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A GENERAL CORRELATION INEQUALITY FOR LEVEL SETS OF SUMS OF INDEPENDENT RANDOM VARIABLES USING THE BERNOULLI PART WITH APPLICATIONS TO THE ALMOST SURE

LOCAL LIMIT THEOREM MICHEL J. G. WEBER Abstract. Let X = {Xj, j ≥ 1} be a sequence of independent, square integrable variables taking values in a common lattice L(v0, D) = {v k = v0 +Dk, k ∈ Z}. Let Sn = X1 +. . .+Xn, an = E Sn, and σ 2 n = Var(Sn) → ∞ with n. Assume that for each j, ϑX

j = k∈Z P{Xj = v k } ∧ P{Xj = v k+1 } > 0.
Using the Bernoulli part, we prove a general sharp correlation inequality extending the one we obtained in the i.i.d. case in [START_REF] Weber | A sharp correlation inequality with an application to almost sure local limit theorem[END_REF]: Let 0 < ϑj ≤ ϑX j and assume that νn = n j=1 ϑj ↑ ∞, n → ∞. Let κj ∈ L(jv0, D), j = 1, 2, . . . be a sequence of integers such that We derive a sharp almost sure local limit theorem: Assume that M (t) = 1≤n<t 1 σn √ νn ↑ ∞ with t. Given any R > 1, let M = {Mj = M (R j ), j ≥ 1},

I l = [R l , R l+1 [, l ≥ 1.
We prove under moderate and simple conditions, that the series 1.

k≥1 I k ∩M =∅ 1 R k sup j≥1 M j ∈I k

INTRODUCTION

In this article we use the Bernoulli part extraction method initiated by McDonald in [START_REF] Macdonald | A local limit theorem for large deviations of sums of independent, non-identically distributed random variables[END_REF], [START_REF] Macdonald | On local limit theorems for integer valued random variables[END_REF], see also Davis and McDonald [2], in the study of the local limit theorem (LLT). We recently applied this method in several articles, see [START_REF] Weber | A uniform semi-local limit theorem along sets of multiples for sums of i.i.d. square integrable random variables[END_REF], [START_REF] Weber | On Rozanov's theorem and strenghtened asymptotic uniform distribution[END_REF], [START_REF] Weber | A sharp correlation inequality with an application to almost sure local limit theorem[END_REF], and [START_REF] Giuliano | Approximate local limit theorems with effective rate and application to random walks in random scenery[END_REF] jointly with Giuliano, see also the related work [START_REF] Weber | On Mukhin's necessary and sufficient condition for the validity of the local limit theorem[END_REF]. We refer to the recent monograph [START_REF] Szewczak | Classical and Almost Sure Local Limit Theorems[END_REF] jointly with Szewczak, devoted to LLT and ASLLT. In [START_REF] Weber | A sharp correlation inequality with an application to almost sure local limit theorem[END_REF], we proved a sharp correlation inequality in the i.i.d. case. Using the same method, we extend this correlation inequality in the considerably more general independent non i.i.d. case. The inequality we obtain is general and sharp, and, we believe, hardly improvable. This inequality is stated in Section 2, see Theorem 2.1, and is the main result of this paper. Next we apply it to provide general sufficient conditions for the validity of the almost sure local limit theorem (ASLLT) for sums of independent random variables. Our ASLLT settles quasi optimally the problem of finding a corresponding ASLLT in the independent non i.i.d. case. Its right formulation was not easy to guess, and the proof, not simple to work out. The result is stated in Section 5, where the proof is also given, see Theorem 5. [START_REF] Hardy | Inequalities[END_REF].

We first define the general setting of this study, recall some useful facts and introduce to the problem investigated.

1.1. General setting. Throughout X = {X i , i ≥ 1} denotes a sequence of independent variables taking values in a common lattice L(v 0 , D), namely defined by the sequence v k = v 0 + Dk, k ∈ Z, where v 0 and D > 0 are real numbers. Let S n = X 1 + . . . + X n , n ≥ 1. Then S n takes values in the lattice L(v 0 n, D). We assume that the random variables X i are square integrable, and that σ 2 n = Var(S n ) → ∞ with n. Let also a n = E S n , for each n. 1.2. The local limit theorem. The sequence X satisfies a local limit theorem (in the usual sense) if (1.1) sup

N =v 0 n+Dk σ n P{S n = N } - D √ 2π e - (N -an) 2 2s 2 n = o(1), n → ∞.
Remark that the series (1.2)

N =v 0 n+Dk P{S n = N } - D √ 2πB n e - (N -Mn) 2 2B 2 n
, is obviously convergent, whereas nothing can be deduced concerning its order from the very definition of the local limit theorem. We however have by using Poisson summation formula the following estimate, which is up to our knowledge, not known (see [START_REF] Weber | On Rozanov's theorem and strenghtened asymptotic uniform distribution[END_REF], Remark 1.1).

(1.3)

N =v 0 n+Dk P{S n = N } - D √ 2πB n e - (N -Mn) 2 2B 2 n = O(D/B n ).
Assume that the random variables X i are identically distributed, and let µ = E X 1 , σ 2 = Var(X 1 ). Then M n = nµ, B 2 n = nσ 2 , and (1.1) reduces to (1.4) ∆ n = sup

N =v 0 n+Dk σ √ n P{S n = N } - D √ 2π e -(N -nµ) 2 2nσ 2
= o(1).

The following well-known result of Gnedenko [START_REF] Gnedenko | On a local limit theorem in the theory of probability[END_REF] characterizes the local limit theorem in this case.

Theorem 1.1. Assume that {X n , n ≥ 1} is an i.i.d. sequence and let µ = E X 1 , σ 2 = Var(X 1 ). Then (1.4) holds if and only if the span D is maximal.

See [START_REF] Petrov | Sums of Independent Random Variables[END_REF] (Theorem 1 and proof of Theorem 2,.

1.3. The almost sure local limit theorem. This notion was introduced by Denker and Koch in [START_REF] Denker | Almost sure local limit theorems[END_REF] (sections 1,2), in analogy with the usual almost sure central limit theorem: "A stationary sequence of random variables {X n , n ≥ 1} taking values in R or Z with partial sums S n = X 1 = . . . + X n satisfies an almost sure local limit theorem, in short ASLLT, if there exist sequences {a n , n ≥ 1} in R and {b n , n ≥ 1} in R + satisfying b n → ∞, such that

(1.5) lim N →∞ 1 log N N n=1 b n n χ{S n ∈ k n + I} a.s. = g(κ)|I| as k n -a n b n → κ,
where g denotes some density and I ⊂ R is some bounded interval. Further |I| denotes the length of the interval I in the case where X 1 is real valued and the counting measure of I otherwise."

The above definition is however incomplete, as indicated in Weber [START_REF] Weber | A sharp correlation inequality with an application to almost sure local limit theorem[END_REF], Section 4. Assume that P{X i ∈ L(v 0 , D)} = 1, for each i. As g is a density, there are reals κ such that g(κ) = 0. Now if {k n , n ≥ 1} is such that kn-an bn → κ, then any sequence {κ n , n ≥ 1}, κ n = k n +u n where u n are uniformly bounded also satisfies this. But we can arrange the u n so that κ n / ∈ L(v 0 , D) for all n. Picking I = [-δ, δ] with δ < 1/2, we get lim 

N →∞ 1 log N N n=1 b n n χ{S n ∈ k n + I} a.s. = 0 = g(κ)|I|,
N →∞ 1 log N N n=1 b n n χ{S n ∈ k n + I} a.s. = g(κ)#{I ∩ L(v 0 , D)}, as k n -a n b n → κ,
where I is a bounded interval.

Translating it in the independent case, we consider (b n = σ n , g(x) = D √ 2π e -x 2 /2 ), this means that the ASLLT holds, by definition, if (1.8) lim

N →∞ 1 log N N n=1 σ n n χ{S n = k n } a.s. = D √ 2π e -x 2 /2 , whenever k n -a n σ n → κ.
However, as we shall see in Section 5, (Theorem 5.13) that formulation is not appropriate, and the right one we prove turns up to be more complicated, involving notably the sequence of parameters {ϑ n , n ≥ 1}. One must nevertheless admit that the right formulation is difficult to guess, the i.i.d. case being generally weakly informative of the independent non identically distributed case. As mentioned by the authors in [START_REF] Denker | Almost sure local limit theorems[END_REF], p.146, the existence of almost sure local limit theorems is of fundamental interest. It seems reasonable to expect applications, notably at the interface with Number Theory.

When the random variables are identically distributed, the ASLLT states as follows.

Theorem 1.2. Let X be a square integrable random variable taking values on the lattice

L(v 0 , D) = {v 0 + kD, k ∈ Z} with maximal span D. Let µ = E X, σ 2 = Var(X) > 0. Let also {X k , k ≥ 1} be independent copies of X, and put S n = X 1 + . . . + X n , n ≥ 1. Then lim N →∞ 1 log N n≤N 1 √ n 1 {Sn=κn} a.s. = D √ 2πσ e -κ 2 /(2σ 2 ) ,
for any sequence of integers κ n ∈ L(nv 0 , D), n = 1, 2, . . . such that

(1.9) lim n→∞ κ n -nµ √ n = κ > 0.
Note that by Theorem 1.1, if κ n ∈ L(nv 0 , D) is a sequence which verifies condition (1.9), then (1.10) lim

n→∞ √ nP{S n = κ n } = D √ 2πσ e -κ 2 2σ 2 .
Theorem 1.2 was announced in Denker and Koch [START_REF] Denker | Almost sure local limit theorems[END_REF] (Corollary 2). The succint proof given however contains a gap, see Weber [START_REF] Weber | A sharp correlation inequality with an application to almost sure local limit theorem[END_REF]. A complete proof was given in [START_REF] Weber | A sharp correlation inequality with an application to almost sure local limit theorem[END_REF]. Later, in the well-written paper [START_REF] Giuliano | A general correlation inequality and the Almost Sure Local Limit Theorem for random sequences in the domain of attraction of a stable law[END_REF] adressing the same problem in the stable i.i.d. case, more precisely, for specific classes of stable i.i.d. random variables, Giuliano and Szewczak, recovered that result as a particular case. One interesting aspect of the approach used in [START_REF] Giuliano | A general correlation inequality and the Almost Sure Local Limit Theorem for random sequences in the domain of attraction of a stable law[END_REF] is that it is based on Fourier analysis, and is thus totally different from ours. See also Giuliano and Szewczak [START_REF] Giuliano-Antonini | An almost sure local limit theorem for Markov chains, S tatist[END_REF], for a result of this kind concerning Markov chains. See Section 6 for a detailed exposition and a new improvment.

The following remark, Remark 3 in [START_REF] Weber | A sharp correlation inequality with an application to almost sure local limit theorem[END_REF], is instructive in the present context. We observe that if κ n satisfies (1.9),

lim n→∞ √ nP{S n = n } = D √ 2πσ e -κ 2 2σ 2 , ( n ≡ κ n or n ≡ κ n + D).
Then for some n κ < ∞,

P{S n = κ n } ∧ P{S n = κ n + 1} > 0 if n ≥ n κ .
An ASLLT with rate were primarily proved in Giuliano-Weber [START_REF] Giuliano | Approximate local limit theorems with effective rate and application to random walks in random scenery[END_REF].

Theorem 1.3 ([10], Theorem 1). Assume that E X 2+ε < ∞ for some positive ε. Then, lim N →∞ 1 log N n≤N 1 √ n 1 {Sn=κn} a.s. = D √ 2πσ e -κ 2 2σ 2 ,
for any sequence of integers {κ n , n ≥ 1} such that (1.10) holds. Moreover, if (1.9) is sharpened as follows,

κ n -nµ √ n = κ + O η (log n) -1/2+η , then 1 log N n≤N 1 √ n 1 {Sn=κn} a.s. = D √ 2πσ e -κ 2 2σ 2 + O η (log N ) -1/2+η .
The proof of Theorem 1.2 mainly relies upon on sharp correlation inequalities for the associated level sets, (1.11)

|P{S m = k m , S n = k n } -P{S m = k m }P{S n = k n }|.
which are also established in [START_REF] Weber | A sharp correlation inequality with an application to almost sure local limit theorem[END_REF], and are much harder to get than the correlation inequalities

(1.12) |P{S m < k m , S n < k n } -P{S m < k m }P{S n < k n }|,
needed for the proof of global a.s. central limit theorems, see e.g. Lacey and Philipp [START_REF] Lacey | A note on the almost everywhere central limit theorem[END_REF].

