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Introduction

Fluid-structure interactions play a crucial role in flows around bluff bodies for many practical applications ranging from structural safety in wind engineering to energy harvesting from flows. A typical example is a cable car cabin which can be seen as a bluff body hanging from a traction cable with several degrees-of-freedom (pendular movement) and subjected to surrounding wind loads. Two distinct mechanisms of interaction leading to fluid-structure instabilities exist between such a bluff body and the surrounding flow: modal coupling such as vortex-induced vibration and aerodynamic coupling such as flutter and galloping [START_REF] Blevins | Flow-induced vibration[END_REF]. Vortex-induced vibration is encountered when the natural frequency of the structure and the characteristic frequency in the surrounding flow are close enough to be coupled [START_REF] Williamson | Vortex induced vibrations[END_REF]. Usually, the motion of the body then locks on the coherent motions of the flow with a given amplitude [16,[START_REF] Cadot | Stochastic fluid structure interaction of three-dimensional plates facing a uniform flow[END_REF]. To characterize that superposition of fluid and solid frequencies, the reduced velocity U* which is the ratio between the convective frequency of the flow and the natural frequency of the solid is usually used as a key parameter. On the other side, aerodynamic coupling such as galloping is another form of flow-induced vibrations of bluff bodies. In this case, fluid-structure coupling now operates between the mean flow and the motion of the body which modifies the effective flow seen by the body and then the aerodynamic loads and motion of the body in return [START_REF] Païdoussis | Fluidstructure interactions: cross-flow-induced instabilities[END_REF]. This type of interaction may lead to strong instabilities with exponential growth of the motion which can reach very large amplitudes, typically larger than the characteristic crossflow size of the body. Galloping instability is a common phenomenon for two-dimensional bluff bodies with angular shapes attacked by a cross-flow such as the deck of bridges in wind engineering and where the degree-of freedom in the motion is usually a cross-flow oscillation and/or a torsional motion. In this case the shape of the bluff body [START_REF] Feero | Influence of geometry on the galloping instability of rectangular cylinders in the reynolds number range 1000-10000[END_REF] is the main parameter governing the apparition of a galloping instability because of the sensitivity of the mean aerodynamic loads to the attitude of the body. Another type of coupled motion can be encountered for rigid pendulums in the form of an angular motion of the bluff body around a fixed point and the important role played by gravity or buoyancy forces [START_REF] Orchini | Galloping instability and control of a rigid pendulum in a flowing soap film[END_REF][START_REF] Obligado | Bi-stability of a pendular disk in laminar and turbulent flows[END_REF][START_REF] Gayout | Rare event-triggered transitions in aerodynamic bifurcation[END_REF]. The problem of a three-dimensional bluff body in fluid structure interaction is less commonly tackled due to its increased flow complexity [START_REF] Prosser | Advanced computational techniques for unsteady aerodynamic-dynamic interactions of bluff bodies[END_REF]. The objective of this paper is to study the fluid structure instabilities which can arise on a canonical three-dimensional bluff body forming a rigid pendulum and which would be representative of a common cable car cabin system and the surrounding wind acting on it in practical applications. The paper is organized as follows. Section 2 describes the cubic pendulum experiments and the measurement methods used. A non-linear and a linearized quasi-static theoretical models of the cubic pendulum are derived in section 3. Analysis of the results are then presented, first with the measurements of the static configuration to feed the model in section 4.1. Then the predictions of the model are compared to the experimental stability results obtained with the pendulum configuration with one degree-of-freedom in section 4.2. Finally, the influence on the stability of the system of the shape of the cube edges is tackled in section 4.3 before we provide our discussions and conclusions in section 5.

EXPERIMENTS AND METHODS 2.1 Main characteristics of the setup

The experiments are performed inside the working section of the Jules Verne wind-tunnel at CSTB in Nantes, a large-scale subsonic closed-loop wind-tunnel of 6 m width and 5 m height. The turbulence intensity of the upstream flow is below 1% above = 5 ⁄ with flow homogeneity better than 2%.

