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Résumé :

Les écoulements pulsés revêtent une importance particulière dans le contrôle des échnages de masse,
quantité de mouvement et de chaleur pour des applications industrielles. La pulsation permet soit de
stabiliser, soit de déstabiliser l’écoulement de Poiseuille plan suivant, d’une part, la fréquence de pul-
sation et, d’autre part, l’amplitude de cette dernière. Cette étude s’intéresse au rôle de la pulsation
sur la stabilité de l’écoulement afin de déterminer la courbe de stabilité neutre en fonction du nom-
bre de Reynolds, du nombre de Womersley et de l’amplitude de pulsation. Afin d’explorer une plus
large gamme de paramètres, deux techniques sont combinées : l’analyse de Floquet et une méthode
asymptotique WKB. Les deux approches sont complémentaires et la stabilité neutre est obtenue pour
une large gamme de paramètres. Une certaine plage de Womersley, où les deux méthodes peuvent être
appliquées, a été évaluée et validée. Les outils présentés dans cette étude permettent d’identifier les
régimes d’écoulement et la frontière de la transition à la turbulence pour des applications automobiles
en vue du contrôle du mélange dans des environnements confinés.

Abstract :

Pulsating flows are of particular importance in flow control and transition to turbulence for industrial
and natural applications. Pulsation can either have a stabilising or destabilising effect and we consider
the case of the plane Poiseuille plane flow in this study. In particular, we investigate the role of the
pulsation frequency and amplitude on the stability of the flow in order to determine the neutral stability
curve as a function of the Reynolds number, the Womersley number, and the amplitude. In order to
explore a wider range of parameters, two techniques are combined: the direct matrix approach and an
asymptotic WKB method. The two approaches are complementary and the neutral stability is obtained
for a wide range of parameters. For a small Womersley range, both methods can be applied and this
region of the control parameter is used for validation. The tools presented in this study allow for the
identification of flow regimes where the transition from laminar to turbulence becomes relevant in the
scope of automotive applications, for instance when considering mixing in confined environments.
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Mots clefs : Pulsating parallel flow, large amplitude, Floquet’s temporal sta-
bility

1 Introduction

Pulsating flows are ubiquitous in several natural flows and engineering applications but their dynamics,
and in particular, their stability remains poorly understood compared to their steady counterpart. The
dynamics of purely oscillating flows, on flat plates or in pipes [1], [2], [3] have received increasing
attention, but rather few studies have focused on pulsating flows, comprising a steady component and
an oscillation. In the human body, studies have been carried out on the behaviour of a pulsating flows
in arteries [4] or through models of abdominal aortic aneurysms in S.S. Gopalakrishnan, B. Pier and A.
Biesheuvel [5].

On the engineering side, heat transfer under pulsating flow conditions has been investigated in a wide
variety of applications such as compact heat exchangers [6], [7] in order to enhance the heat-transfer
coefficient, exhaust manifold of reciprocating engines to optimise the efficiency of internal combustion
engines through waste energy recovery [8]. The results of these studies showed that optimal parameters
for the pulsation (frequency and amplitude) could lead to a substantial increase of the heat transfer co-
efficient. In order to cover a wide range of parameters, two analyses are compared in the present work
in order to identify the flow destabilisation regimes. The objective is to predict the pulsation parame-
ters that promote fluid mixing in a confined environment. The flow regimes investigated correspond to
characteristic Reynolds numbers encountered in thermal-fluid systems for automobile applications.

When considering pulsating flows, the oscillating part can be of different nature but in most cases, it is
considered as sinusoidal. This pulsation will then be repeated in a cyclic way in time where a period of
oscillation T will be characterised by the inverse of the pulsation frequency. In what follows, we extend
the work of Pier & Schmid [9] to large-amplitude oscillations in order to establish the neutral curve
for the entire control parameter set. In order to circumvent the computational time associated with
the resolution of the stability problem, we propose a method based on the WKB (Wentzel-Kramers-
Brillouin) approximation [10]. This method has already been adopted by Passaggia et al. [11] on
a transient growth problems in thin-interface internal solitary waves but is only applicable for cases
where the pulse frequency is very small (i.e. low Womersley numbers). The present study is organised
as follows: first the mathematical tools applied to pulsating flows are presented, an introduction of the
two methods of resolution are then summarised, and finally, the results collected from both methods are
discussed and conclusions are drawn. This work was carried out in the scope of a Cifre thesis within
the OpenLab Energetics, between STELLANTIS and the PRISME laboratory.

