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Introduction

Periodic architectured materials are those that possess an inner geometry, they result from a combination of at least two phases, where one phase can be either solid or void, assembled in unit cells to form a new material. Their effective properties are controlled by the internal geometry rather than the specific nature of phases and depends strongly on the scale separation between the wavelength of the loading and the size of the unit cell. The resulting local kinematics can be rather complex and lead to an extreme mechanical behaviour such as negative Poisson's ratio [START_REF] Prall | Properties of a chiral honeycomb with a Poisson's ratio of -1[END_REF], negative compressibility [START_REF] Lakes | Negative compressibility, negative Poisson s ratio, and stability[END_REF], negative thermal expansion [START_REF] Wu | Mechanical design and multifunctional applications of chiral mechanical metamaterials: A review[END_REF], etc. The study of elastic waves propagating in architectured materials is of particular interest. In fact, the microstructure and the topology of the medium strongly affects the propagation of elastic waves and unusual effects can be observed at the macroscale, such as an anisotropic elastodynamic behaviour at high frequencies in honeycombs [START_REF] Rosi | Continuum modelling of frequency dependent acoustic beam focussing and steering in hexagonal lattices[END_REF]. In order to study these phenomena, it is convinient to subtitute the original heterogeneous continuum with a homogeneous one that has an equivalent behaviour for a given range of parameters. Such equivalent continuun will be denoted "Equivalent Homogeneous Medium" (EHM). For Long Wave-Lengths/Low-Frequencies (LW-LF), the EHM is generally considered as a classical Cauchy continuum, the effective properties of which can be obtained by periodic elastostatic homogenization.

To illustrate the identification method, we propose a comparison between the EHM and the real medium behaviour in the LW-LF regime for some architectured materials belonging to different symmetry classes. The unit cells of the studied lattices are shown in the figure (1) 
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Elastodynamic homogenization : LW-LF approx.

Bloch-wave homogenization approach allows to characterise the effective medium in the LW-LF approximation through the analysis of wave propagation. The main idea of the proposed approach is to set up an identification method using waves velocities and the Christoffel tensor polynomial invariants in order to identify the effective properties. The global steps of the method are summarized as follows 1. Floquet-Bloch analysis -→ Computing wave velocities; 2. parameterisation of the Christoffel tensor field using harmonic decomposition elements C H ; 3. identification algorithm of the effective elasticity tensor C H .
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Floquet-Bloch analysis

The Floquet-Bloch analysis allows to compute the dispersion diagram which is the fingerprint of the architectured material [START_REF] Gazalet | A tutorial survey on waves propagating in periodic media: Electronic, photonic and phononic crystals. perception of the bloch theorem in both real and fourier domains[END_REF]. All the information needed to characterise the medium can be extracted from this diagram, in particular phase velocities. Let consider a wave propagation problem in a periodic heterogeneous medium Ω generated by a unit cell T , the equation of motion can be expressed in terms of the displacement field u(x, t)

∇ • [C(x) : (u(x, t) ⊗ s ∇)] = ρ(x)ü(x, t), ∀x ∈ Ω, (2.1) 
where C and ρ are T -periodic fields.

In order to analyze the elastodynamic behaviour of the medium, we apply the Floquet-Bloch theorem over its unit cell to obtain the elementary solutions of (2.1) in the form of Bloch-waves :

u k (x, t) = Re u k (x)e i(ωt-k•x) , (2.2) 
in which u k (x) is a complex T -periopdic polarization field. Introducing the ansatz (2.2) in (2.1), we apply the Floquet-Bloch transform [START_REF] Nassar | Elastodynamic homogenization of periodic media[END_REF] to the motion equation which becomes

(∇ -ik) • {C(x) : [ u k (x) ⊗ s (∇ -ik)]} = -ω 2 ρ(x) u k (x), x ∈ T . (2.3) 
The latter can be viewed as a family of eigenvalues problems of wave propagation at the angular frequency ω, parametrized by the wave vector k. The existence of free-waves is subjected to the following condition

det [Z k (ω)] = det (∇ -ik) • C(x) • (∇ -ik) -ω 2 ρ(x)I = 0, (2.4) 
which is called dispersion relation. The graphical representation of the set of all couples (k, ω) satisfying the dispersion relation represents the dispersion diagram.

