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Introduction

In one space dimension, it's well known that the space derivative of the viscosity solution to a Hamilton-Jacobi (HJ) equation is the solution to a scalar conservation law (SCL). We refer for example to [START_REF] Caselles | Scalar conservation laws and Hamilton-Jacobi equations in one-space variable[END_REF][START_REF] Colombo | Initial Data Identification in Space Dependent Conservation Laws and Hamilton-Jacobi Equations[END_REF] for this kind of results. In this paper, we want to investigate this relation in the case of simple junctions composed of two edges and one vertex (referred later as 1:1 junctions), for which, up to our knowledge, this result is completely open. Scalar Conservation Laws and Hamilton-Jacobi equations on networks have been largely studied in the last decade. Concerning SCL, the 1:1 case has been studied following many different approaches during the last 20 years (see the two surveys [START_REF] Mishra | Chapter 18 -numerical methods for conservation laws with discontinuous coefficients[END_REF] and [START_REF] Andreianov | New approaches to describing admissibility of solutions of scalar conservation laws with discontinuous flux[END_REF] and references therein for an overview on the subject). In this paper, we choose to focus mostly on the germ approach (see [START_REF] Andreianov | A theory of L 1 -dissipative solvers for scalar conservation laws with discontinuous flux[END_REF][START_REF] Fjordholm | Well-posedness and convergence of a finite volume method for conservation laws on networks[END_REF]) as it is suitable for the correspondence result. Concerning Hamilton-Jacobi equations on networks, the theory has been largely developed since the pionner works of Achdou, Camilli, Cutrì, Tchou [START_REF] Achdou | Hamilton-Jacobi equations constrained on networks[END_REF] and Imbert, Monneau, Zidani [START_REF] Imbert | A Hamilton-Jacobi approach to junction problems and application to traffic flows[END_REF]. We refer in particular to [START_REF] Imbert | Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks[END_REF], where a general comparison principle has been developed using PDE tools and a classification of the junction condition has been proposed, to [START_REF] Lions | Viscosity solutions for junctions: well posedness and stability[END_REF][START_REF]Well-posedness for multi-dimensional junction problems with Kirchoff-type conditions[END_REF] for an extension to the non-convex case and to the monograph [START_REF] Barles | An illustrated guide of the modern approaches of hamilton-jacobi equations and control problems with discontinuities[END_REF] for a general review on the topic. Even if the theories are now well understood both for scalar conservation laws and Hamilton-Jacobi equations, the relation between these two theories has never been addressed on junctions until now. In this paper, we will give an answer for 1:1 junctions and we will also show that the situation is much more complicated when the junction is composed of more than three branches. The main difficulty comes from the junction condition and we will explain how the junction condition of the HJ equation, namely a flux limiter condition as in [START_REF] Imbert | Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks[END_REF], can be interpreted as a condition on a germ, as in [START_REF] Andreianov | A theory of L 1 -dissipative solvers for scalar conservation laws with discontinuous flux[END_REF].

The main result

The aim of this paper is to make the link between viscosity solutions to Hamilton-Jacobi equations posed on the real line with a discontinuity at the origin and entropy solutions to a suitable conservation law. We consider here the case where the fluxes are convex but the result remains valid in the concave case (just changing the solution u by ´u). Namely, we start with the flux-limited viscosity solution u, as in [START_REF] Imbert | Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks[END_REF], of $ ' ' & ' ' % u t `HL pu x q " 0 if x ă 0 u t `HR pu x q " 0 if x ą 0 u t `F A pu x pt, 0 ´q, u x pt, 0 `qq " 0 if x " 0 up0, xq " u 0 pxq for x P R

where u 0 is a Lipschitz continuous initial condition. For α " L, R, let a α ă b α ă c α . We make the following assumptions on the Hamiltonians for some δ ą 0 " For α " L, R, the Hamiltonian H α is of class C 2 , with H 2 α ě δ ą 0, decreasing on ra α , b α s and increasing on rb α , c α s, with H α pa α q " H α pc α q " 0.

(

We define the two associated monotone envelopes H ὰ ppq " " H α pb α q for p P ra α , b α s H α ppq for p P rb α , c α s , H ά ppq " " H α ppq for p P ra α , b α s H α pb α q for p P rb α , c α s.

Concerning the initial data, we make the following assumption u 0 is Lipschitz continuous on R and a.e. pu 0 q x P ra L , c L s if x ă 0 and pu 0 q x P ra R , c R s if x ą 0. (

We set H 0 :" max α"L,R min p H α ppq and for A P rH 0 , 0s, we define the effective junction condition FA by FA pp L , p R q :" maxtA,

H L pp L q, H Ŕ pp R qu (4) 
The goal is then to understand the equation satisfied by ρ :" u x .

Heuristics. By [START_REF] Caselles | Scalar conservation laws and Hamilton-Jacobi equations in one-space variable[END_REF][START_REF] Colombo | Initial Data Identification in Space Dependent Conservation Laws and Hamilton-Jacobi Equations[END_REF], we first note that ρ is an entropy solution to

$ & % ρ t `HL pρq x " 0 if x ă 0 ρ t `HR pρq x " 0 if x ą 0 ρp0, xq " ρ 0 pxq for x P R

where ρ 0 " pu 0 q x a.e.. The main difficulty is then to understand what is the appropriate junction condition. For solutions to conservation laws with strongly convex fluxes, we recall the existence of strong traces of ρ at x " 0 (see [START_REF] Caselles | Scalar conservation laws and Hamilton-Jacobi equations in one-space variable[END_REF] and also [START_REF] Panov | Existence of strong traces for quasi-solutions of multidimensional conservation laws[END_REF]). We denote by ρpt, 0 ´q and ρpt, 0 `q these traces respectively on the left and on the right. In order to fix a condition at x " 0 for the scalar conservation law, following the works of [START_REF] Andreianov | A theory of L 1 -dissipative solvers for scalar conservation laws with discontinuous flux[END_REF] and [START_REF] Fjordholm | Well-posedness and convergence of a finite volume method for conservation laws on networks[END_REF][START_REF] Musch | Well-posedness theory for nonlinear scalar conservation laws on networks[END_REF], we look for stationary solutions to [START_REF] Andreianov | Finite volume approximation and well-posedness of conservation laws with moving interfaces under abstract coupling conditions[END_REF], that is solutions of the form ρpt, xq "

" k L if x ă 0 k R if x ą 0 where pk L , k R q P Q :" ra L , c L s ˆra R , c R s. (6) 
Let us note that, if we set upt, xq " pk L x ´tH L pk L qq1 txă0u `pk R x ´tH R pk R qq1 txą0u , then ρ " u x and u is solution to the Hamilton-Jacobi equation (1) on p0 `8q ˆRzt0u. Since we want u to be continuous at 0, this implies that the k α have to satisfy the Rankine-Hugoniot condition

H L pk L q " H R pk R q.
Moreover, u satisfies the junction condition in (1) iff H R pk R q " H L pk L q " maxpA, H L pk L q, H Ŕ pk R qq.

Following [START_REF] Andreianov | A theory of L 1 -dissipative solvers for scalar conservation laws with discontinuous flux[END_REF][START_REF] Fjordholm | Well-posedness and convergence of a finite volume method for conservation laws on networks[END_REF][START_REF] Musch | Well-posedness theory for nonlinear scalar conservation laws on networks[END_REF], we then define the germ G A as

G A :" pk L , k R q P Q, H R pk R q " H L pk L q " maxpA, H L pk L q, H Ŕ pk R qq ( , (7) 
where Q is defined in [START_REF] Andreianov | On interface transmission conditions for conservation laws with discontinuous flux of general shape[END_REF]. We will explain in Proposition 2.6 that this germ is maximal, L 1 -dissipative and complete. Hence the following scalar conservation law

$ ' ' & ' ' %
ρ t `HL pρq x " 0 if x ă 0 ρ t `HR pρq x " 0 if x ą 0 pρpt, 0 ´q, ρpt, 0 `qq P G A a.e ρp0, xq " ρ 0 pxq for x P R

is well-posed. The first main result of this paper is the following theorem, which makes rigorous the previous computations.

Theorem 1.1 (Viscosity versus entropy solutions: flux limited conditions). Let u 0 satisfy (3) and let us set ρ 0 " pu 0 q x . Let H L,R satisfying [START_REF] Adimurthi | Optimal entropy solutions for conservation laws with discontinuous flux-functions[END_REF]. Let u be the unique viscosity solution of (1) in the sense of Definition 2.1 and ρ be the unique G A -entropy solution of (8) in the sense of Definition 2.3. Then, in the distributional sense, we have u x " ρ.

We propose two different proofs for this result. The first one uses numerical schemes for [START_REF] Achdou | Hamilton-Jacobi equations constrained on networks[END_REF] and [START_REF] Andreianov | New approaches to describing admissibility of solutions of scalar conservation laws with discontinuous flux[END_REF].

More precisely, we propose a numerical approximation for (1) and we consider the numerical derivative of the solution, which gives an appropriate scheme for [START_REF] Andreianov | New approaches to describing admissibility of solutions of scalar conservation laws with discontinuous flux[END_REF]. Since we have the convergence for the two schemes, we recover the result by passing to the limit. The first advantage of this proof is that it will be generalized in a future work to the non-convex case. The second advantage is that it can be extended to the important situation of a more general junction condition, as presented below.

The second approach is a direct proof in which we use a regularization method via the notion of semialgebraic functions (see Section 5).

General junction conditions. Up to this point, we only considered a flux-limiter type of junction condition (with flux-limiter A) at the junction point x " 0. However it is known that, in the specific setting considered here, a large class of coupling conditions can be equivalently treated as a flux-limiter.

Then we present our result in this larger class. More precisely, we want to consider the general problem

$ ' ' & ' ' % u t `HL pu x q " 0 if x ă 0 u t `HR pu x q " 0 if x ą 0 u t `F0 pu x pt, 0 ´q, u x pt, 0 `qq " 0 if x " 0 up0, xq " u 0 pxq for x P R (9) 
where the function F 0 : R 

F 0 pp L , p R q " ` 8 
(Boundedness of the solution) F 0 pa L , a R q " F 0 pc L , c R q " 0 (10) 
Note that the last assumptions will imply that the solutions live in the box Q and is naturally satisfied if the junction condition is of the form (4). Moreover notice that it is possible to show a posteriori that the third condition of ( 10) is not seen by the solution u of (9) whose gradient ppu x pt, ¨qq |p´8,0q , pu x pt, ¨qq |p0,`8q q stays in the box Q " ra L , c L s ˆra R , c R s, if the initial data ppB x u 0 q |p´8,0q , pB x u 0 q |p0,`8q q does it.

It is well-known that, in general, one cannot expect to have a strong viscosity solution for [START_REF] Bardos | First order quasilinear equations with boundary conditions[END_REF], in the sense that the junction condition is satisfied in the viscosity sense (see Definition 2.1 below). Nevertheless, it is always possible to define a weak viscosity solution, meaning that either the equation or the junction condition is satisfied at x " 0 (see Definition 2.2 below). We are now interested in the corresponding SCL. Formally, we can make the following calculation with ρ :" u x (say with Hpρq " 0 at x " ˘8)

u t " B t ˆx ´8 ρ dx " ˆx ´8 B t ρ dx " ´ˆx ´8 pHpρqq x dx " ´Hpρq.
Then for a solution u of problem ( 9), we expect ρ :" u x to solve the scalar conservation law problem

$ ' ' & ' ' % ρ t `HL pρq x " 0 if x ă 0 ρ t `HR pρq x " 0 if x ą 0 H L pρpt, 0 ´qq " H R pρpt, 0 `qq " F 0 pρpt, 0 ´q, ρpt, 0 `qq if x " 0 ρp0, xq " ρ 0 pxq for x P R. (11) 
However, this problem does not admit a solution whose traces satisfy the third equation of [START_REF] Brenier | The discrete one-sided Lipschitz condition for convex scalar conservation laws[END_REF] in general for any given F 0 satisfying [START_REF] Barles | An illustrated guide of the modern approaches of hamilton-jacobi equations and control problems with discontinuities[END_REF] and one has to relax the junction condition. We recall in Subsection 2.2 how this problem has to be solved.

We then have the following result.

Theorem 1.2 (Viscosity versus entropy solutions: desired conditions). Let u 0 satisfy (3) and denote by ρ 0 " pu 0 q x . Let H L,R satisfying (2) and F 0 satisfying [START_REF] Barles | An illustrated guide of the modern approaches of hamilton-jacobi equations and control problems with discontinuities[END_REF]. Let u be the unique weak viscosity solution to [START_REF] Bardos | First order quasilinear equations with boundary conditions[END_REF] in the sense of Definition 2.2 and ρ be the unique F 0 -admissible solution to [START_REF] Brenier | The discrete one-sided Lipschitz condition for convex scalar conservation laws[END_REF] in the sense of Definition 2.8. Then, in the distributional sense, we have

u x " ρ.
This result can be seen as a direct consequence of Theorem 1.1. Indeed, it is shown in [START_REF] Imbert | Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks[END_REF] that it possible to construct a flux limiter A F0 depending on F 0 (see Lemma 2.9 for this construction) such that the unique weak solution to ( 9) is in fact the unique strong solution to (1) with A replaced by A F0 . As the solution of (11) can also be interpreted as the solution of ( 8), the result is straightforward. However, we will propose a direct proof of this result. Indeed, the proof using the numerical scheme can be done directly with this type of junction condition. The main point is the following: in the numerical scheme, we will put an approximation of the expected junction condition F 0 , but at the limit where the space and time steps go to 0, we will recover the relaxed flux-limited junction condition defined with A F0 . More precisely, we have the following meta-theorem, which statement is made precise in Theorem 3.3.

Theorem 1.3 (Numerical approximation for SCL: desired condition). Let ρ ∆ (with ∆ " p∆t, ∆xq) be the numerical solution of (11) (with the junction condition given by F 0 ). Then, there exists a flux limiter A F0 depending on F 0 such that, as ∆ goes to zero, ρ ∆ converges to the unique solution to (8) with A replaced by A F0

Remark. Note that this result was already known at the Hamilton-Jacobi level (see [START_REF] Guerand | Error estimates for a finite difference scheme associated with Hamilton-Jacobi equations on a junction[END_REF]).