2 Mathematical approach

2.1 Governing equation

The main point of this study is to analyse the stability of a pulsed plane Poiseuille flow at large am-
plitudes using two different approaches based on very different methods: First we present the Floquet
multipliers’ problem where the full eigenvalue matrix problem is solved and then a WKB approach.
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The velocity field u(x, t) and pressure field p(x, t) both depend on space x and time t. The flow is
described by the incompressible Navier-Stokes equations given by

∇ ·u = 0 (2.1)

∂u
∂ t

+(u ·∇)u =−∇p+ν∇
2u (2.2)

where ν is the kinematic viscosity of the fluid.
The problem is sought as a parallel flow between two solid boundaries where non-slip condition are
implemented. We consider a cartesian reference frame where the spatial coordinate is defined as x =

xex + yey + zez, where x, y and z (respectively ex, ey and ez) represent the streamwise, wall-normal and
spanwise coordinates, and the height of the channel is 2h.

2.2 Base flow, disturbance and control parameters

The flow is split between a base flow and a disturbance whose amplitude is small. The solution is thus
decomposed into

u(x, t) = U(x, t)+u′(x, t) & p(x, t) = P(x, t)+ p′(x, t) (2.3)

The Reynolds number is based on the half-height of the channel and the maximum velocity of the
Poiseuille velocity profile is as y = 0.

Substituting the decomposition (2.3) into the incompressible Navier-Stokes equations (2.1)−(2.2) and
cancelling nonlinear terms, it follows that the linearised perturbation dynamics are governed by

∇ ·u′ = 0 (2.4)

∂u′

∂ t
+(u′ ·∇)U+(U ·∇)u′ =−∇p′+

1
Re

∇
2u′ (2.5)

where U = (U,V,W )T is the base flow velocity vector and u′ = (u′,v′,w′)T is the perturbation velocity
vector. In the present case, the base flow is only dependent in the streamwise direction, and the base
flow simplifies to U = (U(y, t),0,0)T .

2.3 Pulsating Poiseuille flow

This section follows the work in [9] and some definitions are introduced because of the pulsating nature
of the flow. In the present work, we consider a single frequency Ω. The time-dependent baseflow
remains only dependent on the streamwise direction and solely varies along the wall-normal coordinate
y. The solution is therefore expanded as

U(y, t)ex = Û (0)(y)+ ∑
n̸=0

Û (n)(y)exp(inΩt), (2.6)

and it is affiliated to a spatially uniform and temporally periodic streamwise pressure gradient of the
form G(t)ex, where

G(t) = Ĝ(0)+ ∑
n̸=0

Ĝ(n)exp(inΩt). (2.7)
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Whence, the temporally periodic base flow rate writes

Q(t) = Q̂(0)+ ∑
n̸=0

Q̂(n)exp(inΩt). (2.8)

When n < 0 and in order to ensure that all quantities are real, the associated complex conjugate has to
be included and there exists a relationship between the flow rate Q̂(n) and the velocity component Û (n)

such that

Û (n)(y) =
Q̂(n)

2h
W (ξ ,N ) (2.9)

where ξ = y/h, N =
√

nWo, and the Womersley number Wo is defined as Wo= h/δ = h
√

Ω/ν , where
δ refers to the thickness of the oscillating boundary layer near the wall (i.e. the Stokes boundary layer).