1.4. General problem investigated. As announced, we consider the independent, non necessarily identically distributed case, and our main objective will be to establish in this very large setting a general correlation inequality, next to apply it to prove the corresponding ASLLT. The search of that correlation inequality has revealed new facts, which result from the investigation of a more general, and in the same time, more complex case.

1.5. Characteristic of a random variable. Let Y be a random variable such that P{Y ∈ L(v 0 , D)} = 1. We do not assume that the span D is maximal. Introduce the following characteristic,

ϑ Y = k∈Z P{Y = v k } ∧ P{Y = v k+1 }, (1.13)
where a ∧ b = min(a, b). Obviously ϑ Y depends on D. Note that we always have the relation

0 ≤ ϑ Y < 1. (1.14)
When Y has finite variance σ 2 , we have the following important liaison inequality,

σ 2 ≥ D 2 4 ϑ Y , (1.15) 
from which it follows that

σ 2 n ≥ D 2 4 n j=1 ϑ X j , n ≥ 1. (1.16)
For the proofs of (1.14), (1.15), we refer the reader to the article Giuliano-Weber [START_REF] Giuliano | Approximate local limit theorems with effective rate and application to random walks in random scenery[END_REF], subsection 2.1, or to the recent monograph Szewczak-Weber [START_REF] Szewczak | Classical and Almost Sure Local Limit Theorems[END_REF], see (1.136) and after, also on the equivalence with the "smoothness"characteristic

δ X = m∈Z P{X = m} -P{X = m -1} , (1.17)
introduced by Gamkrelidze in [START_REF] Gamkrelidze | On the application of a smoothness function in proving a local limit theorem[END_REF].

1.6. General Assumption. Throughout this work we assume that (1.18) ϑ X j > 0, for each j ≥ 1.

We select ϑ j so that

(1.19) 0 < ϑ j ≤ ϑ X j for each j ≥ 1,
and we assume that (1.20)

ν n := n j=1 ϑ j ↑ ∞, as n → ∞.
Assumption (1.6) is really the basic requirement to make in order to investigate the problem studied in the general setting described in subsection 1.4. The sequences {Var(X j ), j ≥ 1} and {ϑ X j , j ≥ 1} we consider, are otherwise arbitrary. These ones are the main parameters of the study.

Remark 1.4. Condition is natural in our setting. Assume the local limit theorem (1.1) to be applicable to the sequence X. Let {κ n , n ≥ 1} be a sequence such that (1.21) lim

n→∞ κ n -a n σ n = κ.
The local limit theorem implies

(1.22) lim n→∞ σ n P{S n = κ n } = D √ 2π e -κ 2 2 .
And so

lim n→∞ σ n P{S n = n } = D √ 2π e -κ 2 2 , ( n ≡ κ n or n ≡ κ n + D).
Then for some

n κ < ∞, P{S n = κ n } ∧ P{S n = κ n + 1} > 0 if n ≥ n κ .
Changing X for X = S nκ , we see that the new sequence X satisfies (1.18). This was used in the course of the proof of the ASLLT in [START_REF] Weber | A sharp correlation inequality with an application to almost sure local limit theorem[END_REF]. It is true in general, and has some degree of importance, at the light of assumption (1.18).

The second order theory of a probabilistic system is a key element of its study. Combined with criteria of almost everywhere convergence, it allows one in particular to prove almost sure convergence results. This is the standard approach for treating these questions. In this case here, we study the correlations properties of the system of set's indicators

T(κ) = 1 {Sn=κn} -P{S n = κ n } , n ≥ 1 ,
where κ = {κ n , n ≥ 1}, and κ n ∈ L(nv 0 , D) for each n.

The statement of general the correlation inequality as well as some corollaries is the object of the next Section. The proof is given in Section 4 and is complicated. An obvious reason is that in addition to the sequence of variances Var(X j ), the sequence of characteristics ϑ X j is involved in all estimates. In section 3, preliminary results are collected. We prove in Section 5 that for independent square integrable random variables, the almost sure local limit theorem still holds, under fairly reasonable conditions, but the proof is more complicated. We also prove in Section 6, an almost sure local limit theorem with speed of convergence in the i.i.d. square integrable case, and show the almost sure convergence of tightly related random series.

Notation. Throughout the paper, the letter C denotes a universal constant whose value may change at each occurence, and C α,β,... a denotes a constant depending only on the parameters α, β, . . ..

A GENERAL CORRELATION INEQUALITY

We prove the following result in which we do not assume a local limit theorem to be applicable, neither an integral limit theorem to hold. This was in fact implicit in [START_REF] Weber | A sharp correlation inequality with an application to almost sure local limit theorem[END_REF] already. Theorem 2.1 (Main Result). Let κ j ∈ L(jv 0 , D), j = 1, 2, . . . be such that

(2.1) (1) κ j -a j σ j = O(1), (2) 
σ j P{S j = κ j } = O(1).
Then there exists a constant C such that for all 1 ≤ m < n,

σ n σ m P{S n = κ n , S m = κ m } -P{S n = κ n }P{S m = κ m } ≤ C D 2 max σ n √ ν n , σ m √ ν m 3 ν 1/2 n n j=m+1 ϑ j + 1 (ν n -ν m ) 3/2 + 1 νn νm -1 . (2.2)
The proof is complex, technically delicate and rather long. Some comments are in order.

Comments 2.2. (1) It is necessary to observe that ϑ X j cannot be too small. This follows from the compensation effect existing between assumptions (1. [START_REF] Macdonald | A local limit theorem for large deviations of sums of independent, non-identically distributed random variables[END_REF]) and (1.20).

(2) Condition (1.20) implies that {S n , n ≥ 1} is asymptotically uniformly distributed, a.u.d. in short. See Weber [START_REF] Weber | On Rozanov's theorem and strenghtened asymptotic uniform distribution[END_REF], Th. 3.3. It is known that the local limit theorem is applicable to the sequence {S n , n ≥ 1} only if the a.u.d. property is satisfied.

(3) It is also known that if X satisfies a local limit theorem in the strong form, it is necessary that Rozanov's condition be fulfilled, namely that

(2.3) ∞ k=1 min 0≤m<q P X k ≡ m (mod q) = ∞,
for all integers q ≥ 2.

That condition is also sufficient in some important examples, in particular if X j have stable limit distribution, see Mitalauskas [START_REF] Mitalauskas | Local limit theorems for stable limit distributions[END_REF].

(4) Choosing ϑ j smaller (see (1) however) may increase the size of the correlation bound, up to some extend, and on a case-by-case basis.

(5) Although 0 < ϑ X j < 1 for each j, we may have ϑ X j arbitrary close to 1, for infinitely many j, and so assumption (2.4) is no longer true if we pick ϑ j near ϑ X j , for each j (according to previous remark). It is interesting to estimate n j=m+1 ϑ X j in this case on an example. Example 2.3. Let X j be independent random variables, each defined as follows,

P{X j = v m } = 0 if m ≤ n j or if m > n j + b j , 1 b j if m = n j + 1, . . . , n j + b j ,
where n j , b j are positive integers, n j can be all equal, b j → ∞ with j, and the series j≥1

1 b j diverges. We have ϑ X j = k∈Z P{X j = v k } ∧ P{X j = v k+1 } = n j +b j -1 m=n j +1 P{X j = v m } ∧ P{X j = v m+1 },
and so ϑ X j = 1 -1 b j , for each j. Thus for some b > 0,

n j=m+1 ϑ X j = n j=m+1 1 - 1 b j .
If for instance b j = 1 j , this product contributes for m n . Choosing ϑ j sufficiently close to ϑ X j , for each j, we have n j=m+1 ϑ j ≈ m n , which, for m = o(n), is bigger than

1 (νn-νm) 3/2 ∼ 1 (n-m) 3/2
in the right-term of inequality (2.2).

The following Corollaries are immediate consequences of Theorem 2.1.

Corollary 2.4. Under assumptions of Theorem 2.1, suppose that ϑ n are chosen so that (2.4) τ := sup j≥1 ϑ j < 1.

Then we have the simplified bound,

σ n σ m P{S n = κ n , S m = κ m } -P{S n = κ n }P{S m = κ m } ≤ C τ D 2 max σ n √ ν n , σ m √ ν m 3 1 νn νm -1 + √ ν n (ν n -ν m ) 3/2 . (2.5)
Note that we do not require the below different condition

(2.6) τ X := sup j≥1 ϑ X j < 1,
to be hold. See also at this regard (4) in Comments 2.2. Condition (2.4) trivially holds in the i.i.d. case, choosing ϑ = ϑ X 1 > 0. Thus the previous estimate contains the correlation estimate in the i.i.d. square integrable case, with weaker requirements; in particular we do not assume a LLT to be applicable unlike in [START_REF] Weber | A sharp correlation inequality with an application to almost sure local limit theorem[END_REF]. We state: Corollary 2.5 (i.i.d. case). Let X be a square integrable random variable taking values on the lattice L(v 0 , D) = {v 0 + kD, k ∈ Z} with maximal span D. Let µ = E X, σ 2 = Var(X) > 0 and assume that ϑ X > 0. Let also {X k , k ≥ 1} be independent copies of X, and put

S n = X 1 + . . . + X n , n ≥ 1. Let κ j ∈ L(jv 0 , D), j = 1, 2, . . . be such that (2.7) (1) κ j -jµ σ √ j = O(1), (2) 
σ j P{S j = κ j } = O(1).
Then for all 1 ≤ m < n,

σ 2 √ nm P{S n = κ n , S m = κ m } -P{S n = κ n }P{S m = κ m } ≤ C ϑ D 2 n 1/2 (n -m) 3/2 + 1 n m -1 . (2.8)
Now we pass to another Corollary, which the proof is given in Section 4.

Corollary 2.6. Let 0 < c < 1. Under assumptions of Theorem 2.1 and (2.4), the following assertions are fulfilled:

(1) There exists a constant C τ,c such that for all 1 ≤ ν m ≤ cν n ,

σ n σ m P{S n = κ n , S m = κ m } -P{S n = κ n }P{S m = κ m } ≤ C τ,c D 2 max σ n √ ν n , σ m √ ν m 3 ν m ν n .
(2) Further if,

(2.9)

σ n = O( √ ν n ),
then for some other constant C τ,c , we have for all

1 ≤ ν m ≤ cν n , (2.10) σ n σ m P{S n = κ n , S m = κ m } -P{S n = κ n }P{S m = κ m } ≤ C τ,c D 2 ν m ν n .
Remark 2.7. Assumption (2.9) implies in view of (1.16) that σ n √ ν n .

Thus for the case

(2.11) σ n √ ν n , sup j≥1 ϑ j < 1.
estimate (2.10) holds, and provides a very handable correlation bound.

Remark 2.8. We indicate here a simple correlation bound, involving only the sequence

{σ n , n ≥ 1}. For n > m ≥ 1, σ m σ n P{S m = κ m , S n = κ n } -P{S m = κ m }P{S n = κ n } ≤ C σ n σ n-m + 1 .
The proof is elementary, see (4.5).

