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Abstract :

A theoretical and numerical model is developed to describe the growth of Saccharomyces cerevisiae

yeasts. This kind of cells is considered here as an axisymmetrical and deformable structure, the inner

surface of which is continuously acted upon by a high turgor pressure. Due to the small ratio between

the cell-wall thickness and the cell radius, a structural shell approach is used. Moreover, the finite strain

range is assumed because of the soft nature of these cells. The adopted kinematics is herein based on the

multiplicative decomposition of the deformation gradient into an elastic partF e and an irreversible part

related to the growth F g, i.e. F = F eF g. The reversible response is described using an hyperelastic

model of the Ogden type. Within the thermodynamics of continuum mechanics, a criterion is introduced

to control the evolution of the growth phenomenon. In this latter two parameters are involved : a growth

stress-threshold, and a growth characterstic time. Embedded within the finite element framework, an

illustrative exemple shows the growth phenomenon of spherical cells going from yeast bud emergence

to the step just before cell division. A parametric study highlights the influence of the stress-threshold

and the characteristic time on the cell responses.
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1 Introduction

Every living organism is made up at the base of an element that can be though as a mini-factory, called

cell. In the cell biology field, there exist a large diversity of items that share many commun functions

and architecture. Saccharomyces cerevisiae yeast provides a powerful system to study eukaryotic cells.

It is easily manipulated in laboratory and it grows very quickly. Due to these features, in addition to the

advantage of being regarded as safe, this yeast remains the host cell to investigate humain processes. In

particular, S. cerevisiae yeast is known by its more common names, baker’s yeast or brewer’s yeast. It is

widely used in food industury for baking, winemaking and brewing [9, 14]. This yeast is also beneficial

in the medical sector. It serves for the production of insulin, vitamins [7]. Moreover, yeast extracts help

to improve skin health, see [6].

This yeast, as other fungal, bacterial and plant cells, are characterized by a high internal pression, called

turgor pressure, [15]. It results from the pressure difference between the interior and the exterior of the

cell. Over and above that, these species are surrounded by a tough and flexible structure ; the cell-wall.

The structure and composition of this latter are constantly adapted to accompany the permanent remo-

deling of cell architecture and the environmental changes. For example, a cell-wall expansion occurs
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simultaneously with the growth of the cell. The growth phenomenon corresponds to an replication of

the content, increase of the total mass of the cell and it leads under ideal conditions to cell division.

In this work, we focus on the growth process of the S. cerevisiae yeast that poliferates by budding.

During a cell cycle, only one bud can be formed at a time, giving rise to a cell daughter after division.

The growth procedure could be stimulated by biological, chemical or mechanical factors, among others.

Biological and biochemical stimulated growth has been previously studied. The variation of the cell-wall

composition during growth have also been invastigated. According to [4], at the base of the emerging

bud, a chitin is formed.

Several studies have been conducted on growth driven by the turgor pressure. In [2], Basu et al. explored

the role of this pressure in the fission of Schizosaccharomyces pombe yeast, while Rojas et al. worked

on bacteries, see [17]. Over the same period, two dynamic models have been developed on S. cerevisiae

growth under turgor pressure, see [5]. These authors assumed that the yeast is a shell struture with

an external radius of 2.5 µm and a wall thickness of 115 nm. They also hypothesized that the shell

is pressurized by a turgor pressure estimated to 0.2 MPa. Furthermore, a mechanical feedback on the

relation between cell-wall expansion and assembly is achieved in [1]. The budding yeast was assumed

as a shell with a wall thickness ~100 nm, very small with respect to the bud diameter ~1 µm. In the

present work, the emphasis will be on the purely mechanical aspects. The growth is stimulated by the

stress state as a result of turgor pressure. Once the wall is acted upon this pressure, in-plane mechanical

tensions will be created and lead to the cell-wall expansion.

The remainder of this contribution is as follow : in Section 2, we provide a summary of the quasi-

Kirchhoff structural shell theory in the finite strain range together with the kinematic choice based on

the multiplicative decomposition of the deformation gradient into reversible and growth parts. Later

on, constitutive equations for the hyperelastic energy and the evolution equation of growth are given in

accordance with continuum thermodynamic requirements. Section 3 is devotes to numerical simulations

where a representative numerical example is shown together with a parametric study of the perhaps most

important parameters ; the growth threshold and the growth characteristic time. We end this paper with

conclusions and perspectives.

2 Basic equations

Yeasts can be regarded as thin-walled shell structures and, due to their soft nature, a formulation within

the finite strain range is herein adopted. We first review the basic kinematics that we extend toward finite

growth. We next derive the constitutive equations that will be used later on for numerical simulations.