The different components of the base flow W refer to the profile of the different unsteady velocity
components and are given by

W (ξ ,N ) =


(

cosh(
√

iξN )

cosh(
√

iN )
−1
)/(

tanh(
√

iN )√
iN

−1
)

if N ̸= 0

3
2(1−ξ 2) if N = 0

(2.10)

where
√

i ≡ (i+1)/
√

2.
Furthermore, the pressure and the flow rate components are also related as

Q̂(n)

Ĝ(n)
=

2h3

ν

i
nWo2

(
tanh(

√
iN )√

iN
−1
)

if n ̸= 0
2
3

h3

ν
if n = 0

(2.11)

To simplify the calculation, a single oscillating component has been investigated (i.e. n =−1, n = 0 or
n = 1), similar to [9].

In order to remain consistent with the non dimensionalisation, the pulse frequency is defined as Ω =

Wo2/Re, and the period of a pulsation is T = 2πRe/Wo2. Additionally, as specified in [9], we define a
pulsation amplitude relative to the mass-flow rate, isolating the real part of (2.8) which writes

Q̃ = 2Q(1)/Q(0) providing Q(t) = Q(0)(1+ Q̃cos(Ωt)) (2.12)

The evolution of the base flow over full period is shown in figure 1. A pulsatile flow is a sum between a
stationary velocity profile (mode 0) and an oscillating velocity profile (mode 1). Mode 0 is the Poiseuille
profile. The first mode of oscillation is defined according to equation (2.11). Note the presence, of the
two conditions for linear instability [12], namely: the Rayleigh inflection point criterion and the Fjørtoft
criterion are met. Indeed, at large amplitudes, there is a strong presence of a backflow, and up to four
inflection points may appear during the pulsation period (as shown in figure 1).
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Figure 1: Profile of the basic velocity field at 10 different times. On the left, combination of stationary
and oscillating profile. In the middle, Poiseuille profile in stationary regime (mode 0). On the right,
pulsation component (mode 1). In the case presented, Re = 7500, Wo = 10, Q̃ = 1.6, α = 1, β = 0.

3 Stability analysis

3.1 Matrix approach to the Floquet’s stability of time-dependent
base flows

Now that the symmetric base flow is obtained perturbations are expanded into harmonic plane waves in
the parallel directions of the flow and also comprise the pulse frequency Ω. Each of these disturbances
are related to the harmonic disturbance frequencies m, which are written as Fourier series such that

u′(x, t) =
[
∑
m

û(m)(y)exp(imΩt)
]

exp[i(αx+βy−ωt)], (3.1)

p(x, t) =
[
∑
m

p̂(m)(y)exp(imΩt)
]

exp[i(αx+βy−ωt)], (3.2)

where α , β ∈ R are the streamwise and spanwise wavenumbers, and ω ∈ C is a complex frequency.

Introducing the decomposition (3.1)−(3.2) into the linearized Navier-Stokes equations (2.4)−(2.5), the
temporal stability can be obtained by computing the eigenvalue problem [9]

0 = α û(m)− i
∂ v̂(m)

∂y
+β ŵ(m),

ω û(m) = nΩû(m)+α ∑
q

U (q)û(m−q)+ iRe−1
∇

2û(m)− i∑
q

∂Û (m)

∂y
v̂(m−q)+α p̂(m),

ω v̂(m) = nΩv̂(m)+α ∑
q

U (q)v̂(m−q)+ iRe−1
∇

2v̂(m)− i
∂ p̂(m)

∂y
,

ωŵ(m) = nΩŵ(m)+α ∑
q

U (q)ŵ(m−q)+ iRe−1
∇

2ŵ(m)+β p̂(m).

(3.3)

(3.4)

(3.5)

(3.6)
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One can substitute the pressure term and simplify the above system using the wall-normal velocity and
the vorticity defined as η = ∂zu−∂xw. The system therefore simplifies to

ω∇
2v̂(m) = nΩv̂(m)+ iRe−1

∇
4v̂(m)+α ∑

q
U (q)

∇
2v̂(m−q)−α ∑

k
Û ′′(q)v̂(m−q),

ωη̂
(m) = nΩη̂

(m)+ iRe−1
∇

2
η̂
(m)+α ∑

k
Û (q)

η̂
(m−q)− iβ ∑

k
Û ′(q)v̂(m−q),

(3.7)

(3.8)

where ∇2 = ∂ 2/∂y2 − k2 and k2 = α2 +β 2.