PRELIMINARIES

3.1. The Bernoulli part extraction of a random variable. Let X be a random variable such that P{X ∈ L(v 0 , D)} = 1. We assume that

(3.1) ϑ X > 0. Let f (k) = P{X = v k }, k ∈ Z. Let also 0 < ϑ ≤ ϑ X .
One can associate to ϑ and X a sequence {τ k , k ∈ Z} of non-negative reals such that

(3.2) τ k-1 + τ k ≤ 2f (k), k∈Z τ k = ϑ. Take for instance τ k = ϑ ν X (f (k) ∧ f (k + 1)
). Now define a pair of random variables (V, ε) as follows:

P{(V, ε) = (v k , 1)} = τ k , P{(V, ε) = (v k , 0)} = f (k) - τ k-1 +τ k 2 . (∀k ∈ Z) (3.3)
By assumption this is well-defined, and the margin laws verify

P{V = v k } = f (k) + τ k -τ k-1 2 , P{ε = 1} = ϑ = 1 -P{ε = 0}. (3.4) Indeed, P{V = v k } = P{(V, ε) = (v k , 1)} + P{(V, ε) = (v k , 0)} = f (k) + τ k -τ k-1 2 . Further P{ε = 1} = k∈Z P{(V, ε) = (v k , 1)} = k∈Z τ k = ϑ. Lemma 3.1.
Let L be a Bernoulli random variable which is independent of (V, ε), and put

Z = V + εDL. We have Z D = X. Proof. Plainly, P{Z = v k } = P V + εDL = v k , ε = 1} + P V + εDL = v k , ε = 0} = P{V = v k-1 , ε = 1} + P{V = v k , ε = 1} 2 + P{V = v k , ε = 0} = τ k-1 + τ k 2 + f (k) - τ k-1 + τ k 2 = f (k).
Consider now independent random variables X j , j = 1, . . . , n, and assume that

(3.5) ϑ X j > 0, j = 1, . . . , n. Let 0 < ϑ j ≤ ϑ X i , j = 1, . . . , n.
One can associate to them a sequence of independent vectors (V j , ε j , L j ), j = 1, . . . , n such that

V j + ε j DL j , j = 1, . . . , n D = X j , j = 1, . . . , n . (3.6)
Further the sequences {(V j , ε j ), j = 1, . . . , n} and {L j , j = 1, . . . , n} are independent. For each j = 1, . . . , n, the law of (V j , ε j ) is defined according to (3.3) with ϑ = ϑ j . And {L j , j = 1, . . . , n} is a sequence of independent Bernoulli random variables. Set

(3.7) S n = n j=1 X j , W n = n j=1 V j , M n = n j=1 ε j L j , B n = n j=1 ε j .
Proposition 3.2. We have

{S k , 1 ≤ k ≤ n} D = {W k + DM k , 1 ≤ k ≤ n}. And M n D = Bn j=1 L j .
We also will need the following local limit theorem for Bernoulli sums.

Proposition 3.3. Let B n = β 1 + . . . + β n , n = 1, 2, . . . where β i are i.i.d. Bernoulli r.v.'s ( P{β i = 0} = P{β i = 1} = 1/2).
There exists a numerical constant C 0 such that for all positive n

sup k P B n = k} - 2 πn e -(2k-n) 2 2n ≤ C 0 n 3/2 .

3.2.

A concentration inequality for sums of independent random variables. We also need the following Lemma ([18], Theorem 2.3).

Lemma 3.4. Let X 1 , . . . , X n be independent random variables, with 0 ≤ X k ≤ 1 for each k.

Let S n = n k=1 X k and µ = E S n . Then for any > 0, (a)

P S n ≥ (1 + )µ ≤ e - 2 µ 2(1+ /3) , (b) P S n ≤ (1 -)µ ≤ e - 2 µ 2 .
3.3. An estimate for quadratic forms. We refer to Weber [START_REF] Weber | An arithmetical approach to the convergence problem of series of dilated functions and its connection with the Riemann Zeta function[END_REF], inequality (2.19).

Lemma 3.5. For any system of complex numbers {x i } and {α i,j },

1≤i<j≤n x i x j α i,j ≤ 1 2 n i=1 |x i | 2 i< ≤n |α i, | + 1≤ <i |α ,i | . (3.8) Also, 1≤i,j≤n i =j x i x j α i,j ≤ 1 2 n i=1 |x i | 2 n =1 =i (|α i, | + |α ,i |) . (3.9) In particular, if α i,j = α j,i , then 1≤i,j≤n i =j x i x j α i,j ≤ n i=1 |x i | 2 n =1 =i |α i, | . (3.10)
Proof. We have

1≤i<j≤n x i x j α i,j ≤ 1≤i<j≤n |x i | 2 + |x j | 2 2 |α i,j | ≤ 1 2 n i=1 |x i | 2 i< ≤n |α i, | + 1≤ <i |α ,i | . (3.11)
Operating similarly for the sum 1≤j<i≤n x i x j α i,j gives the result.

3.4. Background on quasi-orthogonal systems. We recall some classical facts on the notion of quasi-orthogonality in Hilbert spaces, of much relevance in the present work, and which are taken from our book [START_REF] Weber | Dynamical Systems and Processes[END_REF], p. 22. Let (H, • ) be a real or complex Hilbert space, and let {f n , n ≥ 1} be orthonormal vectors in the inner product space H. The fact that

1 n n i=1 f i → 0 in H follows for instance from Ky Fan's result. Recall Bessel's inequality: If {e i , 1 ≤ i ≤ n} are orthogonal vectors in the inner product space H, then n i=1 | x, e i | 2 ≤ x 2
for any x ∈ H.

There are many generalizations of this inequality. In relation with Bessel's inequality, Bellman introduced the notion of a quasi-orthogonal system (see Kac, Salem and Zygmund [START_REF] Kac | A gap theorem[END_REF]). A sequence

f = {f n , n ≥ 1} in H is called a quasi-orthogonal system if the quadratic form on 2 defined by {x h , h ≥ 1} → h x h f h 2 is bounded.
A necessary and sufficient condition for f to be quasi-orthogonal is that the series c n f n converges in H, for any sequence {c n , n ≥ 1} such that c 2 n < ∞. As observed in [START_REF] Kac | A gap theorem[END_REF], "every theorem on orthogonal systems whose proof depends only on Bessel's inequality, holds for quasi-orthogonal systems".

In particular for H = L 2 (X, A, µ), (X, A, µ) a probability space, Rademacher-Menchov's Theorem 3.6 applies, and so the series c n f n converges almost everywhere, provided that c 2 n log 2 n < ∞. This is easily seen from the fact that f is quasi-orthogonal if and only if there exists a constant L depending on f only, such that (3.12)

i≤n y i f i ≤ L i≤n |y i | 2 1/2 .
There is a useful sufficient condition for quasi-orthogonality: In order for f to be quasiorthogonal, it is sufficient that

(3.13) sup i≥1 ≥1 | f i , f | < ∞.
This is Lemma 7.4.4 in Weber [START_REF] Weber | Entropie métrique et convergence presque partout[END_REF], among other sources. Indeed, (3.10) in Lemma 3.5 implies

(3.14)
1≤i,j≤n

x i x j α i,j ≤ n i=1 |x i | 2 1≤ ≤n |α i, | .
Thereby,

(3.15) i≤n y i f i 2 ≤ n i=1 |y i | 2 1≤ ≤n | f i , f | ≤ sup i≥1 ≥1 | f i , f | • n i=1 |y i | 2 .
Thus if (3.13) is fulfilled, (3.12) readily follows from the previous calculation.

3.5. Rademacher-Menshov's theorem. This well-known result states as follows.

Theorem 3.6. a) Let {a k , k ≥ 1} be a sequence of reals such that

k≥1 |a k | 2 2 log 2 k < ∞.
Then for any orthonormal sequence {ξ k , k ≥ 1} in L 2 (P), (Ω, B, P) a probability space, the series k≥1 a k ξ k converges P-almost surely.

b) If {w(n), n ≥ 1} is an arbitrary positive monotone increasing sequence of numbers with w(n) = o(log n), then there exists an everywhere divergent orthonormal series k≥1 a k ψ k whose coefficients satisfy the condition

k≥1 c 2 k w(k) 2 = ∞.
We refer to Alexits [START_REF] Alexits | Convergence problems of orthogonal series[END_REF], (see p. 80), Kashin and Saakyan [START_REF] Kashin | Orthogonal series[END_REF], Olevskii [START_REF] Olevskii | Fourier series with respect to general orthogonal systems[END_REF] concerning orthogonal systems in Fourier analysis, and Weber [START_REF] Weber | Dynamical Systems and Processes[END_REF], [START_REF] Weber | Entropie métrique et convergence presque partout[END_REF]. Less known, and less applied, are the refinements of this result, obtained notably by Tandori, see [START_REF] Kashin | Orthogonal series[END_REF], and those obtained using the majorizing measure method, which are nevertheless of a self-evident practical interest in the study of limit theorems in Probability Theory. There are many different proofs available. See also, more specifically Weber [START_REF] Weber | Some theorems related to almost sure convergence of orthogonal series[END_REF] and Ch. 7 in [START_REF] Weber | Entropie métrique et convergence presque partout[END_REF], and references therein.

3.6.

A useful almost sure convergence criterion. For the proof of the ASLLT (Theorem 5.13), the following almost sure convergence criterion is of particular relevance. This one has the advantage, comparatively to other known criteria, to allow one to control convergence of series of random variables inherent to questions of this kind. Theorem 3.7. Let ξ = {ξ l , l ≥ 1} be a sequence of real random variables with partial sums S n = n l=1 ξ l , n ≥ 1. Assume that the following assumption is satisfied: For some γ > 1, (3.16)

E i≤l≤j ξ l γ ≤ Φ( l≤j u l )Ψ( i≤l≤j u l ) (∀1 ≤ i ≤ j < ∞),
where Φ, Ψ : R + → R + are non-decreasing, Ψ(x)/x 1+η is non-decreasing for some η ≥ 0 and u = {u i , i ≥ 1} is a sequence of non negative reals such that U j = j l=1 u l ↑ ∞. Further assume that for some real M > 1, the series

(3.17) s γ = s γ M = l≥1 [M l ,M l+1 [∩U =∅ Ψ(M l ) Φ(M l ) L(l) ε(η) M γl converges, where U = {U j , j ≥ 1}, I(l) = I M (l) = [M l , M l+1 [, L(l) = L M (l) = 1 + log {[M l , M l+1 [∩U} , l ≥ 1, and ε(η) = 0 or 1, according to η > 0 or η = 0. Put, (3.18) 
S γ = S γ M = k≥1 [M k ,M k+1 [∩U =∅ sup M k ≤U j <M k+1 |S j | U j γ .
Then,

(3.19) S M γ ≤ M K γ s,
and in particular P lim j→∞

S j U j = 0 = 1,
where K γ is a constant depending on γ only.

Let

1 < M 1 ≤ M . Then (3.20) S M 1 γ γ ≤ 2 γ S M γ γ .
This is a slight variant of the criterion given in Weber [START_REF] Weber | Some examples of application of the metric entropy method[END_REF]Th. 8.2] generalizing Gál-Koksma's, in which the reals u i are assumed to be integers.

Several remarks are in order.

Remark 3.8. The above Theorem provides with (3.19), fine estimates of |S j |/U j . Functions Φ, Ψ which are present in assumption (3.16), appear in the course of the proof where increment's assumptions are combined with Lemma 3.12 to control intermediate local maxima, but not in (3.18). However assumption (3.17), which is used to achieve the proof, completely relies on these functions, and appear in the first part of (3.19).

Remark 3.9. It is quite interesting to observe that the bound obtained tightly depend on the way the sequence U is asymptotically distributed, which is reflected by (3.17). Indeed, only those k such that [M k , M k+1 [∩U = ∅ have to be counted. This seems to have been overlooked, in particular by the author. This remark also applies to similar criteria.

Remark 3.10. An analog bound can be derived from the proof for partially observed sequences {S n , n ∈ N}, N a growing sequence of integers.

Remark 3.11 (bounded case). When U = {U i , i ≥ 1} is a bounded sequence, assumption (3.16) takes the simpler form: for some γ > 1,

(3.21) E i≤l≤j ξ l γ ≤ CΨ( i≤l≤j u l ) (∀1 ≤ i ≤ j < ∞).
This readily implies that S n = n l=1 ξ l , n ≥ 1 is a Cauchy sequence in L γ (P), thus converging to some element S ∈ L γ (P). Further, assuming a little more than the convergence of the series ∞ l=1 m l , the series ∞ l=1 ξ l also converges almost surely. More precisely we have the implication,

(3.22) ∞ l=1 u l (log l) γ < ∞ =⇒ the series ∞ l=1 ξ l converges almost surely.
The case γ = 2 contains Rademacher-Menshov's Theorem. See Remark 8.3.5 and (8.3.27) in Weber [START_REF] Weber | Dynamical Systems and Processes[END_REF], and Chapter 8 for detailed study of these questions. See also Remark 5.14 where this is applied.

For the sake of completeness, we give a detailed proof of Theorem 3.7.

