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Introduction

We consider the Cauchy problem ∂u ∂t

+ d i=1 ∂A i (u) ∂x i = 0, (1a) 
with the initial condition u(x, 0) = u 0 (x).

where u : R d × R + → R K and A = (A 1 , • • • , A d ) : R K → (R K ) d is locally Lipschitz continuous flux function. It is known that this system can formally be seen as the limit for ε → 0 of a relaxation system [START_REF] Jin | The relaxation schemes for systems of conservation laws in arbitrary spacedimensions[END_REF][START_REF] Natalini | A discrete kinetic approximation of entropy solution to multi-dimensional scalar conservation laws[END_REF] :

∂f ∂t + d i=1 Λ i ∂f ∂x i = M(Pf ) -f ε (2a)
with the initial condition f (x, 0) = f 0 (x).

where f : R d × R + → R L , ε ∈ R + , M : R K → R L is a Lipschitz continuous function, Λ i are real diagonal L × L matrices , and P is a real constant coefficients K × L matrix. To connect problem (2a) -(2b) with problem (1a) -(1b), we assume that M is a Maxwellian function for (1a), i.e.

   PM(u) = u, PΛ i M(u) = A i (u), i = 1, • • • , d. (3) 
Clearly, if f converges in some strong topology to a limit g and if Pf 0 converges to u 0 , then Pg is a solution of problem (1a) -(1b). Actually, the system (2a) is only a BGK approximation for (1a), see e.g [START_REF] Bhatnagar | A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component systems[END_REF][START_REF] Cercignani | The boltzmann equation and its applications[END_REF] and the references therein.

The idea is to start from (2a), we describe first the discretisation of Λ x ∂f ∂x and Λ y ∂f ∂y . The second step is to discretise in time. We take into account the source term. The resulting scheme is fully implicit. The next step is to show that, thanks to the operator P, and using a particular time discretisation, we can make it computationally explicit, and high order accurate. It is independent of ε.

Time discretisation

Here, we consider the two dimensional case, i.e.

∂f ∂t + Λ x ∂f ∂x + Λ y ∂f ∂y = M(Pf ) -f ε (4) 
Knowing the solution f n at time t n , we are looking for the solution at time t n+1 . First we discretise (4) in space, we get ∂f ∂t

+ 1 ∆x Λ x δ x f + 1 ∆y Λ y δ y f = M(Pf ) -f ε (5) 
and notice that ∂Pf ∂t

+ 1 ∆x P Λ x δ x f + 1 ∆y P Λ y δ y f = 0. (6) 
Since we want to have a running CFL number of at least one, we use an IMEX defect correction (DeC) method. Using this, we follow [START_REF] Abgrall | Some preliminary results on a high order asymptotic preserving computationally explicit kinetic scheme[END_REF] where a DeC technique can be used and it is made explicit because the non linear term M(Pf ) is explicit. we subdivide the interval [t n , t n+1 ] into subintervals obtained from the partition

t n = t (0) < t (1) < • • • t (p) < • • • < t (M ) = t n+1 with t (p) = t n + β p ∆t. Let x l be a fixed grid point and f n,p l ≈ f (x l , t n + β p ∆t). We introduce the corrections r = 0, • • • , R for each subinterval [t p , t p+1
] and denote the solution at the r-th correction and the time t p by f n,p,r . The notation F is the collection of all the approximations for the sub-steps i.e. the vector

F = (f n,1 , • • • , f n,M ) T .
The notation F (r) represents the vector

F (r) = (f n,1,r , • • • , f n,M,r
) T . Now we use a DeC method and proceed within the time interval [t n , t n+1 ] as follows :

1. For r = 0, set

F (0) = (f n , • • • , f n ) T .
2. For each correction r ≥ 0, define F (r+1) by

L 1 (F (r+1) ) = L 1 (F (r) ) -L 2 (F (r) ) (7) 3. Set F n+1 = F (R) .
Formulation [START_REF] Iserles | Order stars and saturation theorem for first-order hyperbolics[END_REF] relies on a Lemma which has been proven in [START_REF] Abgrall | High order schemes for hyperbolic problems using globally continuous approximation and avoiding mass matrices[END_REF]. Therefore the DeC compute the solution at time t n+1 using M steps of the form