Christoffel tensor revisited

In this study, we analyze the wave propagation for very Long-Wavelength/Low-Frequency. Hence, the dispersion relation is linear and can be obtained by solving the the Christoffel equation [7]

Γ(n) -ρ H v 2 φ I u = 0 with Γ(n) = n • C H • n. (2.5)
In (2.5), Γ is the Christoffel tensor in the direction n, ρ H is the effective mass density and C H is the elasticity tensor of the effective medium in the LW-LF approximation. Since the wave velocities derive from the eigenvalues of Γ, we will use this information to determine the constants of C H . In order to well identifying the effective medium, in particular its symmetry class, we propose a parameterisation of the Christoffel tensor in terms of the direction of propagation n θ 1 , and the harmonic decomposition' elements of C H = (H, h, α 2 , α 0 ), which provides a physical interpretation of the anisotropic part of C H . More precisely, C H can be decomposed into irreducible sum of 4 th order harmonic tensor H 2 , a 2 nd order harmonic tensor h and two scalars α 2 and α 0 [8]

C H = H + 1 2 (h ⊗ I + I ⊗ h) Anisotropic part + α 2 2 J + 2α 0 K Isotropic part , (2.6) 
in which K and J are respectively the 4 th order spheric and deviatoric projectors. Hence, the Christoffel tensor can be re-written using the compact notation

Γ n θ ; C H = Γ (n θ ; H, h, α 2 , α 0 ) . (2.7)
The set of propagation angles θ defines a Christoffel tensor field, carrying all the information about the effective medium. The Christoffel tensor being real and symmetric, wave velocities are related to the components of C H through the Christoffel's polynomial invariants

I 1 (θ) = tr Γ(n θ ; C H ) , I 2 (θ) = det Γ(n θ ; C H ) . (2.8)
More precisely, we have the following relationships

I 1 (θ) = ρ H v 2 P (θ) + v 2 S (θ) , I 2 (θ) = ρ H 2 v 2 P (θ)v 2 S (θ), (2.9) 
where v P (θ) and v S (θ) are respectively the longitudinal and the transverse wave velocities in the direction of angle θ.

Elastodynamic homogenization approach

The main idea of elastodynamic homogenization approach in the LW-LF regime consists of solving the wave propagation problem over a unit cell using the Floquet-Bloch analysis, and subsequently identifying the harmonic decomposition elements of the effective elasticity tensor. Given some directions of propagation, the relationships (2.9) are numerically computed, and related to its analytical expressions (2.8) which provides a set of equations taking the form of a waterfall system. The resolution of the inverse problem proceed in three steps (3 subsystems): the first step gives the isotropic parameters (α 2 , α 0 ), the second and the third steps provide respectively the components of h and those of H. Once the harmonic decomposition components are identified, the effective elasticity tensor can be reconstructed according to the formula (2.6).

Numerical results

We solved the wave propagation problem for θ = {0 • , 30 • , 45 • , 90 • } using COMSOL M . software to compute waves velocities and the Christoffel tensor's invariants, which are the input parameters of the identification algorithm. In order to validate our method, we calculated the effective Christoffel tensors from the identified elasticity tensors C H and the corresponding phase velocities (2.9), then we compared them to phase velocities in the architectured materials obtained via the Floquet-Bloch analysis. The numerical results of the wave velocities whithin different architectured materials are shown in the figures below. 

Conclusion

In this study, we proposed a new method of homogenization of architectured materials using Blochwaves in the LW-LF approximation. The study of wave propagation provides useful informations to characterise the effective properties of the medium, by exploiting the Christoffel tensor. The proposed parameterisation of the Christoffel tensor gives a clear physical interpretation of the effective properties without making any assumptions with respect to the symmetry class. Results obtained from this approach agree well with the LW-LF behaviour of the real architectured material for different geometries:

• tetrachiral and tetragonal anisotropy are well captured by the Cauchy model;

• isotropropic behaviour for hexagonal and hexachiral honeycombs;

• trichiral and trigonal lattices behave isotropically.
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 1 Figure 1: Unit cells of the studied architectured materials In this figure, D k refers to the dihedral group, which contains rotation symmetry of angle 2π/k around a center point and k mirror lines, Z k refers to the cyclic group which contains only the rotation symmetry but no mirror line.

Figure 2 :

 2 Figure 2: Schematic of elastodynamic homogenization method and softwares used

the direction of propagation is now parametrized by the angle of propagation θ with respect to the reference frame.

A n th -order harmonic tensor is a completly symmetric and tracless n th -order tensor

Despite the fact that Cauchy model is not rich enough to capture certain physical phenomena related to the mesostructure effects [START_REF] Rosi | On the failure of classic elasticity in predicting elastic wave propagation in gyroid lattices for very long wavelengths[END_REF][START_REF] Rosi | Continuum modelling of frequency dependent acoustic beam focussing and steering in hexagonal lattices[END_REF], the elastodynamic homogenization approach studied in this article offers simple and efficient approximation in the LW-LF regime, and can be enriched and extended to predict the behaviour outside the LW-LF regime [START_REF] Auffray | A complete description of bi-dimensional anisotropic strain-gradient elasticity[END_REF][START_REF] Auffray | Anisotropic Structure Of Two-Dimensional Linear Cosserat Elasticity[END_REF].