Proof. Let κ = κ(M ) = {κ p (M ), p ≥ 1} be the sequence defined by

κ p = κ p (M ) = k, if I k is the p-th interval such that I k ∩ U = ∅. Let L p = L p (M ) be the set of indices defined by L ∈ L p ⇔ U L ∈ I κp .
Pick arbitrarily some index in L p , which we write L * p = L * p (M ). On the one hand

(3.23) p S L * p γ γ M γ(κp+1) ≤ p Ψ(M κp+1 )Φ(M κp+1 ) M γ(κp+1) .
And on the other, for i, j ∈ L p , i ≤ j,

(3.24) E S j -S i γ Φ(M κp+1 ) ≤ Ψ(U j -U i ) (U j -U i ) 1+η (U j -U i ) 1+η ≤ Ψ(M κp+1 ) (M κp+1 ) 1+η U j -U i 1+η .
Thus

E S j -S i γ ≤ Φ(M κp+1 )Ψ(M κp+1 ) U j M κp+1 - U i M κp+1 1+η . (3.25)
We use the following Lemma based on metric entropy chaining. Lemma 3.12 ([31], Lemma 3.4). Let γ > 1, 0 < β ≤ 1 and consider a finite collection of random variables X 1 , . . . , X N ⊂ L γ (P), and reals

0 ≤ t 1 ≤ t 2 ≤ • • • ≤ t N ≤ 1 such that (3.26) X j -X i γ ≤ (t j -t i ) β (∀1 ≤ i ≤ j ≤ N ).
Then, there exists a constant K β,γ depending on β, γ only, such that

(3.27) sup 1≤i,j≤N |X i -X j | γ ≤      K β,γ if βγ > 1, K β,γ log N if βγ = 1, K β,γ N 1 γ -β if βγ < 1.
We deduce from (3.25) and Lemma 3.12, (3.28) sup i,j∈Lp

|S i -S j | γ ≤ K η,γ Φ(M κp+1 ) 1/γ Ψ(M κp+1 ) 1/γ if η > 0, K η,γ Φ(M κp+1 ) 1/γ Ψ(M κp+1 ) 1/γ log (L p ) if η = 0,
where K η,γ depend on η, γ only.

Assume that η = 0. Then (3.29)

p sup i,j∈Lp |S i -S j | γ γ M γ(κp+1) ≤ K γ p Φ(M κp+1 )Ψ(M κp+1 )(1 + log (L p )) M γ(κp+1) .
From (3.23) and (3.29) and the elementary inequality (a + b) y ≤ 2 y-1 (a y + b y ), a ≥ 0, b ≥ 0 and y ≥ 1 (which is a plain application of Hölder's inequality), we deduce that, (3.30)

p sup j∈Lp |S j | γ γ M γ(κp+1) ≤ K γ p Φ(M κp+1 )Ψ(M κp+1 )(1 + log (L p )) M γ(κp+1) .
Observing for L ∈ L p that M κp+1 ≤ M U L , we obtain, in view of the definition of L p , the following bound,

S M γ γ = k≥1 [M k ,M k+1 [∩U =∅ sup M k ≤U j <M k+1 |S j | U j γ γ = p sup j∈Lp |S j | U j γ γ ≤ M p sup j∈Lp |S j | γ γ M γ(κp+1) ≤ M K γ p Φ(M κp+1 )Ψ(M κp+1 )(1 + log (L p ))/M γ(κp+1) ≤ M K γ s γ .
Further sup j∈Lp |S j |/M κp tends to 0 almost surely, as p tends to infinity. And so (3.19) follows. The case η > 0 is identical.

Let 1 < M 1 ≤ M . For any integer k ≥ 1, there exists an integer l ≥ 1 such that

[M k 1 , M k+1 1 [⊂ [M l , M l+2 [. Moreover if [M k 1 , M k+1 1 [∩U = ∅, then [M l , M l+1 [∩U = ∅ and/or [M l+1 , M l+2 [∩U = ∅.
From the following inequality, sup

M k 1 ≤U j <M k+1 1 |S j | U j γ γ ≤ sup M l ≤U j <M l+1 |S j | U j γ + sup M l+1 ≤U j <M l+2 |S j | U j γ γ ≤ 2 γ-1 sup M l ≤U j <M l+1 |S j | U j γ γ + sup M l+1 ≤U j <M l+2 |S j | U j γ γ , (3.31)
and definition of S M , it follows that

(3.32) S M 1 γ γ ≤ 2 γ S M γ γ .
This implies by the same argument used before that sup j∈Lp |S j |/M κ p 1 tends to 0 almost surely, as p tends to infinity, κ p = κ p (M 1 ) being defined with respect to the sequence {I M 1 (l), l ≥ 1} and U. This achieves the proof.

PROOFS OF THEOREM 2.1 AND OF COROLLARY 2.6

Assumption (1.6) implies that condition (3.5) is realized. Let 0 < ϑ j ≤ ϑ X j . By Proposition 3.2, we may associate to {X k , k ≥ 1} a sequence {(V j , ε j , L j ), j ≥ 1} of independent copies of (V, ε, L) such that

{V j + ε j DL j , j ≥ 1} D = {X j , j ≥ 1}.
Further {(V j , ε j ), j ≥ 1} and {L j , j ≥ 1} are independent sequences. And {L j , j ≥ 1} is a sequence of independent Bernoulli random variables. Set (4.1)

S n = n j=1 X j , W n = n j=1 V j , M n = n j=1 ε j L j , B n = n j=1 ε j .
We notice that M n is a sum of exactly B n Bernoulli random variables. We have the representation

{S n , n ≥ 1} D = {W n + DM n , n ≥ 1}.
And M n D = Bn j=1 L j . We denote by E (V,ε) , P (V,ε) (resp. E L , P L ) the expectation and probability symbols relatively to the σ-algebra generated by the sequence {(V j , ε j ), j = 1, . . . , n} (resp. {L j , j = 1, . . . , n}). These algebra are independent.

Put (4.2) Y n = σ n 1 {Sn=κn} -P{S n = κ n } .
Let n > m ≥ 1. We have a simple expression for the correlation

(4.3) σ m σ n P{S m = κ m , S n = κ n } -P{S m = κ m }P{S n = κ n } = E Y n Y m ,
which we can more conveniently rewrite as follows,

(4.4) E Y n Y m = σ m P{S m = κ m } σ n P{S n-m = κ n -κ m } -P{S n = κ n } .
Since by (2.1)-( 2), σ m P{S m = κ m } = O(1), we have the bound

σ m P{S m = κ m } σ n P{S n-m = κ n -κ m } -P{S n = κ n } ≤ C σ n σ n-m σ n-m P{S n-m = κ n -κ m } + σ n P{S n = κ n } ≤ C σ n σ n-m + 1 . Whence for n > m ≥ 1, |E Y n Y m | ≤ C σ n σ n-m + 1 . (4.5)
We therefore have to estimate |A| where

A := σ n P{S n -S m = κ n -κ m } -P{S n = κ n } = σ n E 1 {Bn≤θνn} + 1 {Bn>θνn} 1 {Sn-Sm=κn-κm} -1 {Sn=κn} . (4.6) Further, (4.7) E Y 2 n = σ 2 n P{S n = κ n } 1 -P{S n = κ n } = O(σ n ). Let 0 < ε < 1 and set ρ = e - 2 2 , θ = 1 -ε. By Lemma 3.4, (4.8) P{B n ≤ θν n ≤ ρ νn , P{B n -B m ≤ θ(ν n -ν m ) ≤ ρ νn-νm , for all n ≥ m ≥ 1.
We can write in view of Proposition 3.2

σ n E 1 {Bn>θνn} 1 {Sn-Sm=κn-κm} -1 {Sn=κn} = σ n E (V,ε) 1 {Bn>θνn} P L D n j=m+1 ε j L j = κ n -κ m -(W n -W m ) -P L D n j=1 ε j L j = κ n -W n . (4.9) Let A(n, m) = {ε j = 0, m < j ≤ n}.
On A(n, m) we have n j=m+1 ε j L j = 0. Thus

D n j=m+1 ε j L j = κ n -κ m -(W n -W m ) = W n -W m = κ n -κ m .
So that (4.9) may be continued with

= σ n E (V,ε) 1 {(Bn>θνn)∩A(n,m)} 1 {Wn-Wm=κn-κm} -P L D n j=1 ε j L j = κ n -W n +σ n E (V,ε) 1 {Bn>θνn)∩A(n,m) c } P L D n j=m+1 ε j L j = κ n -κ m - (W n -W m ) -P L D n j=1 ε j L j = κ n -W n := A + A . (4.10)
We have the easy bound

(4.11) |A | ≤ σ n P A(n, m)} = σ n n j=m+1 ϑ j .
Concerning A , we note that

n j=1 ε j L j D = Bn j=1 L j , n j=m+1 ε j L j D = Bn j=Bm+1 L j .
By applying Proposition 3.3 we obtain,

sup z √ N P N j=1 L j = z} - 2 √ 2π e - (z-(N/2)) 2 (N/2) = o 1 N . (4.12)
It follows that

P L D Bn j=1 L j = κ n -W n - 2e - (κn-Wn-(Bn/2)) 2 D 2 (Bn/2) √ 2πB n = o 1 B 3/2 n .
Further since on the set A(n, m) c , ε j = 1 for some m < j ≤ n, we have B n > B m , then

P L D Bn-Bm j=1 L j = κ n -κ m -(W n -W m ) - 2e - (κn-κm-(Wn-Wm)-(Bn-Bm)/2) 2 D 2 (Bn-Bm)/2 2π(B n -B m ) = o 1 (B n -B m ) 3/2 . Therefore, |A | ≤ σ n E (V,ε) 1 {(Bn>θνn)∩A(n,m) c } 2e - (κn-Wn-(Bn/2)) 2 D 2 (Bn/2) √ 2πB n - 2e - (κn-κm-(Wn-Wm)-(Bn-Bm)/2) 2 D 2 (Bn-Bm)/2 2π(B n -B m ) +C 0 σ n E (V,ε) 1 {Bn>θνn,Bn>Bm} 1 B 3/2 n + 1 (B n -B m ) 3/2 := A 1 + C 0 A 2 , (4.13) 
where the constant C 0 comes from the Landau symbol o in (4.12). The second term is easily estimated. Indeed,

A 2 = σ n E (V,ε) 1 {Bn>θνn,Bn>Bm} 1 B 3/2 n + 1 (B n -B m ) 3/2 ≤ 2σ n P{B n -B m ≤ θ(ν n -ν m )} +σ n E (V,ε) 1 {Bn>θνn, Bn-Bm>θ(νn-νm)} 1 B 3/2 n + 1 (B n -B m ) 3/2 ≤ C σ n ρ νn-νm + 1 (θν n ) 3/2 + 1 (θ(ν n -ν m )) 3/2 . (4.14)
We now estimate A 1 , which we bound as follows: = 1.

A 1 = σ n E (V,ε) 1 {(Bn>θνn)∩A(n,m) c } 2e - (κn-Wn-(Bn/2)) 2 D 2 (Bn/2) √ 2πB n - 2e - (κn-κm-(Wn-Wm)-(Bn-Bm)/2) 2 D 2 (Bn-Bm)/2 2π(B n -B m ) ≤ C E (V,ε) 1 {(Bn>θνn)∩A(n,m) c } σ n √ B n B n B n -B m -1 × e - (κn-κm-(Wn-Wm)-(Bn-Bm)/2) 2 D 2 (Bn-Bm)/2 +C E (V,ε) 1 {(Bn>θνn)∩A(n,m) c } σ n √ B n × e - (κn-Wn-(Bn/2)) 2 D 2 (Bn/2) -e - (κn-κm-(Wn-Wm)-(Bn-Bm)/2) 2 D 2 (Bn-Bm)/2 ≤ C θ σ n √ ν n E (V,ε) 1 {Bn>θνn,Bn>Bm} B n B n -B m -1 + E (V,
Thus

B * = sup n≥1 B n ν n < ∞, almost surely. Moreover B * p < ∞ for 1 < p < ∞. Consider A 11 . Using the inequality √ x - √ y ≤ √ x -y if x ≥ y ≥ 0, we have on the set {B n > B m , B n -B m > θ(ν n -ν m )}, B n B n -B m -1 = √ B n - √ B n -B m √ B n -B m ≤ √ B m √ B n -B m ≤ B 1/2 * √ ν m θ(ν n -ν m ) = B 1/2 * 1 √ θ νn νm -1 ≤ B 1/2 * 1 √ θ( νn νm -1) 
.