A cube of side length = 0.5 is connected at a height ℎ = 1.5 above the floor by a rod of length = 0.6 to a Cardan joint fixed on a rigid steel structure. The Cardan joint is composed of two almost perfect bearings that allow for a spherical pendular motion when both are left free to move. Each bearing can be blocked independently so that the setup can be fully static, with one degree-of-freedom (DoF) or with two orthogonal DoFs. The mechanical damping of each bearing ~1.3 10 = 0.5 has been characterized and can be neglected compared to the aerodynamic damping in dynamic experiments. The total suspended mass of the instrumented cube and the rod is = 19.8 . A mechanical rotational arrangement allows for orienting the suspended cube in yaw with a fixed angle . The influence of flow blockage is neglected with a solid blockage ratio below 1%. When the cube swings at high angle amplitudes and gets closer to the walls its movement might be influenced by the wall proximity [START_REF] Sharma | Wall effect on fluid-structure interactions of a tethered bluff body[END_REF]. This influence is neglected as in the present configuration the minimal distance between the wall and the swinging cube is 4H. The focus of this study is put on the single DoF problem where only the oscillation in around the xaxis is enabled, is fixed at 0° and is fixed as a parametric value. The second parameter of the study is the reduced velocity * = " # $ % ⁄ which is defined as the ratio between the convective time-scale of the flow and the natural frequency of the pendular motion # $ = & ' ⁄ "2)% * with ' = + 2 ⁄ the distance of the center of mass of the system to the fixed point (The arm is light enough compared to the cube so that the center of mass of the whole system can be approximated at the center of the cube). A range wide enough of reduced velocities * ∈ -17 , 550 is investigated so that both expected quasi static and unsteady configurations are encountered. This range of reduced velocities also corresponds to 

Reynolds numbers

∈ -1.5 10 , 4.5 10 0 based on the side of the cube. Finally, a last parameter investigated in this study is the shape of vertical edges of the cube. Different shapes depicted in figure 1(d) are used as a mean to question the influence of flow separation and reattachment around the cube [START_REF] Rocchio | Flow around a 5:1 rectangular cylinder: effects of upstream-edge rounding[END_REF] on its swinging dynamics. The edges consist in sharp edges, chamfered edges with a 45°angle and a length of 0.1 , or rounded edges of same dimension with quarter-circle shape.

Measurement methods

The problem is scrutinized using a variety of measurement techniques. The static and dynamic loads of the suspended cube are measured using an ATI Omega 170 strain gauge 6-component aerodynamic balance, mounted at the base of the steel structure over the Cardan joint, with a precision of 23% on the measured loads for the reference configuration at = 15 ⁄ . The whole arrangement of the suspended cube and the steel structure has been dynamically characterized in both torsion and flexion to insure that its structural behaviour would not interfere with nor the measurements, neither in the fluidstructure coupling. The main modes of the structure appear decoupled from the pendular problem as the lowest one is already 3 times higher than the natural pendular frequency of the cube # $ ~0.5 4.

Local unsteady static pressure measurements are performed on the surface of the cube using 56 pressure taps as depicted in figure 1(a) linked to two pressure scanners PSI 32HD of 22500 56 range by 1m long vinyl tubing. The measurements are a posteriori calibrated and corrected to compensate for the pressure distortions induced by the tubes and so that the frequency response of the system is flat on the whole range of measurement up to 200 Hz. For the reference configuration at = 15 ⁄ , measurements have an uncertainty of 25%. Reference conditions (static pressure, temperature and air humidity) are taken in a section where the cube is located. Reference dynamic pressure (and free-stream velocity ) is taken at the same place, and at the height of the cube 5 upstream of it in order to insure homogeneous flow conditions.

The instantaneous position of the cube -considered as a fully rigid body -is monitored by two complementary means in order to insure the highest precision on position and angular velocity and acceleration measurements. A set of 2 unidirectional accelerometers Kistler 8316A with range 210 sensitive to both static and dynamic movements are used to get the instantaneous position, velocity and acceleration of the cube with a precision of 20.5°. They are positioned orthogonally so that each of the accelerometers measures directly and , and at the base of the suspension rod in order to minimize inertia that might add noise to the measurements. These measurements are complemented by a motion tracking system Qualisys Oqus consisting in a set of five 4 MPx cameras with 20 mm focal length objectives tracking 5 spherical markers of diameter 0.02 on the bottom face of the cube at a rate of 200 Hz and with a precision of around 0.005 . This tracking allows to access to the instantaneous 6-DoF position of the centre of gravity of the cube "8, 9, 4, , , :% and to all the linear and angular velocities and accelerations.

Companion experiments

A companion experiment has been setup in the S120 wind-tunnel of ENSMA at a reduced scale. The setup is very similar to the one previously described at a scaled version with a factor 1: 2.5. Similar quantities are measured so that the output of both experiments can be directly compared. This setup does not allow to access low reduced velocities as * > 42 and these experiments allow us to extend the assessment on unsteady effects by direct comparison with the large-scale experiment.