The system (3.8) is the Floquet form of the Orr-Sommerfeld and Squire equation system. We can clearly
see that there exists interactions between the base flow and the perturbation through the infinite sums
on the right-hand side which may eventually be truncated for the resolution. The system (3.7)−(3.8)
results in a matrix system where the modes m = −1, m = 0, m = 1 will constitute a tridiagonal set of
sub-matrices. The sub-matrices are of dimension (N ×N), where N is the number of Chebyshev poly-
nomials. Consequently, the total size of the stability matrix to be solved is of order (N×N f )×(N×N f )

where N f represents the number of Fourier modes that will have to be retained in order to ensure con-
vergence of the spectrum associated with ω .

The solution is a complex set of eigenvalues of ω where the imaginary part represents the growth
rate and the real part the angular frequency. Similarly to the classical stability analysis, the goal is to
identify the eigenvalues that have the largest growth rate. If ωi > 0, the flow is convectively unstable
and otherwise stable.

3.2 WKB method
When the angular frequency of the baseflow Ω is small when compared to the angular frequency of
the disturbance ωr, the problem can be further simplified and a WKB approach (Wentzel-Kramers-
Brillouin) method can be sought. This method assumes that the harmonics m between the pulsating
baseflow and the perturbations become small and that only the instantaneous base velocity profiles play
a role.

Unlike the matrix approach to Floquet’s analysis where time is sought as a Fourier series, the WKB
method gets rid of this costly decomposition by assuming that the baseflow is time dependent but that
the harmonics m can be neglected. For this, we start again from the formulations established in §2.3.
The pulsating streamwise velocity component relative to the base frequency Ω can be expressed as the
sum of the Poiseuille solution (mode 0) and the oscillatory component (mode 1). Taking into account
the evolution in time, and keeping only the real part, this amounts to writing

Û(y, t) = Û (0)(y)+ℜ

{
Û (1)(y)eiΩt

}
+ℜ

{
Û (−1)(y)e−iΩt

}
(3.9)

where the associated steady pressure gradient is G(0) ≡ 2/Re and G(1) will depend on the adopted pulse
amplitude Q̃.

Next, we compute the eigenvalues of the Orr-Sommerfeld and Squire equations at each instant of the
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pulse, as described in equations (3.10)−(3.12).

ω

(
∇2 0
0 1

)(
v̂
η̂

)
+

(
MOS 0

βÛ ′(y, t) MSQ

)(
v̂
η̂

)
= 0 (3.10)

where

MOS = αÛ(y, t)
(
D2 − k2)−αÛ ′′(y, t)+ iRe−1

∇
4 (3.11)

MSQ = αÛ(y, t)+ iRe−1
∇

2 (3.12)

The aim is to track the eigenvalue in the complex plane to compute the growth rate during a single pulse
period. These growth rates are, in fine, integrated over the whole pulsation period and are expected to
match the eigenvalues obtained from the full matrix form (3.8). The solution, which comes at a little
computational cost writes

ωi global ≡
∫ T

0
ωi local(t,k)dt. (3.13)

Using this formulation, it is possible now to investigate the stability characteristics of pulsating flows
for a wide range of parameters such as amplitude Q̃, Reynolds numbers Re, and Womersley numbers
Wo.

4 Results

4.1 Validation of Floquet analysis

The first part aims at validating the present approach. For this purpose, we compare our results with the
figure 7 in [9] as a reference, where the maximum growth rates for different pulse cases are presented
in the range 5 ⩽Wo ⩽ 25 ; 0 ⩽ Q̃ ⩽ 0.6. The same range of data was tested for N f = 40 Fourier modes
and N = 36 Chebyshev polynomials. Figure 2, provides an overview of the growth rates computed from
equation (3.8). These curves are almost identical to the ones obtained in [9], and therefore validate our
implementation. We note that some growth rates have diverged from a certain amplitude. As shown in
[9], it is the number of Fourier modes that is insufficient in order to converge all the branches of the
spectrum, and hence, the maximum growth rate.

