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Introduction

Most organs that make up the human body are soft tissues, such as the arteries, heart, intestines and skin. The ability to predict human skin behaviour and evaluate changes in the mechanical properties of the tissue would inform engineering design. It would prove valuable in various disciplines: medical research, prosthesis design or 3D modelling for movies and video games. Soft tissues usually contain a basic material called matrix, in which collagen and elastin fibres are distributed. These fibres give the most important characteristics of the tissue. Collagen fibres provide the ability [START_REF] Lin | Mechanical roles in formation of oriented collagen fibers[END_REF] to resist traction. Elastin helps to maintain organ elasticity. Collagen and elastin are perpendicular to each other. A soft tissue behaves as a hyperelastic material. It is almost incompressible because it is mainly made of water [START_REF] Xu | Introduction to Skin Biothermomechanics and Thermal Pain[END_REF]. Moreover, it is anisotropic due to the collagen and elastin fibres. Many constitutive laws are used to model soft tissues in the literature. Some represent isotropic behaviour, such as neo-Hookean [START_REF] Mooney | A theory of large elastic deformation[END_REF], Mooney-Rivlin [START_REF] Rivlin | Large elastic deformations of isotropic materials iv. further developments of the general theory[END_REF], 8-chain [START_REF] Arruda | A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials[END_REF], Yeoh [START_REF] Yeoh | Some forms of the strain energy function for rubber[END_REF], and Gent [START_REF] Gent | A New Constitutive Relation for Rubber[END_REF] models. The main difference between them is the trend of the stress-strain curve. Other laws describe both the isotropic and anisotropic behaviours, for example, the HGO [START_REF] Holzapfel | A new Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models[END_REF], and the polyconvex [START_REF] Cai | A simple polyconvex strain energy density with new invariants for modeling four-fiber family biomaterials[END_REF] models. In this paper, the latter four-fibre anisotropic polyconvex law is described as well as its implementation. This law has two main properties, the convexity of its strain energy function ensures the existence and uniqueness of the solution, and the invariants used have a mechanical meaning. The procedure for identifying the law parameters from experimental data is described. Simulations of tensile and indentation (3D) tests on soft tissue are performed. The results are compared with those obtained by other laws with a discussion on the simulation times.

Polyconvex constitutive law analysis

In this section, the main characteristics of this recent [START_REF] Cai | A simple polyconvex strain energy density with new invariants for modeling four-fiber family biomaterials[END_REF] hyperelastic anisotropic behaviour law is given. Previously classical notations of continuum mechanics are reminded. Some standard notations for tensor and vector calculus are recalled: The standard Euclidean inner product is defined by ., . , the product between two vectors and between two tensors are determined by (. ⊗ .), the trace operator will be denoted by T r and the determinant by det.

The transformation tensor F, the right Cauchy-Green strain tensor C, the Green-Lagrange strain tensor E and the Cauchy stress tensor respectively defined:

F = I + ∂u ∂X , C = F T F, E = 1 2 (C -I), σ = J -1 FSF T , ( 1 
)
where u is the displacement vector in the Lagrangian description and X is the Lagrangian coordinates representing the initial position, I stands for the unity tensor, J = det(F).

A material with four fibre directions a, b, c and d (Fig. 6) is considered and e 1 , e 2 and e 3 constitute an orthonormal basis. In the plane {e 1 , e 2 }, fibres a and b are symmetrically distributed around e 1 , the fibre directions c and d are parallel to e 1 and e 1 respectively. Cai et al. [START_REF] Cai | A simple polyconvex strain energy density with new invariants for modeling four-fiber family biomaterials[END_REF] demonstrated, taken account orthotropic symmetry with respect to three orthogonal planes normal to e 1 , e 2 , e 3 , that the seven following polyconvex invariants L i form an integrity basis which contain all the information relative to the geometrical orientation of the fibres:

L 1 = T r(C e 1 ⊗ e 1 ), L 2 = T r(C e 2 ⊗ e 2 ), L 3 = T r(C e 3 ⊗ e 3 ), (2) 
L 4 = (L 1 + L 2 ) 2 + 4 C e 1 , e 2 2 , (3) 
L 5 = (L 1 + L 3 ) 2 + 4 C e 1 , e 3 2 , L 6 = (L 2 + L 3 ) 2 + 4 C e 2 , e 3 2 , (4) 
L 7 = C e 1 , e 2 C e 1 , e 3 C e 2 , e 3

+ 1 2 L 1 L 2 L 3 -L 1 C e 2 , e 3 2 -L 2 C e 1 , e 3 2 -L 3 C e 1 , e 2 2 (5) 
In addition to mathematical properties (polyconvexity), these invariants have a mechanical meaning. The first tree are related to the elongations according to e 1 , e 2 and e 3 and the next three to the shear according to the directions {e 1 , e 2 }, {e 1 , e 3 } and {e 2 , e 3 }. The last one is directly linked to the deformed volume. Moreover, to avoid a redundancy with the incompressibility condition which will be expressed explicitly, the invariant L 7 will not be retained in the following.