F (r+1) l = (Id M ×M + ∆t ε W ) -1 ∆t ε W M(PF (r+1) l ) + F (0) l - ∆t ∆x Λ x W δ x l F (r) l - ∆t ∆x w 0 ⊗ Λ x δ x l f n,0 - ∆t ∆y Λ y W δ y l F (r) - ∆t ∆y w 0 ⊗ Λ y δ y l f n,0 + ∆t ε w 0 ⊗ M(Pf n,0 ) -f n,0 (8) 
where w 0 is a vector and W is a matrix. We can show that the presented method is asymptotic preserving [START_REF] Abgrall | An arbitrarily high order and asymptotic preserving kinetic scheme in compressible fluid dynamic[END_REF].

Here, we will consider first, second and fourth order approximations in time in the L 2 operator.

1. For the first order approximation, we get

PF n,1 -PF n + ∆t ∆x P Λ x δ x F n + ∆t ∆y P Λ y δ y F n = 0,
Then, we get

(Id 1×1 + ∆t ε W ) -1 = ε ε + ∆t , ∆t ε (Id 1×1 + ∆t ε W ) -1 W = ∆t ε + ∆t ,
We observe that these two matrices are uniformly bounded.

2. For the second order approximation, which is Crank-Nicholson method, the scheme becomes

PF n,1 -PF n,0 + ∆t ∆x 1 2 P(Λ x δ x F n,0 )+ 1 2 P(Λ x δ x F n,1 ) + ∆t ∆y 1 2 P(Λ y δ y F n,0 )+ 1 2 P(Λ y δ y F n,1 ) = 0, also we have W = ( 1 2 
). Similarly, we see that two matrices (Id 1×1 + ∆t ε W ) -1 and ∆t ε (Id 1×1 + ∆t ε W ) -1 W are uniformly bounded. 3. For the fourth order scheme [START_REF] Hairer | Solving ordinary differential equations[END_REF], we get

PF n,1 -PF n,0 + ∆t ∆x 5 24 P(Λ x δ x F n,0 ) + 1 3 P(Λ x δ x F n,1
) -

1 24 P(Λ x δ x F n,2 )
+ ∆t ∆y 5 24 P(Λ y δ y F n,0 ) + 1 3 P(Λ y δ y F n,1 ) -

1 24 P(Λ y δ y F n,2 ) = 0, PF n,2 -PF n,0 + ∆t ∆x 1 6 P(Λ x δ x F n,0 ) + 2 3 P(Λ x δ x F n,1 ) + 1 6 P(Λ x δ x F n,2 ) + ∆t ∆y 1 6 P(Λ y δ y F n,0 ) + 2 3 P(Λ y δ y F n,1 ) + 1 6 P(Λ y δ y F n,2 ) = 0,
where F n,0 = F n , F n,1 ≈ F(t n + ∆t 2 ) and F n,2 ≈ F(t n+1 ). Also, we have

W = 1 3 -1 24 2 3 1 6
It is easy to observe that the matrix Id 2×2 + ∆t ε W is invertible and the matrices (Id 2×2 + ∆t ε W ) -1 and ∆t ε (Id 2×2 + ∆t ε W ) -1 W are uniformly bounded.

Space discretisation

Since Λ x and Λ y are diagonal matrices, we can consider the scalar transport equation

∂f ∂t + a ∂f ∂x + b ∂f ∂y = 0,
where a and b are constants and both of them can not be zero at the same time. The spatial operators are approximated using the schemes described in [START_REF] Iserles | Order stars and saturation theorem for first-order hyperbolics[END_REF]. In the following, we consider first, second and fourth order approximations in x, that in y is done in a similar manner.

