (ϕ(s)), N 3 (s) = N ℓ cos (ϕ(s)), M 2 (s) = -ϕ ′ (s). (10) 
Cette indépendance vis-à-vis du modèle est un élément clé de l'étude.

Équilibre scalaire

Les lois de comportement, quand elles existent (ce qui n'est pas systématiquement le cas pour tous les modèles conformément à (10)), permettent d'exprimer les déformations ε i et courbures κ 2 en fonction des efforts mentionnés en (10). On déduit :

ε 1 (s) = gN ℓ sin (ϕ(s)), ε 3 (s) = 1 + N ℓ cos (ϕ(s)), κ 2 (s) = -ϕ ′ (s). (11) 
En injectant ces relations dans l'équilibre non-dimensionnel, on remarque que les deux premières équations d'équilibre sont directement satisfaites pour tous les modèles. La dernière devient une équation différentielle ordinaire en ϕ, distincte pour chaque modèle :

ϕ ′′ = N ℓ sin (ϕ) 1 + (1 -g)N ℓ cos (ϕ) , Timoshenko ϕ ′′ = N ℓ sin (ϕ) 1 + N ℓ cos (ϕ) , Euler-Bernoulli ϕ ′′ = N ℓ sin (ϕ). Kirchhoff (12)
Remarque 1 On constate directement une relation fondamentale entre les modèles, en effet :

• Le modèle d'Euler-Bernoulli est obtenu en imposant g = 0 dans celui de Timoshenko.

• Le modèle de Kirchhoff est obtenu en imposant g = 1 dans celui de Timoshenko.

Solutions analytiques

Les solutions triviales de l'elastica et tension/compression sont obtenues si ϕ ′′ = 0 [START_REF] Hariz | Explicit analysis of large transformation of a timoshenko beam : post-buckling solution, bifurcation, and catastrophes[END_REF] et dorénavant, on considère ϕ ′′ ̸ = 0. Les équations différentielles (12) précédentes, peuvent être intégrées une fois pour obtenir une équation diffférentielle du premier ordre :

ϕ ′2 + 2N ℓ cos (ϕ) + (1 -g)N 2 ℓ cos 2 (ϕ) = µ, Timoshenko ϕ ′2 + 2N ℓ cos (ϕ) + N 2 ℓ cos 2 (ϕ) = µ, Euler-Bernoulli ϕ ′2 + 2N ℓ cos (ϕ) = µ. Kirchhoff (13)
où la constante d'intégration est définie à partir des efforts soumis à une extrémité de la poutre :

µ = M 2 (ℓ) 2 + 2N 3 (ℓ) + (1 -g)N 3 (ℓ) 2 Timoshenko µ = M 2 (ℓ) 2 + 2N 3 (ℓ) + N 3 (ℓ) 2 Euler-Bernoulli µ = M 2 (ℓ) 2 + 2N 3 (ℓ) Kirchhoff (14)
La constante d'intégration (17) tout comme ces équations différentielles (13), respectent la remarque 1 donnée en fin de section 4.1.

Remarque 2 : Pour des efforts fixés à une extrémité, soit

N ℓ := ∥N ℓ ∥, ϕ ℓ := ϕ(ℓ) et M ℓ := M 2 (ℓ)
fixés, le problème d'équilibre donné en fonction de ϕ(s) est un problème de Cauchy, dont l'existence et l'unicité des solutions sont assurées.

résoudre l'équilibre, quel que soit le modèle, on exploite le changement de variable t(s) = tan (ϕ(s)/2), qui induit par conséquent :

cos (ϕ) = 1 -t 2 1 + t 2 , sin (ϕ) = 2t 1 + t 2 , ϕ ′ = 2t ′ 1 + t 2 . ( 15 
)
Les précédentes équations différentielles scalaires s'écrivent comme t ′2 = a t 4 + b t 2 + c et pour a ̸ = 0 :

t ′2 = a (t 2 -α -)(t 2 + α + ) (16) 
avec, quelque soit le modèle :

a = µ -µ a 4 , b = 2µ + µ a + µ c 4 , c = µ -µ c 4 α ± = ±b + √ b 2 -4ac 2a
cette formulation générale ne se distingue en fonction des modèles qu'à travers les deux constantes introduites :

µ a = -2N ℓ + (1 -g)N 2 ℓ µ c = 2N ℓ + (1 -g)N 2 ℓ Timoshenko µ a = -2N ℓ + N 2 ℓ µ c = 2N ℓ + N 2 ℓ Euler-Bernoulli µ a = -2N ℓ µ c = 2N ℓ Kirchhoff (17) 
ce qui est conforme à la remarque 1.