THEORETICAL MODEL OF THE BLUFF BODY PENDULUM

The axis system is chosen such as the freestream velocity is aligned with the 8 axis and the static flow incidence is accounted for by the angle representing the rotation around the 4 axis as shown in figure 1. We also introduce a cylindrical coordinate system "=, > ???⃗, A ????⃗% whose origin is located at the fixed centre of rotation at the base of the tether and following the one-dimensional oscillation motion of the cube as sketched in figure 1(b).

For the one degree-of-freedom problem, the oscillation plan is orthogonal to the freestream. We define the mean angle of static equilibrium of the cube ̅ " % as the angle for which the moment balance is achieved between the weight of the cube and the mean aerodynamic load on the cube. This balance projected along A ????⃗ reads :

- DE ̅ " % + F G H " % = 0 (1) 
For an incidence = 0°, with this symmetric cubic shape, ̅ " = 0% = 0 as we expect the mean lateral aerodynamic load to vanish. When the tethered cube is oscillating with a velocity I J ???⃗ = ' K A ????⃗ around the 8 axis, the effective incidence angle of the on-coming freestream velocity seen by the cube becomes LMM = + N where O6E"N % = -' K ⁄ . In this situation, the momentum balance for the tethered cube projected along A ????⃗ reads :

' P = - DE + Q RS Q T A U LMM V (2) 
At this point, two hypotheses can be introduced in order to simplify the problem [START_REF] Parkinson | The square prism as an aeroelastic non-linear oscillator[END_REF]. A quasi-static hypothesis about the motion of the cube which supposes * ≫ 1 and allows to use the mean static aerodynamic coefficients T A XXX U LMM V in the balance. And a small displacement from the equilibrium position hypothesis which supposes N small enough so that equation ( 2) can be linearized at first order in N :

T A XXX U LMM V = T G XXX U LMM VYZ N + T [ XXX U LMM V DEN T A XXX U LMM V = T G XXX " % + \] XXXX \ _ `N + T [ XXX " %N (3) 
Both these hypotheses will be discussed on a limiting case in the next section. The modulus of the velocity seen by the cabin is Q at first order in N . Using together the static and the momentum balance from relations 1 and 3, we obtain at first order in N :

' P = - a DE -DE ̅ " %b + Q RS Q c \] XXXX \ _ `+ T [ XXX " %d a e f A K g h b (4) 
At first order around the mean equilibrium position, DE -DE ̅ " % = YZ ̅ " %i where i = -̅ " %.

The motion equation for the pendulum therefore reads :

iP + jkg h Q c \] XXXX \ _ `+ T [ XXX " %d iK + lJmnA H "`% e f i = 0 (5) 
From this differential equation, we may introduce two coefficients defined canonically which are :

= jkg h o c \] XXXX \ _ `+ T [ XXX " %d ; q = r lJmnA H "`% e f (6) 
The first one represents a damping coefficient of aerodynamic origin. The second one q represents the pseudo-frequency of the oscillating motion of the tethered cube, which in the case ̅ " % = 0 is directly the fundamental frequency of a free pendulum # $ = & ' ⁄ "2)% * .

ANALYSIS 4.1 Static configuration.

The evolution of the mean aerodynamic coefficients T [ XXX and T G XXX of the cube in the static configuration with the yaw angle is presented in figure 2. Only the part of the curve for ∈ -0,450° is actually measured, the rest being obtained by symmetry considerations. There is relatively low sensitivity of the drag coefficient T [ XXX in these conditions with a value ranging from 1.3 to 1.5, in agreement with the data gathered from the literature on similar shapes. The lateral force coefficient T G XXX bears more sensitivity to the yaw angle around = 0° where the sign of the coefficient is rapidly reversed from 0.3 to -0.3. This important sensitivity is reflected in the aerodynamic damping coefficient (eq. 6). This coefficient suddenly becomes negative in the vicinity of = 0° because of the negative sensitivity of the lateral force coefficient to the yaw angle. This results in a potential aero elastic instability of the tethered cube according to the linearized quasi-static model (eq. 5). Through this quasi-steady theoretical approach, an instability region can be predicted for ∈ --7,70°. To discuss this unstable region, the next paragraph tackles the measurements from the 1-DoF configuration.

One-degree-of-freedom configuration.