From this reference code, several pulsation regimes were explored, in particular low Reynolds number
regimes, which are theoretically stable without pulsation but which are investigated here in order inves-
tigate the destabilising nature of the pulsatile component to the flow. The idea is to explore how growth
rates behave for large values of the pulsation amplitude Q̃ and small values of Re.

Figure 3 shows the linear dynamics of the flow at Re = 4000, for a range of pulsation 0 ⩽ Q̃ ⩽ 1.8 and
for Wo= [5;7;9;11;13;15]. When Q̃= 0, we fall back on the classical Orr-Sommerfeld equation which
predicts that the flow is stable for a Reynolds value lower than 5772.2, the critical Reynolds value when
α = 1. As before, high Womersley numbers (here about more than 10) have a stabilising effect the flow
when the pulsation amplitude is increased. For Wo = 5 and Wo = 7, the growth rate increases slowly
with the amplitude until it reaches a maximum. Then, it decreases and reaches a somewhat constant
growth rate at Q̃ = 1.8. Increasing the pulse amplitude does not necessarily means that the growth
rate will follow the same trend and increases. For these same Womersley numbers, it is possible to
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Figure 2: Validation of maximum growth rate as a function of Re, Wo and Q̃, with N = 40 and N f = 36.

destabilise the flow for certain pulsation regimes, whereas it was theoretically stable in the stationary
regime. This supports the results in [9] who showed that the critical Reynolds number is influenced
by the amplitude of the pulsation. Indeed, for low Womersley numbers, the critical Reynolds which
defines the boundary between stable and transient flow is lower than the critical Reynolds number in
the pulsation-free regime. At high Womersley, the critical Reynolds number is higher and it becomes
more difficult to destabilise the flow. Finally, at Wo = 7, when the amplitude becomes higher than
Q̃ ≈ 1.18, the pulsation will have a stabilising effect whereas an unsteady state had been established for
0.38 ⩽ Q̃ ⩽ 1.18.

The matrix approach to the Floquet analysis is very accurate and relatively simple to implement. On
the other hand, its weak point is the computational power necessary to resolve the spectrum which
increases drastically with the number of Fourier modes when the Womersley number decreases and/or
when the pulsation amplitude increase. Whence, the WKB was considered as an alternative to explore
these slow-pulsating regimes.

4.2 Matrix approach vs. WKB method

Compared to the matrix approach, where the eigenvalue problem is solved taking into account m Fourier
modes, the WKB approximation is a time integration method, where the maximum growth rates are
extracted at different times of the pulsation. In order to obtain accurate approximations to the eigenvalue
spectrum, the time step must be small. Figure 4 illustrates the method where the shaded part represents
the integration in time which will give our global growth rate for a pulsation and which we will compare
with the value obtained with the Floquet analysis. However, as the theory of the WKB method has been
posed, only cases of pulsations with a very long time, i.e. low frequencies, will be studied.
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Figure 3: Linear dynamics at Re = 4000 and α = 1 for 0 ⩽ Q̃ ⩽ 1.8 and 5 ⩽Wo ⩽ 15, with N = 32 and
N f = 20.

As proposed in J.S. Kern et. al [13], individual eigenvalues are tracked at different time instants. Figure
4 shows the evolution of the leading eigenvalue at Re = 7500, Q̃ = 0.3, and Wo = 5. In figure 5a, the
spectrum of the case studied at Re = 7500, Wo = 5, Q̃ = 0.3 where the evolution of the eigenvalue is
tracked in the upper left corner, and shown in red. The temporal evolution of this eigenvalue leads to
the shape shown in blue in figure 5b. Therefore, the global growth rate amounts to integrating the area
enclosed in this surface.

Once an eigenvalue of interest is identified, different pulsation amplitudes, Reynolds numbers, and
Womersley numbers were investigated, and this, for the same parameters than computed than for the
matrix approach . The goal is to validate this approach.