1. First order : we get

δ x 1 f i,j = f i,j -f i-1,j
Then, we have

∂f ∂x (x i , y j ) = 1 ∆x (f i,j -f i-1,j ) + c 0,1 ∆x ∂ 2 f ∂x 2 (x i , y j ) + O((∆x) 2 )
and the flux is given by fi+ 1 2 ,j = f i+1,j

2. Second order : we get

δ x 2 f i,j = f i-2,j -f i-1,j + f i,j 2 + f i+1,j 3 
Therefore we have

∂f ∂x (x i , y j ) = 1 ∆x ( f i-2,j 6 -f i-1,j + f i,j 2 + f i+1,j 3 ) + c 2,1 (∆x) 3 ∂ 4 f ∂x 4 (x i , y j ) + O((∆x) 4 )
As before, the flux is given by

fi+ 1 2 ,j = - f i-1,j 6 + 5 6 f i,j + f i+1,j 3 
3. Fourth order : we consider two cases -If r = s = 2, we have

δ x 4 f i,j = - f i-2,j 12 - 2 3 f i-1,j + 2 3 f i+1,j + f i+2,j 12 
We can write

∂f ∂x (x i , y j ) = - f i-2,j 12 - 2 3 f i-1,j + 2 3 f i+1,j + f i+2,j 12 + c 2,2 (∆x) 4 ∂ 5 f ∂x 5 (x i , y j ) + O((∆x) 5 )
For the flux, we can write as follows

fi+ 1 2 ,j = f i-1,j 12 + 3 4 f i,j + 3 4 f i+1,j + f i+2,j 12 
Nantes, 29 août au 2 septembre 2022 -If r = 1 and s = 3, we have

δ x 4 f i,j = - f i-3,j 12 + f i-2,j 2 - 3 2 f i-1,j + 5 6 f i,j + f i+1,j 4 Hence ∂f ∂x (x i , y j ) = - f i-3,j 12 + f i-2,j 2 - 3 2 f i-1,j + 5 6 f i,j + f i+1,j 4 +c 1,3 (∆x) 4 ∂ 5 f ∂x 5 (x i , y j )+O((∆x) 5 )
The flux becomes

fi+ 1 2 ,j = f i-2,j 12 - 5 12 f i-1,j + 13 12 f i,j + f i+1,j 4 
More details can be found in [START_REF] Abgrall | An arbitrarily high order and asymptotic preserving kinetic scheme in compressible fluid dynamic[END_REF].

Test case

In this section we test our scheme on the following Euler equations

u = (ρ, ρv, E) and A = (ρv, ρv ⊗ v + pId , (E + p)v) = (A 1 , A 2 ).
and we run the vortex case. The computational domain is a square [-10, 10]×[-10, 10], r = (x -x c ) 2 + (y -y c ) 2 , (x c , y c ) = (0, 0) and the boundary conditions are periodic. The initial conditions are given by

ρ = 1 - (γ -1)β 2 32γπ 2 exp 1 -r 2 1 γ-1 , v x = 1 - β 4π exp 1 -r 2 2 y, v y = √ 2 2 + β 4π exp 1 -r 2 2 
x, p = ρ γ , for γ = 1.4 and β = 5, while the free stream conditions are given by :

ρ ∞ = 1, v x,∞ = 1, v y,∞ = √ 2 2 , p ∞ = 1
The final time is T = 20. The reference solution is obtained on a regular Cartesian mesh consisting of 10000 elements and fourth order scheme in space and time. The CFL number is set to 1, and we consider the four waves model. In figures 1, 2 and 3, we have displayed the density, velocity v x and v y at T = 20, respectively. We can observe that the plots show a very good behavior of the numerical scheme. 

Conclusion

In this paper we have shown, how to extend a class of kinetic numerical methods that can run at least at CFL 1 to the two dimensional case. They can handle in a simple manner hyperbolic problems, and in particular compressible fluid mechanics one. Our methodology can be arbitrarily high order and can use CFL number larger or equal to unity on regular Cartesian meshes. However, more research is needed to apply and test.
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 1 (a) Order 4 scheme in space and time (b) Exact Vortex for the density at T = 20.
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 2 Vortex for the velocity v x at T = 20.
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 3 (a) Order 4 scheme in space and time (b) Exact Vortex for the velocity v y at T = 20.