Remark. It is also possible to consider an even simpler junction constituted of only one edge and one vertex. In that case, our result remains valid with analogous proofs. For instance, the analogue of Theorem 1.1 is precisely the following:

Theorem 1.4 (Viscosity versus entropy solutions: the half line). Let u 0 satisfy (3) on p0, `8q and let us set ρ 0 " pu 0 q x . Let H R satisfying (2) and A P rmin H R , 0s. Let u be the unique viscosity solution to

$ & % u t `HR pu x q " 0 if x ą 0 u t `max A, H Ŕ pu x pt, 0 `qq ( " 0 if x " 0 up0, xq " u 0 pxq for x P p0, `8q
and ρ be the unique

G 1 A -entropy solution to $ & % ρ t `HR pρq x " 0 if x ą 0 ρpt, 0 `q P G 1 A if
x " 0 and for a.e. t P p0, `8q ρp0, xq " ρ 0 pxq for x P p0, `8q.

with G 1 A :" k R P R, H R pk R q " max A, H Ŕ pk R q ((
Then, in the distributional sense, we have u x " ρ.

The above notion of solution for a scalar conservation law with boundary condition is equivalent to the one given by the standard Bardos-Leroux-Nedelec approach (see [START_REF] Bardos | First order quasilinear equations with boundary conditions[END_REF][START_REF] Colombo | Rigorous estimates on balance laws in bounded domains[END_REF]).

Outline

In Section 2, we recall the different definitions of solutions for (1), ( 8), ( 9) and ( 11) and we give the link between weak and strong viscosity solutions. We also prove useful properties on the germ G A and we explain how the flux limiter A F0 is constructed. Section 3 is devoted to the study of the numerical scheme for (9) (Subsection 3.1) and (11) (Subsection 3.1) while we prove Theorems 1.1 and 1.2 using these numerical schemes in Section 4. We propose a direct proof of Theorem 1.1 using regularization with semi-algebraic functions in Section 5. Finally Section 6 is an appendix where we collect complementary results, which are either new, or not accessible with full details in the literature. In Subsection 6.1 we give discrete entropy inequalities on a junction, in Subsection 6.2 we give a local compactness result for numerical solutions of conservation laws with strictly convex flux, and in Subsection 6.3 we show that Hamilton-Jacobi germs are not L 1 -dissipative for N ě 3 branches.

Notions of solution

We begin this section by recalling the definition and some properties of equation ( 9) in Subsection 2.1 and of equation ( 11) in Subsection 2.2. Finally, in Subsection 2.3, we explain how we construct the flux limiter A F0 from a general condition F 0 .

Definition of weak and strong solutions for Hamilton-Jacobi equations

We begin to recall the notion of weak viscosity solutions to [START_REF] Bardos | First order quasilinear equations with boundary conditions[END_REF]. We consider the set of test functions on the junction J T :" p0, T q ˆR: C 1 ^pJ T q :" tϕ P C 0 pJ T q, the restrictions of ϕ to p0, T q ˆp´8, 0s and to p0, T q ˆr0, 8q are C 1 u. We also recall the definition of upper and lower semi-continuous envelopes u ˚and u ˚of a (locally bounded) function u defined on r0, T q ˆR, u ˚pt, xq " lim sup ps,yqÑpt,xq ups, yq and u ˚pt, xq " lim inf ps,yqÑpt,xq ups, yq.

We begin with the notion of strong viscosity solution for which the junction condition is satisfied in a strong sense.

Definition 2.1 (Strong viscosity solution). Let us consider a function u : Γ T Ñ R. i) (Strong viscosity subsolution)

We say that u is a strong viscosity subsolution to (9) if for any point pt 0 , x 0 q P J T and any function ϕ P C 1 ^pJ T q such that u ˚´ϕ reaches a local maximum at pt 0 , x 0 q we have " ϕ t pt 0 , x 0 q `HL pϕ x pt 0 , x 0 qq ď 0 if x 0 ă 0 ϕ t pt 0 , x 0 q `HR pϕ x pt 0 , x 0 qq ď 0 if x 0 ą 0 when x 0 ‰ 0 and ϕ t pt 0 , x 0 q `F0 pϕ x pt 0 , x 0 q, ϕ x pt 0 , x 0 qq ď 0 when x 0 " 0. We call u a strong F 0 -subsolution.

ii) (Strong viscosity supersolution)

We say that u is a strong viscosity supersolution to (9) if for any point pt 0 , x 0 q P J T and any function ϕ P C 1 ^pJ T q such that u ˚´ϕ reaches a local minimum at pt 0 , x 0 q we have " ϕ t pt 0 , x 0 q `HL pϕ x pt 0 , x 0 qq ě 0 if x 0 ă 0 ϕ t pt 0 , x 0 q `HR pϕ x pt 0 , x 0 qq ě 0 if x 0 ą 0 when x 0 ‰ 0 and ϕ t pt 0 , x 0 q `F0 pϕ x pt 0 , x 0 q, ϕ x pt 0 , x 0 qq ě 0 when x 0 " 0. We call u a strong F 0 -supersolution.

ii) (Strong viscosity solution)

We say that u is a strong viscosity solution to (9), if u is a strong viscosity subsolution to [START_REF] Bardos | First order quasilinear equations with boundary conditions[END_REF], and u is a strong viscosity supersolution to [START_REF] Bardos | First order quasilinear equations with boundary conditions[END_REF]. We call u a strong F 0 -solution.

A first result of Imbert, Monneau [START_REF] Imbert | Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks[END_REF] is that when the junction condition is of the form FA in (4), then the junction condition is satisfied strongly as in the previous definition. Nevertheless, this is not true for general junction condition and one has to consider weak viscosity solutions for which either the junction condition or the equation is satisfied at x " 0. We say that u is a weak viscosity subsolution to (9) if for any point pt 0 , x 0 q P J T and any function ϕ P C 1 ^pJ T q such that u ˚´ϕ reaches a local maximum at pt 0 , x 0 q we have " ϕ t pt 0 , x 0 q `HL pϕ x pt 0 , x 0 qq ď 0 if x 0 ă 0 ϕ t pt 0 , x 0 q `HR pϕ x pt 0 , x 0 qq ď 0 if x 0 ą 0 when x 0 ‰ 0 and ϕ t pt 0 , x 0 q `HL pϕ x pt 0 , x 0 qq ď 0 or ϕ t pt 0 , x 0 q `HR pϕ x pt 0 , x 0 qq ď 0 or ϕ t pt 0 , x 0 q `F0 pϕ x pt 0 , x 0 q, ϕ x pt 0 , x 0 qq ď 0 when x 0 " 0. We call u a weak F 0 -subsolution.

ii) (Weak viscosity supersolution)

We say that u is a weak viscosity supersolution to (9) if for any point pt 0 , x 0 q P J T and any function ϕ P C 1 ^pJ T q such that u ˚´ϕ reaches a local minimum at pt 0 , x 0 q we have " ϕ t pt 0 , x 0 q `HL pϕ x pt 0 , x 0 qq ě 0 if x 0 ă 0 ϕ t pt 0 , x 0 q `HR pϕ x pt 0 , x 0 qq ě 0 if x 0 ą 0 when x 0 ‰ 0 and ϕ t pt 0 , x 0 q `HL pϕ x pt 0 , x 0 qq ě 0 or ϕ t pt 0 , x 0 q `HR pϕ x pt 0 , x 0 qq ě 0 or ϕ t pt 0 , x 0 q `F0 pϕ x pt 0 , x 0 q, ϕ x pt 0 , x 0 qq ě 0 when x 0 " 0. We call u a weak F 0 -supersolution.

iii) (Weak viscosity solution)

We say that a locally bounded function u is a weak viscosity solution to [START_REF] Bardos | First order quasilinear equations with boundary conditions[END_REF], if u is a weak viscosity subsolution to [START_REF] Bardos | First order quasilinear equations with boundary conditions[END_REF], and u is a weak viscosity supersolution to [START_REF] Bardos | First order quasilinear equations with boundary conditions[END_REF]. We call u a weak F 0 -solution.

An important result of Imbert, Monneau [START_REF] Imbert | Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks[END_REF] is that it is possible to relax the junction condition in order to make the solution satisfy the junction condition strongly. We refer to Subsection 2.3 for the construction of the relaxation and to Theorem 2.10 for the precise result. Let us also mention that the existence and uniqueness (using a comparison principle) of the solutions of (1) and ( 9) is also proven in [START_REF] Imbert | Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks[END_REF]. In particular (9) admits a strong solution if and only if F 0 is of the form FA for some A P rH 0 , 0s.

Definition of solution for conservation law

We first recall that any solution to a Scalar Conservation Law for x P p0, `8q with strongly convex flux has a strong trace at x " 0 (see Panov [START_REF] Panov | Existence of strong traces for quasi-solutions of multidimensional conservation laws[END_REF]Theorem 1.1]). For any function f : p0, T q ˆR ÝÑ R, we denote by γ L,R f the strong left and right traces of f at x " 0 when they exist. For instance for the left trace, this means that ess lim

xÑ0 ´ˆT 0 |f pt, xq ´γL f ptq| dt " 0. ( 12 
)
Here we present the notion of solution we will consider for [START_REF] Andreianov | New approaches to describing admissibility of solutions of scalar conservation laws with discontinuous flux[END_REF]. We consider an effective junction condition F A as defined in (4) and we recall that the corresponding germ G A is given by ( 7).

Definition 2.3 (Strong entropy solution)

. Let u 0 satisfying (3) and denote by ρ 0 " pu 0 q x . We say that ρ P L 8 pp0, T q ˆRq is a "strong" G A -entropy solution to (8) if 1. ρ is a weak solution to " ρ t `HL pρq x " 0 if x ă 0 ρ t `HR pρq x " 0 if x ą 0.

2. For any φ L P C 8 c pr0, T q ˆR´q (resp. φ R P C 8 c pr0, T q ˆR`q ) that is non-negative, for any k L P ra L , c L s (resp. k R P ra R , c R s) the following entropy inequalities hold ¨p0,T qˆR ´|ρ ´kL |pφ L q t `signpρ ´kL q rH L pρq ´HL pk L qs pφ L q x `ˆR ´|ρ 0 pxq ´kL |φ L p0, xq dx ě 0 ˆresp.

¨p0,T qˆR `|ρ ´kR |pφ R q t `signpρ ´kR q rH R pρq ´HR pk R qs pφ R q x `ˆR `|ρ 0 pxq ´kR |φ R p0, xq dx ě 0 ˙.

The strong traces satisfy the germ condition

pγ L ρptq, γ R ρptqq P G A for a.e. t P p0, T q.

As proved in [START_REF] Andreianov | A theory of L 1 -dissipative solvers for scalar conservation laws with discontinuous flux[END_REF], this notion of solution grants existence and uniqueness as soon as the germ G A is L 1 dissipative, maximal and complete. We begin by recalling the notion of L 1 -dissipativity, maximality and completeness of a germ.

Definition 2.4 (Germ and properties). i) (germ)

We say that a set G Ă R 2 is a germ if any element of G satisfies the Rankine-Hugoniot condition, i.e.

H L pk L q " H R pk R q @k " pk L , k R q P G. ii) (L 1 -dissipative germ) We say that a germ G is L 1 -dissipative if for any k " pk L , k R q, k " p kL , kR q P G, we have sgnpk L ´k L qpH L pk L q ´HL p kL qq ě sgnpk R ´k R qpH R pk R q ´HR p kR qq. iii) (maximal L 1 -dissipative germ) A L 1 -dissipative germ G is called maximal if there is no L 1 -dissipative germ Ḡ having G as a strict subset. iv) (complete L 1 -dissipative germ) A L 1 -dissipative germ G is called complete (on the box Q),
if for every k " p kL , kR q P Q, there exists a strong G A -entropy solution of (8), with initial data ρ 0 " kL 1 p´8,0q `k R 1 p0,`8q .

We then have the following theorem.

Theorem 2.5 (Existence and uniqueness for ( 8), [START_REF] Andreianov | A theory of L 1 -dissipative solvers for scalar conservation laws with discontinuous flux[END_REF]). Let ρ 0 be an initial data satisfying ρ 0 pp´8, 0qq ρ0 pp0, `8qq Ă Q.

piq If the germ G A is L 1 -dissipative and maximal, there exists at most one solution to (8) in the sense of Definition 2.3.

piiq Furthermore, if the germ G A is also complete (on the box Q), then there exists a unique solution to (8) in the sense of Definition 2.3.

In order to apply this result to [START_REF] Andreianov | New approaches to describing admissibility of solutions of scalar conservation laws with discontinuous flux[END_REF], it remains to show that the germ G A defined in ( 7) is L 1 -dissipative maximal and complete.

Proposition 2.6 (G A is L 1 -dissipative, maximal and complete). Let A P rH 0 , 0s. We recall that

F A pk L , k R q " maxtA, H Ĺ pk L q, H R pk R qu. Then, the set G A defined by G A " pk L , k R q P R 2 , H R pk R q " H L pk L q " FA pk L , k R q ( " " pk L , k R q P R 2 , H R pk R q " H L pk L q ě A and reither H R pk R q " A, or H R pk R q " H Ŕ pk R q, or H L pk L q " H L pk L qs * ( 13 
)
is a maximal and complete L 1 -dissipative germ.