2.1 Shell kinematics with growth

As a starting point, use is made of the quasi-Kirchhoff-type theory for thin shells of revolution that has

been derived in [22]. Briefly, denoting byE the Green-Lagrange strain tensor 1, its non-zero components

reduce to the meridional, E1, the circumferential, E2, and the transverse shear, E13, that are valid for

finite rotations together with large strains. They can be split into membrane (m), bending (b) and shear

(s) parts as :

1. We recall the definition E =
1

2

{

F
T
F − 1

}

of the Green-Lagrange strain tensor, where F is the deformation gradient

with principal values λi, i = 1 . . . 3, and 1 is the second-order identity tensor.
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Eγ = Em
γ + ξEb

γ (γ = 1, 2), and E13 = Es
13 , (1)

where ξ is the through-the-thickness coordinate. The different terms are given by, see [20] for full details,

Em
1 = u,s +

1

2
(u2,s + w2

,s) ,

Em
2 = eθ +

1

2
e2θ ,

Eb
1 = −[(1 + u,s) cosβ + w,s sinβ]β,s ,

Eb
2 =

cos θ

r
− rc2(1 + eθ) ,

Es
13 = −(1 + u,s) sinβ + w,s cosβ ,

(2)

with the notations r = s sin θ, eθ = (u sin θ − w cos θ)/r, and c2 = (sin θ sinβ + cos θ cosβ)/r2, s

being the arc length which represents the initial position. The displacement components u and w are

relative to the local coordinate system, and β is the in-plane rotation angle of the director d, see Fig. 1.
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Figure 1 – Kinematics for geometrically nonlinear axisymmetric shells [20].

Next, as the shear strainE13 is set to zero by a penalty term, i.e. quasi-Kirchhoff shell theory,E1 andE2

are then regarded as principal strains. In this case, the principal stretches λi relative to the deformation

gradient F follow from Eq. (1)1 by considering the relation,

Eγ =
1

2

(
λ2γ − 1

)
⇒ λγ =

√
2Eγ + 1, γ = 1, 2 (3)

together with λ3 = 1.

Now for the extension toward finite growth, use is made in this work of the multiplicative decomposition

of the deformation gradient into an elastic part F e and a growth part F g as proposed in [16], i.e. the

sketch of Fig. 2, see also [10, 12],

F = F eF g . (4)
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Figure 2 – Local decomposition of the deformation gradient for finite growth F = F eF g.

From Eq. (4), a multiplivative decomposition of the stretches is then deduced,

λi = λeiλ
g
i , (5)

where λei and λgi are the principal stretches related to F e and F g, respectively. Moreover, it proves

convenient to define the logarithmic strains of the above quantities as,

εi = lnλi , εei = lnλei , εgi = lnλgi , (6)

and, as well, the decomposition (5) implies,

εi = εei + εgi . (7)

2.2 Constitutive relation for stress

Here we assume isotropy on the stress-free configuration defined by F g. This implies that the model is

invariant relative to rigid body motions with respect to the orientations on this configuration. Therefore,

the strain energy function, herein denoted by ψ, could depend on the part F e of the deformation gra-

dient via the elastic left Cauchy-Green tensor be = F eF eT . The notation (�)T is used for the transpose

operator. The stress is then given by the following form of the state law,

τ = 2
∂ψ

∂be
be, (8)

where τ = Jσ is the Kirchhoff stress tensor, and where σ is the true Cauchy stress tensor. The energy

function ψ can be of any form of known hyperelastic models. Here we choose the following incompres-

sible N=1-Ogden-type model written in terms of principal stretches,

ψ =
2µ

α2

(
λe
α
1 + λe

α
2 + λe

α
3 − 3

)
, (9)
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with Je ≡ λe1λ
e
2λ

e
3 = 1, µ is the shear modulus, and α is the Ogden’s coefficient. Notice that by taking

α = 2, a neo-Hooke-type model is retrieved.

Next, the principal Kirchhoff stresses (the principal values of τ ) are given by the corresponding form

deduced from the tensorial expression (8) :

τi = λei
∂ψ

∂λei
+̟, (10)

where ̟ is the pressure related to the material incompressibility. It can be obtained by using the plane

stress assumption τ3 = 0, and when substituted into Eq. (10), we obtain the following expression for the

principal stresses :

τγ =
2µ

α

(
(λeγ)

α − (λe1λ
e
2)

−α
)

=
2µ

α

(
exp

(
αεeγ

)
− exp

(
−α(εe1 + εe2)

))
, (11)

for γ = 1, 2, and where the definition (6)2 has been used in the second equality.

2.3 Growth evolution equation

Concomitently, a constitutive model for the growth evolution is to be specified. From the continuum

thermodynamics point of view, the related reduced dissipation is given by, e.g. [10],

D = τ :
[
−
1

2

(
£vb

e
)
be

−1
]
≥ 0, (12)

where

£vb
e = F

[dCg−1

dt

]
F T , (13)

is the Lie derivative of be ≡ FCg−1

F T . Here Cg = F gTF g stands for the growth right Cauchy-Green

tensor.