The strain energy function or polyconvex deformation energy density function, proposed by Cai et al. [START_REF] Cai | A simple polyconvex strain energy density with new invariants for modeling four-fiber family biomaterials[END_REF][START_REF] Cai | Convexity, polyconvexity and finite element implementation of a four-fiber anisotropic hyperelastic strain energy density -Application to the modeling of femoral, popliteal and tibial arteries[END_REF], is a quadratic polynomial form:

W = a 1 (L 1 -1) + a 2 (L 2 -1) + a 3 (L 3 -1) + a 4 (L 4 -4) + a 5 (L 5 -4) + a 6 (L 6 -4) + a 7 (L 1 -1) 2 + a 8 (L 2 -1) 2 + a 9 (L 3 -1) 2 , (6) 
where the coefficients a i represent the nine material parameters. Using stressless state in the reference configuration, only 7 parameters are independent. The polynomial form has several advantages [START_REF] Cai | A simple polyconvex strain energy density with new invariants for modeling four-fiber family biomaterials[END_REF], notably it facilitates the identification of the material parameters. 

Bipotential contact law

The bipotential method [START_REF] Saxcé | The bipotential method: A constructive approach to design the complete contact law with friction and improved numerical algorithms[END_REF] is used for the numerical modelling of contact problems, especially the indentation test in this article. The bipotential method can be summarised by writing the Signorini conditions and the Coulomb friction laws in a compact form. This method is more efficient because it considers the coupling of the normal force and the tangential force in the same formulation of the contact laws and does not use the penalty term that induces interpenetration. The bipotential method translates the complete law of contact with friction into a complementarity constraint. Figure 1 represents the contact reaction r and its components (r t , r n ) as well as the tangential relative velocity ẋ. The complementary relation is written as follows :

ẋ = ẋt + ( ẋn + µ ẋt ) n. (7) 
K µ represents the interior and the edge of the Coulomb cone (Fig. 1). So, the function b c is introduced b c (-ẋ, r) = µ -ẋt r n if ẋn ≥ 0 and r ∈ K µ , and equal to +∞ otherwise. b c is a bi-potential function which can be interpreted as the dissipated power.

The minus sign preceding the relative tangential velocity emphasizes its opposite direction to the frictional force. According to the Implicit Standard Material theory proposed by De Saxcé and Feng, the complete law of contact with friction is in the form of a variational in-equation. The augmented Lagrangian method was using to solve the following implicit problem :

   find r ∈ K µ such as ∀r ∈ K µ ; r -r -ẋt + ( ẋn + µ -ẋt ) n • (r -r) ≥ 0. ( 8 
)
with > 0, a parameter whose value ensures a good convergence.

However, we must find r ∈ K µ in such a way

∀r ∈ K µ , (r -τ ) • (r -r ) ≥ 0, (9) 
where τ , the contact reaction is given:

τ = r -ẋt + ( ẋn + µ -ẋt ) n . (10) 
r is the projection of τ in the Coulomb cone.

The projection (r = Proj Kµ (τ )) can be determined analytically. The expressions of the projection can only correspond to three possible contact statuses: contact with adhesion, contact with sliding and with no contact.

if µ τ t k+1 < -τ k+1 n so Proj Kµ (τ k+1 ) = 0 no contact else if τ t k+1 < µ τ k+1 n so Proj Kµ (τ k+1 ) = τ k+1 adhesion else Proj Kµ (τ k+1 ) = τ k+1 - ( τ k+1 t -µ τ k+1 n ) (1 + µ 2 ) τ k+1 t τ k+1 t + µ n sliding (11)

Finite Element Implementation

The polyconvex constitutive law is implemented in our in-house [START_REF] Feng | FER/Impact : Logiciel de simulation numérique des problèmes d'impact[END_REF] finite element software FER. The nonlinear geometric analysis is described using the total Lagrangian formulation, where the tangent stiffness matrix is built with respect to the initial configuration.