Figure 3 shows a one-dimensional stability diagram from measurements of the standard deviation of the roll angle for different and at different yaw angles . The standard deviation is used here as marker of the stability or not in roll of the cube, high values meaning important oscillations of the cube. The experiments coincide relatively well with the predictions of the linearized quasi-static model with an unstable region extending (by symmetry) on the range ∈ --9,90°. Eq. 5 is further integrated in time for this configuration to compare the quasi-static model predictions to the measurements. Time evolution and the spectrum of the roll angle oscillations are given in figure 4. For time-marching the equation of motion, the initial condition is imposed on i"O = 0% = 1.2°. This initial value matches both the amplitude fitting constant for estimating from the dynamic experiments, and the standard deviation of in static experiments due to mechanical vibrations. From the comparison, the oscillation period of the tethered cube is fairly well predicted by the quasi-static model. Similarly, the model departs significantly from the measurements only at long times after which roll angles are already quite important, ~2 20°, as already observed from the comparison of values for the configuration " , * % = "0°, 55.1%. One of the main hypothesis of the model in equation 5 is the quasi-steadiness of the flow which implies small and slow evolution of LMM compared with the advective timescale along the body. In the configuration at = 0°, the time evolution of LMM is given at * = 55.1 in figure 5(a). This evolution shows that LMM remains for the whole experiments duration within the range of values for which the linearized quasi-static model (eq. 5) predicts amplification of the roll oscillations as given in figure 2. Nevertheless, when decreasing the reduced velocity * to 17.4 this condition is not met anymore. At this low reduced velocity, experiments show that the roll oscillation are not indefinitely amplified (at least not above the range mechanically allowed by the setup) but the oscillations saturates around 212°, which is above the instability threshold predicted by the linearized quasi-static model. In these conditions, the linearized quasi-static model is unable to predict the saturation observed in the experiments. This condition on the instantaneous value of LMM provides a range of validity for the linearization of the quasi-static model to work. In order to account for the saturation of the oscillations the full non-linear quasi-static model from equation 3 is integrated, with varying mean aerodynamic coefficients taken from the static measurements. The results provided by this model are compared to the experiments in figure 6 where the envelope of the growing oscillations are presented. For large enough reduced velocity, in the case * = 44.1 in figure 6(a), the growth of the swinging oscillations of the cube match between the nonlinear model and the experiments. The non-linear quasi-static model then manages to predict the saturation in amplitude of the oscillations around 252° which is out of the mechanical range achievable by the present experimental setup. When reducing the reduced velocity to a value * = 17.4, the amplitude saturation of the oscillations is once again fairly well predicted compared to the experiments. This highlights the need of non-linearity in the model to properly account for the amplitude saturation. Nevertheless, at this reduced velocity where the quasi-static hypothesis is unlikely to be met, the growth of the oscillations is not anymore well predicted by the model. In this case, the growth observed in the experiments is much faster than what is predicted by the non-linear quasi-static model. Only for the very first part of the growth, until i~2 3°, the model seems to be able to predict the growth observed in the experiments. After, there is an important departure from the predictions of the model. This suggest that at these low reduced velocities the unsteady effects play a considerable role in the growth of the oscillations, even in its initial part. The low value of * = 17.4 is to be looked at against the usual range of * ∈ -1,200 given by [START_REF] Blevins | Flow-induced vibration[END_REF] where unsteady effects have a dominant effect on the fluid-structure interaction phenomena. The match of frequencies between the natural frequency of the pendulum and the vortex shedding characterizing the wake of the cube, or strong coupling between the pendulum dynamics and the dynamics of flow separation and reattachment around the cube can be expected to produce unsteady effects in the fluid-structure interaction phenomenon superposing on the galloping instability [START_REF] Parkinson | Some considerations on of combined effects of galloping and vortex resonance[END_REF] and leading to the departure from quasi-static behaviour observed in the experiments.

Influence of the cube edges on the instability: a matter of flow separation and reattachment

The consistency of the linearized quasi-static model can be tested regarding changes of geometry of the cube. One of the major geometrical parameters influencing the flow around the cube is the shape of its edges. Changing the shape of the vertical edges of the cube is expected to have a critical influence on the flow separation and reattachment dynamics around the cube. Curving and chamfering the vertical edges of the cube are tested, and static mean aerodynamic coefficients are measured for both geometries in order to feed the linearized quasi-static model. In 1-DoF experiments, no configuration was found to be unstable with these geometries under the given flow conditions characterized in the test section of the wind-tunnel. This is corroborated by the predictions of the linearized quasi-static model which does not predict any unstable region. The cubic pendulum with the chamfered edges is only predicted at the threshold of instability at = 0°. These observations confirm the relevance of the linearized quasi-static model in predicting the stability of the 1-DoF pendulum problem. The radical change in the stability properties of the cubic pendulum system with marginal geometrical changes of its edges suggest the high relevance of the flow separation and reattachment process in the fluid-structure interaction phenomenon. Characterizing this aspect would require dedicated investigations with direct flow measurements which is out of the scope of the present study. Only the angles ∈ -0,450° and a couple of negative angles are actual measurements, the rest of the curves are obtained by symmetry considerations.