There can exist many possible growth evolution equations that fulfil the restriction (12). Far from being

arbitrary, we propose a model that describes at best the mechanically stimulated growth given by the

following form :

−
1

2

(
£vb

e
)
be

−1

=
1

t̃grw

〈 ‖τ‖

Jσtrs
− 1

〉+ τ

‖τ‖
(14)

where
〈
�

〉+
is the positive part function. Here two essential parameters are involved : a (true-stress)

growth threshold σtrs, and a growth characteristic time t̃grw. Here the growth path follows the stress

state through the unit tensor term τ/‖τ‖. The model can be interpreted as follows : when ‖σ‖ > σtrs,

growth takes place. It is proportional to the stress in excess of the threshold. Its rate is controlled by the

parameter t̃grw. Now when written in components, the growth evolution equation (14) becomes,

ε̇gγ =
1

t̃grw

〈 ‖τ‖

Jσtrs
− 1

〉+ τγ
‖τ‖

, γ = 1, 2 . (15)
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Notice further from Eq. (15), and so from (14), that the stress is the biomechanical factor that stimulates

growth.

In summary, the cell-wall growth model equires four mechanical parameters :

• µ, the shear modulus ;

• α, Ogden’s coefficient ;

• σtrs, the true stress-like growth threshold ;

• τ̃grw, the growth characteristic time.

3 Numerical simulations and parametric studies

In this section we provide a set of numerical simulations. We choose spherical cells with initial mid-

plane diameter D = 5 µm and wall thickness h = 100 nm. These parameters are chosen based on the

literature, e.g. [8, 13] among others. The cell-wall is assumed homogeneous with a Young’s modulus

E = 120 MPa as found in [18, 19]. This corresponds to a shear modulus µ = 40 MPa because of the

incompressibility. Further, we take α = 2 for Ogden’s coefficient in all the following computations.

To generate cell shape changes, we must specify :

(i) a budding zone at the tip of the cell. We choose for this the top zone as shown in Fig. 3 ;

(ii) and non homogeneous mechanical properties. Here the bud will expand while the rest of the

cell remains elastic.

Last, we must specify the turgor pressure that creates in-plane cell-wall tensions leading to the expansion.

Here it is fixed to p̂ = 2atm, as in [5]. Let us stress that this pressure is deformation-dependent, i.e. a

follower load [21, 11].

0 0.834 1.67 2.5
0

1.25

2.5

3.75

5.

1 µm

budding zone

Figure 3 – Geometry of a spherical cell. The budding zone is shown at the top zone. Follower loads are

used for the turgor pressure p̂.

Now for the budding zone, we assign the following growth parameters :
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Figure 4 – Typical deformed configurations with structural shell modeling after : (a) 40 minutes, (b) 70

minutes, and (c) 90 minutes. The units of the graduations are scaled in [µm].

σtrs = 1MPa, t̃grw = 45min, (16)

where the latter is of the order of timescales observed in budding kinetics, e.g. [1, 3]. Selected computed

configurations are illustrated in Fig. 4. As predicted, growth is initiated in the budding zone, Fig.4(a),

and continues with a large proliferation giving rise to a daughter cell, Figs. 4(b)-(c). Here, and during

all the growth evolution, the mother cell remains elastic and almost undeformed after initially applying

the turgor pressure.

A series of computations is next performed by fixing the growth threshold to σtrs = 1 MPa, and by using

different values of the growth characteristic time, here t̃grw = 30, 45 and 60 min. The results are shown

in the form of evolutions of the internal volume Vint relative to the initial one Vint0 , see Fig. 5. The first

jump on the curves is due to the almost instantaneous application of the pressure p̂, here in 0.01 min, then

maintained during the whole computations. Observe further that as the mother cell behaves elastically

with low volume change, almost all the new volume is due to the growth in the daughter cell.

Likewise, a next set of computations is this time performed by fixing the characteristic time, here to

t̃grw = 45 min, and with different values of the stress threshold, here with σtrs = 0.9, 1, and 1.1 MPa.

The results are plotted in Fig. 6. One can observe that the present growth modeling framework clearly

captures the influence of the stress excess with respect to the stress threshold on the growth kinetics.

Notice that varying the stress threshold is equivalent to fixing this latter and varying the turgor pressure.

4 Conclusions et perspectives

The aim of this contribution was to derive a mathematical modeling framework for growth in walled

cells. On the one hand, a multiplicative decomposition of the deformation gradient has been adopted
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Figure 5 – Volume change due to growth for fixed stress growth threshold σtrs = 1 MPa, and with

different growth characteristic times t̃grw = 30, 45 and 60 min.

σtrs = 0.9 MPa

σtrs = 1 MPa σtrs = 1.1 MPa

Figure 6 – Volume change due to growth for fixed growth characteristic time t̃grw = 45 min, and with

different stress thresholds σtrs = 0.9, 1 and 1.1 MPa.
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within the finite strain range and, on the other hand, a growth model has been proposed. Based on the

purely mechanical aspects, this latter depends on perhaps the most important parameters ; a stress thre-

shold, and a growth characteristic time. The efficiency of the proposed framework has been highlighted

through a set of numerical examples with parametric studies.

We believe that this framework can trigger deeper research. For instance, this modeling can be enhan-

ced by introducing further effects such as the polarization of the growth zones when coupled to more

biological finds in the literature. Moreover, an extension toward general shells will increase the field of

applications, i.e. for any cell geometries.
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