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Résumé :
La rupture des matériaux visoélastiques est considérée comme un phénomène complexe en raison de
leur comportement hautement sensible à la vitesse et à la température. Le présent article vise à mo-
déliser la rupture dans les solides viscoélastiques pour différents taux de chargement et conditions de
température. Dans un premier temps, un modèle viscoélastique linéaire basé sur le formalisme des ma-
tériaux standards généralisés est considéré. Dans un second temps, une variable d’endommagement est
introduite dans le modèle dans le cadre de la Mécanique d’Endommagement Continu (CDM) et régu-
larisée par l’approche Lip-field. Enfin, des simulations numériques sont effectuées pour différents taux
de chargement et températures, les effets de la température étant pris en charge par le principe de su-
perposition temps-température (TTSP). Les résultats démontrent la capacité du modèle à représenter
qualitativement le comportement typique des matériaux viscoélastiques.

Abstract :

Fracture of visoelastic materials is considered to be a complex phenomenon due to their highly rate and
temperature sensitive behaviour. The present paper aims to model fracture in viscoelastic solids for dif-
ferent loading rate and temperature conditions. First, a linear viscoelastic model based on the formalism
of generalized standard materials is considered. Second a damage variable is introduced into the model
within the framework of Continuum Damage Mechanics (CDM) and regularized through the Lip-field
approach. Finally, numerical simulations are performed for different loading rate and temperature with
the temperature effects taken care of by the Time Temperature Superposition Principle (TTSP). Results
demonstrate the ability of the model to qualitatively represent the typical behavior of the viscoelastic
materials.
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1 Introduction
Viscoelastic materials like asphalt, biological tissues,wood and polymers have numerous applications
in engineering. Almost all materials exhibit viscoelastic behavior when the considered time scale is
large enough. The properties of these materials are highly rate and temperature dependent that hence
largely affect their failure behavior [1, 2]. Design for mitigation of fracture in viscoleastic materials is
an important problem for e.g. in case of asphalt and pavement construction [3].

A detailed review of viscoelastic fracture was presented by Knauss [4]. Several works have been done
in the past for the modeling of fracture in viscoelastic solids. Schapery [5, 6] used the correspondence
principle [7] to define a generalized time dependent J-integral for fracture in viscoelastic material ana-
logous to the elastic case. Based on this theory, a new model was proposed in [8] to study the creep
fracture in viscoelastic materials.

Several numerical methods have been developed to study the failure behavior of different materials cau-
sed by crack propagation. They can be broadly classified into discrete fracture mechanics based approach
and damage mechanics based approach. In discrete approach, X-FEM [9, 10] has gained a lot of atten-
tion in the past. X-FEM approach was used in [11, 12] to address linear viscoelasticity problems with
inclusions and cracks. Damage mechanics based approach can further be broadly categorised as Cohe-
sive Zone Model (CZM) [13, 14] and Continuum Damage Mechanics (CDM) [15, 16]. Both approaches
account for the micro-damage before fracture that can be associated to the nucleation, coalescence and
growth of voids to form macro-cracks. Some works on use of CZM to model viscoelastic fracture can
be found in [17, 18]. CDM is another popular approach for modeling damage in viscoelastic materials.
Some of the commonly used CDM approaches are non-local integral damage models [20, 19], phase
field damage models [21, 22] and Thick Level Set(TLS) approach [23]. For e.g. Shiferaw et al [24] used
the TLS approach for modeling damage in viscoelastic materials for a wide range of temperature. Phase
field models have also been used to model cracks in viscoelasticity [27, 25, 26]. Another class of method
that was recently developed under the formalism of CDM was the Lip-field approach [28, 29] to fracture.
The main difference of this approach from the phase field approach lies in the fact that damage energy
functional is not a function of the damage gradient.

Fracture behavior of viscoelastic materials (e.g. bituminous materials) is a complex phenomenon due
to their highly rate-sensitive and temperature-dependent behavior. Modeling of such fracture behavior
in viscoelasticity for a wide range of loading and temperature conditions can still be considered to be
a relatively open area. This lays the objective of the present paper. Initially a viscoelastic model based
on the formalism of generalized standard materials [30, 31] is proposed by defining the respective free
energy and viscous dissipation potentials. In particular, the Generalized Kelvin-Voigt (GKV) model [7]
is used to represent the viscoelastic behaviour. The temperature effects are taken care of by the Time
Temperature Superposition Principle (TTSP) [32, 7]. Then an isotropic damage variable is being intro-
duced into the model based on the formalism of CDM. Further, an incremental potential is proposed by
gathering the respective free energy and dissipative potentials. This leads to the variational formulation
of the problem under consideration, with the minimization of the incremental potential providing the
solution of the mechanical problem. Finally, the mechanical problem is regularized by the introduction
of a length scale using the Lip-field approach. We keep the discussion of the numerical aspects of the
Lip-field approach to minimal and the details can be found in [28, 29].