Thus

A 11 = E (V,ε) 1 Bn-Bm θ(νn-νm) >1 + 1 Bn-Bm θ(νn-νm) ≤1 1 {Bn>θνn,Bn>Bm} B n B n -B m -1 ≤ E (V,ε) B 1/2 * √ θ( νn νm -1) + E (V,ε) 1 Bn-Bm θ(νn-νm) ≤1 1 {Bn>Bm} √ B m √ B n -B m ≤ E (V,ε) B 1/2 * √ θ( νn νm -1) + √ ν m E (V,ε) B 1/2 * 1 Bn-Bm θ(νn-νm) ≤1
. (4.17) By Hölder's inequality, for α > 1,

E (V,ε) B 1/2 * 1 Bn-Bm θ(νn-νm) ≤1 ≤ E (V,ε) (B * ) α/2 1/α P 1-1/α B n -B m θ(ν n -ν m ) ≤ 1 ≤ E (V,ε) (B * ) α/2 1/α ρ (1-1/α)(νn-νm) .
Therefore

A 11 ≤ E (V,ε) B 1/2 * √ θ( νn νm -1) + B 1/2 * α √ ν m ρ (1-1/α)(νn-νm) . (4.18)
We now turn to A 12 . Put

κ n = κ n -W n -(DB n /2).
Then

A 12 = E (V,ε) 1 {Bn>θνn,Bn>Bm} e - (κn-Wn-(Bn/2)) 2 D 2 (Bn/2) -e - (κn-κm-(Wn-Wm)-(Bn-Bm)/2) 2 D 2 (Bn-Bm)/2 = E (V,ε) 1 {Bn>θνn,Bn>Bm} e - κ n 2 D 2 (Bn/2) -e - (κ n -κ m ) 2 D 2 (Bn-Bm)/2 .
At first, (4. [START_REF] Macdonald | A local limit theorem for large deviations of sums of independent, non-identically distributed random variables[END_REF])

E (V,ε) 1 {Bn>θνn,0<Bn-Bm≤θ(νn-νm)} e - κ n 2 D 2 (Bn/2) -e - (κ n -κ m ) 2 D 2 (Bn-Bm)/2 ≤ 2ρ νn-νm .

Concerning the integration over {B

n > θν n , B n -B m > θ(ν n -ν m )}, we get by letting b n = κ n √ B n ,
and using the inequality |e -u -e -v | ≤ |u -v| for reals u ≥ 0, v ≥ 0,

D 2 2 e - κ n 2 D 2 (Bn/2) -e - (κ n -κ m ) 2 D 2 (Bn-Bm)/2 ≤ - (κ n -κ m ) 2 (B n -B m ) + κ n 2 B n = - ( √ B n b n - √ B m b m ) 2 B n -B m + b 2 n = -B n b 2 n -B m b 2 m + 2 √ B n B m b n b m + B n b 2 n -B m b 2 n B n -B m = -(b n -b m ) 2 + 2b m b n ( Bn Bm -1) Bn Bm -1 ≤ 2(b 2 n + b 2 m ) + 2|b m ||b n |( Bn Bm -1) Bn Bm -1 . (4.20) Hence E (V,ε) 1 {Bn>θνn,Bn-Bm>θ(νn-νm)} e - κ n 2 D 2 (Bn/2) -e - (κ n -κ m ) 2 D 2 (Bn-Bm)/2 ≤ C E (V,ε) 1 {Bn>θνn,Bn-Bm>θ(νn-νm)} b 2 n + b 2 m Bn Bm -1 + |b m ||b n | Bn Bm -1 . (4.21)
One next establishes the following three estimates:

E (V,ε) 1 {Bn>θνn,Bn-Bm>θ(νn-νm)} |b n ||b m | Bn Bm -1 ≤ σ n σ m √ ν n ν m C θ νn νm -1 E (V,ε) 1 {Bn>θνn,Bn-Bm>θ(νn-νm)} |b n | 2 Bn Bm -1 ≤ σ 2 n ν n C θ νn νm -1 E (V,ε) 1 {Bn>θνn,Bn-Bm>θ(νn-νm)} |b m | 2 Bn Bm -1 ≤ σ 2 m ν m C θ νn νm -1 . (4.22) Let S m = W m +(DB m /2), we note that S m -a m = S m -E (V,ε) S m , since E S m = E (V,ε) S m = a m . Besides by (2.1)-(1), |κ j -a j | = O(σ j ); thus (4.23) |b j | = κ j -a j -W j + (DB j /2) -a j B j ≤ C B j σ j + S j -E (V,ε) S j .
We note that

1 Bn Bm -1 ≤ √ Bm( √ Bn+ √ Bm) θ(νn-νm) , on the set {B n > θν n , B n -B m > θ(ν n -ν m )}. Thus |b n ||b m | Bn Bm -1 ≤ C √ B n B m √ B m ( √ B n + √ B m ) θ(ν n -ν m ) × σ n + S n -E (V,ε) S n σ m + S m -E (V,ε) S m ≤ 2Cσ n σ m θ(ν n -ν m ) 1 + S n -E (V,ε) S n σ n 1 + S m -E (V,ε) S m σ m ≤ σ n σ m √ ν n ν m 2C √ ν m ( √ ν n + √ ν m ) θ(ν n -ν m ) 1 + S n -E (V,ε) S n σ n 1 + S m -E (V,ε) S m σ m = σ n σ m √ ν n ν m 2C θ νn νm -1 1 + S n -E (V,ε) S n σ n 1 + S m -E (V,ε) S m σ m .
By the Cauchy-Schwarz inequality,

E (V,ε) S n -E (V,ε) S n σ n S m -E (V,ε) S m σ m ≤ E (V,ε) S n -E (V,ε) S n 2 σ 2 n 1/2 E (V,ε) S m -E (V,ε) S m 2 σ 2 m 1/2 ≤ C. (4.24) Since E (V,ε) |b n ||b m | Bn Bm -1 ≤ σ n σ m √ ν n ν m 2C θ νn νm -1 E (V,ε) 1+ S n -E (V,ε) S n σ n 1+ S m -E (V,ε) S m σ m we deduce (4.25) E (V,ε) 1 {Bn>θνn,Bn-Bm>θ(νn-νm)} |b n ||b m | Bn Bm -1 ≤ σ n σ m √ ν n ν m 2C θ νn νm -1 . Now on the set {B n > θν n , B n -B m > θ(ν n -ν m )}, |b n | 2 Bn Bm -1 ≤ C B n σ n + S n -E (V,ε) S n 2 B m B n -B m ≤ C σ 2 n B m B n (θ(ν n -ν m )) 1 + S n -E (V,ε) S n σ n 2 ≤ C σ 2 n ν n B m θ 2 (ν n -ν m ) 1 + S n -E (V,ε) S n σ n 2 ≤ CB * σ 2 n ν n ν m θ 2 (ν n -ν m ) 1 + S n -E (V,ε) S n σ n = CB * σ 2 n ν n 1 θ 2 ( νn νm -1) 1 + S n -E (V,ε) S n σ n 2 ≤ C θ,ρ B * σ 2 n ν n 1 νn νm -1 1 + S n -E (V,ε) S n σ n 2 .
Therefore

E (V,ε) 1 {Bn>θνn,Bn-Bm>θ(νn-νm)} |b n | 2 Bn Bm -1 ≤ C θ,ρ σ 2 n ν n 1 νn νm -1 E (V,ε) B * 1 + S n -E (V,ε) S n σ n 2 ≤ C θ,ρ σ 2 n ν n 1 νn νm -1 1 + 1 σ 2 n E (V,ε) S n -E (V,ε) S n 2 ≤ σ 2 n ν n C θ,ρ νn νm -1 . (4.26) Next |b m | ≤ C √ Bm σ m + S m -E (V,ε) S m , and so on the set {B n -B m > θ(ν n -ν m )}, |b m | 2 Bn Bm -1 ≤ C B m σ m + S m -E (V,ε) S m 2 B m B n -B m ≤ C σ 2 m θ(ν n -ν m ) 1 + S m -E (V,ε) S m σ m 2 ≤ C σ 2 m ν m ν m θ(ν n -ν m ) 1 + S m -E (V,ε) S m σ m 2 ≤ C σ 2 m ν m 1 θ( νn νm -1) 1 + S m -E (V,ε) S m σ m 2 ≤ σ 2 m ν m C θ,ρ νn νm -1 1 + S m -E (V,ε) S m σ m 2 .
Therefore

E (V,ε) 1 {Bn>θνn,Bn-Bm>θ(νn-νm)} |b m | 2 Bn Bm -1 ≤ σ 2 m ν m C θ,ρ νn νm -1 1 + S m -E (V,ε) S m σ m 2 ≤ σ 2 m ν m C θ,ρ νn νm -1 . (4.27)
We thus arrive at (4.28)

E (V,ε) 1 {Bn>θνn,Bn-Bm>θ(νn-νm)} e - κ n 2 D 2 (Bn/2) -e - (κ n -κ m ) 2 D 2 (Bn-Bm)/2 ≤ σ n √ ν n + σ m √ ν m 2 C θ,ρ νn νm -1 , Consequently, (4.29) |A 12 | ≤ 2ρ νn-νm + σ n √ ν n + σ m √ ν m 2 C θ,ρ νn νm -1 .
As by (4.18),

|A 11 | ≤ E (V,ε) B * √ θ( νn νm -1) + B * α √ ν m ρ (1-1/α)(νn-νm) ,
it follows that (4.30)

|A 1 | ≤ E (V,ε) B 1/2 * √ θ( νn νm -1) + B 1/2 * α √ ν m ρ (1-1/α)(νn-νm) + 2ρ νn-νm + σ n √ ν n + σ m √ ν m 2 C θ,ρ νn νm -1 .
We have

|A| ≤ A + C 0 |A 2 | + C θ σ n √ ν n A 1 .
Recalling 

|A| ≤ σ n n j=m+1 ϑ j + C 0 C σ n ρ νn-νm + 1 (θν n ) 3/2 + 1 (θ(ν n -ν m )) 3/2 +C θ σ n √ ν n E (V,ε) B * √ θ( νn νm -1) + B * α √ ν m ρ (1-1/α)(νn-νm) + 2ρ νn-νm + σ n √ ν n + σ m √ ν m 2 C θ,ρ νn νm -1 . (4.31)
We note that

ρ νn-νm + 1 (θν n ) 3/2 + 1 (θ(ν n -ν m )) 3/2 is less than 1 (νn-νm) 3/2 , up to a constant C θ,ρ,α . Let σ(n, m) = max σn √ νm , σm √ νm , 1 .
By considering separately the cases ν n -ν m ≥ 1, 0 < ν n -ν m < 1, we thus get

|A| ≤ σ n n j=m+1 ϑ j + C θ,ρ,α σ n (ν n -ν m ) 3/2 +C θ,ρ,α σ n √ ν n 1 νn νm -1 + √ ν m ρ (1-1/α)(νn-νm) + σ n √ ν n + σ m √ ν m 2 1 νn νm -1 . (4.32) Now by (1.15), 1 ≤ 2 D σ √ ϑ Y
, and so

σ(n, m) ≤ C D max σ n √ ν n , σ m √ ν m . Thus |A| ≤ σ n n j=m+1 ϑ j + C θ,ρ,α σ n √ ν n √ ν n (ν n -ν m ) 3/2 +C θ,ρ,α σ n √ ν n 1 νn νm -1 + √ ν m (ν n -ν m ) 3/2 + C D max σ n √ ν n , σ m √ ν m 2 1 νn νm -1 ≤ σ n n j=m+1 ϑ j + C θ,ρ,α σ n √ ν n 1 νn νm -1 + √ ν n (ν n -ν m ) 3/2 +C θ,ρ,α D C D max σ n √ ν n , σ m √ ν n 3 1 νn νm -1 ≤ C θ,ρ,α C D 2 max σ n √ ν n , σ m √ ν m 3 × ν 1/2 n n j=m+1 ϑ j + 1 νn νm -1 + √ ν n (ν n -ν m ) 3/2 . (4.33)
Using (4.4), (4.6) we obtain (the value of α being irrelevant and θ, ρ depending only on ε, the value of which being irrelevant too)

E Y n Y m ≤ C D 2 max σ n √ ν n , σ m √ ν m 3 × ν 1/2 n n j=m+1 ϑ j + 1 νn νm -1 + √ ν n (ν n -ν m ) 3/2 (4.34)
if n > m ≥ 1. This together with (4.2), proves (2.2).