Remark. This Definition of the germ G A is close to the definition of viscosity solution for Hamilton-Jacobi's equations. One can also relate this germ to the classical flux limited notion of solution for scalar conservation law with applications to traffic (see [START_REF] Colombo | A well posed conservation law with a variable unilateral constraint[END_REF] and [START_REF] Andreianov | Finite volume schemes for locally constrained conservation laws[END_REF]). This germ is also the unique maximal L 1 -dissipative germ containing pp L , pR q where pp L , pR q is the unique couple such that A " H R pp R q " H Ĺ pp L q. This corresponds to the so called pA, Bq-connection if one takes pA, Bq " pp L , pR q (see [START_REF] Adimurthi | Optimal entropy solutions for conservation laws with discontinuous flux-functions[END_REF]). Notice also that contrarily to [START_REF] Adimurthi | Optimal entropy solutions for conservation laws with discontinuous flux-functions[END_REF] and [START_REF] Andreianov | A theory of L 1 -dissipative solvers for scalar conservation laws with discontinuous flux[END_REF], we do not need any crossing condition to be satisfied. Finally, we can also link this definition with the monotone graph approach introduced in [START_REF] Andreianov | New approaches to describing admissibility of solutions of scalar conservation laws with discontinuous flux[END_REF]. If one takes

Γ 0 :" tpp L , p R , F 0 pp L , p R q, F 0 pp L , p R qq, pp L , p R q P R 2 u then the projected maximal monotone graph is Γ " tpp L , p R , FA pp L , p R q, FA pp L , p R qq, pp L , p R q P G AF 0 u.
Proof of Proposition 2.6. We begin to prove that the germ is

L 1 -dissipative. Let k " pk L , k R q, k " p kL , kR q P G A . We have to show that sgnpk L ´k L qpH L pk L q ´HL p kL qq ě sgnpk R ´k R qpH R pk R q ´HR p kR qq. ( 14 
)
The result is obvious if H L pk L q ´HL p kL q " H R pk R q ´HR p kR q " 0 or if H L pk L q ´HL p kL q " H R pk R q HR p kR q ą 0 and k L ą kL . Let us now assume to fix the ideas that H L pk L q ´HL p kL q " H R pk R q HR p kR q ą 0 and k L ă kL (the case H L pk L q ´HL p kL q " H R pk R q ´HR p kR q ă 0 and k L ą kL is obtained exchanging k and k). We need to check that k R ă kR . Note that

H L pk L q ą H L p kL q ě H L p kL q ě H L pk L q.
Since H R pk R q " H L pk L q ą H L p kL q ě A, and since k P G A , we necessarily have

H Ŕ pk R q " H R pk R q. Therefore H Ŕ pk R q " H R pk R q ą H R p kR q ě H Ŕ p kR q,
which implies that kR ą k R . This proves ( 14) and the L 1 dissipativity of G A .

To prove the maximality of G, let us now fix some k P R 2 such that H L pk L q " H R pk R q and assume that ( 14) holds for any k P G A . We have to check that k P G A . We first check that H L pk L q " H R pk R q ě A.

By contradiction, assume that H L pk L q " H R pk R q ă A. We take k such that kL is the smallest element in pH L q ´1ptAuq and kR the largest in pH R q ´1pAq. Then k P G A , kL ă k L , kR ą k R and H L pk L q ă A " H L p kL q and similarly H R pk R q ă A " H R p kR q, which contradicts [START_REF] Colombo | Initial data identification in conservation laws and Hamilton-Jacobi equations[END_REF]. So H L pk L q " H R pk R q ě A.

We now prove that

H L pk L q " A or H R pk R q " H Ŕ pk R q or H L pk L q " H L pk L q. ( 15 
)
By contradiction, assume that

H L pk L q ą A, H L pk L q ă H L pk L q and H Ŕ pk R q ă H R pk R q.
Let us choose k P G A such that H L p kL q " H L p kL q " A and H R p kR q " H Ŕ p kR q " A. Then, as H L and H R are convex and as H L pk L q ă H L pk L q and H Ŕ pk R q ă H R pk R q, we have

H L pk L q " min H L ď A " H L p kL q, which implies that kL ą k L (equality cannot hold because H L pk L q ą A " H L p kL q) while H Ŕ pk R q " min H R ď A " H Ŕ p kR q, which implies that kR ă k R (because H R pk R q " H L pk L q ą A " H R p kR q)
. This yields a contradiction with [START_REF] Colombo | Initial data identification in conservation laws and Hamilton-Jacobi equations[END_REF]. Therefore k satisfies [START_REF] Colombo | Initial Data Identification in Space Dependent Conservation Laws and Hamilton-Jacobi Equations[END_REF] and belongs to G A . This shows the maximality of G A .

The proof of the completeness of the germ G A is postponed to Lemma 3.7, where we show the existence of a solution using the convergence of the numerical scheme introduced in Subsection 3.2.

Remark. In the case of a junction with N ě 3 branches, it is possible to show that the Hamilton-Jacobi germ is never L 1 -dissipative (except in the special case where the limiter A " 0 which corresponds to no flux at the junction point). See Lemma 6.7.

We now present an important result telling that the gem G A is generated by a set of three points :

E A :" tpa L , a R q, pc L , c R q, pp A L , pA R qu, (16) 
where pp A L , pA R q is such that

H L pp A L q " H Ĺ pp A L q " A " H R pp A R q " H R pp A R q.
This fact was already mentioned in [START_REF] Adimurthi | Optimal entropy solutions for conservation laws with discontinuous flux-functions[END_REF].

Lemma 2.7 (E A generates G A on Q). Assume that A P rH 0 , 0s. Then the set E A generates G A on the box Q: namely, for any pk L , k R q P Q, ´qL pk L , kL q ´qR pk R , kR q ě 0 @p kL , kR q

P E A ¯ùñ pk L , k R q P G A ,
where, for α " L, R, q α are the entropy fluxes defined by q α pq, pq " signpq ´pqpH α pqq ´Hα ppqq.

Proof. We choose pk L , k R q P Q and we will test it with the elements p kL , kR q P E A using the dissipation condition in order to show that pk L , k R q P G A .

Step 1: recovering Rankine-Hugoniot condition We choose p kL , kR q " pa L , a R q. We then have 0 ď q L pk L , kL q ´qR pk R , kR q " signpk L ´aL qH L pk L q ´signpk R ´aR qH R pk R q.

Since k L ě a L and k R ě a R , we recover that H L pk L q ě H R pk R q. In the same way, taking p kL , kR q " pc L , c R q, we get H L pk L q ď H R pk R q, which implies that

H L pk L q " H R pk R q.
Step 2:

H L pk L q " H R pk R q ě A
We choose p kL , kR q " pp A L , pA R q and by contradiction, we assume that

H L pk L q " H R pk R q ă A " H L p kL q " H L p kR q. Since H Ĺ p kL q " H L p kL q ą H L pk L q ě H Ĺ pk L q,
we deduce that kL ă k L . In the same way, we get kR ą k R . Using that 0 ď q L pk L , kL q ´qR pk R , kR q " signpk L ´k L qpH L pk L q ´Aq ´signpk R ´k R qpH R pk R q ´Aq ă 0 we get a contradiction.

Step 3:

H L pk L q " H R pk R q " FA pk L , k R q
We choose p kL , kR q " pp A L , pA R q and by contradiction, we assume that

H R pk R q "H L pk L q ą A and H L pk L q ą H L pk L q and H R pk R q ą H Ŕ pk R q.
Using that H L pk L q " H Ĺ pk L q ą A " H Ĺ p kL q, we deduce that k L ă kL . In the same way, we have k R ą kR . This implies that 0 ď q L pk L , kL q ´qR pk R , kR q " signpk L ´k L qpH L pk L q ´Aq ´signpk R ´k R qpH R pk R q ´Aq ă 0 which is a contradiction.

General junction condition for SCL. We now explain how the Scalar Conservation Law (11) should be treated. Following the approach of [START_REF] Andreianov | On interface transmission conditions for conservation laws with discontinuous flux of general shape[END_REF], the idea to understand this problem is to study two half-space problems for two given Dirichlet boundary condition pk

L , k R q, $ & % ρ t `HL pρq x " 0 if x ă 0 ρpt, 0 ´q " k L ptq ρp0, xq " ρ 0 pxq for x ă 0 $ & % ρ t `HR pρq x " 0 if x ą 0 ρpt, 0 `q " k R ptq ρp0, xq " ρ 0 pxq for x ą 0 ( 17 
)
where the couple of boundary conditions pk L ptq, k R ptqq satisfies the following transmission condition

H L pρpt, 0´qq " H R pρpt, 0`qq " F 0 pk L ptq, k R ptqq. (18) 
Moreover, the Dirichlet boundary conditions in [START_REF] Coste | An introduction to o-minimal geometry[END_REF] have to be understood in the sense of Bardos-Leroux-Nedelec (see [START_REF] Bardos | First order quasilinear equations with boundary conditions[END_REF]), i.e.

H L pρpt, 0´qq " g HL pρpt, 0´q, k L ptqq, H R pρpt, 0`qq " g HR pk R ptq, ρpt, 0`qq for a.e. t P p0, T q where for a general Hamiltonian H, g H is the Godunov flux defined by

g H pp 1 , p 2 q " " min pPrp1,p2s Hppq if p 1 ď p 2 max pPrp2,p1s Hppq if p 2 ď p 1 .
We say that a solution to ( 17)-( 18) is a F 0 -admissible solution to [START_REF] Brenier | The discrete one-sided Lipschitz condition for convex scalar conservation laws[END_REF].

In our specific setting, due to the monotonicity of F 0 , for any couple pρ L , ρ R q P R 2 verifying H L pρ L q " H R pρ R q there exists a unique value F pρ L , ρ R q P R such that there exists pk L , k R q P R 2 satisfying F 0 pk L , k R q " F pρ L , ρ R q and (18) with ρpt, 0 ´q " ρ L and ρpt, 0 `q " ρ R (see [START_REF] Andreianov | Well-posedness for vanishing viscosity solutions of scalar conservation laws on a network[END_REF] and [START_REF] Andreianov | On interface transmission conditions for conservation laws with discontinuous flux of general shape[END_REF]). Moreover, one can show (the reader can try to check it directly, but this result will be addressed in a much more generality in a future work) that

F pρpt, 0 ´q, ρpt, 0 `qq " maxpA F0 , H L pρpt, 0 ´qq, H Ŕ pρpt, 0 `qqq,
where A F0 is constructed in Lemma 2.9 below. Then, solving [START_REF] Coste | An Introduction to Semialgebraic Geometry[END_REF] rewrites as

H R pρpt, 0 ´qq " H L pρpt, 0 `qq " FAF 0 pρpt, 0 ´q, ρpt, 0 `qq.
which is exactly the junction condition that ρ must satisfy in [START_REF] Andreianov | New approaches to describing admissibility of solutions of scalar conservation laws with discontinuous flux[END_REF].

We then define the solution of (11) as follow.

Definition 2.8 (Definition of solutions to [START_REF] Brenier | The discrete one-sided Lipschitz condition for convex scalar conservation laws[END_REF]). We say that ρ P L 8 pp0, T q ˆRq is a F 0 -admissible solution to [START_REF] Brenier | The discrete one-sided Lipschitz condition for convex scalar conservation laws[END_REF] if ρ is a G AF 0 -entropy solution to (8) with A F0 defined in Lemma 2.9.

Construction of the flux limiter A F 0

In this section, given a desired junction condition F 0 satisfying [START_REF] Barles | An illustrated guide of the modern approaches of hamilton-jacobi equations and control problems with discontinuities[END_REF], we want to define the relaxed junction condition such that the weak viscosity solution to (9) satisfies the relaxed junction condition strongly. This junction condition is of the form FAF 0 (see ( 4)), where the constant A F0 depends on F 0 and is defined as the unique constant such that there exists p " pp l , pR q such that

A F0 " F 0 ppq " H R pp R q " H Ĺ pp L q.
More precisely, we have the following lemma (see also [START_REF] Imbert | Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks[END_REF]Lemma 2.13]):

Lemma 2.9 (Definition of the flux limiter A F0 ). Let F 0 and H α , α " L, R satisfy respectively (10) and

(2). We denote by

H 0 :" max α"L,R min H α ppq " maxpH L pb L q, H R pb R qq,
where we recall that b α is the point of minimum of H α .

Let bR be the maximal p such that H R ppq " H 0 , and bL be the minimal p such that H L ppq " H 0 . If F 0 p bL , bR q ă H 0 , we set A F0 " H 0 . If F 0 p bL , bR q ě H 0 , then we define the set

Λ :" tλ P R, Dp " pp L , pR q s.t. λ " F 0 ppq " H R pp R q " H Ĺ pp L qu.
Then Λ is non-empty and is reduced to a singleton. We denote by A F0 the unique constant such that

Λ " tA F0 u.
Moreover, if F 0 " FA with A P rH 0 , 0s, then A F0 " A.

Proof.

Step 1: Λ is non empty. Given λ ą H 0 , we define p λ α such that

H Ĺ pp λ L q " H R pp λ R q " λ.
For λ " H 0 , we set p H0 α :" lim λÑpH0q `pλ α which satisfies p H0 R " bR and p H0 L " bL . In particular, the map λ Þ Ñ p λ R is continuous and increasing, while the map λ Þ Ñ p λ L is continuous and decreasing. Since F 0 is non-decreasing in the first variable and non-increasing in the second one, the map λ Þ Ñ F 0 pp λ L , p λ R q is non-increasing. We then define the application K : λ Þ Ñ F 0 pp λ L , p λ R q ´λ. When F 0 pp H0 L , p H0 R q " F 0 p bL , bR q ě H 0 , we get that KpH 0 q ě 0. Using the fact of λ Þ Ñ F 0 pp λ L , p λ R q is non-increasing, we also have Kpλq ď F 0 p bL , bR q ´λ and so for λ large enough, we have Kpλq ă 0. By continuity, this implies that there exists λ ě H 0 such that Kp λq " 0. We set p " pp λ L , p λ R q and we get

F 0 ppq " λ " H Ĺ pp L q " H R pp R q,
i.e. λ P Λ.

Step 2: Λ is reduced to a singleton. Assume that there exists λ1 , λ2 P Λ such that λ1 ą λ2 . Hence, there exists p i R and

p i L such that λ1 " F 0 pp 1 L , p 1 R q " H Ĺ pp 1 L q " H R pp 1 R q ą λ2 " F 0 pp 2 L , p 2 R q " H Ĺ pp 2 L q " H R pp 2 R q In particular, we have p 1 L ă p 2 L and p 1 R ą p 2 R . By monotonicity of F 0 , this implies that F 0 pp 1 L , p 1 R q ď F 0 pp 2 L , p 2 R q, which is a contradiction.
As explained before, the solution of ( 9) is satisfied in a weak sense for general F 0 . Nevertheless, it is possible to relax the junction condition in order to make the solution satisfy the junction condition strongly. More precisely, we have the following theorem, given in [23, Proposition 2.12].

Theorem 2.10 (General junction conditions reduce to flux limited ones). Assume that H L and H R satisfy (2) and that F 0 satisfies [START_REF] Barles | An illustrated guide of the modern approaches of hamilton-jacobi equations and control problems with discontinuities[END_REF]. Then u is a continuous weak viscosity solution to (9), if and only if u is a strong viscosity solution to (1) with FA for A :" A F0 defined above in Lemma 2.9.