The Green-Lagrangian strain E can be written [START_REF] Simo | Computational Inelasticity[END_REF] with linear B L and nonlinear terms B NL depending on nodal displacements, either in incremental form:

δE = (B L + B NL (u)) δu (12) 
Based on the principle of virtual displacement, the virtual work δw is:

δw = V 0 δE T S dV 0 -δu T F ext -δu T R = 0 ( 13 
)
where V 0 is the initial volume, F ext the vector of external loads, R the contact reaction vector (section 3). The vector R in the global reference frame was building from r (Eq. 11).

Since δu is arbitrary, the non-linear govern equations can be given as:

F int -F ext -R = 0, (14) 
where F int is the vector of internal forces, which can be defined:

F int = V 0 (B L + B N L (u)) T S dV 0 (15) 
The second Piola-Kirchhoff stress tensor S is calculated by deriving the strain energy function ( 6) with respect to the tensor C:

S = 2 ∂W ∂C -p C -1 = 2 6 i=1 ∂W ∂L i ∂L i ∂C -p C -1 . ( 16 
)
where p is the external pressure to take into account the incompressibility condition.

Eq. ( 14) is solved [START_REF] Simo | Computational Inelasticity[END_REF] with the Newton-Raphson method.

Material parameters identification

The identification of the material parameters is carried out using experimental data. Data [START_REF] Kamenskiy | Passive biaxial mechanical properties and in vivo axial pre-stretch of the diseased human femoropopliteal and tibial arteries[END_REF] from a biaxial quasi-static tensile test on a superficial femoral artery was used.

Cai et al. [START_REF] Cai | A simple polyconvex strain energy density with new invariants for modeling four-fiber family biomaterials[END_REF][START_REF] Cai | Convexity, polyconvexity and finite element implementation of a four-fiber anisotropic hyperelastic strain energy density -Application to the modeling of femoral, popliteal and tibial arteries[END_REF] have given the semi-analytical solution of this biaxial tensile test. With symmetries, one eighth (Figure 3) of the soft tissue sample is studied. Stretches λ 11 and λ 22 are imposed respectively along the e 1 and e 2 axes. The two non-zero components of the Cauchy stress tensor are written: 

σ 11 = 2 a 3 (
where λ 11 , λ 22 represent the principal stretches.

Minimisation of the error between these data has been performed with optimisation constraints using MATLAB fmincon function [START_REF]Matlab optimization toolbox[END_REF] . To ensure the convexity of W with respect to C, so that the tangent matrix is always positive definite, the material parameters have to satisfy certain necessary conditions.

The quality of the fit between the experimental and theoretical data is measured with Eq. ( 19), the coefficient of determination R 2 . This quality is the best when R 2 is closest to 1. This coefficient is built from residual sum S res and the total sum S tot of the least-squares by the number of points in experimental data n :

R 2 = 1 - S res S tot . ( 19 
)
S res = n i=1 (σ exp i -σ an i (a 3 , a 4 , a 5 , a 6 , a 7 , a 8 , a 9 )) 2 . ( 20 
)
S tot = n i=1 (σ exp i -σ exp i ) 2 . ( 21 
)
σ an is the vector from Eq. ( 17) and Eq. ( 18), σ exp is the experimental data vector from superficial femoral artery biaxial tensile test [START_REF] Kamenskiy | Passive biaxial mechanical properties and in vivo axial pre-stretch of the diseased human femoropopliteal and tibial arteries[END_REF] and σ exp is the mean of experimental data:

σ exp = 1 n n i=1 σ exp i . ( 22 
)
Table 1 contains the parameters obtained in 30.64 seconds after 116 optimization iterations with R 2 = 0.99. 

Biaxial tensile test

Only one eighth of the soft tissue sample is discretised. Symmetry conditions are applied and stretches (λ 11 =λ 22 = 1.1 ) are imposed respectively (Figure 3) along the e 1 and e 2 axes. The mesh uses 8-node hexahedral elements. Figure 3 represent the stress according to stretches on the FER/View post-processor [START_REF] Feng | Energy dissipation by friction in dynamic multibody contact problems[END_REF]. The numerical results obtained with FER are compared with the semi-analytical and experimental results. Figure 4 shows the stresses σ 11 and σ 22 as a function of the stretches λ 11 and λ 22 . This figure shows that with the identified parameters of table 1, experimental data, semi-analytic stresses Eq. ( 17) and Eq. ( 18), numerical results obtained with FER are in perfect agreement. No convergence problem has been encountered with the polyconvex law. The anisotropy of the model appears clearly. The corresponding stresses are different for the same stretch in the two directions.