The paper is organized as follows : The Lip-field regularized viscoelastic damage model is described in
the next section. In Section 3, the numerical aspects are briefed. Numerical results are then presented
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in Section 4 for different loading rates and temperature. Finally, the paper concludes with summary and
possible future works.

2 The mechanical model
Consider the deformation of a body initially occupying a domain Ω through a displacement field u. We
assume small, quasi-static deformations under isothermal conditions. The Cauchy stress and small strain
tensor is denoted as σ and ε.

ε(u) =
1

2
(∇u+∇Tu) (1)

Regarding the boundary conditions, the displacement is applied on a part of the boundary Γu. On the
rest of boundary ΓN , zero traction forces are assumed. We also assume that there is no body force. To
be kinematically admissible at any given time t, the displacement field must belong to U(t) :

U(t) = {u ∈ H1(Ω) : u = ud(t) on Γu} (2)

The equilibrium condition then reads∫
Ω
σ : ε(u∗) dΩ = 0, ∀ u∗ ∈ U∗ U∗ = {u ∈ H1(Ω) : u = 0 on Γu} (3)

The equilibrium and the kinematic equations Eq. (2) and (3) must be complemented with the constitutive
equations. For the constitutive behaviour, we consider the Generalized Kelvin Voigt (GKV) model [7].
The schematic of GKV model in 1D case is shown in Fig. 1, where ε1, ε2, ..., εn are the internal variables
associated with the viscous strain in each Kelvin Voigt (KV) unit. E0, E1, .., En and τ1, ..., τn represent
the spring constants and retardation times of the dashpots respectively. We assume that the Poisson’s
ratio ν is constant for all Kelvin-Voigt units (and time independent).

E0
E1E2En

τ 1τ 2τ n

ε 2ε n ε 1

ε

Figure 1 – Generalized Kelvin Voigt (GKV) model

To account for the effects of temperature, time-temperature superposition principle [7] is used. This
allows to use the Williams–Landel–Ferry (WLF) [32] equation to find the shift factor αT as follows :

log(αT ) =
−C1(T − Tref )

C2 + T − Tref
(4)
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where C1 and C2 are the material constants. The shift factor proportionally alters the retardation time
to account for the changes in temperature as follows : τi(T ) = αT (T )τi(Tref ).

We will use the formalism of Generalized Standard Materials [30, 31] to describe the constitutive
behaviour. The model is characterised by the free energy potential ψ(ε(u), ε1, ..., εn) and the (vis-
cous) dissipation potential ϕ(ε̇1, .., ε̇n). We use the implicit time discretisation. Consider the displa-
cement and internal variables (viscous strains) known at some time tm. Then finding the solution pair
(um+1, ε1,m+1, ..., εn,m+1) at the next time instant tm+1 = tm +∆t amounts to the following mini-
mization problem [33].

(u, ε1, ..., εn) = arg min
u′∈Um

ε1′,..,εn′

F (u′, ε1
′, .., εn

′ ; um, ε1,m, .., εn,m,∆t) (5)

where Um is the short hand notation for U(tm+1) and we dropped the m+ 1 indices(for the rest of the
paper) to simplify the notations. We will also drop the constants and known variables from previous
time step in F whenever possible for clarity. The expression for F is follows [33] :

F (u, ε1, .., εn) =

∫
Ω

[
ψ(ε(u), ε1, ..., εn) + ∆t ϕ

(
ε1 − ε1,m

∆t
, ..,

εn − εn,m

∆t

) ]
dΩ (6)

where the time derivative of the viscous strains εi (i = 1, 2.., n) is replaced by the differential quotient
(εi − εi,m)/∆t. The free energy and dissipation potential are given by

ψ =
1

2

(
ε−

n∑
i=1

εi

)
: E0 :

(
ε−

n∑
i=1

εi

)
+

n∑
i=1

1

2
εi : Ei : εi (7)

ϕ =
n∑

i=1

1

2
ε̇i : τiEi : ε̇i (8)

where the linear elasticity tensor Ei = 2µiI + λi1 ⊗ 1 is defined in terms of Lame’s constants λi and
µi associated to ith Kelvin-Voigt unit , with I and 1 being the fourth and second order identity tensors
respectively. The convexity of the free energy and viscous dissipation potential ensures that the viscous
dissipation is positive, thus satisfying the second law of thermodynamics.