3 Numerical schemes 3.1 Numerical scheme for the Hamilton-Jacobi equation [START_REF] Bardos | First order quasilinear equations with boundary conditions[END_REF] In this subsection, we describe the numerical scheme used to solve the Hamilton-Jacobi equation [START_REF] Bardos | First order quasilinear equations with boundary conditions[END_REF]. Given a time step ∆t ą 0 and a space step ∆x ą 0, we consider the discrete time t n " n∆t for n P N and the discrete point x j " j∆x for j P Z. We denote by u n j the numerical approximation of upt n , x j q. In order to discretize (9), we will use a Godunov approximation. More precisely, we introduce the following Godunov numerical Hamiltonians, for α " L, R g Hα pp ´, p `q " " min pPrp ´,p `s H α ppq if p ´ď p max pPrp `,p ´s H α ppq if p `ď p Ẃe remark that g Hα are non-decreasing in the first variable and non-increasing in the second one. Moreover, g Hα pp, pq " H α ppq for α " R, L. For j P Z, we define

p n j`1 2 " u n j`1 ´un j ∆x .
The numerical scheme is then given by

$ ' ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' ' % u n`1 j ´un j ∆t `gHL ´pn j´1 2 , p n j`1 2
¯" 0 for j ď ´1,

u n`1 j ´un j ∆t `gHR ´pn j´1 2 , p n j`1 2
¯" 0 for j ě 1,

u n`1 j ´un j ∆t `F0 ´pn j´1 2 , p n j`1 2 ¯" 0 for j " 0 (19) 
completed with the initial condition u 0 j " u 0 pj∆xq for j P Z.

For ∆ " p∆t, ∆xq, let

u ∆ pt, xq :" ÿ nPN 1 rtn,tn`1q ptq1 rxj ,xj`1q pxq « u n j `un`1 j ´un j ∆x px ´xn q ff .
We then have the following convergence result.

Theorem 3.1 (Numerical approximation for Hamilton-Jacobi equations). Let T ą 0 and u 0 be Lipschitz continuous. We assume that the H α satisfy (2) and F 0 satisfies [START_REF] Barles | An illustrated guide of the modern approaches of hamilton-jacobi equations and control problems with discontinuities[END_REF] or is of the form (4). Let u n j be the solution of the scheme [START_REF] Fjordholm | Well-posedness and convergence of a finite volume method for conservation laws on networks[END_REF] and u be the solution of the Hamilton-Jacobi equation (1) with the relaxed junction condition F AF 0 . Let L H :" maxpL HL , L HR , ||B p1 F 0 || 8 , ||B p2 F 0 || 8 q where L Hα is the Lipschitz constant of H α . We also assume that the CFL condition

∆x ∆t ě 2L H (20) 
holds. Then u ∆ converges locally uniformly to u.

Proof. Recalling that by Theorem 2.10, the solution to (1) with A " A F0 is also the solution to (9), the proof is a consequence of [21, Theorem 1.1 or Theorem 1.2] remarking that the two schemes are identical.

The main difference with the result in [START_REF] Guerand | Error estimates for a finite difference scheme associated with Hamilton-Jacobi equations on a junction[END_REF] is that in that paper, the network is composed of two outgoing edges, but it's rather easy to come back to this setting. Indeed, if we set, for x ě 0,

v α pt, xq " " upt, ´xq if α " L upt, xq if α " R then v α is solution of " v α t `H α pv x q " 0 in p0, T q ˆp0, `8q, α " R, L v α t `F 0 pv L x , v R x q " 0 in p0, T q ˆt0u (21) 
where HL ppq " H L p´pq, HR " H R , F0 pp 1 , p 2 q " F 0 p´p 1 , p 2 q. Setting v L,n j " u n ´j and v R,n j " u n j for j ě 0, an easy computation, using that g HL pp 1 , p 2 q " g HL p´p 2 , ´p1 q, shows that v α,n j is solution of the following scheme

$ ' ' ' ' & ' ' ' ' % v α,n`1 j ´vα,n j ∆t `g Hα ´pα,n j´1 2 , p α,n j`1 2 ¯" 0 for j ě 1, α " L, R v α,n`1 j ´vα,n j ∆t `F 0 ´pL,n j`1 2 , p R,n j`1 2 ¯" 0 for j " 0, α " L, R, with v L,n 0 " v R,n 0 where p α,n j`1 2 " v α,n j`1 ´vα,n j ∆x . ( 22 
)
On the contrary, the scheme proposed in [START_REF] Guerand | Error estimates for a finite difference scheme associated with Hamilton-Jacobi equations on a junction[END_REF] to solve [START_REF] Guerand | Error estimates for a finite difference scheme associated with Hamilton-Jacobi equations on a junction[END_REF] writes

$ ' ' ' ' & ' ' ' ' % v α,n`1 j ´vα,n j ∆t `max ´H ὰ ´pα,n j´1 2 ¯, Hά ´pα,n j`1 2 ¯¯" 0 for j P N, α " 1, 2, v α,n`1 j ´vα,n j ∆t `F 0 ´pL,n j`1 2 , p R,n j`1 2 ¯" 0 for j " 0, α " 1, 2 with v 1,b 0 " v 2,n 0 . ( 23 
)
The rest of the proof is then a direct consequence of the following lemma which proof is postponed. Lemma 3.2 (Equivalent formulation of the Godunov flux). For a general convex hamiltonian H, we have g H pp 1 , p 2 q " maxpH `pp 1 q, H ´pp 2 qq.

This shows that the two schemes for ( 21) are equivalent and so, using [21, Theorem 1.1 or Theorem 1.2], this shows that "v α,n i converges to v α " locally uniformly and so, by a change of variable, "u n i converges to u" in the sense of Theorem 3.1. This ends the proof of the theorem.

It remains to show the lemma.

Proof of Lemma 3.2. We denote by p 0 the minimum point of H so that H is non-increasing on p´8, p 0 s and non-decreasing on rp 0 , `8q and we distinguish several cases: Case 1: p 1 ď p 0 ď p 2 . In that case H `pp 1 q " Hpp 0 q " H ´pp 2 q and g H pp 1 , p 2 q " min rp1,p2s

H " Hpp 0 q " maxpH `pp 1 q, H ´pp 2 qq.

Case 2: p 0 ď p 1 ď p 2 . In that case H `pp 1 q " Hpp 1 q, H ´pp 2 q " Hpp 0 q and g H pp 1 , p 2 q " min rp1,p2s

H " Hpp 1 q " maxpH `pp 1 q, H ´pp 2 qq.

Case 3: p 1 ď p 2 ď p 0 . This case is similar to the previous one.

Case 4: p 2 ď p 0 ď p 1 . In that case H `pp 1 q " Hpp 1 q, H ´pp 2 q " Hpp 2 q and maxpHpp 1 q, Hpp 2 qq " max rp2,p1s

H " g H pp 1 , p 2 q.

Case 5: p 0 ď p 2 ď p 1 . In that case H `pp 1 q " Hpp 1 q, H ´pp 2 q " Hpp 0 q and maxpHpp 1 q, Hpp 0 qq " Hpp 1 q " max rp2,p1s

H " g H pp 1 , p 2 q. Case 6: p 2 ď p 1 ď p 0 . This case is similar to the previous one.

Numerical scheme for the scalar conservation law equation (11)

Given u 0 satisfying (3), we consider ρ 0 :" pu 0 q x and its discretized version

p 0 j`1{2 " u 0 j`1 ´u0 j ∆x " u 0 px j`1 q ´u0 px j q ∆x " 1 ∆x ˆxj`1 xj ρ 0 pyq dy.
We now want to describe the numerical scheme for [START_REF] Brenier | The discrete one-sided Lipschitz condition for convex scalar conservation laws[END_REF]. This scheme is directly derived from the scheme [START_REF] Fjordholm | Well-posedness and convergence of a finite volume method for conservation laws on networks[END_REF]. Indeed, recalling the definition of p n j`1{2 in [START_REF] Karlsen | A note on Front tracking and the Equivalence between Viscosity Solutions of Hamilton-Jacobi Equations And Entropy Solutions of scalar Conservation Laws[END_REF], we can write

$ ' ' ' ' ' ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' ' ' ' ' ' % p n`1 j`1 2 " p n j`1 2 ´∆t ∆x ´gHL ´pn j`1 2 , p n j`3 2 ¯´g HL ´pn j´1 2 , p n j`1 2 ¯¯for j ď ´2 p n`1 j`1 2 " p n j`1 2 ´∆t ∆x ´gHR ´pn j`1 2 , p n j`3 2 ¯´g HR ´pn j´1 2 , p n j`1 2 ¯¯for j ě 1 p n`1 j`1 2 " p n j`1 2 ´∆t ∆x ´gHR ´pn j`1 2 , p n j`3 2 ¯´F 0 ´pn j´1 2 , p n j`1 2 ¯¯for j " 0 p n`1 j`1 2 " p n j`1 2 ´∆t ∆x ´F0 ´pn j`1 2 , p n j`3 2 ¯´g HL ´pn j´1 2 , p n j`1 2 ¯¯for j " ´1. (24) 
For notations' sake, we also denote by F n j the right-hand side of the above scheme such that for any n, j, we have ρ n`1 j`1{2 " F n j pρ n j´1{2 , ρ n j`1{2 , ρ n j`3{2 q.

We denote ∆ " p∆x, ∆tq and

p ∆ :" ÿ nPN ÿ jPZ p n j`1{2 1 rtn,tn`1qˆrxj,xj`1q . (25) 
For this scheme we have the following convergence result Theorem 3.3 (Numerical approximation for SCL). Let u 0 satisfy (3), H L,R satisfy (2) and F 0 satisfy [START_REF] Barles | An illustrated guide of the modern approaches of hamilton-jacobi equations and control problems with discontinuities[END_REF]. Suppose also that the CFL condition (20) is satisfied and that ∆t ∆x

δ 2 M ď 1, (26) 
where

M " maxp|a L |, |c L |, |a R |, |c R |q and δ is introduced in (2)
. Then pp ∆ q ∆ converges almost everywhere as ∆ ÝÑ p0, 0q to ρ P L 8 , the unique solution to [START_REF] Andreianov | New approaches to describing admissibility of solutions of scalar conservation laws with discontinuous flux[END_REF], in the sense of Definition 2.3, with A " A F0 and A F0 given in Lemma 2.9.

Remark. This result is rather classical if we take F 0 :" FA for A P rH 0 , 0s in the numerical scheme [START_REF] Imbert | A Hamilton-Jacobi approach to junction problems and application to traffic flows[END_REF] and the proof of convergence has been written in a similar setting in various sources including [START_REF] Andreianov | Finite volume schemes for locally constrained conservation laws[END_REF], [START_REF] Andreianov | Finite volume approximation and well-posedness of conservation laws with moving interfaces under abstract coupling conditions[END_REF] and [START_REF] Sylla | A lwr model with constraints at moving interfaces[END_REF]. The result we present here is stronger. Indeed, we put the desired condition F 0 in the scheme and we show that the numerical solution converges to the solution with the relaxed junction condition FAF 0 . The strategy of the proof is similar to the classical case, but for completeness' sake we rewrite it here, putting most of the heavy computations in Appendix.

We first present the different lemmas that we piece together in order to get Theorem 3.3.

Lemma 3.4. (Monotonicity and stability)

Let u 0 satisfy (3), H L,R satisfy (2) and F 0 satisfy [START_REF] Barles | An illustrated guide of the modern approaches of hamilton-jacobi equations and control problems with discontinuities[END_REF]. Suppose also that the CFL condition (20) is satisfied. Then the numerical scheme (24) is monotone. That is to say F n j is non-decreasing with respect to each of its three variables. Furthermore, the scheme is stable, namely we have @n P N, @j P Z, p n j`1{2 P

" ra L , c L s if j ď ´1 ra R , c R s if j ě 0. ( 27 
)
Proof. We begin to prove the monotonicity. Fix n, j. Recall that the Godunov flux g H and the junction condition F 0 are non-decreasing with respect to their first argument and non-increasing with respect to their second one. Then,

@v, w P R, u Þ Ñ F n j pu, v, wq is non-decreasing, @u, v P R, w Þ Ñ F n j pu, v, wq is non-decreasing.
Notice that, for a given H, the derivative of the Godunov flux g H is bounded by the Lipschitz constant

L H of H B p1 g H pp 1 , p 2 q P r0; L H s B p2 g H pp 1 , p 2 q P r´L H , 0s
Recalling that L H :" maxpL HL , L HR , ||B p1 F 0 pp 1 , p 2 q|| 8 , ||B p2 F 0 pp 1 , p 2 q|| 8 q, we also have

B p1 F 0 pp 1 , p 2 q P r0, L H s B p1 F 0 pp 1 , p 2 q P r´L H , 0s.
Then

B v F n j pu, v, wq ě 1 ´∆t ∆ x pL H ´p´L H qq ě 1 ´2 ∆ t ∆ x L H .
Since the CFL condition ( 20) is satisfied, we recover that v Þ Ñ F n j pu, v, wq is non-decreasing.

We now prove the stability result by induction on n. First, by assumption (3), the property ( 27) is true for n " 0. Fix n P N such that (27) holds true for n. We recall that ρ n`1 j`1{2 " F n j pρ n j´1{2 , ρ n j`1{2 , ρ n j`3{2 q.

If j ě 1, by monotonicity of the scheme, we then have

ρ n`1 j`1{2 ě F n j pa R , a R , a R q " a R ´∆t ∆x pHpa R q ´Hpa R qq " a R and ρ n`1 j`1{2 ď F n j pc R , c R , c R q " c R ´∆t ∆x pHpc R q ´Hpc R qq " c R .
In the same way, if j " 0, we get

ρ n`1 j`1{2 ě F n j pa L , a R , a R q " a R ´∆t ∆x pHpa R q ´F0 pa L , a R qq " a R and ρ n`1 j`1{2 ď F n j pc L , c R , c R q " c R ´∆t ∆x pHpc R q ´F0 pc L , c R qq " c R ,
where we used Assumption [START_REF] Barles | An illustrated guide of the modern approaches of hamilton-jacobi equations and control problems with discontinuities[END_REF] to get that F 0 pa L , a R q " F 0 pc L , c R q " 0. Using the same arguments, we get also the result for j ď 1. This ends the proof of the lemma.

Recall that, associated to the entropy p Þ Ñ |p ´k|, is the entropy flux p Þ Ñ signpp ´kq ¨tHppq ´Hpkqu " Hpp ^kq ´Hpp _ kq where we used the notation, for any a, b P R, a _ b " maxpa, bq and a ^b " minpa, bq. This naturally suggests the following result.