In figure 6, the growth rate ωi is shown as a function of the amplitude Q̃, which varies from 0 to 0.1,
and for different Womersley numbers. Six Womersley cases were computed, from Wo = 5 to Wo = 10.
The figure has been voluntarily split into two, with on one side, the odd Womersley numbers, and on the
other, the even Womersley numbers, for the ease of visualisation. The WKB method provides a good
approximation of the growth rate for all the cases studied. Nevertheless, we observe a slight departure
when the Womersley number increases. This is to be expected as the baseflow frequency increases and
no longer separates from the perturbations frequency. On the other hand, since the growth rates are
computed at fixed time instants, some physical interactions are not taken into account such as the trans-
port phenomena of the base field which will interact with the perturbations. However, the WKB method
remains a valuable tool to investigate low Womersley numbers, and this, for all Reynolds numbers.

The analysis was undertaken to larger amplitudes but the WKB method leads to another limitation. As
shown in figure 7 (red points) and figure 5b (boxed area), increasing Q̃ leads to a discontinuity in the
eigenvalue path. This discontinuity has not been yet documented and we speculate that this behaviour
may be associated with a new phenomena. This prevents the eigenvalue from returning to its initial
position, at the end of the pulsation. This singularity will become more pronounced as the pulsation
amplitude Q̃ increases. The appearance and understanding of this phenomenon is an integral part of the
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Figure 4: Evolution of the maximum growth rate as a function of time. The blue line represents the
growth rates extracted at each instant and the hatched area is our maximum growth rate over a full
pulsating period. Re = 7500, Q̃ = 0.3, and Wo = 5

new research work currently being investigated.

An important feature of the WKB approach is its simulation time compared to the Floquet analysis. Ta-
bles 1 and 2 report the simulation times of the two methods. Note that the calculations were performed
on the same computer. The number of Chebyshev points was fixed at N = 63 and the calculation for the
matrix approach was performed on a graphical processor unit, unlike the WKB method. It can be seen
that in all cases, the WKB method is substantially faster. The number of temporal points Nt chosen is a
compromise between computation time and accuracy of the computed growth rate but it could be low-
ered in some cases. At Wo = 7 and Wo = 9, no value could be calculated due to the appearance of the
discontinuity in the spectra. The time of the calculations for the Floquet method is strongly dependent
on the number of Fourier modes. However, it is essential to consider a sufficient number of Fourier
modes N f in order to converge the growth rates.

Re = 3000 Wo = 5 Wo = 7 Wo = 9
Q̃ = 0.1 10.7 2.11 2.15
Q̃ = 0.3 37.64 10.46 10.41
Q̃ = 0.6 93.51 36.68 36.24
N f = 20 → 40 10 → 30 10 → 30

Table 1: Computation time Floquet analysis

Re = 3000 Wo = 5 Wo = 7 Wo = 9
Q̃ = 0.1 4.63 4.65 4.63
Q̃ = 0.3 4.64 4.64 4.62
Q̃ = 0.6 4.62 – –
Nt = 600 600 600

Table 2: Computation time WKB method

4.3 Neutral curves
Next, we report the neutral stability curves according to different pulse cases considered in this analyse.
Neutral curves allow us to discern the boundary between a stable regime and a unstable (transitional)
regime. In the present case, we aim at examining the influence of the pulsation on the perturbations
dynamics and thus, identify the cases that provide the largest growth rates.
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(a) Spectrum of a pulsation and identification of the
maximum growth rate.

(b) Temporal evolution of our maximum growth rate.
Q̃ = 0.3 (blue), Q̃ = 0.555 (orange)

Figure 5: Eigenvalue tracking in the complex plane. The shaded part symbolises the area where ωi > 0,
i.e., when our flow is unstable. Re = 7500, Wo = 5, and Q̃ = 0.3 (∗), Q̃ = 0.555 (□)
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Figure 6: Comparison of the linear dynamics of the Floquet analysis and the WKB approximation for
0⩽ Q̃⩽ 0.1 and 5⩽Wo⩽ 10, at Re= 7500. On the left, odd Womersley. On the right, even Womersley.