Finally if τ = sup j≥1 ϑ X j < 1, we pick ϑ j so that 0 < ϑ j ≤ ϑ X j ≤ τ < 1, j = 1, 2, . . . ,

and note that log 1 ϑ j ≥ log 1 τ ≥ log 1 τ τ ϑ j , Thus n j=m+1 ϑ j = e -n j=m+1 log 1 ϑ j ≤ C(M ) ( n j=m+1 log 1 ϑ j ) M ≤ C(τ, M ) ( n j=m+1 ϑ j ) M = C(, M ) (ν n -ν m ) M .
Taking M = 3/2 provides the bound

n j=m+1 ϑ j ≤ C(τ ) (ν n -ν m ) 3/2 .
By carrying it back to estimate (4.34), we get

(4.35) E Y n Y m ≤ C τ,c D 2 max σ n √ ν n , σ m √ ν m 3 1 νn νm -1 + √ ν n (ν n -ν m ) 3/2 ,
which is estimate (2.5). This completes the proof of Theorem 2.1.

4.1. Proof of Corollary 2.6. Let 0 < c < 1. Let ν m ≤ c ν n . Then 1 ν n /ν m -1 ≤ 1 1 - √ c ν m ν n = C c ν m ν n . Further √ ν n (ν n -ν m ) 3/2 = ν n ν n -ν m 1 (ν n -ν m ) = 1 (1 -ν m /ν n ) 3/2 1 ν n ≤ 1 (1 -c) 3/2 1 ν n .
By incorporating these estimates into (4.32) we get

E Y n Y m ≤ C τ,c D 2 max σ √ ν n , σ m √ ν m 3 ν m ν n . (4.36)
This proves Corollary 2.6.

In the following Example, we study the correlation of the system of random variables (recalling (4.2)) (4.37)

ϑ n Y n σ n √ ν n = ϑ n (1 {Sn=κn} -P{S n = κ n }) √ ν n , n ≥ 2.
We consider the case lim n→∞ ϑ Xn = 0.

4.2. Example. Let (4.38) Var(X n ) = ϑ Xn = log n -log(n -1), n ≥ 1.
We also choose D = 2, ϑ n = ϑ Xn , n ≥ 1. As ν n = log n, assumption 1.6 is satisfied. By (4.38), (4.39)

σ n = log n = √ ν n .
This is compatible with (1.16), since we assumed D = 2. We have ϑn σn

√ νn = 1 n log n , thus the series n≥1 ϑn σn √ νn is divergent. In the case considered, (4.40) Y n n log n = 1 {Sn=κn} -P{S n = κ n } n √ log n , n ≥ 2.
We examine the magnitude of the L 2 -increments.

Lemma 4.1. There exists an absolute constant C such that for any integers

1 < M 1 < M 2 , E M 1 ≤m≤M 2 Y m m log m 2 ≤ C M 1 ≤m≤M 2 1 m log m . (4.41)
Proof. Let b > 1 be some fixed real. We consider several cases.

Case 1:(m = n) By using (4.7), we have

E Y 2 n ≤ C √ n, so that E Y 2 m m log m ≤ C √ m log m ≤ C.
Case 2:(m + 1 ≤ n < m b ) By using (4.5),

m+1≤n<m b |E Y m Y n | n log n ≤ C m+1≤n<m b 1 n √ log n log(n -m) + 1 n log n ≤ C b 1 √ log m 1≤h≤m b 1 h √ log h + log log m b -log log m ≤ C b 1 √ log m log m + log b log m log m ≤ C b . (4.42) Case 3:(n ≥ m b ) By Corollary 2.4, |E Y n Y m | = σ n σ m P{S n = κ n , S m = κ m } -P{S n = κ n }P{S m = κ m } ≤ C τ D 2 max σ n √ ν n , σ m √ ν m 3 1 νn νm -1 + √ ν n (ν n -ν m ) 3/2 ≤ C 1 νn νm -1 + √ ν n (ν n -ν m ) 3/2 ≤ C 1 νn νm -1 . (4.43) Thus n>m b |E Y m Y n | n log n ≤ C n>m b 1 n(log n) log n log m -1 . (4.44) We have log n log m ≥ (1 -1/b). Thus 1 log n log m -1 ≤ 1 1 - √ c log m log n = C c log m log n . So that (4.45) n>m b |E Y m Y n | n log n ≤ C b n>m b 1 n(log n) log m log n = C b log m n>m b 1 n(log n) 3/2 .
This sum is a special case of the sum

n>N ϑ n ν δ n ν n ,
and we can apply Lemma 5.7 with δ = 1 2 . Consequently (choosing

N = m b ) log m b n>m b 1 n(log n) 3/2 ≤ C b . We deduce (4.46) n>m b |E Y m Y n | n log n ≤ C b log m n>m b 1 n(log n) 3/2 ≤ C b . By combining, (4.47) n≥m |E Y m Y n | n log n ≤ C b .

Now noticing that

E M 1 ≤m≤M 2 Y m m log m 2 ≤ M 1 ≤m≤M 2 E Y 2 m (m log m) 2 + 2 M 1 ≤m≤M 2 1 m log m m<n≤M 2 |E Y m Y n | n log n . (4.48)

A GENERAL ASLLT WITH ALMOST SURE CONVERGENT SERIES

In this Section we derive from Theorem 2.1 and Corollary 2.6, a sharp almost sure local limit theorem for sums of independent random variables. This one is stated in Theorem 5.13, assertion (iv), and thereby extends the ASLLT proved in the i.i.d. case (Theorem 1.2), to the independent non-identically distributed case. This result is obtained by specifying new general stronger forms (i), (ii) and (iii), proved preliminarily, and thus is a consequence from them, in which the almost sure convergence of the naturally associated series, namely k≥1 sup

2 j ≤n<2 j+1 1 {Sn=κn} -P{Sn=κn} √ νn 1≤n<2 j 1 σn √ νn , 2 k ≤ 1≤n<2 j 1 σ n √ ν n < 2 k+1 ,
is established. For proving these results no local limit theorem is assumed; thus theses ones are disconnected from the local limit theorem.

Basic Assumption. We assume throughout this Section that

The series n≥1 ϑn σn √ νn is divergent.

(5.1) Remark 5.1. It is worth observing that if assumption (5.1) is not satisfied, assuming only a little more than convergence of the series n≥1 ϑn σn √ νn , the sequence

n<2 J ϑ n (1 {Sn=κn} -P{S n = κ n }) √ ν n J = 1, 2, . . . ,
converges almost surely, which is strong convergence result, although radically different from the almost sure local limit property. See Remark 5.14 for details.

Introducing function h.

Let function h be defined as follows:

h(x) = max 1≤m≤x σ 2 m ν m , x ≥ 1. (5.2) Remark 5.2. By inequality (1.16), σ 2 n ≥ D 2 4 ν n , for n ≥ 1, so that h(x) ≥ D 2 /4, x ≥ 1. Now if (5.3) σ 2 n = O(ν n )
, one can take h(x) ≡ const. This is obviously true in the i.i.d. case. Note that assumption (5.1) is fulfilled. This follows from assertion (i) of Th. 162 in [START_REF] Hardy | Inequalities[END_REF].

5.3.

A system of weights. Introduce a system of weights associated with sequences {ϑ n , n ≥ 1}, {σ n , n ≥ 1}, and of key importance for controlling E Z 2 i . Set (5.4)

ω(m) = νm<νn<2νm ϑ n σ n-m √ ν n n ≥ 1.
We begin with listing some examples for which the following condition

(5.5) ω * X := sup m≥1 ω(m) < ∞, is satisfied. Example 5.3 (i.i.d. case). In this case (ϑ n = C, ν n = n, σ n = √ n), we have ω(m) = C m<n<2m 1 √ n √ n -m ≤ C √ m m h=1 1 √ h ≤ C √ m √ m = C. Thus ω * X is finite. Example 5.4 (Example 4.2 continued). In this Example (ϑ n = 1 n , ν n = log n, σ n = √ log n), we get ω(m) = νm<νn<2νm 1 n (log n) log(n -m) = m+1≤n<m 2 1 n √ log n log(n -m) ≤ C 1 √ log m 1≤h≤m 2 1 h √ log h ≤ C 1 √ log m log m ≤ C. (5.6)
Whence also ω * X is finite. Example 5.5 (Cramér's probabilistic model). This well-known model basically consists with a sequence of independent random variables ξ = {ξ j , j ≥ 3}, and associated partial sums S n = n j=3 ξ j , each ξ j being defined by (5.7)

P{ξ j = 1} = 1 log j , P{ξ j = 0} = 1 - 1 log j .
We have

m n = n j=3 1 log j , σ 2 n = n j=3 (1 -1 log j )( 1 log j ).
In our case D = 1. Further for j ≥ 3, P{ξ j = k} ∧ P{ξ j = k + 1} = 1 log j , if k = 0, and equals 0 for k ∈ Z * . Thus ϑ ξ j = 1 log j . We choose ϑ j = ϑ ξ j , and so

ν n = n j=3 1 log j . Thus σ 2 n ∼ ν n ∼ n log n , as n → ∞. Moreover h(n) = O(1).
By Proposition 3.1 in [START_REF] Weber | Critical probabilistic characteristics of the Cramér model for primes and arithmetical properties[END_REF], the local limit theorem holds,

P{S n = κ} - e - (κ-mn) 2 2σ 2 n √ 2πσ n ≤ C (log n) 3/2 n , for all κ ∈ Z such that |κ -m n | ≤ C n 3/4
log n . As to the system of weights, we have

ω(n) ≤ C νn<νm<2νn log(m -n) log m (log m) √ m √ m -n ≤ C n<m<bn log(m -n) log m 1/2 1 √ m √ m -n ≤ C 1 √ n 1≤h≤(b-1)n 1 √ h ≤ C 1 √ n √ n ≤ C. (5.8)
So that ω * ξ < ∞. 5.4. Properties of ω. We need the following simple Lemma. Lemma 5.6. We have for all m ≥ 1, (

(5.9)

ω(m) ≤ C ϑ νm<νn<2νm ϑ n ν n-m .
(ii) If the sequence {ϑ n , n ≥ 1} is decreasing, then

(5.10) ω(m) ≤ C ϑ h≥1 νm<ν m+h <2νm ϑ h ν h .
Proof. Assertion (i) follows from (1.16). Assertion (ii) is immediate.

In order to estimate ω(m) in the general case, we need an additional Lemma. This lemma will also be of great utility in estimating the rectangle sums appearing in the first Step of the proof of Theorem 5.13. Lemma 5.7. We have the following estimates, (i) Let 0 < δ < 1. Then for all N ≥ 1,

n>N δϑ n ν δ n-1 ν n ≤ 1 ν δ N . (ii) Further, for M > N ≥ 1 such that ν N > e, N <n≤M ϑ n ν n ≤ log ν M -log ν N . (5.11)
5.6. The key metrical estimate. We control the L 2 -norm of increments I≤i<J Z i and prove the following estimate.

