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Abstract

The properties of elastic waves propagating within architectured media have been the subject of recent
investigations. The study of wave propagation and its interaction with the periodic microstructure of
architectured materials for very long wavelengths has shown that a homogeneous continuum of Cauchy
type can correctly describe the behaviour of such materials. However, as the frequency or the wavenum-
ber increases, the behaviour becomes more complex and hence Classical elasticity is not rich enough
to capture specific physical phenomena, such as dispersivity for instance. The elastodynamic homog-
enization method based on the Floquet-Bloch analysis allows to characterise the effective properties
through the computation of the acoustic tensor, which depends on the directions of propagation and
the symmetry class of the material. It is worth noting that, assuming a specific symmetry class, some
information concerning the material might be lost. However, the identification of effective properties
becomes difficult since no particular assumptions are involved with respect to the symmetry class of the
effective elasticity tensor. In this article, we propose a parameterisation of the acoustic tensor using the
harmonic decomposition of a generic elasticity tensor. The acoustic tensor’s invariants will be expressed
as a function of this decomposition’s elements, for a given direction of propagation.

Keywords : ArchitecturedMaterials, 2DElasticity, Elastodynamics, Homog-
enization, Harmonic Decomposition, Acoustic tensor.

1 Introduction
Periodic architectured materials are those that possess an inner geometry, they result from a combination
of at least two phases, where one phase can be either solid or void, assembled in unit cells to form a
new material. Their effective properties are controlled by the internal geometry rather than the specific
nature of phases and depends strongly on the scale separation between the wavelength of the loading
and the size of the unit cell. The resulting local kinematics can be rather complex and lead to an extreme
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mechanical behaviour such as negative Poisson’s ratio [1], negative compressibility [2], negative ther-
mal expansion [3], etc. The study of elastic waves propagating in architectured materials is of particular
interest. In fact, the microstructure and the topology of the medium strongly affects the propagation
of elastic waves and unusual effects can be observed at the macroscale, such as an anisotropic elas-
todynamic behaviour at high frequencies in honeycombs [4]. In order to study these phenomena, it is
convinient to subtitute the original heterogeneous continuumwith a homogeneous one that has an equiv-
alent behaviour for a given range of parameters. Such equivalent continuun will be denoted “Equivalent
Homogeneous Medium” (EHM). For Long Wave-Lengths/Low-Frequencies (LW-LF), the EHM is gen-
erally considered as a classical Cauchy continuum, the effective properties of which can be obtained by
periodic elastostatic homogenization.

To illustrate the identification method, we propose a comparison between the EHM and the real medium
behaviour in the LW-LF regime for some architecturedmaterials belonging to different symmetry classes.
The unit cells of the studied lattices are shown in the figure (1)
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Figure 1: Unit cells of the studied architectured materials

In this figure, Dk refers to the dihedral group, which contains rotation symmetry of angle 2π/k around a
center point and k mirror lines, Zk refers to the cyclic group which contains only the rotation symmetry
but no mirror line.

2 Elastodynamic homogenization : LW-LF approx.
Bloch-wave homogenization approach allows to characterise the effective medium in the LW-LF ap-
proximation through the analysis of wave propagation. The main idea of the proposed approach is to set
up an identification method using waves velocities and the Christoffel tensor polynomial invariants in
order to identify the effective properties. The global steps of the method are summarized as follows

1. Floquet-Bloch analysis −→ Computing wave velocities;

2. parameterisation of the Christoffel tensor field using harmonic decomposition elements CH;

3. identification algorithm of the effective elasticity tensor CH.

Unit cell geometry Wave velocities
Parameterised

Christoffel tensor

Effective elas-
ticity tensor

Comsol Multiphysics :
Floquet-Bloch analysis

Mathematica Mathematica

Figure 2: Schematic of elastodynamic homogenization method and softwares used
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2.1 Floquet-Bloch analysis
The Floquet-Bloch analysis allows to compute the dispersion diagram which is the fingerprint of the
architectured material [5]. All the information needed to characterise the medium can be extracted from
this diagram, in particular phase velocities. Let consider a wave propagation problem in a periodic
heterogeneous medium Ω generated by a unit cell T , the equation of motion can be expressed in terms
of the displacement field u(x, t)

∇ · [C(x) : (u(x, t)⊗s ∇)] = ρ(x)ü(x, t), ∀x ∈ Ω, (2.1)

where C and ρ are T −periodic fields.

In order to analyze the elastodynamic behaviour of the medium, we apply the Floquet-Bloch theorem
over its unit cell to obtain the elementary solutions of (2.1) in the form of Bloch-waves :

uk(x, t) = Re
(
ũk(x)ei(ωt−k·x)

)
, (2.2)

in which ũk(x) is a complex T -periopdic polarization field. Introducing the ansatz (2.2) in (2.1), we
apply the Floquet-Bloch transform [6] to the motion equation which becomes

(∇− ik) · {C(x) : [ũk(x)⊗s (∇− ik)]} = −ω2ρ(x)ũk(x), x ∈ T . (2.3)

The latter can be viewed as a family of eigenvalues problems of wave propagation at the angular fre-
quency ω, parametrized by the wave vector k. The existence of free-waves is subjected to the following
condition

det [Zk (ω)] = det
[
(∇− ik) · C(x) · (∇− ik)− ω2ρ(x)I

]
= 0, (2.4)

which is called dispersion relation. The graphical representation of the set of all couples (k, ω) satisfying
the dispersion relation represents the dispersion diagram.