Par une manipulation mathématique [START_REF] Hariz | Explicit analysis of large transformation of a timoshenko beam : post-buckling solution, bifurcation, and catastrophes[END_REF], on trouve la solution de l'équation différentielle donnée sous forme d'une fonction elliptique de Jacobi [START_REF] Olver | NIST handbook of mathematical functions hardback and CD-ROM[END_REF], notamment :

t(s) = ± √ α + cs(ζ | m) où ζ = √ aα + (s + s 0 ) et m = α + + α - α + . ( 18 
)
En utilisant les equations (15) et (18), on trouve les variables dynamiques :

N 1 (s) = N ℓ 2 √ α + cs(ζ | m) 1 + α + cs 2 (ζ | m) , N 3 (s) = N ℓ 1 -α + cs 2 (ζ | m) 1 + α + cs 2 (ζ | m) , M 2 (s) = √ ag 2α + ns(ζ | m)ds(ζ | m) 1 + α + cs 2 (ζ | m) . ( 19 
)
Puis, par l'équation (11), on trouve les déformations et la courbure

ε 1 (s) = gN ℓ 2 √ α + cs(ζ | m) 1 + α + cs 2 (ζ | m) , ε 3 (s) = 1 + N ℓ 1 -α + cs 2 (ζ | m) 1 + α + cs 2 (ζ | m) , κ 2 (s) = √ ag 2α + ns(ζ | m)ds(ζ | m) 1 + α + cs 2 (ζ | m) . ( 20 
)
Ces formulations sont identiques pour tous les modèles et on peut dégénérer le modèle de Timochenko pour obtenir les deux autres en imposant a posteriori g = 1 ou g = 0, conformément à la remarque 1.

Placement et rotation

La rotation de la section θ(s) est directement obtenue par (9) : On remarque que pour N ℓ petit, les 3 modèles sont presque identiques, cette ressemblance disparaît quand N ℓ augmente.

θ(s) = φ -2
′ n = φ ′ n = φ ′ n = ε 1 (s) sin (ϕ(s)) + ε 3 (s) cos (ϕ(s)) gN 1 (s) sin (ϕ(s)) + (N 3 + 1) cos (ϕ(s)) gN ℓ 2t 1+t 2 2 + N ℓ 1-t 2 1+t 2 2 + 1-t 2 1+t 2 ε 3 (s) cos (ϕ(s)) (N 3 + 1) cos (ϕ(s)) N ℓ 1-t 2 1+t 2 2 + 1-t 2
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 1 Figure 1 -Paramétrisation d'une configuration actuelle d'une poutre. À une abscisse curviligne donnée s, le centre de masse G et la section S sont donnés. Les directeurs d 1 (s) et d 3 (s) de cette section sont obtenus par une rotation θ(s) autour de e 2 . À s = ℓ la force extérieure N ℓ fait un angle ϕ(ℓ) = ϕ ℓ avec la normale d 3 (ℓ) de la dernière section et φ avec e 3 .

2 2 Figure 2 -

 222 Figure 2 -Formes déformées non-dimensionnelle d'une poutre de Timoshenko (bleu), d'une poutre d'Euler (violet) et d'une tige de Kirchhoff (vert) collées à s = 0 où la force exercée forme un angle ϕ ℓ = 2π/3 avec la normale de la dernière section (s = ℓ). L'intensité de la force est donnée et un moment de flexion M ℓ = 0.2 est imposé à cette dernière section également.

une poutre d'Euler- Bernoulli inextensible suivant d 3 . On a ainsi dφ(S) dS

  

dφ dS diffère d'un modèle à un autre. Le modèle de Timoshenko prend en considération l'effet de cisaillement suivant d 1 . Ce n'est pas le cas pour le modèle d'Euler-Bernoulli où le cisaillement est négligé, ni pour la tige de Kirchhoff qui est

  La relation (22) est vérifiée pour les trois modèles. Ce n'est pas le cas pour φ n (s). En effet, nous rappelons que φ ′ n e n + φ ′ t e t = ε, où (5) détermine l'expression de ε en fonction des modèles. Donc par projection de cette identité le long de e n et sachant que e n • d 3 (s) = cos (ϕ(s)) et e n • d 1 (s) = sin (ϕ(s)), on obtient pour les trois modèles :

		arctan t(s) .	(21)
	Pour déterminer le placement, une nouvelle base orthonormale fixe (e N ℓ = 0 donc par projection	
	φ t (s) = φ t (0) +	M 2 (s) -M 2 (0) N ℓ	(22)
	Timoshenko	Euler-Bernoulli	Kirchhoff
	φ		

t , e y , e n ) est définit avec e n = N ℓ /∥N ℓ ∥ et e t = e 2 ×e n . Le placement est alors recherché en déterminant ses composantes dans cette base : φ(s) = φ n (s)e n + φ t (s)e t . La deuxième équation d'équilibre (8) impose après intégration M(s) -M(0) + φ(s) -φ(0) ×

Conclusion

Dans cet article, on a proposé une étude analytique d'un transformation large mais plane d'une structure unidimensionnelle soumise à des forces et moment externes et avec une loi de comportement linéaire. La formulation de Cosserat a été utilisée en modélisant la poutre comme une ligne curviligne avec une base de directeur mobile. L'objectif était de comparer trois modèles de structures, à savoir le modèle de poutre de Timoshenko, de poutre d'Euler-Bernoulli et de tige de Kirchhoff. Les relations d'équilibres ont été trouvées pour les trois modèles d'une manière adimensionnelle. La formulation suivie dans le présent article conduit à un problème de Cauchy, contrôlé par les trois variables N ℓ , M ℓ , ϕ ℓ . D'où l'existence et l'unicité des solutions, de plus ces solutions sont obtenues explicitement sous forme des fonctions de Jacobi. En outre, on a démontré que le modèle de Timoshenko converge asymptomatiquement vers les modèles d'Euler et de Kirchhoff. Cette convergence est explicite et dépend uniquement du paramètre g = E/G pour ce qui est de l'expression des courbures, forces et moments. En revanche, la convergence des variables cinématiques (plus précisément du placement normal à la force imposée) est conctrôlé par l'intensité de la force. Il serait pertinent d'étendre cette étude au cas dynamique.