Lemma 3.5 (Discrete entropy inequalities). Let u 0 satisfy (3), H L,R satisfy (2) and F 0 satisfy [START_REF] Barles | An illustrated guide of the modern approaches of hamilton-jacobi equations and control problems with discontinuities[END_REF]. Suppose also that the CFL condition (20) is satisfied. Let T ą 0 and pp ∆ q ∆ be defined by [START_REF] Lions | Viscosity solutions for junctions: well posedness and stability[END_REF]. For any pk L , k R q P Q, writing k ∆ " k L 1 jď´1 `kR 1 jě0 , we set

Φ n j pk ∆ q " $ ' & ' % g HL pp n j´1{2 _ k L , p n j`1{2 _ k L q ´gHL pp n j´1{2 ^kL , p n j`1{2 ^kL q if j ď ´1 g HR pp n j´1{2 _ k R , p n j`1{2 _ k R q ´gHR pp n j´1{2 ^kR , p n j`1{2 ^kR q if j ě 1 F 0 pp n j´1{2 _ k L , p n j`1{2 _ k R q ´F0 pp n j´1{2 ^kL , p n j`1{2 ^kR q if j " 0. ( 28 
)
We also set

Φ ∆ pk ∆ q :" ÿ nPN ÿ jPZ Φ n j pk ∆ q1 rtn,tn`1qˆrxj,xj`1q .
Then, for any φ P C 8 c pp0, T q ˆRq non-negative, we have, with p ∆ defined in [START_REF] Lions | Viscosity solutions for junctions: well posedness and stability[END_REF],

ˆT 0 ˆR p|p ∆ ´k∆ | φ t `Φ∆ pk ∆ qφ x q dt dx `ˆR |p ∆ p0, xq ´k∆ | φp0, xq dx `ˆT 0 R F0 pk L , k R qφpt, 0q dt ě Op∆xq `Op∆tq, (29) 
where

R F0 pk L , k R q :" |H L pk L q ´F0 pk L , k R q| `|H R pk R q ´F0 pk L , k R q|.
Remark. The proof of this lemma is pretty straightforward and derives directly from the monotonicity proven in Lemma 3.4. Since it contains long computations, we postponed it to the Apppendix.

Finally, in order to get the desired convergence, we also need the compactness of pp ∆ q ∆ . We use the following lemma, which proof is also postponed to the Appendix.

Lemma 3.6 (Compactness of ρ ∆ ). Let u 0 satisfy (3), H L,R satisfy (2) and F 0 satisfy [START_REF] Barles | An illustrated guide of the modern approaches of hamilton-jacobi equations and control problems with discontinuities[END_REF]. For any l, let p∆ l q l verify the CFL condition (20) and (26). Then, there exists ρ P L 8 and a subsequence also denoted pp ∆ l q l such that p ∆ l ÝÑ ρ a.e. as ∆ l Ñ 0.

We are now in a position to prove Theorem 3.3.

Proof of Theorem 3.3. First, using Lemma 3.6, we take a subsequence of p ∆ that converges to ρ P L 8 a.e.. We now want to prove that ρ is a solution to [START_REF] Andreianov | New approaches to describing admissibility of solutions of scalar conservation laws with discontinuous flux[END_REF] in the sense of Definition 2.3. The first point of Definition 2.3 is classical and we skip it.

Let φ P C 8 c pr0, T q ˆR´q be non-negative and pk L , k R q P Q. We first want to prove that

ˆT 0 ˆR´Φ ∆ pk ∆ qφ x dt dx ÝÑ ˆT 0 ˆR´s ignpρ ´kL q rH L pρq ´HL pk L qs φ x dt dx. ( 30 
)
Let x ă 0 and t P r0, T q such that p ∆ pt, xq ÝÑ ρ. Then, for any ∆x, there exists j ď ´1 such that p ∆ pt, xq " p n j`1{2 and

Φ ∆ pk ∆ qpt, xq "g HL pp ∆ pt, x ´∆xq _ k L , p ∆ pt, xq _ k L q ´gHL pp ∆ pt, x ´∆xq ^kL , p ∆ pt, xq ^kL q "g HL pp ∆ pt, x ´∆xq _ k L , p ∆ pt, xq _ k L q ´gHL pp ∆ pt, xq _ k L , p ∆ pt, xq _ k L q `signpp ∆ pt, xq ´kL q rH L pp ∆ pt, xqq ´HL pk L qs
`gHL pp ∆ pt, xq ^kL , p ∆ pt, xq ^kL q ´gHL pp ∆ pt, x ´∆xq ^kL , p ∆ pt, xq ^kL q.

Using the Lipschitz bound on the Godunov flux, we recover:

ˆT 0 ˆR´Φ ∆ pk ∆ qφ x dt dx " ˆT 0 ˆR´s ignpp ∆ ´kL q rH L pp ∆ q ´HL pk L qs φ x dt dx `I1
where First, notice that

|I 1 | ď 2L H ˆT 0 ˆR´| p ∆ pt,
I 3 ď 2L H ˆT 0 ˆR´ˇˇˇˇp ∆ pt, x ´∆xq ˆx x´∆x φ xx pt, yq dy ˇˇˇd t dx ď 2L H ||p ∆ || L 8 ||φ xx || L 1 ∆x.
Now, since p ∆ ÝÑ ρ a.e. and |p ∆ φ x | ď C|φ x | P L 1 pp0, T q ˆRq, the sequence pp ∆ φ x q ∆ is convergent to ρφ x in L 1 pp0, T q ˆRq. From Frechet-Kolmogorov Theorem, we recall that lim ∆xÑ0 ||τ ∆x pρφ x q ´ρφ x || L 1 pp0,T qˆRq " 0, where τ ∆x f pxq " f px ´∆xq. It is then easy to see that I 2 " op1q when ∆ ÝÑ p0, 0q. This implies [START_REF] Panov | Existence of strong traces for quasi-solutions of multidimensional conservation laws[END_REF].

Then, for φ P C 8 c pr0, T q ˆR´q , passing to the limit in ( 29), we get ¨p0,T qˆR ´|ρ ´kL |φ t `signpρ ´kL q rH L pρq ´HL pk L qs φ x `ˆR ´|ρ 0 pxq ´kL |φp0, xq dx ě 0.

The analogous result holds if φ is compactly supported in r0, T q ˆp0, `8q. Note that, when treating this case, we need to consider a ∆ 0 such that for any ∆x ď ∆ 0 , p ∆ pt, xq " p n j`1{2 with j ě 1. We can however choose ∆x to be small enough such that φ " 0 on p0, ∆xq and recover the analogous inequalities. So the second condition in Definition 2.3 is satisfied.

We now want to prove the third point. Let pk L , k R q P E AF 0 , where E AF 0 is defined in [START_REF] Colombo | Rigorous estimates on balance laws in bounded domains[END_REF]. In particular, we have R F0 pk L , k R q " 0. Using the same reasoning as before with φ P C 8 c pp0, T q ˆRq, we get, using the notation Hpx, pq :" H L ppq ¨1R ´pxq `HR ppq ¨1R `pxq and kpxq :" k L ¨1R ´pxq `kR ¨1R `pxq, that ˆT 0 ˆR Φ ∆ pk ∆ qφ x dt dx ÝÑ ˆT 0 ˆRzt0u signpρ ´kq rHpx, ρq ´Hpx, kqs φ x dt dx and ¨p0,T qˆR |ρ ´k|φ t `signpρ ´kq rHpx, ρq ´Hpx, kqs φ x ě 0

Using a sequence of test functions focusing on x " 0, we then recover

ˆT 0 rq L pγ L ρ, k L q ´qR pγ R ρ, k R qs φpt, 0q dt ě 0,
where the q α are defined in Lemma 2.7. Then, for almost every t,

q L pγ L ρ, k L q ´qR pγ R ρ, k R q ě 0.
Using Lemma 2.7 and the fact that pγ L ρ, γ R ρq P Q a.e. on p0, T q, we deduce that pγ L ρ, γ R ρq P G AF 0 a.e. on p0, T q and we recover that ρ satisfies the third condition of Definition 2.3. Finally the uniqueness of ρ follows from the first point of Theorem 2.5.

We now state and prove the following result.

Lemma 3.7 (Completeness of G A ). Under the assumptions of Proposition 2.6, the L 1 -dissipative germ G A is complete.

Proof of Lemma 3.7. Consider any k " pk L , k R q P Q. In order to show the completeness of G A , we simply have to show the existence of a G A -entropy solution to [START_REF] Andreianov | New approaches to describing admissibility of solutions of scalar conservation laws with discontinuous flux[END_REF] with initial data ρ 0 " k L 1 p´8,0q `kR 1 r0,`8q .

The existence of such a solution follows from the construction of the function ρ in the proof of Theorem 3.3. This insures that G A is complete and ends the proof.

4 Proof of Theorem 1.1 and Theorem 1.2 using numerical schemes

We are now able to give the proof of Theorem 1.2.

Proof of Theorem 1.2. Fix ∆ :" p∆t, ∆xq satisfying the CFL condition ( 20) and [START_REF]Well-posedness for multi-dimensional junction problems with Kirchoff-type conditions[END_REF]. Denote by pu n j q nPN,jPZ the solution of the scheme [START_REF] Fjordholm | Well-posedness and convergence of a finite volume method for conservation laws on networks[END_REF]. Recall that

u ∆ pt, xq :" ÿ nPN 1 rtn,tn`1q ptq1 rxj ,xj`1q pxq « u n j `un`1 j ´un j ∆x px ´xn q ff .
Then, by construction (see [START_REF] Karlsen | A note on Front tracking and the Equivalence between Viscosity Solutions of Hamilton-Jacobi Equations And Entropy Solutions of scalar Conservation Laws[END_REF]), for any ∆,

pu ∆ q x " p ∆
where p ∆ is the solution of the scheme [START_REF] Imbert | A Hamilton-Jacobi approach to junction problems and application to traffic flows[END_REF] with ρ 0 as initial datum. Let φ P C 1 c pr0, `8q ˆRq. Then we have ¨u∆ φ x dt dx " ´¨p ∆ φ dt dx.

Using Theorem 3.1, we know that the scheme [START_REF] Fjordholm | Well-posedness and convergence of a finite volume method for conservation laws on networks[END_REF] with u 0 as initial datum converges locally uniformly to u the unique weak viscosity solution to [START_REF] Bardos | First order quasilinear equations with boundary conditions[END_REF]. Furthermore, φ x P C 0 c pr0, `8q ˆRq so we can pass to the limit in the left-hand side as ∆ ÝÑ p0, 0q satisfying the CFL condition to get ¨u∆ φ x dt dx ÝÑ ¨uφ x dt dx.

On the other hand, using Theorem 3.3, we get that p ∆ converges a.e. to ρ the unique solution of [START_REF] Brenier | The discrete one-sided Lipschitz condition for convex scalar conservation laws[END_REF] in the sense of Definition 2.3. Also, thanks to Lemma 3.4, we know that pp ∆ q ∆ is uniformly bounded. By dominated convergence, we also pass to the limit in the right-hand side and get that, for any test function φ P C 1 c pr0, `8q ˆRq, ¨uφ x dt dx " ´¨ρφ dt dx.

This gives the desired result.

The proof of Theorem 1.1 can be obtained exactly in the same way.

5 An alternative proof of Theorem 1.1 using semi-algebraic functions

Let u be the viscosity solution of (1) for A P rH 0 , 0s and ρ be defined by ρpt, xq :" u x pt, xq.

We would like to give a more direct proof of Theorem 1.1 and show that ρ is an entropy solution of [START_REF] Andreianov | New approaches to describing admissibility of solutions of scalar conservation laws with discontinuous flux[END_REF].

It is easy to check that ρ is already an entropy solution outside tx " 0u (see for instance [START_REF] Colombo | Initial data identification in conservation laws and Hamilton-Jacobi equations[END_REF][START_REF] Karlsen | A note on Front tracking and the Equivalence between Viscosity Solutions of Hamilton-Jacobi Equations And Entropy Solutions of scalar Conservation Laws[END_REF]). We then focus on the junction condition at x " 0. In all this section, we assume that H L,R satisfy (2). We denote by ρ L and ρ R the strong traces of ρ at 0 (see [START_REF] Panov | Existence of strong traces for quasi-solutions of multidimensional conservation laws[END_REF] and ( 12)): ρ L :" γ L ρ and ρ R :" γ R ρ.

We first note that formally

H L pu x pt, 0 ´qq " H R pu x pt, 0 `qq @t ą 0. ( 32 
)
Equality ( 32) can be rewritten rigorously as Lemma 5.1 (The Rankine-Hugoniot condition). We have

H L pρ L ptqq " H R pρ R ptqq a.e. t ą 0. ( 33 
)
This common value is equal to ´ut pt, 0q.

Equality [START_REF] Trélat | Global subanalytic solutions of Hamilton-Jacobi type equations[END_REF] makes sense since ρ α pt, ¨q (and then also H α pρpt, ¨q) have strong traces at x " 0. Note also that equality [START_REF] Trélat | Global subanalytic solutions of Hamilton-Jacobi type equations[END_REF] is nothing else the Rankine-Hugoniot condition at x " 0.

Proof of Lemma (5.1). For any ξ P C 8 c pp0, `8qq and h ą 0 small, we have, after integrating the equation of u which is satisfied a.e. (since u is Lipschitz continuous)

h ´1 ˆˆpt,xqPp0,`8qˆp0,hq ξptqH R pu x pt, xqq dxdt " h ´1 ˆ8 0 ˆh 0 ξ 1 ptqupt, xq dxdt.
By continuity of u, the right-hand side converges, as h Ñ 0 `, to ´8 0 ξ 1 ptqupt, 0qdt. The left-hand side can be rewritten as

h ´1 ˆ8 0 ˆh 0 ξptqH R pρpt, xqq dxdt
and converges to ´8 0 ξptqH R pρ R ptqq dt as h Ñ 0 `(where ρ R ptq is the strong trace of ρ at 0 `). This implies that

ˆ8 0 ξptqH R pρ R ptqq dt " ˆ8 0 ξ 1 ptqupt, 0qdt.
In the same way, we have

ˆ8 0 ξptqH L pρ L ptqq dt " ˆ8 0 ξ 1 ptqupt, 0qdt.
This shows [START_REF] Trélat | Global subanalytic solutions of Hamilton-Jacobi type equations[END_REF]. Note in addition that, as u is Lipschitz continuous,

ˆ8 0 ξptqu t pt, 0qdt " ´ˆ8 0 ξ 1 ptqupt, 0qdt " ´ˆ8 0 ξptqH α pρ α ptqq dt
for α " L, R, which proves that the common value in ( 33) is equal to ´ut pt, 0q.