An isotropic (internal) damage variable d is introduced into the GKV model within the framework of
Continuum Damage Mechanics (CDM) by use of the effective stress principle. d = 0 indicates virgin
material and d = 1 indicates crack. In particular, an energetic degradation function g(d) diminishes the
materials capability to store the free energy and dissipate viscous energy to yield the modified incre-
mental potential as follows (with g(d) : [0, 1] → [1, 0]) :

F (u, ε1, .., εn, d) =

∫
Ω
g(d)ψ(ε(u), ε1, ..., εn) + ∆t g(d)ϕ

(
ε1 − ε1,m

∆t
, ..,

εn − εn,m

∆t

)
dΩ (9)

In our case, we consider the free energy of the springs as the driving force for the damage. So the
evolution of the damage is given by the minimization of a different incremental potential Fd [28, 29]

Fd(u, ε1, .., εn, d) =

∫
Ω
g(d)ψ(ε(u), ε1, ..., εn) + Ych(d) dΩ (10)
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where h(d) is a softening function that controls the damage evolution behaviour. As will be seen, both
g(d) and h(d)will take user defined convex function so thatFd preserves convexity w.r.t damage variable
d. Therefore, the solution of the mechanical problem (u, ε1, .., εn, d) at time tm+1 can be formulated as
the minimization of the two different incremental potentials Eq.(9),(10) as follows :

(u, ε1, ..., εn) = arg min
u′∈Um

ε1′,..,εn′

F (u′, ε1
′, .., εn

′, d) (11)

d = arg min
d′∈An∩LΩ,lc

Fd(u, ε1, .., εn, d) (12)

The damage irreversibility constraint is given by the space Am.

Am = {d ∈ L∞(Ω) : dm ≤ d ≤ 1} (13)

The damage irreversibility constraint ensures that the dissipation due to damage is positive. The damage
softening models exhibit spurious mesh dependency problems [34]. Hence in our case a length scale
lc is introduced into the model through the Lipschitz regularized space LΩ,lc as explained below : The
Lipschitz constant associated to any given damage field d over the domain Ω is the minimum M such
that the following holds

|d(x)− d(y)| ≤Mdist(x,y) ∀x,y ∈ Ω (14)

where dist(x,y) is the minimal length of the path inside Ω joining x and y (the distance is considered
infinite if the two points cannot be connected inside Ω). The value M defined above is denoted lip(d).
This leads to the following definition of the Lipschitz regularized space [28]

LΩ,lc =

{
d ∈ L∞(Ω) : lip(d) ≤ 1

lc

}
(15)

We consider the following energy degradation function and softening function for the rest of the study.

g(d) = (1− d)2 + α(1− d)d3 (16)

h(d) = 2d+ 3d2 (17)

3 Numerical aspects
The mechanical problem under considered is discretized by means of finite elements in space and finite
difference in time. The incremental potential F (Eq. (9)) is convex w.r.t u, ε1, .., εn for a fixed damage
field d and the incremental potential Fd (Eq. (10)) is convex w.r.t to damage field d for fixed u, ε1, .., εn.
Hence, a staggered scheme is used in which the minimization (given by Eq. (11) and (12)) is performed
alternatively until convergence. It is to be noted that while performing the minimization of F (Eq. (11)),
the damage field is kept fixed (and equal to its latest available value) and while performing the mini-
mization of Fd (Eq. (12)), the deformation u and viscous strains ε1, ..., εn are fixed (and equal to the
latest available value).To accelerate the minimization process for finding the damage field, we employ a
technique detailed in [28, 29]. Briefly, it contains three steps :

1. First a purely local minimization is performed without the Lipschitz constraint to find the trial
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damage d̄ as follows :

d̄ = arg min
d′∈Am

Fd(u, ε1, .., εn, d) (18)

2. Then the set of active nodes is found. Active nodes are defined as the nodes where the d̄ /∈ LΩ,lc .
d is assigned d̄ in all the nodes except for the active nodes.

3. Finally, a global minimization for the damage variable given by Eq. (12) is performed only in
the subdomain occupied by active nodes.

Step 2 is done efficiently using a fast marching technique described in [29]. For the Step 3, cvxopt [35]
library of the Python has been used to impose the damage irreversibility (Am) and Lipschitz constraint
(LΩ,lc). This library allows to impose the damage constraints in discrete form through first and second
order cone constraints.

4 Simulation results
A TDCB (Tapered Double Cantilever Beam) geometry shown in Fig. 2 is used for the study. This geo-
metry has already been used in [29] for studying fracture in elasticity using Lip-field approach. This
geometry ensures that the crack growth is relatively stable as the imposed displacement increases.

