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Introduction

The study of the transition from laminar to turbulent flow in spatially developed boundary-layer is of great importance for aeronautical industry. Reducing the skin friction resulting from the turbulent boundary layer can provide economic and environmental advantages in terms of fuel saving and the lowering of atmospheric pollution level. The process by which external disturbances generate instability waves in boundary layers is referred to as receptivity as mentioned by Morkovin [START_REF] Morkovin | On the Many Faces of Transition[END_REF]. The paths from receptivity to transition are indicated on Figure. [START_REF] Morkovin | On the Many Faces of Transition[END_REF] The process of transition in the boundary layers starts from the moment that an external disturbance enters the boundary layer and generates instabilities. The amplification of instabilities depends on the nature of the external disturbances such as entropy, acoustic or vortical perturbations around the base flow. Their interaction with surface inhomogeneities (leading edge [START_REF] Goldstein | The evolution of Tollmien-Schlichting waves near a leading edge[END_REF][START_REF] Goldstein | The evolution of Tollmien-Schlichting waves near a leading-edge Part 2. Numerical determination of amplitudes[END_REF], localized roughness [START_REF] Goldstein | Scattering of acoustic waves into Tollmien-Schlichting waves by small streamwise variations in surface geometry[END_REF], nonlocalized roughness [START_REF] Crouch | Distributed excitation of Tollmien-Schlichting waves by vortical free-stream disturbances[END_REF] …) generate Tollmien-Schlichting (TS) waves. The TS waves are solutions to the Orr-Sommerfeld (OS) equation [START_REF] Boiko | Origin of turbulence in near-wall flows[END_REF] which is obtained by linearizing the Navier Stokes equations and assuming that the solution can be expressed as a sum of normal modes in the form of a plane waves. In the case of 2D problem with a wave vector in the x direction the following expression have obtained:

[u, v, P] T = [u′, v′, P′] T e i(αx-ωt) α = α r + iα i Where α is the complex streamwise wave number. For the spatial problem, the OS equation is an eigenvalue problem for the complex streamwise wave number α. If the imaginary component of α is less than zero, the mode is spatially unstable and grows as it travels downstream. The analysis of the perturbed Orr-Sommerfeld equations for a Blasius profile ( [START_REF] Tollmien | Uber die entstehung der turbulenz. nachrichten von der gesellschaft der wissenschaften zu gottingen[END_REF], [START_REF] Schlichting | Stability of nonlinear modes laminar strahlaus breitung[END_REF]) show the existence of stable and unstable domain for a set of Reynolds numbers based on the boundary layer thickness and a frequency parameter. Boundary between the two situations is known as the neutral curve and has a lower and an upper branch (Figure .3), where TS waves grow exponentially as they travel downstream. During this growth, nonlinear interactions may occur, which can probably cause the transition to turbulence of the boundary layer (path 1, Figure.1).

Numerical method

2-1.

Physical parameters of the simulation

The numerical experiment is largely inspired by the experimental work of Saric et al. [START_REF] Saric | Boundary-layer receptivity of sound with roughness[END_REF][START_REF] Saric | Boundary-layer receptivity to freestream disturbances[END_REF] 

2-2. Governing Equations

The conservation equations are similar in their flux form to the pseudo-compressible form of the Navier-Stokes equations introduced by Chorin [START_REF] Chorin | A numerical method for solving incompressible Visqueuse flow problems[END_REF].

𝜕𝑞 𝜕𝑡 + 𝜕𝑓 𝜕𝑥 + 𝜕𝑔 𝜕𝑦 = 1 𝑅𝑒 [ 𝜕(𝑓 𝜈 ) 𝜕𝑥 + 𝜕(𝑔 𝜈 ) 𝜕𝑦 ]
The variables vector q and the inviscid flux vectors are

𝑞 = [ 𝑝 𝜌 𝑢 𝑣 ] ; 𝑓 = [ 𝛽𝑢 𝑝 𝜌 + 𝑢 2 𝑢𝑣 ] ; 𝑔 = [ 𝛽𝑣 𝑢𝑣 𝑝 𝜌 + 𝑣 2 ] ; 𝑤𝑖𝑡ℎ: 𝑝 𝜌 = 𝑝 -𝑝 0 𝜌 0
Where 𝑝 0 and 𝜌 0 are respectively the steady pressure and the mass density.