DISCUSSIONS AND CONCLUDING REMARKS

This study has investigated the fluid-structure interaction problem of a cubic pendulum with one degree of freedom in a flow. Experiments have exhibited the onset of a galloping instability of the cubic pendulum for very specific configurations of the cube facing the flow and with a swinging motion perpendicular to the flow. This galloping instability results in the exponential amplification of the swinging oscillations of the pendulum starting from rest. A linearized quasi-static model of the cubic pendulum has been derived to characterize the galloping instability onset. The model feeds on the experimental measurements of the mean static aerodynamic coefficients of the cube to predict the onset of the instability depending on the wind direction and the shape of the edges of the cube in agreement with the dynamic experiments. The linearized model is also able to predict the initial growth of the galloping oscillations of the pendulum. Nevertheless, it fails to predict the saturation in the amplitude of the oscillations observed in the experiments. Non-linearity has to be integrated in the model through the dependency on the mean aerodynamic coefficients so that the saturation amplitude is correctly predicted. On the other side, the quasi-static hypothesis is disproved when the reduced velocity * starts to be small enough for unsteady effects to have a considerable effect in the fluid-structure coupling. The non-linear quasi-static model, albeit able to correctly predict the saturation in amplitude of the oscillations, fails at predicting the correct growth of the oscillations. Unsteady effects related to coupling between the natural frequency of the pendulum and the vortex shedding from the cube have a dominant role to increase the growth rate of the oscillations even from the very initial phase at the onset of the instability.

From a practical point of view, as the large-scale experiments conducted in this study are a 1:4 scaled down model of a real-sized cable car cabin system, real applications can be expected to evolve in the unsteady region of the galloping instability as * = =U √ ⁄ V. As a consequence, the linear quasistatic model appears as a relevant tool to discuss qualitatively the stability of a given bluff-body pendulum in real-scale applications with simple static aerodynamic measurements, but with limitations regarding the prediction of the evolution of the oscillations (growth and saturation) in the case of an unstable configuration. In this case, incorporating non-linear and unsteady effects appears as fundamental to correctly characterize the oscillations of the bluff body, all the more as wake symmetrybreaking instability with characteristic long time-scales may influence the side loads and drag of the bluff body [START_REF] Haffner | Mechanics of bluff body drag reduction during transient near wake reversals[END_REF]. As observed from the change of shape of the edges of the cube, the dynamics of flow separation and reattachment around the cube seem to play a crucial role in the galloping instability observed on this problem. As a consequence, many other parameters of the problem of practical relevance appear as important to take into account for the influence they can have on these separation and reattachment dynamics, such as the aspect ratio of the bluff body or the turbulence content of the free-stream [START_REF] Carassale | Effects of free-stream turbulence and corner shape on the galloping instability of square cylinders[END_REF]. On the other side, recent experiments on the same setup have also revealed different kind of galloping instabilities appearing when a second DoF is introduced in the pendular motion.
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 1 Figure 1: Presentation of the experimental setup. (a) Global view of the swinging bluff body setup. (b) Definition of the coordinate system and the DoF investigated. (c) Picture of the setup in the test section of the wind-tunnel. (d) Detail of the different shapes used for the vertical edges of the cube.
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 2 Figure 2: Static mean aerodynamic loads T [ XXX and T G XXX and aerodynamic damping coefficient at = 15 ⁄ (or = 4.7 10 ) depending on the incidence angle on the cube with straight edges. Only the angles ∈ -0,450° and a couple of negative angles are actual measurements, the rest of the curves are obtained by symmetry considerations. The red zone indicates the predicted instability zone depending on the value of following equation 5.
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 34 Figure 3: Stability diagram of the 1-DoF tethered cube depending on the geometric incidence angle for different * . The vertical red line indicates the approximate separation between unstable and stable configurations at ~8°

Figure 5 :

 5 Figure 5: Evolution of the effective incidence LMM in the 1-DoF configuration at = 0° for (a) * = 55.1 and (b) * = 17.4. The horizontal red lines indicate the values of for which the model from equation 5 predicts a vanishing amplification coefficient as indicated in figure 2.

Figure 6 :

 6 Figure 6: Comparison of the measured oscillations i of the 1-DoF cube at = 0° and (a) * = 44.2 and (b) * = 17.4 with the predictions of the quasi-static full non-linear model from equation 5. Only the envelope of the oscillations is shown for clarity.
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 7 Figure 7: Static mean aerodynamic loads T [ XXX and T G XXX and aerodynamic damping coefficient at = 15 ⁄ (or = 4.7 10 ) depending on the incidence angle on the cube with (a) curved edges and (b) chamfered edges.