2.2 Christoffel tensor revisited
In this study, we analyze the wave propagation for very Long-Wavelength/Low-Frequency. Hence, the
dispersion relation is linear and can be obtained by solving the the Christoffel equation [7]

(
Γ(n)− ρHv2φI

)
ũ = 0 with Γ(n) = n · CH · n. (2.5)

In (2.5), Γ is the Christoffel tensor in the direction n, ρH is the effective mass density and CH is the
elasticity tensor of the effective medium in the LW-LF approximation. Since the wave velocities derive
from the eigenvalues of Γ, we will use this information to determine the constants of CH. In order to
well identifying the effective medium, in particular its symmetry class, we propose a parameterisation
of the Christoffel tensor in terms of the direction of propagation nθ 1, and the harmonic decomposition’
elements ofCH = (H,h, α2, α0), which provides a physical interpretation of the anisotropic part ofCH.
More precisely, CH can be decomposed into irreducible sum of 4th order harmonic tensor H 2, a 2nd

1the direction of propagation is now parametrized by the angle of propagation θ with respect to the reference frame.
2A nth-order harmonic tensor is a completly symmetric and tracless nth-order tensor
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order harmonic tensor h and two scalars α2 and α0 [8]

CH = H +
1

2
(h⊗ I + I⊗ h)︸ ︷︷ ︸

Anisotropic part

+
α2

2
J + 2α0K︸ ︷︷ ︸

Isotropic part

, (2.6)

in whichK and J are respectively the 4th order spheric and deviatoric projectors. Hence, the Christoffel
tensor can be re-written using the compact notation

Γ
(
nθ;CH) = Γ (nθ;H,h, α2, α0) . (2.7)

The set of propagation angles θ defines a Christoffel tensor field, carrying all the information about the
effective medium. The Christoffel tensor being real and symmetric, wave velocities are related to the
components of CH through the Christoffel’s polynomial invariants

I1(θ) = tr
[
Γ(nθ;CH)

]
, I2(θ) = det

[
Γ(nθ;CH)

]
. (2.8)

More precisely, we have the following relationships

I1(θ) = ρH
(
v2P (θ) + v2S(θ)

)
, I2(θ) =

(
ρH
)2
v2P (θ)v2S(θ), (2.9)

where vP (θ) and vS(θ) are respectively the longitudinal and the transverse wave velocities in the direc-
tion of angle θ.

2.3 Elastodynamic homogenization approach
The main idea of elastodynamic homogenization approach in the LW-LF regime consists of solving the
wave propagation problem over a unit cell using the Floquet-Bloch analysis, and subsequently identi-
fying the harmonic decomposition elements of the effective elasticity tensor. Given some directions of
propagation, the relationships (2.9) are numerically computed, and related to its analytical expressions
(2.8) which provides a set of equations taking the form of awaterfall system. The resolution of the inverse
problem proceed in three steps (3 subsystems): the first step gives the isotropic parameters (α2, α0), the
second and the third steps provide respectively the components of h and those of H. Once the harmonic
decomposition components are identified, the effective elasticity tensor can be reconstructed according
to the formula (2.6).

3 Numerical results
We solved the wave propagation problem for θ = {0◦, 30◦, 45◦, 90◦} using COMSOL Multiphysics
5.4 software to compute waves velocities and the Christoffel tensor’s invariants, which are the input
parameters of the identification algorithm. In order to validate our method, we calculated the effective
Christoffel tensors from the identified elasticity tensorsCH and the corresponding phase velocities (2.9),
then we compared them to phase velocities in the architectured materials obtained via the Floquet-Bloch
analysis. The numerical results of the wave velocities whithin different architecturedmaterials are shown
in the figures below.
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4 Conclusion
In this study, we proposed a new method of homogenization of architectured materials using Bloch-
waves in the LW-LF approximation. The study of wave propagation provides useful informations to
characterise the effective properties of the medium, by exploiting the Christoffel tensor. The proposed
parameterisation of the Christoffel tensor gives a clear physical interpretation of the effective properties
without making any assumptions with respect to the symmetry class. Results obtained from this ap-
proach agree well with the LW-LF behaviour of the real architectured material for different geometries:

• tetrachiral and tetragonal anisotropy are well captured by the Cauchy model;

• isotropropic behaviour for hexagonal and hexachiral honeycombs;

• trichiral and trigonal lattices behave isotropically.
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Despite the fact that Cauchy model is not rich enough to capture certain physical phenomena related
to the mesostructure effects [9, 4], the elastodynamic homogenization approach studied in this article
offers simple and efficient approximation in the LW-LF regime, and can be enriched and extended to
predict the behaviour outside the LW-LF regime [10, 11].
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