The viscous flux vectors are:

𝑓 𝜈 = [ 0 𝜕𝑢 𝜕𝑥 𝜕𝑣 𝜕𝑥 ] ; 𝑔 𝜈 = [ 0 𝜕𝑢 𝜕𝑦 𝜕𝑣 𝜕𝑦]
In the above equations 𝑅𝑒 is based on the plate length and 𝛽 is the ''finite compressible factor''. The correct physical value of 𝛽 is 1/𝑀𝑎 (Ma being the Mach number) as opposed to computationally convenient values typical of pseudo-compressibility solutions.

2-3. Numerical Solution

The conservation equations are solved using a time accurate Navier Stokes code (Manno et al. [START_REF] Manno | Developing Numerical Techniques for Solving Low Mach Number Fluid Acoustic Problems[END_REF]). Viscous terms are approximated using central differencing while the convective terms are discretized using a third order MUSCL TVD scheme Van leer in conjunction with Riemann solver (Sbaibi et al. [START_REF] Sbaibi | On the Accuracy of Upwind and Symmetric TVD Schemes in Simulating Low Mach Number Flow[END_REF]). Two options are used for the time advancement. An implicit, approximate factorization, where time advancement is used only to accelerate the steady state conditions that characterize the base flow over which a transient component is added, and an explicit, three-step, second order Runge-Kutta algorithm is used to accurately simulate the transient computations.

The computer code was extensively validated for a wide range of steady and transient flow situations including some fluid-acoustics problems Manno et al. [START_REF] Manno | Developing Numerical Techniques for Solving Low Mach Number Fluid Acoustic Problems[END_REF], Reitsma et al. [START_REF] Reitsma | Numerical Simulation of Receptivity Phenomena in Transitional Boundary-Layer Flows[END_REF].

The computer domain of (1275𝑥52) cells include the leading edge of the plate and an exit zone used as buffer zone. A non-uniform griding is performed in order to capture the fine structure near the surface roughness. The inflow boundary condition is a first order non-reflective boundary based on perturbations around the Blasius velocity profile which includes the acoustic source as shown in the following equations:

𝑝 𝜌 = 1 + 𝑎. cos(𝑘𝑥 -𝜔𝑡) ; 𝑢 = 1 + (𝑘. 𝑎). cos(𝑘𝑥 -𝜔𝑡) 𝜔 ; 𝑣 = 0

Where 𝑎, 𝜔 and 𝑘 are respectively the acoustic amplitude, the acoustic frequency (𝜔 = 37.35 𝑠 -1 ) and the number wave. The boundary conditions on the top sets 𝑢 and 𝑣 velocity gradients to zero and with the pressure calculated from the appropriate characteristic compatibility relations. A non-reflective outflow boundary condition was imposed on exit zone.