We continue by showing that the traces of ρ satisfy the first line in the second equivalent definition of G A in (13).

Lemma 5.2 (ρ satisfies the first property of the germ G A ). Assume that u is a solution to (1). Then ρ defined by [START_REF] Sylla | A lwr model with constraints at moving interfaces[END_REF] satisfies

H L pρ L ptqq ě A a.e. t ą 0.
Proof. We know by [START_REF] Imbert | Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks[END_REF]Theorem 2.11] that wptq :" upt, 0q is a viscosity subsolution of w t `A ď 0. Thus it satisfies wpt `τ q ´wptq ď ´Aτ for any t, τ ą 0. Let us integrate the equation satisfied by u against the test function ps, yq Ñ pτ hq ´11 rt,t`τ sˆr´h,0s ps, yq for τ, h ą 0. We have, by Lipschitz continuity of u,

0 " pτ hq ´1 ˆt`τ t ˆ0
´hpu t ps, yq `HL pu x ps, yqqqdyds

" pτ hq ´1 ˆ0 ´hpupt `τ, yq ´upt, yqqdy `pτ hq ´1 ˆt`τ t ˆ0 ´h H L pρps, yqqdyds ď τ ´1pupt `τ, 0q ´upt, 0qq `C h τ `pτ hq ´1 ˆt`τ t ˆ0 ´h H L pρps, yqqdyds ď ´A `C h τ `pτ hq ´1 ˆt`τ t ˆ0
´h H L pρps, yqqdyds.

We let h Ñ 0 `and obtain ˆt`τ t H L pρ L psqqds ě Aτ, which gives the claim.

Lemma 5.3 (The traces are in the germ). Assume that the Lipschitz continuous viscosity solution u to (1) satisfies for a.e. t P p0, T q, upt, ¨q has a left derivative u x pt, 0 ´q and a right derivative u x pt, 0 `q at 0.

Then pρ L ptq, ρ R ptqq " pu x pt, 0 ´q, u x pt, 0 `qq P G A for a.e. t ě 0.

Remark. The forthcoming paper [START_REF] Monneau | Strictly convex Hamilton-Jacobi equations: strong trace of the gradient[END_REF] shows that [START_REF] Trélat | Solutions sous-analytiques globales de certaines équations d'Hamilton-Jacobi[END_REF] actually holds in a very general set-up (and in particular under our standing conditions). Below we prove it for semi-algebraic data only by using a representation formula. Therefore, for any ε ą 0 there exists x ε ą 0 such that ˆT 0 |ρ L ptq ´ux pt, ´xq| `|ρ R ptq ´ux pt, xq| dt ď ε for a.e. x P p0, x ε q.

Thus, after integration in space, we get ˆT 0 |ρ L ptqx `upt, ´xq ´upt, 0q| `|ρ R ptqx ´upt, xq `upt, 0q|dt ď εx for all x P p0, x ε q.

Using that u is Lipschitz continuous, assumption [START_REF] Trélat | Solutions sous-analytiques globales de certaines équations d'Hamilton-Jacobi[END_REF] and Lebesgue Theorem, we get therefore

ˆT 0 ˇˇˇρ L ptq ´lim xÑ0 `upt, ´xq ´upt, 0q ´x ˇˇˇ`ˆT 0 ˇˇˇρ R ptq ´lim xÑ0 `upt, xq ´upt, 0q x ˇˇˇd t " 0.
This means that, for a.e. t,

u x pt, 0 ´q " lim xÑ0 `upt, ´xq ´upt, 0q ´x " ρ L ptq and u x pt, 0 `q " lim xÑ0 `upt, xq ´upt, 0q x " ρ R ptq. ( 37 
)
Step 2: proof of the inclusion in (35)

We already know that ´ut pt, 0q " H L pρ L ptqq " H R pρ R ptqq ě A for a.e. time t (see Lemma 5.1 and Lemma 5.2). Let us fix such a time t ą 0. Our aim is to check that pρ L ptq, ρ R ptqq P G A . We argue by contradiction, assuming that

H L pρ L ptqq ą A, H L pρ L ptqq ă H L pρ L ptqq and H Ŕ pρ R ptqq ă H R pρ R ptqq.
Let us fix ε ą 0 so small that λ :" H L pρ L ptqq ´ε ą A. We then choose k ε L the smallest solution to H L pk ε L q :" λ and k ε R as the largest solution to H R pk ε R q :" λ. As H L and H R are convex and

H L pρ L ptqq ă H L pρ L ptqq and H Ŕ pρ R ptqq ă H R pρ R ptqq, we have k ε L ą ρ L ptq and k ε R ă ρ R ptq. Moreover, H L pk ε L q " min H L , while H Ŕ pk ε R q " min H R .
Let us define the map w : R ˆR Ñ R by wps, xq " upt, 0q

`" k ε L x ´λs if x ď 0 k ε R x ´λs if x ě 0
Then w is a test function which is a subsolution of the Hamilton-Jacobi equation (1) because,

H L pk ε L q " H R pk ε R q " λ " ´ws
and using A P rH 0 , 0s, we get maxtA,

H L pk ε L q, H Ŕ pk ε R qu " maxtA, min H L , min H R u " A ď λ " ´ws .
Moreover, by (37) and the fact that k ε L ą ρ L ptq and k ε R ă ρ R ptq, we get that upt, xq ě wp0, xq if |x| is small enough. Thus, by finite speed of propagation and comparison, we have upt `h, 0q ě wph, 0q for h ą 0 small enough. Therefore ´HL pρ L ptqq " u t pt, 0q ě w s p0, 0q " ´λ " ´HL pρ L ptqq `ε, which contradicts our assumption. This proves that pρ L ptq, ρ R ptqq P G A .

We are now ready to give an alternative proof of Theorem 1.1. This proof relies on semi-algebraic functions. For the reader's convenience, we recall below some useful facts about semi-algebraic sets and functions and we refer to [START_REF] Coste | An introduction to o-minimal geometry[END_REF] for a complete reference (see also [START_REF] Coste | An Introduction to Semialgebraic Geometry[END_REF]).

Remark. We recall that a basic semi-algebraic set is a set defined by a finite number of polynomial equalities and polynomial inequalities, and a semi-algebraic set is a finite union of basic semi-algebraic sets. The class SA n of semi-algebraic subsets of R n has the following properties:

• All algebraic subsets of R n (i.e., zeros of a finite number of polynomial equalities) are in SA n .

• SA n is stable by finite intersection, finite union and taking complement.

• The cartesian products of semi-algebraic sets are semi-algebraic.

• The Tarski-Seidenberg Theorem says that the image by the canonical projection p : R n`1 Ñ R n of a semi-algebraic set of R n`1 is a semi-algebraic set of R n .

• By [17, Proposition 1.12], the closure and the interior of a semi-algebraic subset of R n are semialgebraic.

• By definition, a semi-algebraic map is a map defined on a semi-algebraic set and whose graph is a semi-algebraic set.

• An important property of semi-algebraic functions is given in [17, Theorem 2.1] (Monotonicity Theorem): If f : pa, bq Ñ R is semi-algebraic, then there exists a finite subdivision a " a 0 ă a 1 ă ¨¨¨ă a k " b such that, on each interval pa i , a i`1 q, f is continuous and either constant or strictly monotone.

• An important consequence of the monotonicity Theorem is given in [17, Lemma 6.1]: left and right derivatives of a continuous semi-algebraic map on an open interval exist (with values in R Y t˘8u).

Sketch of proof of Theorem 1.1. As Theorem 1.1 has already been established by using numerical schemes, we only sketch the proof. Recall that u is a viscosity solution of (1). We have to prove that ρ :" u x is an entropy solution to [START_REF] Andreianov | New approaches to describing admissibility of solutions of scalar conservation laws with discontinuous flux[END_REF]. Following for instance [START_REF] Colombo | Initial data identification in conservation laws and Hamilton-Jacobi equations[END_REF][START_REF] Karlsen | A note on Front tracking and the Equivalence between Viscosity Solutions of Hamilton-Jacobi Equations And Entropy Solutions of scalar Conservation Laws[END_REF], we know that ρ solves the equation in tx ‰ 0u. It remains to check the junction condition at x " 0. From Lemma 5.3, we just need to show that the left and right derivatives u x pt, 0 ´q and u x pt, 0 `q are well defined for a.e. time t. To do so we will use a representation formula. Using this representation formula, we show the existence of these derivatives when the initial datum and hamiltonians are semi-algebraic, then conclude by an approximation argument.

Step 1: representation formula of the solution In order to use a representation formula, we reverse the time direction of trajectories, and for this reason, we set ûpt, xq " upT ´t, xq and L α pqq " sup pPR p´qp ´Hα ppqq where (with the same notation), we denote by H α : R Ñ R a C 1 , strictly convex and superlinear extension of H α from the interval ra α , c α s to the whole line R, for α " L, R. This implies that L α : R Ñ R is also C 1 , strictly convex and superlinear. Let us now define Lpx, qq :"

$ & % L L pqq if x ă 0 ´A if x " 0 L R pqq if x ą 0
Following [START_REF] Imbert | Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks[END_REF]Proposition 6.3], for t 0 ď T , we have ûpt 0 , x 0 q " inf γpt0q"x0 ˆT t0 Lpγptq, 9 γptqq dt `u0 pγpT qq, where the infimum is taken over the trajectories γ P H 1 prt 0 , T s, Rq.

If γ is optimal for x 0 , then γ is a straight-line on each interval where it does not vanish (by optimality conditions using L α strictly convex). As a consequence, the minimization problem boils down to minimize for t 0 ă T and if, for instance x 0 ă 0:

ûpt 0 , x 0 q " min ! min yď0 pT ´t0 qL L ˆy ´x0 T ´t0 ˙`u 0 pyq, min t0ăτ1ďτ2ăT,yě0 pτ 1 ´t0 qL L ˆ0 ´x0 τ 1 ´t0 ˙´Apτ 2 ´τ1 q `pT ´τ2 qL R ˆy ´0 T ´τ2 ˙`u 0 pyq, min t0ăτ1ďτ2ăT,yď0 pτ 1 ´t0 qL L ˆ0 ´x0 τ 1 ´t0 ˙´Apτ 2 ´τ1 q `pT ´τ2 qL L ˆy ´0 T ´τ2 ˙`u 0 pyq ) " mintf 1 px 0 q, f 2 px 0 q, f 3 px 0 qu, (38) 
where f 1 corresponds to trajectories ending at y ď 0 while f 2 (resp. f 3 ) corresponds to trajectories ending at y ě 0 (resp. y ď 0) and remaining in x " 0 during the time interval rτ 1 , τ 2 s. Notice that (38) is still true for x 0 " 0, with each minimum replaced by an infimum.

Step 2: argument for semi-algebraic data Here we assume that the data (L R , L L and u 0 ) are semi-algebraic. We claim that the map ûpt 0 , ¨q given by ( 38) is also semi-algebraic. Let us mention that in the case of analytic data, Trélat proved in [START_REF] Trélat | Global subanalytic solutions of Hamilton-Jacobi type equations[END_REF][START_REF] Trélat | Solutions sous-analytiques globales de certaines équations d'Hamilton-Jacobi[END_REF] that the solution to the Hamilton-Jacobi equation is subanalytic. To prove our claim, let us show for instance that f 2 is semi-algebraic. Let us define the semi-algebraic set A 2 by A 2 :" ! pt 0 , x 0 , τ 1 , τ 2 , y, z, u, vq P R 8 , 0 ă t 0 ăτ 1 ď τ 2 ă T, pτ 1 ´t0 qu " x 0 ă 0, pT ´τ2 qv " y, y ě 0, z ě pτ 1 ´t0 qL L p´uq ´Apτ 2 ´τ1 q `pT ´τ2 qL R pvq `u0 pyq

) .

Let C 2 denotes the projection of A 2 onto the components pt 0 , x 0 , zq. Then, by the Tarski-Seidenberg Theorem, C 2 is a semi-algebraic set. Note that C 2 is also, by definition, the epigraph of f 2 . Therefore the subgraph of f 2 (which is the closure of the complement of C 2 ) and its graph (intersection of the epigraph and subgraph) are also semi-algebraic. Thus f 2 is a semi-algebraic map. By stability of semi-algebraic sets by finite union, we deduce that ûpt 0 , ¨q is semi-algebraic on p´8, 0q. Moreover the function ûpt 0 , ¨q is continuous at x 0 " 0. Hence ûpt 0 , ¨q is also semi-algebraic on p´8, 0s. A similar argument shows that it is also semi-algebraic on r0, 8q. Because the union of semi-algebraic sets is semi-algebraic, we deduce that ûpt 0 , ¨q is semi-algebraic on R. This implies that upt, ¨q is semi-algebraic on R for any t P p0, T q. Using [17, Lemma 6.1], we then deduce that the limits u x pt, 0 ´q :" lim hÑ0 ´upt, hq ´upt, 0q h and u x pt, 0 `q :" lim hÑ0`u pt, hq ´upt, 0q h exist at any time t P p0, T q. Therefore (34) holds. We can then conclude by Lemma 5.3 that pρ L ptq, ρ R ptqq P G A for a.e. t P r0, T s.