Figure 2 – TDCB Geometry specimen

units L1 L2 L3 L4 H1 H2 H3 H4 R
mm 100 12 20 24 70 90 24 5 4

Table 1 – Dimensions for the TDCB geometry
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KV unit (i) 0 1 2 3 4 5 6 7 8 9 10 11
Ei(MPa) 31770 87398 123414 65830 62457 62661 7305 12500 418 1743 79 39
τi,ref (s) N/A 1E-5 1E-4 1E-3 5E-3 1E-2 1E-1 1 10 1E2 5E2 1E3

Table 2 – Parameters for GKV model

Yc (N/m2) ν α C1 C2 (◦C)
30 .2 .1 29.095 211.60

Table 3 – Material parameters

The dimension for the TDCB geometry is listed in Table 1. The loading in y-direction is applied through
linearized rigid body motion on the boundary two holes. We make the assumption of plane strain and
isothermal conditions. For the GKV model (viscoelastic model) , the parameters are listed in Table 2 and
these values were extracted from [24].The retardation times of the GKV model are listed for the reference
temperature T = 20◦C. The other material parameters of the model are listed in Table 3, where ν is the
Poisson’s ratio. It is to be noted that for the present numerical study Yc is considered constant irrespective
of the loading rate and temperature. However this is not the case as observed in experiments. For the
assumed plane strain condition, the Lame’s constants are found as follows : λi = Eiν/(1+ ν)/(1−2ν)

and µi = Ei/2/(1+ ν). The TDCB geometry is spatially discretized through linear triangular elements
(number of nodes = 8112 and number of triangular elements = 15944). We use lc = 5 mm to ensure
that there are enough elements (10 elements) in the crack band. The time step dt is set to 1e − 4 s for
all the simulations. The crack length is found approximately as

∫
Ω d/lc dΩ.

4.1 Influence of loading rate
Viscoelastic models are rate dependent. We study the influence of the imposed displacement rate on the
TDCB specimen to study the rate sensitivity of the considered model. The simulation was performed at
T = Tref = 20◦C (shift factor αT = 1). We consider the following three imposed loading rates for the
study : 1 mm/s, 0.1 mm/s, 0.01 mm/s.
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Figure 3 – Force-displacement plot and crack length - displacement plot for different loading rates
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Figure 3 shows the force-displacement curves and crack length vs displacement curve for the considered
loading rates. It can be seen from the Figure 3a as the imposed displacement rate increases, the load
carrying capacity of the specimen increases and the displacement at rupture decreases, which is a typical
response of the viscoelastic materials undergoing fracture. Moreover, Figure 3b shows that the crack
grows faster as the imposed displacement rate increases. This can be explained as follows : a) at extreme
loading rates (very low and very high loading rates) the viscous dissipation is negligible and most of the
dissipation happens through fracture. b) Higher the loading rate higher the stiffness of the model (glassy
region) compared to low loading rates (rubbery region). Both in glassy and rubbery regions the model
behavior is similar to behavior in elasticity with negligible viscous dissipation, except for the transition
region where the viscous dissipation is significant. Hence at extreme loading rates, the model behavior
is similiar to elasticity but with different stiffness and hence differenct crack speeds.

Pa

Figure 4 – From left to right a) Force-displacement and crack length vs displacement plot b) stress field
in y-direction c) damage field (all contour plots showed for u = .02 mm)

Snapshots for the stress in y-direction and damage field (crack band) for the imposed displacement rate
of 1 mm/s at uimposed = .02 mm is shown in Figure 4. It can be seen that the fracture results in mode-I
crack pattern with stress being maximum close to the crack tip. It can be seen from Figure 4a that the
crack initially grows faster and then it slows down after approximately three quarters of the maximum
size of crack.

4.2 Influence of temperature
We now study the influence of temperature on the fracture behaviour. We consider the following three
different temperatures for the study : 10◦C, 20◦C and 30◦C. The difference in temperature is accounted
for in the model by shifting the retardation times τi by the shift factor αT calculated using the WLF
equation (Eq. (4)).
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Figure 5 – Force- and crack length- displacement plots for different temperature at u̇imposed = .1 mm/s.

Figure 5 shows the force displacement curves and crack-length vs imposed displacement for different
temperatures for fixed imposed displacement rate of .1 mm/s. It can be seen that as the temperature
increases the load carrying capacity of the model decreases and the rate of increase of crack length
decreases. Moreover, it can be observed that increase in temperature has similar (qualitative) effect as
decrease in loading rate, which is typical to viscoelastic materials.

5 Conclusion
The paper described a viscoelastic damage model being implemented within the variational framework
and regularized using the Lip-field approach. The numerical results produced for various loading rates
and temperature conditions exhibit the similar qualitative behavior observed in viscoelastic fracture.The
novelty of the present work lies in the use of Lip-field approach for the first time to model damage in
viscoelastic materials. This can be considered as a first step to model damage softening in viscoelastic
materials.

The future work will involve implementation of a viscoelastic damage model with unilateral effects
within the Lip-field approach and to calibrate the model with experimental results. This will help to use
the model for some real world applications.
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