Theorem 5.10. Assume that (5.27)

m i = O(1), i → ∞.
There exists a constant C X such that for any J ≥ I ≥ 1,

E I≤i<J Z i 2 ≤ C X h(2 J+1 ) I≤i≤J 2 i <νm≤2 i+1 ϑ m max(1, ω(m)) σ m √ ν m . (5.28)
In particular,

E I≤i<J Z i 2 ≤ C X Φ M J I≤i≤J m i . (5.29)
Proof. Let 0 < c < 1. By Corollary 2.6, and assumption (1.6), there exists a constant C c such that for all 1

≤ ν m ≤ cν n , E Y n Y m ≤ C c,D h(n) ν m ν n .
Recall that

E Y 2 n = σ 2 n P{S n = κ n } 1 -P{S n = κ n } = O(σ n ) by assumption (2.1)-(2).
Step 1. We first bound the rectangle sums (5.30)

I≤i<j-1<J |E Z i Z j |. Let 1 ≤ i < j -1. Then |E Z i Z j | ≤ 2 i ≤νm<2 i+1 2 j ≤νn<2 j+1 ϑ m ϑ n σ m √ ν m σ n √ ν n |E Y n Y m | ≤ C D h(2 j+1 ) 2 i ≤νm<2 i+1 2 j ≤νn<2 j+1 ϑ m ϑ n σ n σ m √ ν m ν n ν m ν n = C D h(2 j+1 ) 2 i ≤νm<2 i+1 ϑ m σ m √ ν m √ ν m 2 j ≤νn<2 j+1 ϑ n σ n ν n . (5.31)
Noting that ν n ≥ ν m implies n ≥ m by assumption (1.19), so that ν n ≥ 2 j and ν m < 2 i+1 , imply n ≥ m, we have

I≤i<j-1<J |E Z i Z j | ≤ C D h(2 J+1 ) I≤i<j-1<J 2 i ≤νm<2 i+1 ϑ m σ m √ ν m √ ν m 2 j ≤νn<2 j+1 ϑ n σ n ν n ≤ C D h(2 J+1 ) I≤i≤J 2 i ≤νm<2 i+1 ϑ m σ m √ ν m √ ν m n≥m ϑ n σ n ν n ≤ C D h(2 J+1 ) max m≤2 J+1 √ ν m n≥m ϑ n σ n ν n I≤i≤J m i . (5.32)
To control the mid-term, we appeal to Lemma 3.5. By applying it with δ = 1 2 , we get (5.33)

ν 1/2 m n≥m ϑ n σ n ν n ≤ C √ ν m n≥m ϑ n ν 3/2 n ≤ C ν 1/2 m 1 ν 1/2 m = C. Therefore I≤i<j-1<J |E Z i Z j | ≤ C D h(2 J+1 ) I≤i≤J m i . (5.34)
Step 2. Now we bound the square sum (5.35)

I≤i≤J E Z 2 i .
We have

E |Z i | 2 = E 2 i ≤νm<2 i+1 ϑ m Y m σ m √ ν m 2 = 2 2 i ≤νm<νn<2 i+1 ϑ m ϑ n E Y m Y n σ m σ n √ ν m ν n + 2 i ≤νm<2 i+1 ϑ m E Y 2 m σ 2 m ν m := I 1 + I 2 .
(5.36) At first we deduce from (4.7),

I 2 = 2 i ≤νm<2 i+1 ϑ m E Y 2 m σ 2 m ν m ≤ C 2 i ≤νm<2 i+1 ϑ m σ m ν m ≤ C 2 i ≤νm<2 i+1 ϑ m σ m √ ν m . Now |I 1 | ≤ 2 2 i ≤νm<νn<2 i+1 ϑ m ϑ n |E Y m Y n | σ m σ n √ ν m ν n (5.37) By (4.5) |E Y m Y n | ≤ C ϑ σ n σ n-m + 1 , (n > m ≥ 1)
so that We therefore get

2 i ≤νm<νn<2 i+1 ϑ m ϑ n |E Y m Y n | σ m σ n √ ν m ν n ≤ C ϑ 2 i ≤νm<νn<2 i+1 ϑ m ϑ n σ m σ n √ ν m ν n σ n σ n-m + 1 ≤ C ϑ 2 i <νm≤2 i+1 ϑ m σ m √ ν m νm<νn<2 i+1 ϑ n √ ν n 1 σ n-m +C ϑ 2 i ≤νm<2 i+1 ϑ m σ m √ ν m 2 = C ϑ 2 i <νm≤2 i+1 ϑ m ω(m) σ m √ ν m + C ϑ 2 i ≤νm<2 i+1 ϑ m σ m √ ν m 2 ≤ C ϑ 2 i <νm≤2 i+1 ϑ m max(1, ω(m)) σ m √ ν m , ( 5 
E Z 2 i ≤ C ϑ 2 i <νm≤2 i+1 ϑ m max(1, ω(m)) σ m √ ν m , (5.39) and I≤i≤J E Z 2 i ≤ C ϑ I≤i≤J 2 i <νm≤2 i+1 ϑ m max(1, ω(m)) σ m √ ν m . (5.40) Further E |Z i Z i+1 | ≤ Z i 2 Z i+1 2 ≤ 1 2 h∈{i,i+1} Z h 2 2 ≤ C ϑ 2 i <νm≤2 i+1 ϑ m max(1, ω(m)) σ m √ ν m . (5.41)
Step 3. By combining (5.40) and (5.41) with estimate (5.34) we get,

E I≤i<J Z i 2 ≤ C D h(2 J+1 ) I≤i≤J 2 i <νm≤2 i+1 ϑ m max(1, ω(m)) σ m √ ν m ≤ C D h(2 J+1 ) max m≤2 J+1 (1, ω(m) 
I≤i≤J 2 i <νm≤2 i+1 ϑ m σ m √ ν m = C D Φ M J I≤i≤J m i . (5.42)
At this stage we make a useful observation.

Remark 5.11 (R-geometric blocks). Let R > 1 and consider the sequence Z(R) = {Z R,i , i ≥ 1} of sums of R-geometric blocks defined as follows,

(5.43) Z R,i = R i ≤νn<R i+1 ϑ n Y n σ n √ ν n , i ≥ 1. 
Correspondingly, we note

(5.44) m R,i = R i ≤νn<R i+1 ϑ n σ n √ ν n , i ≥ 1,
and M R the sequence

(5.45) M R = M R,J , J ≥ 1 where M R,J = M (R J ) = 1≤i<J m R,i , J ≥ 1.
For controlling rectangle sums (5.30) of 2-geometric blocks,

I≤i<j-1<J |E Z i Z j |,
we have used Corollary 2.6, and assumption (1.6). Next we controlled separately E |Z i Z i+1 | in (5.41), by using Cauchy-Schwarz's inequality and an elementary inequality. If in place we had rectangle sums of R-geometric blocks, with 1 < R < 2, then this can be done quite similarly by first controlling the modified rectangle sums (5.46)

I≤i<j-δ(R)<J |E Z i Z j |,
for some suitable integer δ(R) > 1 depending on R only. Next we can control E |Z i Z i+h |, h = 1, . . . , δ(R) correspondingly as before. Finally we control the square sums of R-geometric blocks the same way as in Step 2 for the sum (5.35). Consequently we control by using the same proof the sums of R-geometric blocks. For simplicity of the notation we only write it for 2-geometric blocks.

By Remark 5.11, we also have

E I≤i<J Z R,i 2 ≤ C D,R Φ M (R J ) I≤i≤J m R,i . (5.47)
Subsequence case. Let N ⊆ N be an increasing sequence of positive integers and consider the N-restricted blocks (5.48)

Z N i = 2 i ≤νn<2 i+1 n∈N ϑ n Y n σ n √ ν n , i ≥ 1. 
Let also (5.49)

m N i = 2 i ≤νn<2 i+1 n∈N ϑ n σ n √ ν n , i ≥ 1,
and define correspondingly M N , and M N j , j ≥ 1, as before. Theorem 5.12 (Subsequences). Assume that (5.50)

m N i = O(1), i → ∞.
There exists a constant C X such that for any J ≥ I ≥ 1,

(5.51)

E I≤i<J Z N i 2 ≤ C X h(2 J+1 ) I≤i≤J 2 i <νm≤2 i+1 m∈N ϑ m max(1, ω(m)) σ m √ ν m .
In particular,

E I≤i<J Z N i 2 ≤ C X Φ M J I≤i≤J m N i . (5.52)
It is of matter to indicate that applications to corresponding subsequence-ASLLT's, will require the following modification of assumption 5.1 to hold:

n∈N ϑ n σ n √ ν n = ∞, ( 5 
.53) also that m N i might tend to 0, even in the i.i.d. case, and (see (4.2)) that κ n defines Y n .

Proof. It is a simple adaptation of the previous proof. In (5.31), we bounded the correlation |E Z i Z j | by the sum

2 i ≤νm<2 i+1 2 j ≤νn<2 j+1 ϑ m ϑ n σ m √ ν m σ n √ ν n |E Y n Y m |, next I≤i<j-1<J |E Z i Z j | by the sum I≤i<j-1<J 2 i ≤νm<2 i+1 2 j ≤νn<2 j+1 ϑ m ϑ n σ m √ ν m σ n √ ν n |E Y n Y m |.
which is shown in (5.32) to be bounded by I≤i≤J m i . Similarly, in (5.37), we controlled |I 1 | by the sum

2 i ≤νm<νn<2 i+1 ϑ m ϑ n |E Y m Y n | σ m σ n √ ν m ν n with terms |E Y m Y n |, which is next bounded in (5.38), by C ϑ 2 i <νm≤2 i+1 ϑ m max(1, ω(m)) σ m √ ν m .
The control of the sum I 2 raises no peculiar problem. It is clear that all this is transferable ipso facto to the subsequence case by pointing at each place where ν n appears, that n ∈ N, and next collecting the modified bounds.

5.7. The ASLLT. We now are in position to state the main result of this Section.

Theorem 5.13. Let {ϑ n , n ≥ 1} be chosen so that (2.4) holds. Suppose that assumption (5.1) is realized. We also assume that the following condition is fulfilled:

(5.54)

The series s

2 := l≥1 [2 l ,2 l+1 [∩M =∅ Φ(2 l ) 1 + log {[2 l , 2 l+1 [∩M} 2 l is convergent.
Let κ n ∈ L(nv 0 , D), n = 1, 2, . . . be a sequence of integers such that (2.1) holds.

(i) We have (recalling that

M j = 1≤n<2 j ϑn σn √ νn ), k≥1 [2 k ,2 k+1 [∩M =∅ sup 2 k ≤M j <2 k+1 1≤n<2 j ϑn(1 {Sn=κn} -P{Sn=κn}) √ νn M j 2 ≤ Ks. Further (5.55) lim j→∞ 1 1≤n<2 j ϑn σn √ νn 1≤n<2 j ϑ n (1 {Sn=κn} -P{S n = κ n }) √ ν n a.s. = 0. (ii) Assume that (5.56) lim n→∞ σ n P{S n = κ n } = γ, (0 < γ < ∞).
Then we have

(5.57) lim j→∞ 1 1≤n<2 j ϑ n σ n √ ν n 1≤n<2 j ϑ n 1 {Sn=κn} √ ν n a.s. = γ. (iii) Assume that (5.58) lim n→∞ σ n P{S n = κ n } = D √ 2π e -κ 2 2 ,
and that M (t) is slowly varying near infinity. Then the ASLLT holds,

(5.59) lim

N →∞ 1 1≤n<N ϑ n σ n √ ν n 1≤n<N ϑ n 1 {Sn=κn} √ ν n a.s. = D √ 2π e -κ 2 2 .
(iv) In particular, if the LLT is applicable to the sequence X, then for any sequence {κ n , n ≥ 1} such that 

lim n→∞ κ n -a n σ n = κ, (5 
σ n P{S n = κ n } = D √ 2π e -κ 2 2 , then (5.62) lim j→∞ 1 1≤νn<2 j ϑn σn √ νn 1≤νn<2 j ϑ n 1 {Sn=κn} √ ν n a.s. = D √ 2π e -κ 2 2 .
This proves assertions (i) and (ii) of the Theorem. As to assertion (iii), we use the fact (see Remark 5.11 and estimate (5.47)) that the proof given remains true if instead of sieving by the geometric sequence 2 i , i ≥ 1, we sieve with the geometric sequence R i , i ≥ 1, where R > 1 is arbitrary; that is (5.55), (5.57) are true for these sequences. Next using (1.10) and that M (t) is slowly varying near infinity allows to conclude to (5.59).