Step 3: argument in the general case One can check1 that it is possible to approximate our data H L , H R , u 0 by semi-algebraic data H ε L , H ε L , and u ε 0 satisfying our standing assumptions (with locally uniform convexity for H ε L and H ε L ). By the previous step, we know that, if u ε is the solution to the HJ equation associated with these perturbed data, then ρ ε " u ε

x solves the associated SCL. To conclude, we only need to pass to the limit: indeed, u ε converges locally uniformly to the solution u of the HJ equation (1), while ρ ε converges in L 1 loc to the entropy solution ρ of [START_REF] Andreianov | New approaches to describing admissibility of solutions of scalar conservation laws with discontinuous flux[END_REF]. We infer therefore that u x , which is the weak limit of u ε

x , is equal to the solution ρ of [START_REF] Andreianov | New approaches to describing admissibility of solutions of scalar conservation laws with discontinuous flux[END_REF].

where R α " |H α pk α q ´F0 pk L , k R q| , α " L, R, and Φ n j pk ∆ q is defined in [START_REF] Monneau | Strictly convex Hamilton-Jacobi equations: strong trace of the gradient[END_REF]. Proof. Let k P R. Fix n P N, j P Z such that j ‰ 0, ´1. We have, using the monotonicity of the scheme,

|p n`1 j`1{2 ´k| " p n`1 j`1{2 _ k ´pn`1 j`1{2
^k " F n j pp n j´1{2 , p n j`1{2 , p n j`3{2 q _ F n j pk, k, kq ´F n j pp n j´1{2 , p n j`1{2 , p n j`3{2 q ^F n j pk, k, kq ď F n j pp n j´1{2 _ k, p n j`1{2 _ k, p n j`3{2 _ kq ´F n j pp n j´1{2 ^k, p n j`1{2 ^k, p n j`3{2 ^kq " |p n j`1{2 ´k| `∆t ∆x pΦ n j pkq ´Φn j`1 pkqq.

This is exactly the third inequality. Now we treat the case j " 0. We have

F n 0 pk L , k R , k R q " k R ´∆t ∆x pH R pk R q ´F0 pk L , k R qq Then, k R ě F n 0 pp n j´1{2 ^kL , p n j`1{2 ^kR , p n j`3{2 ^kR q ´∆t ∆x pH R pk R q ´F0 pk L , k R qq ḱR ď F n 0 pp n j´1{2 _ k L , p n j`1{2 _ k R , p n j`3{2 _ k R q `∆t ∆x pH R pk R q ´F0 pk L , k R qq
ẁhere a ˘" maxp˘a, 0q, and we can adapt the previous argument in the following way

|p n`1 1{2 ´kR | " p n`1 1{2 _ k R ´pn`1 1{2 ^kR " F n 0 pp n ´1{2 , p n 1{2 , p n 3{2 q _ k R ´F n 0 pp n ´1{2 , p n 1{2 , p n 3{2 q ^kR ď F n 0 pp n ´1{2 _ k L , p n 1{2 _ k R , p n 3{2 _ k R q `∆t ∆x pH R pk R q ´F0 pk L , k R qq F n 0 pp n ´1{2 ^kL , p n 1{2 ^kR , p n 3{2 ^kR q `∆t ∆x pH R pk R q ´F0 pk L , k R qq " |p n 1{2 ´kR | `∆t ∆x pΦ n 0 pk ∆ q ´Φn 1 pk ∆ q `RR q.
We conclude for the case j " ´1 with the same procedure. This ends the proof of the lemma.

We are now ready to prove Lemma 3.5.

Proof of Lemma 3.5. Let φ P C 8 c pr0, T q ˆRq be non-negative. For all j P Z and n P N, we define

φ n j`1{2 :" 1 ∆x ˆxj`1 xj φpt n , xq dx.
We also denote by N :" inftn P N, t n ą T u. By Lemma 6.1 and since φ n j`1 2 ě 0 @n, j, we have

ÿ jPZ " |p n`1 j`1{2 ´k∆ | ´|p n j`1{2 ´k∆ | ı ∆x φ n`1 j`1{2 ď ´ÿ j‰0,´1 " Φ n j`1 pk ∆ q ´Φn j pk ∆ q ‰ ∆t φ n`1 j`1{2 ´rΦ n 1 pk ∆ q ´Φn 0 pk ∆ q ´RR s ∆t φ n`1 1{2 
´"Φ n 0 pk ∆ q ´Φn ´1pk ∆ q ´RL ‰ ∆t φ n`1 ´1{2 . Using the Abel's transformation and rearranging the terms, we get

ÿ jPZ " |p n`1 j`1{2 ´k∆ | ´|p n j`1{2 ´k∆ | ı ∆x φ n`1 j`1{2 (39) ď 
" R L φ n`1 ´1{2 `RR φ n`1 1{2 ı ∆t `ÿ jPZ Φ n j pk ∆ q∆t " φ n`1 j`1{2 ´φn`1 j´1{2 ı ": I 1 `I2 .
First, we estimate I 2 . We then have

I 2 " ÿ jPZ Φ n j pk ∆ q∆t " φ n`1 j`1{2 ´φn`1 j´1{2 ı " ÿ jPZ Φ n j pk ∆ q ∆t ∆x « ˆxj`1 xj φpt n`1 ,
I 2 " ˆR Φ ∆ pk ∆ qpt n , xq ˆtn`1 tn φ x pt, xq dt dx `Op∆t 2 q `Op∆t∆xq. (40) 
We now estimate

I 1 . Recalling that R F0 pk L , k R q :" |H L pk L q ´F0 pk L , k R q| `|H R pk R q ´F0 pk L , k R q| " R L `RR , we have I 1 "∆t " R L φ n`1 ´1{2 `RR φ n`1 1{2 ı " ∆t ∆x « R L ˆx0 x´1 φpt n`1 , xq dx `RR ˆx1 x0 φpt n`1 , xq dx ff " ∆t ∆x « pR L `RR qφpt n`1 , 0q∆x `RL ˆx0 x´1 ˆx 0 φ x pt n`1 , yq dy dx `RR ˆx1 x0 ˆx 0 φ x pt n`1 , yq dy dx ff "R F0 pk L , k R q ˆtn`1 tn φpt, 0q dt `RF0 pk L , k R q ˆtn`1 tn ˆtn`1 t φ t ps, 0q ds dt `∆t ∆x R L ˆx0 x´1 ˆx 0 φ x pt n`1 , yq dy dx `∆t ∆x R R ˆx1 x0 ˆx 0 φ x pt n`1 , yq dy dx ":R F0 pk L , k R q ˆtn`1 tn φpt, 0q dt `I1 1 `I2 1 `I3 1 
and there exist a constant C such that

|I 1 1 | ď C||φ t || 8 p∆tq 2 , |I 2 1 `I3 1 | ď C||φ x || 8 ∆t∆x. This implies that I 1 " R F0 pk L , k R q ˆtn`1 tn φpt, 0q dt `Op∆t 2 q `Op∆t∆xq. (41) 
Combining (39), ( 40) and (41), we finally get

ˆR Φ ∆ pk ∆ qpt n , xq ˆtn`1 tn φ x pt, xq dt dx `RF0 pk L , k R q ˆtn`1 tn φpt, 0q dt `Op∆t 2 q `Op∆x∆tq ě ÿ jPZ " |p n`1 j`1{2 ´k∆ | ´|p n j`1{2 ´k∆ | ı ∆x φ n`1 j`1{2
We sum up with respect to 0 ď n ď N and use once again Abel's transformation to get

ˆR ˆT 0 Φ ∆ pk ∆ qpt, xq φ x pt, xq dt dx `ˆT 0 R F0 pk L , k R qφpt, 0q dt `Op∆tq `Op∆xq ě N ÿ n"0 ÿ jPZ " |p n`1 j`1{2 ´k∆ | ´|p n j`1{2 ´k∆ | ı ∆x φ n`1 j`1{2 ě N ÿ n"0 ÿ jPZ |p n j`1{2 ´k∆ | " φ n j`1{2 ´φn`1 j`1{2 ı ∆x ´ÿ jPZ |p 0 j`1{2 ´k∆ |φ 0 j`1{2 ∆x `ÿ jPZ |p N `1 j`1{2 ´k∆ |φ N `1 j`1{2 ∆x.
Recalling that φ P C 8 c pr0, T q ˆRq, we get that φ N `1 j`1{2 " 0 for all j. Hence 

ˆR ˆT 0 Φ ∆ pk ∆ qpt, xq φ x pt, xq dt dx `ˆT 0 R F0 pk L , k R qφpt,
) 42 
For n ě 0, we assume that q n j`1 2 is given for j " 0, and for j ě 1 we assume that q n`1 j`1 2 is solution of the following scheme

q n`1 j`1 2 " q n j`1 2 ´∆t ∆x ´gf pq n j`1 2 , q n j`3 2 q ´gf pq n j´1 2 , q n j`1 2 q ¯(43)
where we recall that the Godunov flux associated to f is given by g f pp, qq " " min xPrp,qs pf pxqq if p ď q max xPrq,ps pf pxqq if p ě q.

We assume that ˇˇq n j`1 2 ˇˇď M for some M ą 0 and for all j, n ě 0 and that ∆ " p∆t, ∆xq satisfies ∆x ∆t ě 2L f and γ :" ∆t ∆x

δ 2 M ď 1 (44)
where L f is the Lipschitz constant of f . We set q ∆ :" ÿ nPN ÿ jě1 q n j`1{2 1 rtn,tn`1qˆrxj ,xj`1q .

Then, there exists ρ P L 8 and a subsequence also denoted pq ∆ k q k such that q ∆ k ÝÑ ρ a.e.. Proof of Lemma 3.6. The proof is a direct consequence of the previous proposition applied on p0, `8q to q n,j

`1 2 " p n j`1 2
and on p´8, 0q to q n,j `1 2 " p n ´j´1 2

for j ě 1.

The rest of this section is devoted to the proof of Proposition 6.2. The idea consists to use a localized discrete Oleinik estimate, see Lemma 6.5. To prove this estimate, we first need to prove the following discrete ODE on the discrete gradient.

Lemma 6.3 (A discrete ODE on the discrete Gradient). For j ě 1, let w n j :"

q n j`1{2
´qn j´1{2 ∆x and for j ě 2 ŵn j :" maxt0, w n j´1 , w n j , w n j`1 u. Then, for all j ě 2 and for all n ě 0 maxp0, w n`1 j q ´ŵ n j ∆t ď ´δ 8

| ŵn j | 2 . (45) 
Proof. First, fix n P N and j ě 2. we have w n`1 j " w n j ´∆t p∆xq 2 " g f pq n j`1{2 , q n j`3{2 q ´gf pq n j´1{2 , q n j`1{2 q ´gf pq n j´1{2 , q n j`1{2 q `gf pq n j´3{2 , q n j´1{2 q  " w n j ´∆t p∆xq 2 " g f pq n j´1{2 `wn j ∆x, q n j`1{2

`wn j`1 ∆xq ´2g f pq n j´1{2 , q n j`1{2 q `gf pq n j´1{2 ´wn j´1 ∆x, q n j`1{2 ´wn j ∆xq  ": Gpw n j´1 , w n j , w n j`1 , q n j´1{2 , q n j`1{2 q.

Due to the monotonicity of g f , we know that G is non-decreasing with respect to its first and third variables. We now prove that G is also non-decreasing with respect to its second variable. Indeed, we have B w Gpa, w, b, q ´1, q 1 q " 1 ´∆t ∆x " B 1 g f pq ´1 `w∆x, q 1 `b∆xq ´B2 g f pq ´1 ´a∆x, q 1 ´w∆xq ‰ ě 1 ´2 ∆t ∆x L f ě 0, by (44). This implies that w n`1 j " Gpw n j´1 , w n j , w n j`1 , q n j`1{2 , q n j´1{2 q ď Gp ŵn j , ŵn j , ŵn j , q n j`1{2 , q n j´1{2 q.

Moreover, 0 " Gp0, 0, 0, q n j`1{2 , q n j´1{2 q ď Gp ŵn j , ŵn j , ŵn j , q n j`1{2 , q n j´1{2 q. This implies that maxp0, w n`1 j q ď Gp ŵn j , ŵn j , ŵn j , q n j`1{2 , q n j´1{2 q.

(46) For clarity's sake, we omit the n dependency when not necessary. Set Q j :" ˜qn j´1{2 q n j`1{2 ¸, W j :" ˆŵ n j ŵn j ˙.

We then get maxp0, w n`1 j q ´ŵ n j ∆t ď ´1 p∆xq 2 " g f pQ j `Wj ∆xq ´2g f pQ j q `gf pQ j ´Wj ∆xq ‰ .

We now want to estimate the right hand term. Using (50) in Lemma 6.4 below (with P " Q j , W " W j and α " ˘∆x), we have maxp0, w n`1 j q ´ŵ n j ∆t ď ´Ij " ´pI j `Ij q (48)

where for β " ˘, I β j " ˆ1 0 p1 ´tq Hesspg f qpQ j `tβ∆xW j qW j ¨Wj dt.

To estimate I j , we use the explicit form of Hesspg f qpQ j `tα∆xW j q given in Lemma 6.4 below. We assume for the moment that ŵn j ą 0. We then have I j ě δ| ŵn j | 2 ˆ1 0 p1 ´tq1 tf ´pqqăf ppq,f 1 ppqą0u dt where p " pptq " q n j´1 2

`t∆x ŵn j and q " qptq " q n j`1 2

`t∆x ŵn j , and

I j ě δ| ŵn j | 2
ˆ1 0 p1 ´tq1 tf pq 1 qąf `pp 1 q,f 1 pq 1 qă0u dt where p 1 " p 1 ptq " q n j´1 2 ´t∆x ŵn j and q 1 " q 1 ptq " q n j`1 2 ´t∆x ŵn j . We now want to prove that 1 tf ´pqqăf ppq,f 1 ppqą0u `1tfpq 1 qąf `pp 1 q,f 1 pq 1 qă0u ě 1 @t Ps 1 2 , 1s.

Since ŵn j ą 0, we have q 1 ´p1 " w n j ∆x ´2t∆x ŵn j ď p1 ´2tq∆x ŵn j ă 0 if t ą 1 2 . Moreover, by definition of p, q, p 1 , q 1 , we have p 1 ă p and q 1 ă q. By contradiction assume that (49) is not satisfied, i.e.

$ & % f 1 ppq ď 0 or f ´pqq ě f ppq and f pq 1 q ď f `pp 1 q or f 1 pq 1 q ě 0.

On the one hand, if f 1 ppq ď 0, since q 1 ă p 1 ă p, we deduce that f 1 pq 1 q ă 0. Hence f pq 1 q ď f `pp 1 q. Since p 1 ď p, we also have f `pp 1 q " inf f and so f pq 1 q " inf f which contradicts the fact that f 1 pq 1 q ă 0. On the other hand, if f 1 ppq ą 0 and f ´pqq ě f ppq, then f 1 pqq ă 0. Since q 1 ă q and p 1 ă p, we then get f pq 1 q " f ´pq 1 q ą f ´pqq ě f ppq " f `ppq ě f `pp 1 q which is a contradiction. We then deduce that (49) holds true. This implies that

I j ě δ| ŵn j | 2 ˆ1 1{2 p1 ´tqdt " 1 8 δ| ŵn j | 2 .
Notice that this inequality is also true if ŵn j " 0. Injecting this in (48), we get the result. It remains to show the following lemma concerning some properties of the Godunov flux. where L f is the Lipschitz constant of f .