Results

Each numerical investigation begins with a converged steady state without acoustic source using the implicit approximately factored algorithm and then the calculation is restarted using an explicit Runge-Kutta method. This converged steady state will provide a baseline against which to compare the unsteady solution. During the second stage of the explicit computation, the acoustic source is triggered. The acoustic wave is allowed to cross the computation domain with few wavelengths. The obtained solution is a blend of the base flow; the unsteady stokes component as well as the TS component. Three different geometries, which are rectangular, cosine and exponential, are studied here, with heights that vary from 10% to 40% of δ * the displacement boundary layer and where the width of the bump is fixed to The analysis of the Power Spectral Density (PSD) of the u TS signal shown in Figure. [START_REF] Goldstein | Scattering of acoustic waves into Tollmien-Schlichting waves by small streamwise variations in surface geometry[END_REF] reveals the value of the wave number of the most dangerous generated instability wave (18.34m -1 ) that corresponds to a TS wavelength (λ TS = 0.0545m). This value is in a good agreement with the prediction of Linear Stability Theory. Table.I summarizes the peaks value of the PSD spectra for the different heights for each geometry. We can see that the energy of 𝑢 𝑇𝑆 increases with the height of the bump for all the geometrical shape of the bump. Figure. [START_REF] Schlichting | Stability of nonlinear modes laminar strahlaus breitung[END_REF] shows clearly that the Amplitude varies linearly up to some specific value of h/* and then starts to deviate from the linear curve. This deviation is more pronounced for the rectangular and the cosine shape. The linear behavior for the exponential shape extends over a large interval of height. In fact, Saric et al. [START_REF] Saric | Boundary-layer receptivity of sound with roughness[END_REF] mentioned that nonlinear effects become more dominant when the reattachment length of the separated bubble exceeds the hump height. 

Conclusion

The effect of the roughness height on the linear receptivity of subsonic boundary layer to a free stream acoustic perturbation is investigated. It was found that the threshold of the deviation from the linear behavior depends not only on the height but also on the shape of the roughness element. The results obtained for a rectangular shape which is the wildly investigated in literature [START_REF] Schrader | Transition to turbulence in the boundary layer over a smooth and rough swept plate exposed to free-stream turbulence[END_REF][START_REF] Fong | Numerical simulation of roughness effect on the stability of a hypersonic boundary layer[END_REF] shows a very good agreement published works. In fact, the deviation for the rectangular shape starts at the lower value of h than those of the cosine shape and at less extend to the exponential one. This is a strong indicator that the flow presents more distortion behind the rectangular shape than the cosine or exponential element.
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 1 Figure 1: The paths from receptivity to transition from Saric et al. (2002)

  performed in wind tunnel during their study of acoustic receptivity due to a 2-D roughness on a flat plate with a minimum leading-edge effect (Figure.2). The roughness is located at 0.46m of the leading edge which has a Reynolds number 𝑈.𝛿 * 𝜈 = 1015 ,where 𝛿 * is the boundary layer displacement thickness, the frequency parameter of the problem given by the linear theory is 𝐹 = 49.33 10 -6 .

Figure. 2 :

 2 Figure.2: Schematization of the problem

  is the fastest growing Tollmien Schlichting wavelength for the position bump x = 0.46m in relation to the neutral curve dictated by the linear stability theory of a flat boundary layer Figure.3.

Figure. 3 :

 3 Figure.3: Neutral curve taken from Obremski[START_REF] Obremski | A Portfolio of Stability Characteristics of Incompressible Boundary Layers[END_REF] 
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 44 Figure.4: PSD profile of u TS component A sample of the 𝑢 𝑇𝑆 at a fixed value of 𝑦 = 0.00078 𝑚 for different 𝑥 location is shown in Figure.5 for rectangular shape at 35% 𝛿 * . The exponential amplification of the 𝑢 𝑇𝑆 component is clear from plot. Geometry Height
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 57 Figure.5: variation of initial TS wave amplitude as a function of roughness height (rectangular shape)

Figure. 8 :

 8 Figure.8: receptivity at x=1.0 for the different geometries of humpsThe logarithm of amplitude of the TS wave downstream the surface inhomogeneity is given on Figure.[START_REF] Saric | Boundary-layer receptivity of sound with roughness[END_REF] for the different shapes. Downstream the inhomogeneity location, the curves are nearly parallel. The identical slopes are a strong indication that the amplification factor is a shape free dependent.
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 9 Figure.9: amplitude development of uTS with shapes

Table.I: Pic value of the PSD spectra for the different height's geometries