Remark 5.14 (Optimality of Assumption (5.1)). The attentive reader will have certainly observed that assumption (5.1) is not required in the proof of Theorem 5.10, but only in the application of Proposition 3.7. Consider the case where ∞ j=1 m j < ∞ and assume that Φ(x) = O(1). See Example 5.9-(i). In that case the above inequality takes the simpler form

E I≤i≤J Z i 2 ≤ C c,D I≤i≤J m i .
We assume only a little more, namely that ∞ i=1 m i (log i) 

) and further that condition (5.5) is satisfied. Then the sequence {Z i , i ≥ 1} is a quasi-orthogonal system.

Proof. Let i, j be positive integers such that either j > i + 1 or j < i -1. Obviously

|E Z i Z j | ≤ 2 i ≤νm<2 i+1 2 j ≤νn<2 j+1 ϑ m ϑ n σ m √ ν m σ n √ ν n |E Y n Y m | ≤ C D 2 i ≤νm<2 i+1 2 j ≤νn<2 j+1 ϑ m ϑ n σ n σ m √ ν m ν n ν m ν n ≤ C D 2 -(j-i)/2 2 i ≤νm<2 i+1 ϑ m σ m √ ν m 2 j ≤νn<2 j+1 ϑ n σ n ν n = C D 2 -(j-i)/2 m i m j . Therefore, |j-i|>1 |E Z i Z j | m i m j ≤ C D H.
In view of (5.39) and the assumptions made,

E Z 2 i ≤ C ϑ 2 i <νm≤2 i+1 ϑ m σ m √ ν m = C ϑ m i .
Since m i (1) we have,

E Z i m i 2 ≤ C ϑ m i ≤ C ϑ .

Consequently

(5.64) sup i≥1 j≥1

|E Z i Z j | ≤ C D H.
This shows by using criterion (3.13), that the sequence {Z i , i ≥ 1} is a quasi-orthogonal system.

Note that (see Example 5.9-(i)) in the i.i.d. case, h(x) ≡ C (by Remark 5.2), and condition (5.5) holds. Further

m i = 2 i ≤νm<2 i+1 ϑ m σ m √ ν m = 2 i ≤νm<2 i+1 ν m = const.
Therefore we have Corollary 5.16 (i.i.d. case). The corresponding sequence {Z i , i ≥ 1} is a quasi-orthogonal system.

This is no longer true when passing to subsequences! See Theorem 5.12 and comments hereafter.

Another consequence is

Corollary 5.17 for any sequence of integers κ n ∈ L(nv 0 , D), n = 1, 2, . . . such that (1.9) holds.

The first claim ( [START_REF] Weber | A sharp correlation inequality with an application to almost sure local limit theorem[END_REF]) cannot be derived from Gál-Koksma's criterion ( [START_REF] Philipp | Almost sure invariance principles for partial sums of weakly dependent random variables[END_REF], p. 134), unlike to the second one. The third one is Theorem 1.2.

Proof. It is very short. As Rademacher-Menchov's Theorem applies to quasi-orthogonal systems, the series j Z j j 1/2 (log j) b converges almost surely if b > 3/2. By Kronecker's Lemma, The goal of this Section is to prove that in the i. i. d. case, an almost sure local limit theorem with explicit speed of convergence (Theorem 6.1) expressed with an a.s. convergent series. Let X be an L(v 0 , D)-valued square integrable random variable, with maximal span D, µ = E X, σ 2 = Var(X) > 0. Assume that ϑ X > 0 and choose ϑ = ϑ X . Let S n = X 1 +. . .+X n , X k being independent copies of X. Thus ν n = ϑn, σ n = σ √ n and assumptions 1.6 and 5.1 are satisfied.

Let κ j ∈ L(jv 0 , D), j = 1, 2, . . . be such that assumption (2.7) is satisfied. The system of random variables (4.37) writes: (6.1)

ϑ n Y n σ n √ ν n = ϑY n n = ϑ 1 {Sn=κn} -P{S n = κ n } √ n , n ≥ 1, (6.2) Z i = 2 i -1 m=2 i-1 Y m m = σ 2 i -1 m=2 i-1 1 {Sm=κm} -P{S m = κ m } √ m , i ≥ 1.
A natural question is whether it is possible in (5.65) to substitute to P{S m = κ m }, its limit D √ 2πσ e -κ 2 /2σ 2 . Let . By Gnedenko's Theorem 1.1, δ n = o(1). Recall that ϑ X is defined in (1.13).

Theorem 6.1. Assume that ϑ X > 0. Let

κ n = nµ + κ √ n(1 + ε n ), ε n → 0. (i) We have 1≤n<2 N +1 1 √ n 1 {Sn=κn} 1≤n<2 N +1 1 n = D σ √ 2π e -κ 2 2σ 2 + O 1 N 1≤n<2 N +1 δ n + ε n n + o (log N ) b N 1/2 .
(ii) Assume that j 1 j 1/2 (log j) b

2 j ≤n<2 j+1 δ n + ε n n < ∞.
This is fulfilled if max(δ n , ε n ) = O log -1/2 n . Then the series j 1 j 1/2 (log j) b 2 j ≤n<2 j+1 

+ 3Dκ 2 2 √ 2πσ 2 ε n ≤ δ n + 3κ 2 2σ 2 ε n .
So that

Y n n = 1 n √ n 1 {Sn=κn} -P{S n = κ n } = 1 √ n 1 {Sn=κn} - √ nP{S n = κ n } n = 1 √ n 1 {Sn=κn} - D σ √ 2π e -κ 2 2σ 2 1 n + O δ n + ε n n .
(i) By Theorem 5.17 converges almost surely.

CONCLUDING REMARKS

In a previous attempt, for proving the ASLLT (Theorem 5.13), we considered slightly different block sums,

Z i = 2 i ≤n<2 i+1 Y n σ n √ ν n ,
and operated differently in order the control their covariances; in particular the diagonal case was not treated separately. We bounded |E Z i Z j | from above, by proceeding as follows: for 1 ≤ i ≤ j,

|E Z i Z j | ≤ 2 i ≤m<2 i+1 2 j ≤n<2 j+1 1≤νm≤cνn |E Y n Y m | σ m √ ν m σ n √ ν n + 2 i ≤m<2 i+1 2 j ≤n<2 j+1 νm>cνn |E Y n Y m | σ m √ ν m σ n √ ν n .
the first sum can be estimated efficiently, the estimation of the second imposed restrictive assumptions. We have not tried any further, and swiched to the one implemented in this paper. Maybe the preceding approach can still be improved, at the price of some new argument, similar to the ones used here. We don't believe it would bring more.

( 1 )

 1 κj -aj σj = O(1),(2)σj P{Sj = κj} = O(1).Then there exists a constant C such that for all 1 ≤ m < n, σnσm P{Sn = κn, Sm = κm} -P{Sn = κn}P{Sm = κm}

1≤n<R j ϑn( 1

 1 {Sn=κn} -P{Sn = κn}) √ νn converges almost surely. Further if limn→∞ σnP{Sn = κn} = D √ 2π e -κ 2 2 , M (t) is slowly varying near infinity, then the ASLLT holds,

  hence a contradiction. It is thus necessary to assume (1.6) κ n ∈ L(nv 0 , D), n = 1, 2, . . . , also to change |I| for #{I ∩ L(v 0 , D)}. Then (1.5) modified becomes, (1.7) lim

  .38) since 2 i ≤νm<2 i+1 ϑm σm √ νm = O(1) by assumption.

1 j 1 / 2 (log j) b 2 j - 1 m=2 j- 1 1

 11211 (a.s. convergent series and asllt). Let b > 3/2. Then the series j>1 {Sm=κm} -P{S m = κ m e -κ 2 /(2σ 2 ) ,

1 N 1 / 2 6 .

 126 (log N ) b N j=1 Z j → 0, as N tends to infinity, almost surely, whence the second claim. By arguing as in Remark 5.11, this remains true along any R-geometric sequence, R > 1. Now by Gnedenko's Theorem 1.1, if κ n ∈ L(nv 0 , D) is a sequence which verifies condition (1.9), then (1.10) holds. The proof is achieved by applying the following well-known elementary Lemma.Lemma 5.18. Let {f n , n ≥ 1} be a sequence of nonnegative numbers. If for each r > 1, the averages r -k n≤r k f n converges, as k → ∞. Then for each r > 1 this limit is the same, call it L, and we have limN →∞ N -1 n≤N f n = L.We pass to another example. Corollary 5.19 (Cramér model). Let ξ = {ξ j , j ≥ 1} be the sequence defined in Example 5.5. Then the corresponding sequence {Z i , i ≥ 1} is a quasi-orthogonal system. Proof. Recall that ϑ m = 1 log m , and σ 2 m ∼ ν m ∼ m log m , as m → ∞. Thus h(x) ≡ C, furtherm i ∼ 2 i ≤νm<2 i+1 log m (log m)m ∼ 2 i ≤ m log m <2 i+1 1 m ∼ i2 i ≤m<(i+1)2 i+11 m ∼ log(i + 1) + (i + 1) log 2 -log i -i log 2 ∼ const. REVISITING THE ASLLT IN THE I. I. D. CASE

(6. 3 )

 3 δ n = σ √ nP{S n = κ n } -D √ 2π e -(κn-nµ) 2 2nσ 2

  , if b > 3/2, 1 N 1/2 (log N ) b N j=1Z j → 0, so that the simplified series

  ε) 1 {Bn>θνn,Bn>Bm}

				× e	-	(κn-Wn-(Bn/2)) 2 D 2 (Bn/2)	-e	-	(κn-κm-(Wn-Wm)-(Bn-Bm)/2) 2 D 2 (Bn-Bm)/2
	(4.15)	:= C θ	σ n √ ν n	A 11 + A 12 .
	As ν n ↑ ∞ with n, it follows from Kolmogorov's law of the iterated logarithm that
	(4.16)				lim sup n→∞	√	B n -ν n ν n log log ν n	a.s.

  2 < ∞, which by definition of m i in(5.19) means thatWe use Remark 3.11, and more precisely, implication(3.22), thank to which it follows that the series ∞ l=1 Z l , namely the sequence

	(5.63)	∞ l=1	ϑ n (log log m) 2 σ m √ ν m	< ∞ .
		n<2 J	Y n σ n √ ν n

J = 1, 2, . . . , converges almost surely. Therefore as

Y n = σ n (1 {Sn=κn} -P{S n = κ n }), the sequence n<2 J 1 {Sn=κn} -P{S n = κ n } √ ν n J = 1,

2, . . . , converges almost surely. Consequently, if assumption (5.63) is fulfilled, a strong but different almost sure convergence result takes place. 5.8. The quasi-orthogonal case. We prove the following Theorem 5.15. Assume that h(x) = O(1), m i

Acknowledgments. The author thanks Istvan Berkes for some useful comments concerning a very preliminary and partial draft of the paper.

Proof. (i) We proceed as in the proof of Th. 162 in Hardy, Littlewood and Pólya [START_REF] Hardy | Inequalities[END_REF]. By Th. 41 in [START_REF] Hardy | Inequalities[END_REF],

for some positive real θ(N, M ) such that δ log ν N < θ(N, M ) < δ log ν M , where we used Lagrange's Theorem in the last line of inequalities. It follows that Proof. Let m be the larger positive integer such that ν m < 2ν m . If the sequence {ϑ n , n ≥ 1} is decreasing, then by Lemma 5.7, assertion (ii), 

Put for any positive integer i,

Let the sequence M be defined as follows,

(5.20)

The almost sure local limit theorem in view, will tightly rely upon the asymptotic distribution of the sequence M.

It will be deduced from the study of the asymptotic almost sure behavior of the sequence

where for each i, Z i =

We will apply Theorem 3.7 with the choices ξ l = Z l and u l = m l , l ≥ 1. We thus need assumptions (3.16), (3.17) to be fulfilled. Introduce function k(x)

Now let the non-decreasing function Φ be defined as follows: In Examples (5.3), (5.4), (5.5), three important cases are considered, for which condition (5.5) is satisfied.

(ii

(1, ω(m)).

If the sequence {ϑ n , n ≥ 1} is decreasing, by Corollary 5.8,

and so we have,

(iv) If condition 5.5 is satisfied, then

as N tends to infinity, almost surely. But

as N tends to infinity, almost surely. Therefore (

Then the series

converges almost surely. Indeed, first the series

converges almost surely, since j Z j j 1/2 (log j) b = j 1 j 1/2 (log j) b

Besides