Three neutral curves are shown in figure 8 for three different Reynolds numbers (Re =

[4000;5000;6000]). The pulsation amplitude Q̃ varies between 0 and 1.4 and Womersley numbers
Wo in the range [1,15]. For 1 ⩽Wo ⩽5, the WKB approach was used and for 5 ⩽Wo ⩽15 the matrix
approach. First, when increasing the Reynolds number, the growth rate, whatever the generated pulse
increases. The fluid being the same from one case to another, the viscous effects remain unchanged.
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Figure 7: Linear dynamics by WKB method for 0 ⩽ Q̃ ⩽ 1 and 1 ⩽Wo ⩽ 4, at Re = 3000. We observe
a divergence at Wo = 2,Wo = 3,Wo = 4 when Q̃ = 0.98, Q̃ = 0.9, Q̃ = 0.76 respectively.

When increasing inertial effects, the flow tends to naturally destabilise since viscous effects decrease.
Again, it is possible to observe the transition of the critical Reynolds because at Re= 6000, when Q̃= 0,
where the flow becomes unstable. To make the link with the work in [9], the largest growth rates are
observed for low Womersley numbers, on the three studied regimes. Simultaneously, figure 3 shows that
the growth rate does not evolve linearly with the amplitude Q̃. Depending on the Womersley number,
the high-amplitude pulsation can have a stabilising effect on the flow. For example, at Re = 5000 and
Wo ≈ 9, the flow is unstable at Q̃ ≈ 0.6 whereas it is stable when Q̃ ≈ 1.2. We can see that for the three
Reynolds number studied, the instabilities are maximum for 0.8 ⩽ Q̃ ⩽ 1 and 5 ⩽Wo ⩽ 7. Finally, note
that the white part of the plot is either too intensive to compute using the matrix approach, or fails when
attempting to use the WKB method. This is directly related to figure 7 where the appearance of the
singularity in the complex plane prevents the eigenvalue from converging correctly, as shown in figure
5b with a limiting amplitude at Q̃ = 0.555.

5 Conclusion
The research conducted in this paper aims at understanding the influence of a pulsating flow in the case
of a plane Poiseuille flow. Results are compared between a stationary flow and different amplitudes
as well as frequencies of oscillations. This work allows for predicting the perturbation dynamics, de-
pending on the pulsation regime using two very distinct but complementary methods: the direct matrix
approach and the WKB method.

In [9], the linear and nonlinear dynamics of a pulsating flow was similarly investigated in a planar
channel with a DNS method and by Floquet analysis. Here, Floquet analysis was pursued at larger
amplitudes. However increasing the pulsation amplitude does not necessarily mean that the flow will
be more unstable.

The present approach allows for extending the existing results from the literature where we are now
able to compute a larger range of Womersley numbers and amplitudes compared to [9]. For most
Reynolds numbers, the pulsation amplitude has a either a stabilising effect rather than a destabilising
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Figure 8: Neutral curve by combining the Floquet method and WKB appoximation for α = 1, β = 0,
4000 ⩽ Re ⩽ 6000, 0 ⩽ Q̃ ⩽ 1.4 and 1 ⩽ Wo ⩽ 15. In the range 1 ⩽ Wo ⩽ 5, the WKB method is
used (dashed line). The white area represents the part where the calculation has diverged. In the range
5 ⩽Wo ⩽ 15, it is the analysis of Floquet which is presented (filled line).

one. Complementary, the WKB approach was found to be more appropriate for smaller Womersley
regimes, where the pulsation period is long and therefore difficult to compute using the matrix ap-
proach. Compared to the first method which is based on a time independent matrix system composed
of m Fourier modes, the WKB method solves a simpler eigenvalue problem which is only computed
for different times instants during the pulsation period. This procedure is not as efficient as Floquet’s
analysis because as it does not take into account all the physics of our flow, but it still provides a good
approximations for small Womersley numbers. When the amplitude increases beyond a certain thresh-
old, we observe the appearance of a discontinuity in the spectrum computed using the WKB method
that prevents from determining the complete stability map. This change of behaviour in the spectrum is
currently under investigation in our group.
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