Proof. The result easily follows from a picture with worse cases (and from the scheme for the last bound). We skip the details. This ends the proof of the lemma.

We are now in a position to prove Proposition 6.2.

Proof of Proposition 6.2. We simply apply the bounds of Lemma 6.6, which shows that for all θ ą 0 and Recovering p0, `8q ˆp0, `8q by triangles possibly arbitrary small, we deduce the result from a standard diagonal extraction argument. This ends the proof of the lemma.

0 ă R 1 ă R 2 |q ∆ | BV pΩ θ,R 1 ,R 2 q ď C θ ,
6.3 Hamilton-Jacobi germs are not L 1 -dissipative for N ě 3 branches

In this subsection, for convenience of an (undeveloped) traffic interpretation/motivation, we prefer to work with concave fluxes instead of convex fluxes (which is indeed equivalent by a simple change of sign).

Notation.

Let I and J be two non-empty finite sets (of indices) with I X J " H. For α P I Y J, we consider real numbers a α ă c α , and non constant concave functions f α : ra α , c α s Ñ r0, `8q with f α pa α q " 0 " f α pc α q. We consider A 0 :" min αPIYJ λ α max where λ α max :" max Qα f α ą 0 and Q α :" ra α , c α s. We set f α,`p qq " sup raα,qs f α , f α,´p qq " sup rq,cαs f α , for q P Q α and, for all λ P r0, λ α max s, q α ˘pλq :" q where q P Q α is defined by f α pqq " λ " f α,˘p qq (53)

We consider weights θ α P p0, 1s for all α P I Y J such that 1 "

ÿ iPI θ i " ÿ jPJ θ j . (54) 
Notice that for α P I YJ, the equality θ α " 1 implies that CardpIq " 1 (if α P I) or CardpJq " 1 (if α P J).

HJ problem

We consider the following Hamilton-Jacobi problem on a junction with incoming branches indexed by I and outgoing branches indexed by J $ ' ' ' ' & ' ' ' ' % u i t `θ´1 i f i pθ i u i x q " 0 x ă 0 i P I u j t `θ´1 j f j pθ j u j x q " 0 x ą 0 j P J u i " u j ": u

x " 0 i P I, j P J u t `min " A, min iPI θ ´1 i f i,`p θ i u i x q, min jPJ θ ´1 j f j,´p θ j u j x q * " 0

x " 0 (55)

Definition 2 . 2 (

 22 Weak viscosity solution). Let us consider a function u : Γ T Ñ R i) (Weak viscosity subsolution)

Proof. Step 1 :

 1 proof of equality in (35) Using the definition of strong traces, we have ess-lim xÑ0 `ˆT 0 |ρ L ptq ´ρpt, ´xq| `|ρ R ptq ´ρpt, xq| dt " 0. (36) This implies that ess-lim xÑ0 `ˆT 0 |ρ L ptq ´ux pt, ´xq| `|ρ R ptq ´ux pt, xq| dt " 0.

  2 ÝÑ R is called a desired coupling condition and satisfies the following conditions

	$ '	(Regularity )	F 0 is Lipschitz continuous and piecewise C 1 pR 2 q
	'		
	'		
	'		
	'		
	' ' ' ' ' ' &	(Monotonicity)	F 0 is non decreasing in the first variable and non increasing in the second one
	' ' ' ' ' '	(Semi-coercivity)	lim maxp0,pL,´pRqÑ`8
	'		
	'		
	'		
	'		
	'		
	%		

  xx pt n`1 , yq dy ˙dx" ˆR Φ ∆ pk ∆ qpt n , xq ∆tφ x pt n`1 , xq dx

									ff
									xq dx	´ˆxj	φpt n`1 , xq dx
									xj´1
	"	ÿ jPZ	Φ n j pk ∆ q	∆t ∆x	ˆxj`1 xj	rφpt n`1 , xq ´φpt n`1 , x ´∆xqs dx
	"	ÿ jPZ	Φ n j pk ∆ q	∆t ∆x	xj ˆxj`1	ˆφx pt n`1 , xq∆x	`ˆx
									`ÿ jPZ	Φ n j pk ∆ q	∆t ∆x	ˆxj`1 xj	ˆx x´∆x	px ´∆x ´yqφ xx pt n`1 , yq dy dx
	" ˆR Φ ∆ pk ∆ qpt n , xq	ˆtn`1	"	φ x pt, xq	`ˆtn`1	φ tx ps, xq ds		dt dx
								tn	t
		`ÿ jPZ	Φ n j pk ∆ q	∆x ∆t	ˆxj`1
		`ÿ jPZ	Φ n j pk ∆ q	∆x ∆t	ˆxj`1
									2	`I2 2
	where							
					|I 1 2 | ď C sup

x´∆x px ´∆x ´yqφ xj ˆx x´∆x px ´∆x ´yqφ xx pt n`1 , yq dy dx " ˆR Φ ∆ pk ∆ qpt n , xq ˆtn`1 tn φ x pt, xq dt dx `ˆR Φ ∆ pk ∆ qpt n , xq ˆtn`1 tn ˆtn`1 t φ tx ps, xq ds dt dx xj ˆx x´∆x px ´∆x ´yqφ xx pt n`1 , yq dy dx Notice that, if we take pk L , k R q P Q, then there exists a constant C such that |Φ ∆ | ď C. Consequently, I 2 " ˆR Φ ∆ pk ∆ qpt n , xq ˆtn`1 tn φ x pt, xq dt dx `I1 t ||φ tx pt, ¨q|| L 1 p∆tq 2 , |I 2 2 | ď C sup t ||φ xx pt, ¨q|| L 1 ∆t∆x.

  Proposition 6.2 (Local compactness on one branch). Let f P C 2 pRq be Lipschitz continuous and such that f 2 ě δ ą 0. (

									0q dt `Op∆tq `Op∆xq
		N				ˆxj`1	ˆtn`1				ˆxj`1
	ě	ÿ n"0	ÿ jPZ	|p n j`1{2 ´k∆ |	xj	tn	´φt pt, xq dt dx	´ÿ jPZ	|p 0 j`1{2 ´k∆ |	xj	φp0, xq dx
	ě	´ˆR ˆT 0	|p						

∆ ´k∆ |φ t pt, xq dt dx ´ˆR |p ∆ p0, xq ´k∆ |φp0, xq dx and we recover the desired discrete entropy inequality.

6.2 Local compactness for a numerical scheme of a conservation law

The proof of Lemma 3.6 is a direct consequence of the following lemma, stated on one branch:

  |q ∆ | L 8 p0,`8qˆp0,`8q ď M " pt, xq P p0, `8q 2 s.t. t P ˆθ, R 2 ´R1 2 `θ˙, x P pR 1 `t ´θ, R 2 ´pt ´θqq

	for the triangle
	Ω θ,R1,R2 :"

*

.
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This is the point where the proof is sketchy: the actual construction of H ε L , H ε R , and u ε 0 requires some work and has to be done with care.
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Appendix

6.1 Proof of the discrete entropy inequalities for the SCL numerical scheme Before proving that the scheme satisfies the discrete entropy inequalities stated in Lemma 3.5, we prove the following discrete entropy inequalities, independent of the test function. Lemma 6.1 (First discrete entropy inequalities). The numerical scheme [START_REF] Imbert | A Hamilton-Jacobi approach to junction problems and application to traffic flows[END_REF] satisfies the following discrete entropy inequalities: for all n P N, j P N and pk L , k R q P Q, set k ∆ " k L 1 jď´1 `kR 1 jě0 . Then

Then g f is C 1 pR 2 zΓq and

Ṁoreover g f is W 2,8 pR 2 zΓq and for all pp, qq R Γ

Finally, if P " pp, qq and W " pw, wq, then for all α P R and for any subgradient ∇g f pP q P Bg f pP q (which is a true gradient if P R Γ) g f pP `αW q ´gf pP q ě αW ¨∇g f pP q `α2 ˆ1 0 p1 ´tq Hesspg f qpP `tαW qW ¨W dt (50)

Proof. We just prove (50), the proof of the other properties being direct consequences of the reformulation of the Godunov flux, in the convex case, g f pp, qq " maxpf `ppq, f ´pqqq, given in Lemma 3.2. If w " 0, the result is obvious. Assume that w ‰ 0. We set U " r´M, M s 2 zΓ. Since f is convex, g f is also convex and we have D 2 g f ě tD 2 g f u |U ¨1U , where tD 2 g f u |U is the classical derivative part of D 2 g f given by Hesspg f q. So to prove (50), it's sufficient to show that 1 U pQ `αtW q " 1 for a.e. t. To show this, we claim that for all t Γ X pΓ `tW q " H.

Indeed, if there exists Q " pq 1 , q 2 q P Γ X pΓ `tW q for some t ‰ 0 (assume that w ą 0 and t ą 0 to fix the idea, the other cases being similar), then

which is a contradiction. This implies that the curve t Þ Ñ Q `αtW can cross Γ at most one time and so 1 U pQ `αtW q " 1 for a.e. t.

Lemma 6.5 (Discrete Oleinik estimate). Under the same assumptions as Proposition 6.2, let R 2 ą R 1 ą 0 and J 2 ą J 1 ě 2 be such that pJ 1 ∆x, J 2 ∆xq Ă pR 1 , R 2 q. Then for w n j defined in Lemma 6.3 and for 0 ď n ď 1 2 pJ 2 ´J1 q, we have δ 8 sup

Remark. We provide here a proof of the localized estimate (51). A similar estimate (with possible different constants) can also be deduce from the proofs of the known global results. For Godunov flux, it can be deduced either from [START_REF] Goodman | A geometric approach to high resolution TVD schemes[END_REF], or from [START_REF] Brenier | The discrete one-sided Lipschitz condition for convex scalar conservation laws[END_REF] for an optimal constant with a nice proof (which simply uses the fact that Godunov scheme is equivalent to solve exactly the Riemann problem (i.e. solve the exact PDE), and then average the solution). See also [START_REF] Tadmor | The large-time behavior of the scalar, genuinely nonlinear Lax-Friedrichs scheme[END_REF] for the case of Lax-Friedrichs schemes.

Proof of Lemma 6.5.

Step 1: Initial condition We first check that (51) holds true for n " 0. We have

and (51) is satisfied for n " 0.

Step 2: The supersolution Recall that, by Lemma 6.3, we have, with ŵn j :" maxp0, w n j´1 , w n j , w n j`1 q, for j ě 2 maxp0, w n`1 j

and then we see immediately that

pn `1q is a supersolution of the equation with equality in (52), whose w n is itself a subsolution. Moreover h n satisfies the equality in the inequality (51) for n " 0.

Step 3: Time evolution and comparison Now assume that ( 51) is true at step n ě 0 and let us show it is also true at step n `1. We then assume that sup jPrJ1`n,J2´ns

w n j ď h n i.e. sup jPrJ1`n`1,J2´pn`1qs

Then (52) implies that sup jPrJ1`pn`1q,J2´pn`1qs maxp0, w n`1 j q ď sup jPrJ1`n`1,J2´pn`1qs

Φp ŵn j q with Φpwq :" w ´∆t

Because Φ is nondecreasing on " 0, `∆t δ 4 ˘´1 ı , and

we deduce, using that h n is a supersolution, that Φp ŵn j q ď

for all j P rJ 1 `pn `1q, J 2 ´pn `1qs. This implies that sup jPrJ1`pn`1q,J2´pn`1qs maxp0, w n`1 j q ď h n`1 .

This ends the proof fo the lemma.

Lemma 6.6. (Total variation estimates) Assume that for J 2 ě J 1 ě 2 and for B ě 0

| ď M for all j P rJ 1 , J 2 s.

Then we have ÿ jPrJ1,J2´1s

where A P r0, A 0 s is the flux limiter. We define ρ α :" θ α u α x for α P I YJ, which satisfies (at least formally) $ & % ρ i t `f i pρ i q x " 0

x ă 0 i P I ρ j t `f j pρ j q x " 0

x ą 0 j P J ρ " ppρ i q iPI , pρ j q jPJ q P G HJ A x " 0 for a.e. time t

with the HJ germ defined by the set

p " pp α q αPIYJ P ź iPIYJ Q α , such that there exists λ P R with θ ´1 α f α pp α q " λ " min " A, min iPI θ ´1 i f i,`p p i q, min jPJ θ ´1 j f j,´p p j q * for all α P I Y J , / .

/ -

By (54) we recover the Rankine-Hugoniot relation ÿ iPI f i pp i q " ÿ jPJ f j pp j q for all p P G HJ A .

Lemma 6.7. (Lack of dissipation for Hamilton-Jacobi germs with 3 branches or more) Set n :" CardpIq and m :" CardpJq with n, m ě 1. Under the previous assumptions, we have:

Proof of Lemma 6.7. Recall that the germ 

The case A " 0 is trivial, and we now assume that A P p0, A 0 s. We choose p 1 i :" q i `pθ i Aq, p 1 j :" q j ´pθ j Aq, i P I, j P J,

where the map q α ˘p¨q is defined in (53). Now we choose α 0 P I Y J and for some λ P p0, Aq, we set p i :" " q i `pθ i λq if i " α 0 P I, q i ´pθ i λq if i P Iz tα 0 u , and p j :" " q j ´pθ j λq if j " α 0 P J q i ´pθ i λq if j P Jz tα 0 u Then we have signpp 1 i ´pi q " " `1 if i " α 0 P I, ´1 if i P Iz tα 0 u , and signpp 1 j ´pj q " " ´1 if j " α 0 P J, `1 if j P Jz tα 0 u and f α pp 1 α q ´f α pp α q ( " θ α pA ´λq ą 0 for all α P I Y J.

Dividing (57) by pA ´λq ą 0, this leads to: " t´1 `2θ α0 u ě t`1u if α 0 P I t´1u ě t`1 ´2θ α0 u if α 0 P J which forces θ α0 ě 1. This contradicts (54) if CardpIq ě 2 or CardpJq ě 2. The fact that G HJ A is L 1 -dissipative for CardpIq " 1 " CardpJq is proved in Proposition 2.6. This ends the proof of the lemma.