The parameters used (Table 1) are very different from those found by Cai et al. [START_REF] Cai | A simple polyconvex strain energy density with new invariants for modeling four-fiber family biomaterials[END_REF][START_REF] Cai | Convexity, polyconvexity and finite element implementation of a four-fiber anisotropic hyperelastic strain energy density -Application to the modeling of femoral, popliteal and tibial arteries[END_REF]. Figure 5 represent the comparison between two results using two sets of parameters. σ ii FER 1 represent the tensile simulation result from the set got from table 1. σ ii FER 2 are result using Cai et al. [START_REF] Cai | Convexity, polyconvexity and finite element implementation of a four-fiber anisotropic hyperelastic strain energy density -Application to the modeling of femoral, popliteal and tibial arteries[END_REF] parameters on the simulation. The results are closer to the experimental data compared to the original ones in [START_REF] Cai | A simple polyconvex strain energy density with new invariants for modeling four-fiber family biomaterials[END_REF]. 

Indentation test

This test is simulated using the bipotential contact law [START_REF] Saxcé | The bipotential method: A constructive approach to design the complete contact law with friction and improved numerical algorithms[END_REF], a law that couples contact and friction while eliminating interpenetration between bodies. This law was proved to be very efficient in contact treatment. Above all, it is not an intrusive method. The tangent matrices, according to [START_REF] Kamenskiy | Passive biaxial mechanical properties and in vivo axial pre-stretch of the diseased human femoropopliteal and tibial arteries[END_REF], are not modified.

The test represents a rigid half-sphere applied to the artery. The radius of the sphere is 2.5 µm. The deformable-body is a paralleled-rectangles (Figure 2) of dimensions 10 µm × 4 µm× 10 µm. The mesh has 3 024 nodes and comprises 2 112 hexahedral elements of 8 nodes. The coefficient of friction between the soft tissue and the indenter is fixed at µ = 0.34.

One hundred increments apply the load with a displacement of 0.01 µm at each step. Thus, the indenter undergoes a total vertical displacement of 1 µm. Qualitative results are presented in Figure 6, the directions of the four fibres are visible: the displacement distribution according to e 3 . 2 are the average of ten simulations.

Regarding the identification time in table 2, the parameters of the polyconvex law are obtained the fastest. The polyconvex law performs very well with times comparable with the Yeoh law, which is simpler and only isotropic for the simulation tests. The HGO-Yeoh law has an exponential form which makes the calculation slower. The polyconvex law is formulated by a polynomial form and uses polyconvex invariants that allow a fast convergence. Improvements are still possible, some calculations can be done outside the Newton-Raphson loops. 

Conclusions

The polyconvex deformation energy density function ( 6) is a simple polynomial expression that allows easy implementation. This formulation also guarantees the tangent stiffness matrix's invertibility and the solution's uniqueness at each iteration during the numerical solution. This modelling enables uniques material parameters valid for all mechanical tests (tensile and shear, for example), which is not the case with other behaviour laws. This model remains limited when the stretches are very large. This new polyconvex behaviour law is very promising because of its robustness and speed in numerical simulation, which has been observed in treating contact problems with friction. The extensions of this work are the evaluation of more complex problems (adhesion, dynamics...) based on experimental data of other soft tissues.
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 4 Figure 4: Comparison of stresses (Semi-analytic, numeric, experimental) σ 11 and σ 11 as a function of the stretches λ 11 and λ 22
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 5 Figure 5: Comparison of simulation results using two different sets of parameter material
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 6 Figure 6: Direction of the 4 fibres families / Displacement according to e 3 during the indentation test
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 7 Figure7represents a biaxial simulation using the two hyperelastic anisotropic models: HGO-Yeoh and Polyconvex. For both models, the fitting with experimental data is suitable. Therefore, these laws are relevant to the modelling of anisotropic soft tissue.

Figure 7 :

 7 Figure 7: Comparison of the law HGO-Yeoh and Polyconvex results accuracy

Table 1 :

 1 Polyconvex deformation energy density function: material parameters

	a 3	a 4	a 5	a 6	a 7	a 8	a 9
	Material parameters (kPa) -2015.83 241.2 131.56 286.9 -87.1 75.69 -34.73

Validation of the model with two simulation examples

  

Table 2 :

 2 Performances (CPU time) comparison of hyperelastic laws

	Hyperelastic law	Yeoh	HGO-Yeoh Polyconvex
	Anisotropy	Isotropic Anisotropic Anisotropic
	Nb of fibre's familly	-	1	4
	Nb of parameters	3	5	7
	Identification time	27.61 s	40.03 s	25.68 s
	Tensile simulation time	3.33 s	7.68 s	4.85 s
	Indentation simulation time 9 min 56 s 10 min 39 s 8 min 48 s